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Some historical remarks
Frobenius extensions where introduced by Kasch and by Nakayama and Tsuzuku in the fifties as ageneralization of the well known notion of Frobenius algebra.

Of course the underlying idea was to recover the duality theory of Frobenius algebras in a more generalsetting.The notion of separable extension comes from the generalization of the well known notion of separable fieldextension. The classical definition of separable ring extension is due to Hirata and Sugano (1966).Both notions, Frobenius and separable, have been extended to more general frameworks in category theory.In the paperS. Caenepeel and L. Kadison.Are biseparable extensions Frobenius?
K-Theory, 24(4):361–383, 2001.it is explained how deep connections between separable and Frobenius extensions were found from the verybeginning.
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Some historical remarks
For instance, the fundamental fact that finite dimensional semisimple algebras over a field are symmetric,hence Frobenius, was extended to algebras over commutative by Endo and Watanabe (1967).

Concretely they showed that separable, finitely generated, faithful and projective algebras over acommutative ring are symmetric.H-separable extensions are Frobenius (Sugano, 1970).However, as Caenepeel and Kadison say “it is implicit in the literature that there are several cautionaryexamples showing separable extensions are not always Frobenius extensions in the ordinary untwisted sense”.Caenepeel and Kadison provide one of these examples under the stronger hypothesis that the extension issplit, but the Frobenius property is lost because the provided extension is not finitely generated.Split extensions are naturally considered since separability and splitting can be viewed as particular cases ofthe notion of separable module introduced by Sugano in 1971.Biseparable extensions are therefore considered because they contain both notions of separable and splitextensions under the same module theoretic approach.Biseparable extensions are finitely generated and projective, hence the example they provide is not a counterexample of their main question: “Are biseparable extensions Frobenius?”
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The main aim
We first recall
Definition 1A (unital) ring extension C ⊆ B is biseparable if the modules CB and BC are finitely generated and projective,and the extension is both split and separable.

The notions of a split and a separable ring extension will be recalled along the talk.
The aim of this talk is to construct a biseparable extension of the commutative polynomial ring F[x ] withcoefficients in a field F which is not Frobenius.
We found this example during our investigation on duality for convolutional error correcting codes with a cyclicstructure.
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The Ore extension setup
Along this talk, F denotes a field, and A is an (associative and unital) F-algebra of finite dimension r .

Let also denote by σ : A→ A an algebra F-automorphism and δ : A→ A a σ-derivation on A, i.e.
δ(ab) = σ (a)δ(b) + δ(a)b

for all a, b ∈ A.Set
R = F[x ],the commuttative polynomial ring, and

S = A[x ; σ, δ ],the Ore extension of A whose product is subject to the rule
xa = σ (a)x + δ(a)

for every a ∈ A.We give conditions on σ and δ in order to get that R ⊆ S inherits the corresponding properties (separable, split,Frobenius) from F ⊆ A. A precise construction of A, σ and δ will lead to the counterexample.
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The Ore extension setup, IIGiven a ∈ A, n ≥ 0, we denote by Nn
i (a) the coefficients in A determined by

xna = ∑
i

Nn
i (a)x i . (1)

For an Ore polynomial ∑n
i=0 gix

i ∈ S , we have(
n∑

i=0

gix
i

)
a = n∑

i=0

(
n∑

k=i

gkN
k
i (a)) x i . (2)

Consider F-linear operators Nn
i : A→ A. Then

Nn+1
i = σNn

i−1 + δNn
i . (3)

The ring extension R ⊆ S makes S free of finite rank both as a left as a right R–module. More precisely,
Lemma 2
Let {a1, . . . , ar} be an F-basis of A. The following statements hold.

1 {a1, . . . , ar} is a right basis of S over R .
2 {a1, . . . , ar} is a left basis of S over R .
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The main constructionSet S∗ = homR (SR ,R), which is a right S–module with(φs)(s ′) = φ(ss ′), (φ ∈ S∗, s, s ′ ∈ S)

Theorem 3
There exists a bijective correspondence between the following sets.

1 Frobenius functionals on the F-algebra A.
2 Right S-isomorphisms from S to S∗.

Proof. Let ε : A→ F be a Frobenius functional on A. This is to mean that the bilinear form 〈a, b〉ε = ε(ab) isnon-degenerate.To define a right S–linear map αε : S → S∗ we need just to specify αε(1) ∈ S∗. For every f = ∑i fix
i ∈ S , set

αε(1)(f ) = ∑
i

ε(fi )x i .

Note that, for every f , g ∈ S , one has
αε(f )(g ) = αε(1)(fg ) = αε(fg )(1).
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2 Right S-isomorphisms from S to S∗.

Proof. Let ε : A→ F be a Frobenius functional on A. This is to mean that the bilinear form 〈a, b〉ε = ε(ab) isnon-degenerate.To define a right S–linear map αε : S → S∗ we need just to specify αε(1) ∈ S∗.

For every f = ∑i fix
i ∈ S , set

αε(1)(f ) = ∑
i

ε(fi )x i .

Note that, for every f , g ∈ S , one has
αε(f )(g ) = αε(1)(fg ) = αε(fg )(1).
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The main construction, II
We first check that αε is injective.

Let f = ∑n
i=0 fix

i ∈ S with fn 6= 0 such that αε(f ) = 0.Then, for every b ∈ A, we get from (2) that
0 = αε(f )(b) = αε(fb)(1) (2)= n∑

i=0

ε
(

n∑
k=i

fkN
k
i (b)) x i .

In particular, ε(fnNn
n (b)) = ε(fnσ n(b)) = 0 for every b ∈ A.Since σ is an automorphism, 〈fn, b〉ε = ε(fnb) = 0 for all b ∈ A,which contraducts the non-degeneracy of 〈−,−〉ε .Thus αε is injective.
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The main construction, III
It remains to prove that αε is surjective.

Let {a1, . . . , ar} be an F-basis of A, which, by Lemma 2, becomes an R-basis of SR .Let
{a∗1, . . . , a∗r }a left R-basis of S∗ dual to
{a1, . . . , ar}.

Let us show that xna∗i ∈ Imαε for all n ≥ 0 and 1 ≤ i ≤ r , which yields the result (recall that R = F[x ]).For any m ≥ 0, since {σm(a1), . . . , σm(ar )} is an F-basis of A, and 〈−,−〉ε is non-degenerate, there exist
b

(m)
1 , . . . , b(m)

r ∈ A such that
ε
(
b

(m)
i σm(aj )) = δij (4)for all 1 ≤ i , j ≤ r .
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The main construction, IV
For each 1 ≤ i ≤ r , set

g (i ) = n∑
k=0

g
(i )
k xk ∈ S ,

where g (i )
n = b

(n)
i

and, for each 0 ≤ m ≤ n − 1,
g (i )
m = − r∑

`=1

b
(m)
`

(
n∑

k=m+1

ε
(
g

(i )
k Nk

m(a` ))) . (5)
Then, by (4), for all 1 ≤ i , j ≤ r ,

ε
(
g (i )
n σ n(aj )) = ε

(
b

(n)
i σ n(aj )) = δij (6)and
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The main construction, V
ε
(
g (i )
m Nm

m (aj )) = ε
(
g (i )
m σm(aj ))

(5)= ε
(
−

r∑
`=1

b
(m)
`

(
n∑

k=m+1

ε
(
g

(i )
k Nk

m(a` ))) σm(aj ))

= − r∑
`=1

n∑
k=m+1

ε
(
g

(i )
k Nk

m(a` )) ε (b(m)
` σm(aj ))

(6)= − n∑
k=m+1

ε
(
g

(i )
k Nk

m(aj )) .

Hence
n∑

k=m

ε
(
g

(i )
k Nk

m(aj )) = 0 (7)
for 1 ≤ i , j ≤ r , 0 ≤ m ≤ n − 1.
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The main construction, VI
Now,

αε(g (i ))(aj ) = αε(g (i )aj )(1)
(2)= n∑

m=0

ε
(

n∑
k=m

g
(i )
k Nk

m(aj )) xm

(7),(6)= xna∗i (aj ),for all j = 1, . . . , r .

So xna∗i = αε(g (i )) ∈ Imαε , as required.
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The main construction, VII
Conversely, let α : S → S∗ be a right S-isomorphism.

We would like to define a Frobenius functional by setting
εα : A→ F, εα (a) = α(a)(1).

Prior, we need to show that α(a)(1) ∈ F for every a ∈ A.Set gi = α−1(a∗i ) for i = 1, . . . , r , and write gi = ∑ni
k=0 gikx

k .
δij = a∗i (aj ) = α(gi )(aj ) = α

(
ni∑

k=0

gijx
k

) (aj ) = ni∑
k=0

α(gijxk )(aj )
= ni∑

k=0

α(gik )(xkaj ) = ni∑
k=0

α(gik )( k∑
m=0

Nk
m(aj )xm

) = ni∑
k=0

k∑
m=0

α(gik )(Nk
m(aj ))xm.
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The main construction, VIII
We thus have proved that

δij = ni∑
k=0

k∑
m=0

α(gik )(Nk
m(aj ))xm.

Now, if ni ≥ 1, then
α(bi

ni
)(σ ni (aj )) = 0for every j ∈ {1, . . . , r}. By Lemma 2, {σ ni (a1), ..., σ ni (ar )} is a right R-basis of S , so α(bi

ni
) = 0 and then bi

ni
= 0.Therefore, {g1, . . . , gr} ⊆ A, and it becomes an F–basis of A (recall that gi = α−1(a∗i )).Therefore, the F–linear map α satisfies that α(gi )(aj ) = δij , for the F–bases {g1, . . . , gr} and {a1, . . . , ar} of A.This obviously implies that α(a)(b) ∈ F for every a, b ∈ A, and that the bilinear form on A given by

〈a, b〉 = α(a)(b) is non-degenerate.Therefore, εα is a well defined Frobenius functional on A.
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The main construction, IX
It remains to check that both constructions are inverse one to each other.

Let ε be a Frobenius functional on A.Following the above notation, for any a ∈ A,
εαε (a) = αε(a)(1) = ε(a).

On the other hand, let α be an S-right isomorphism from S to S∗. We want to check that αεα = α .Since both are right S–linear maps, it is enough if we prove that αεα (1) = α(1).And these two maps are right R–linear, so that the following computation, for a ∈ A, suffices:
αεα (1)(a) = εα (a) = α(a)(1) = α(1)(a).
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Frobenius and semi FrobeniusThe second condition in Theorem 3 (i.e., SS
∼= S∗S ) is quite close to the notion of Frobenius extension, and, as itappears “in Nature”, probably deserves a name.

Definition 4A unital ring extension C ⊆ B is said to be right (rest. left) semi Frobenius if BC (resp. CB) is finitely generatedand projective and BB
∼= B∗B (resp. BB

∼= B
∗B). (Duals w.r.t. C ). Recall that C ⊆ B is Frobenius if CBB

∼= CB
∗
B ,and that this notion is left-right symmetric.

Theorem 3 gives:
Theorem 5
With R = F[x ] and S = A[x ; σ, δ ], the following statements are equivalent:

1 A is a Frobenius F-algebra,
2 the ring extension R ⊆ S is right semi Frobenius,
3 the ring extension R ⊆ S is left semi Frobenius.

Proof.Apply Theorem 3 plus the well known identity Sop = Aop [x ; σ−1,−δσ−1].
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¿Symmetry?

By Theorem 5, F[x ] ⊆ A[x ; σ, δ ] is left semi Frobenius if and only if it is right semi Frobenius.

Problem: ¿Is the notion of a semi Frobenius ring extension left-right symmetric?
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¿When is F[x ] ⊆ A[x ; σ, δ ] Frobenius?

Recall that the ring extension R ⊆ S is Frobenius if there exists an isomorphism of bimodules RS
∗
S
∼= RSS .

Theorem 6
With R = F[x ] and S = A[x ; σ, δ ]. There exists a bijective correspondence between the sets of

1 R − S-isomorphisms from S to S∗.
2 Frobenius functionals ε : A→ F satisfying εσ = ε and εδ = 0.
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Proof.Let α : SR → S∗S be an isomorphism corresponding to a Frobenius functional ε : A→ F under the bijection statedin Theorem 3.

Now, α is left R–linear if and only if α(xf ) = xα(f ) for every f ∈ S .But, since α is right S–linear, the latter is equivalent to the condition α(x) = xα(1).Both α(x) and xα(1) are right R–linear maps, so, they are equal if and only if α(x)(a) = (xα(1))(a) for every a ∈ A.Thus, from the computations
α(x)(a) = α(xa)(1) = α(σ (a)x + δ(a))(1) = ε(σ (a))x + ε(δ(a)),

(xα(1))(a) = xα(1)(a) = xα(a)(1) = xε(a) = ε(a)x ,we get that α is left R–linear if and only if ε(σ (a)) = ε(a) and ε(δ(a)) = 0 for every a ∈ A.
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¿When is F[x ] ⊆ A[x ; σ, δ ] Frobenius?, II

The following is the characterization which will be used to built an example of biseparable extension which is notFrobenius.
Theorem 7
The ring extension F[x ] ⊆ A[x ; σ, δ ] is Frobenius if and only if there exists a Frobenius functional ε : A→ F
verifying εσ = ε and εδ = 0.
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F[x ] ⊆ A[x ; σ, δ ] splitWe keep the notation R = F[x ], S = A[x ; σ, δ ].Recall that the extension R ⊆ S is said to be split if the inclusion map is a split monomorphism of R–bimodules.

Proposition 8
Assume that there exists a linear form ξ : A→ F such that

ξσ = ξ, ξδ = 0, and ξ(1) = 1.

Then the ring extension R ⊆ S is split.

Proof.Assume ξ as in the statement. Define
π : S → R,

∑
i

fix
i 7→

∑
i

ξ(fi )x i .

A straightforward computation shows that π is R–bilinear. Since π(1) = ξ(1), we get that π splits the inclusion
R ⊆ S .
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F[x ] ⊆ A[x ; σ, δ ] separable, I
Recall that a ring extension C ⊆ B is separable if the multiplication map µ : B ⊗C B → B is a split epimorphismof B–bimodules.

The separability of C ⊆ B is equivalent to the existence of e ∈ B ⊗C B is such that be = eb for all b ∈ B and
µ(e) = 1.Such an element e is called a separability element of the extension.When the extension F ⊆ A is separable, we have just that A is a separable F–algebra.For brevity, we denote by σ⊗ and δ⊗ the maps

σ⊗ : A⊗F A→ A⊗F A

a1 ⊗ a2 7→ σ (a1)⊗ σ (a2)
δ⊗ : A⊗F A→ A⊗F A

a1 ⊗ a2 7→ σ (a1)⊗ δ(a2) + δ(a1)⊗ a2

J. Gómez-Torrecillas (UGR) BiseparableNotFrobenius Brussels, 2019 (22)
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F[x ] ⊆ A[x ; σ, δ ] separable, IIProposition 9
Let A be a separable F–algebra with separability element p ∈ A⊗F A. If σ⊗(p) = p and δ⊗(p) = 0, then R ⊆ S
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The Example, ISet A =M2(F8), the ring of 2× 2 matrices over F8, the field with eight elements.

Write F8 = F2(a), where a3 + a2 + 1 = 0. Observe that {a, a2, a4} is an self dual basis of the field extension
F2 ⊆ F8.Let σ be the F2–algebra automorphism of A defined by

σ
(
x0 x1

x2 x3

) = (x0
2 x1

2

x2
2 x3

2

) for every (x0 x1

x2 x3

)
∈ A. (8)

We can also set the inner σ-derivation δ : A→ A given by δ(X ) = MX − σ (X )M for every X ∈ A, where
M = (0 0

0 a

)
.

Our aim is to prove that the ring extension F2[x ] ⊆ A[x ; σ, δ ] is split and separable, and hence biseparable, butnot Frobenius. For simplicity, we denote
e0 = (1 0

0 0

)
, e1 = (0 1

0 0

)
, e2 = (0 0

1 0

) and e3 = (0 0
0 1

)
.

Hence, an F2-basis of A is given by B = {a2i ej with 0 ≤ i ≤ 2 and 0 ≤ j ≤ 3}.
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The Example, IILet ε : A→ F2 be an F2-linear map.

If we force εσ = ε, then
ε(a2i+1

ej ) = εσ (a2i ej ) = ε(a2i ej ) for every 0 ≤ i ≤ 2, 0 ≤ j ≤ 3,so that ε is determined by four values γ0, γ1, γ2, γ3 ∈ F2 such that ε(a2i ej ) = γj for 0 ≤ i ≤ 2 and 0 ≤ j ≤ 3.Let us then consider ξ : A→ F2 the F2-linear map determined by γ0 = 1, γ1 = 0, γ2 = 0 and γ3 = 0. Firstly,
ξ
(

1 0
0 1

) = ξ
(
a + a2 + a4 0

0 a + a2 + a4

)
= ξ(ae0) + ξ(a2e0) + ξ(a4e0) + ξ(ae3) + ξ(a2e3) + ξ(a4e3)= 1.On the other hand, for any x0, x1, x2, x3 ∈ F8,

δ
(
x0 x1

x2 x3

) = (0 0
0 a

)(
x0 x1

x2 x3

)+ (x2
0 x2

1
x2
2 x2

3

)(
0 0
0 a

)
= ( 0 0

ax2 ax3

)+ (0 ax2
1

0 ax2
3

)
= ( 0 ax2

1
ax2 a(x3 + x2

3 ).)
(9)

Therefore, ξδ = 0. By Proposition 8, the ring extension F2[x ] ⊆ A[x ; σ, δ ] is split.
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The Example, III
Let us prove that ξ is the only non trivial F2-linear map satisfying the equalities ξσ = ξ and ξδ = 0.

Let ε : A→ F2 be a non zero F2-linear map such that εσ = ε. As reasoned above, it is determined by somevalues γ0, γ1, γ2, γ3 ∈ F2. Nevertheless,
If γ1 = 1, then εδ (0 1

0 0

) = ε
(

0 a
0 0

) = 1,
If γ2 = 1, then εδ (0 0

1 0

) = ε
(

0 0
a 0

) = 1,
If γ3 = 1, then εδ (0 0

0 a

) = ε
(

0 0
0 a2 + a3

) = ε
(

0 0
0 a + a2 + a4

) = 1,
so that εδ = 0 implies γ1 = γ2 = γ3 = 0 and, hence, γ0 = 1. Hence, ε = ξ .Note that the kernel of ξ contains the left ideal

J = {(0 c2

0 c3

)
| c2, c3 ∈ F8

}
,

so that there is no Frobenius functional ε : A→ F2 verifying εσ = ε and εδ = 0. By Theorem 7, the extension
F2[x ] ⊆ A[x ; σ, δ ] is not Frobenius.
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If γ1 = 1, then εδ (0 1

0 0

) = ε
(

0 a
0 0

) = 1,
If γ2 = 1, then εδ (0 0

1 0

) = ε
(

0 0
a 0

) = 1,
If γ3 = 1, then εδ (0 0

0 a

) = ε
(

0 0
0 a2 + a3

) = ε
(

0 0
0 a + a2 + a4

) = 1,
so that εδ = 0 implies γ1 = γ2 = γ3 = 0 and, hence, γ0 = 1. Hence, ε = ξ .Note that the kernel of ξ contains the left ideal

J = {(0 c2

0 c3

)
| c2, c3 ∈ F8

}
,

so that there is no Frobenius functional ε : A→ F2 verifying εσ = ε and εδ = 0. By Theorem 7, the extension
F2[x ] ⊆ A[x ; σ, δ ] is not Frobenius.
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The Example, IVFinally, let us prove that the extension is separable.

Consider the element p ∈ A⊗F2 A given by
p = (a 0

0 0

)
⊗
(
a 0
0 0

)+ (a2 0
0 0

)
⊗
(
a2 0
0 0

)+ (a4 0
0 0

)
⊗
(
a4 0
0 0

)
+ (0 0

a 0

)
⊗
(

0 a
0 0

)+ ( 0 0
a2 0

)
⊗
(

0 a2

0 0

)+ ( 0 0
a4 0

)
⊗
(

0 a4

0 0

)
.

This is a separability element of the extension F2 ⊆ A, since it is the “composition” of the separability element
a⊗ a + a2 ⊗ a2 + a4 ⊗ a4 of the extension F2 ⊆ F8, and the separability element e0 ⊗ e0 + e2 ⊗ e3 of the extension
F8 ⊆ A.Since the Frobenius automorphism of F8 induces a permutation on {a, a2, a4}, it follows that

σ⊗(p) = (a2 0
0 0

)
⊗
(
a2 0
0 0

)+ (a4 0
0 0

)
⊗
(
a4 0
0 0

)+ (a 0
0 0

)
⊗
(
a 0
0 0

)
+ ( 0 0

a2 0

)
⊗
(

0 a2

0 0

)+ ( 0 0
a4 0

)
⊗
(

0 a4

0 0

)+ (0 0
a 0

)
⊗
(

0 a
0 0

)
= p.
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The Example, V
Let us now compute δ⊗(p). Recall δ⊗ = σ ⊗ δ + δ ⊗ id.

By (9) and (8), δ ( c 0
0 0

) = ( 0 0
0 0

) for each c ∈ F8, so
δ⊗
((

a2i 0
0 0

)
⊗
(
a2i 0
0 0

)) = (a2i+1 0
0 0

)
⊗
(

0 0
0 0

)+ (0 0
0 0

)
⊗
(
a2i 0
0 0

)
,

for 0 ≤ i ≤ 2. Hence
δ⊗(p) = δ⊗

((
a 0
0 0

)
⊗
(
a 0
0 0

))+ δ⊗
((

a2 0
0 0

)
⊗
(
a2 0
0 0

))
+ δ⊗

((
a4 0
0 0

)
⊗
(
a4 0
0 0

))+ δ⊗
((

0 0
a 0

)
⊗
(

0 a
0 0

))
+ δ⊗

((
0 0
a2 0

)
⊗
(

0 a2

0 0

))+ δ⊗
((

0 0
a4 0

)
⊗
(

0 a4

0 0

))
= δ⊗

((
0 0
a 0

)
⊗
(

0 a
0 0

))
+ δ⊗

((
0 0
a2 0

)
⊗
(

0 a2

0 0

))+ δ⊗
((

0 0
a4 0

)
⊗
(

0 a4

0 0

))
(10)

J. Gómez-Torrecillas (UGR) BiseparableNotFrobenius Brussels, 2019 (28)



The Example, V
Let us now compute δ⊗(p). Recall δ⊗ = σ ⊗ δ + δ ⊗ id. By (9) and (8), δ ( c 0

0 0

) = ( 0 0
0 0

) for each c ∈ F8, so
δ⊗
((

a2i 0
0 0

)
⊗
(
a2i 0
0 0

)) = (a2i+1 0
0 0

)
⊗
(

0 0
0 0

)+ (0 0
0 0

)
⊗
(
a2i 0
0 0

)
,

for 0 ≤ i ≤ 2.

Hence
δ⊗(p) = δ⊗

((
a 0
0 0

)
⊗
(
a 0
0 0

))+ δ⊗
((

a2 0
0 0

)
⊗
(
a2 0
0 0

))
+ δ⊗

((
a4 0
0 0

)
⊗
(
a4 0
0 0

))+ δ⊗
((

0 0
a 0

)
⊗
(

0 a
0 0

))
+ δ⊗

((
0 0
a2 0

)
⊗
(

0 a2

0 0

))+ δ⊗
((

0 0
a4 0

)
⊗
(

0 a4

0 0

))
= δ⊗

((
0 0
a 0

)
⊗
(

0 a
0 0

))
+ δ⊗

((
0 0
a2 0

)
⊗
(

0 a2

0 0

))+ δ⊗
((

0 0
a4 0

)
⊗
(

0 a4

0 0

))
(10)

J. Gómez-Torrecillas (UGR) BiseparableNotFrobenius Brussels, 2019 (28)



The Example, V
Let us now compute δ⊗(p). Recall δ⊗ = σ ⊗ δ + δ ⊗ id. By (9) and (8), δ ( c 0

0 0

) = ( 0 0
0 0

) for each c ∈ F8, so
δ⊗
((

a2i 0
0 0

)
⊗
(
a2i 0
0 0

)) = (a2i+1 0
0 0

)
⊗
(

0 0
0 0

)+ (0 0
0 0

)
⊗
(
a2i 0
0 0

)
,

for 0 ≤ i ≤ 2. Hence
δ⊗(p) = δ⊗

((
a 0
0 0

)
⊗
(
a 0
0 0

))+ δ⊗
((

a2 0
0 0

)
⊗
(
a2 0
0 0

))
+ δ⊗

((
a4 0
0 0

)
⊗
(
a4 0
0 0

))+ δ⊗
((

0 0
a 0

)
⊗
(

0 a
0 0

))
+ δ⊗

((
0 0
a2 0

)
⊗
(

0 a2

0 0

))+ δ⊗
((

0 0
a4 0

)
⊗
(

0 a4

0 0

))
= δ⊗

((
0 0
a 0

)
⊗
(

0 a
0 0

))
+ δ⊗

((
0 0
a2 0

)
⊗
(

0 a2

0 0

))+ δ⊗
((

0 0
a4 0

)
⊗
(

0 a4

0 0

))
(10)

J. Gómez-Torrecillas (UGR) BiseparableNotFrobenius Brussels, 2019 (28)



The Example, VI
Moreover, by (9) and (8) again,

δ⊗
((

0 0
a2i 0

)
⊗
(

0 a2i

0 0

)) = ( 0 0
a2i+1 0

)
⊗
(

0 a2i+1+1

0 0

)+ ( 0 0
a2i+1 0

)
⊗
(

0 a2i

0 0

)
,

so we can follow the computations in (10) to get
δ⊗(p) = ( 0 0

a2 0

)
⊗
(

0 a3

0 0

)+ ( 0 0
a2 0

)
⊗
(

0 a
0 0

)
+ ( 0 0

a4 0

)
⊗
(

0 a5

0 0

)+ ( 0 0
a3 0

)
⊗
(

0 a2

0 0

)
+ (0 0

a 0

)
⊗
(

0 a2

0 0

)+ ( 0 0
a5 0

)
⊗
(

0 a4

0 0

)
,

(11)

where we used that a7 = 1.
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The Example, VIIThe identities a3 = a + a4 and a5 = a2 + a4 in F8 allow us to expand (11) in order obtain
δ⊗(p) = ( 0 0

a2 0

)
⊗
(

0 a + a4

0 0

)+ ( 0 0
a2 0

)
⊗
(

0 a
0 0

)
+ ( 0 0

a4 0

)
⊗
(

0 a2 + a4

0 0

)+ ( 0 0
a + a4 0

)
⊗
(

0 a2

0 0

)
+ (0 0

a 0

)
⊗
(

0 a2

0 0

)+ ( 0 0
a2 + a4 0

)
⊗
(

0 a4

0 0

)
= ( 0 0

a2 0

)
⊗
(

0 a
0 0

)+ ( 0 0
a2 0

)
⊗
(

0 a4

0 0

)
+ ( 0 0

a2 0

)
⊗
(

0 a
0 0

)+ ( 0 0
a4 0

)
⊗
(

0 a2

0 0

)
+ ( 0 0

a4 0

)
⊗
(

0 a4

0 0

)+ (0 0
a 0

)
⊗
(

0 a2

0 0

)
+ ( 0 0

a4 0

)
⊗
(

0 a2

0 0

)+ (0 0
a 0

)
⊗
(

0 a2

0 0

)
+ ( 0 0

a2 0

)
⊗
(

0 a4

0 0

)+ ( 0 0
a4 0

)
⊗
(

0 a4

0 0

) = 0.

(12)
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The Example, VIII

Conclusion: Therefore, F2[x ] ⊆ A[x ; σ, δ ] is separable. Hence F2[x ] ⊆ A[x ; σ, δ ] is a biseparable extension whichis not Frobenius.

It is semi Frobenius, since A is a Frobenius F2 algebra.

J. Gómez-Torrecillas (UGR) BiseparableNotFrobenius Brussels, 2019 (31)



The Example, VIII
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Nor of second kind, I
Let us recall the notion of a Frobenius extension of second kind, introduced by Nakayama and Tsuzuku in 1960.

Let C ⊆ B be a ring extension and let κ : C → C be an automorphism.There is a structure of left C-module on C given by a ·κ b = κ(a)b for each a, b ∈ C .The C − B-bimodule structure on B∗κ Hom(BC , κCC ) is then given by (afb)(c) = a ·κ f (b′c) = κ(a)f (bc) for any
f ∈ B∗κ , a ∈ C and b, c ∈ B .
Definition 10The ring extension C ⊆ B is said to be a κ-Frobenius extension, or a Frobenius extension of second kind, if B isa finitely generated projective right C-module, and there exists a C − B-isomorphism from B to B∗κ .
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f ∈ B∗κ , a ∈ C and b, c ∈ B .

Definition 10The ring extension C ⊆ B is said to be a κ-Frobenius extension, or a Frobenius extension of second kind, if B isa finitely generated projective right C-module, and there exists a C − B-isomorphism from B to B∗κ .
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Nor of second kind; IIWe keep denote F[x ] = R ⊆ S = A[x ; σ, δ ].
Proposition 11
Let κ : R → R be an automorphism with κ(x) = mx + n for some m, n ∈ F with m 6= 0. There exists a bijection
between the sets of

1 R − S-isomorphisms α : S → S∗κ .
2 Frobenius functionals ε : A→ F verifying εσ = mε and εδ = nε.

Proof.By Theorem 3, there exists a left S-isomorphism β : S → S∗κ if and only if there exists a Frobenius functional
ε : A→ F. Now, analogously to the proof of Theorem 7,

κ(x)β(1)(a) = mε(a)x + nε(a).
and

β(x)(a) = β(1)(xa) = β(1)(σ (a)x + δ(a)) = ε(σ (a))x + ε(δ(a))for every a ∈ A. Hence, β is left R-linear if and only if εσ = mε and εδ = nε.
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Nor of second kind, III

¿Are biseparable extensions Frobenius extensions of second kind? The answer is again negative.We will show a counterexample with the help of the following
Theorem 12
R ⊆ S is a Frobenius extension of second kind if and only if there exists a Frobenius functional ε : A→ F and
m, n ∈ F with m 6= 0 such that εσ = mε and εδ = nε.
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Example 13 (Biseparable extensions are not necessarily Frobenius of second kind)The same example S =M2(F8)[x ; σ, δ ] also provides an example of a biseparable extension which is notFrobenius of second kind. By Theorem 12, F2[x ] ⊆ A[x ; σ, δ ] is Frobenius of second kind if and only if there existsa Frobenius functional ε : A→ F2 verifying εσ = ε and εδ = ε (since we know that R ⊆ S is not Frobenius). Asreasoned before, ε is determined by four values γ0, γ1, γ2, γ3 ∈ F2 such that ε(a2i ej ) = γj for i = 0, 1, 2 and
j = 0, 1, 2, 3. Now,

If γ0 = 1, then 0 = εδ
(
a 0
0 0

)
6= ε

(
a 0
0 0

) = 1,
If γ1 = 1, then 0 = εδ

(
0 a
0 0

)
6= ε

(
0 a
0 0

) = 1,
If γ2 = 1, then 0 = εδ

(
0 0
a2 0

)
6= ε

(
0 0
a2 0

) = 1,
If γ3 = 1, then 0 = εδ

(
0 0
0 a2

)
6= ε

(
0 0
0 a2

) = 1,
so that εδ = ε if and only if ε = 0. Thus, R ⊆ S is not Frobenius of second kind.

J. Gómez-Torrecillas (UGR) BiseparableNotFrobenius Brussels, 2019 (35)



Reformulation of the problem

Problem: ¿Are biseparable extensions left and right semi Frobenius?
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