Localization in coalgebras and applications to their representation theory

Gabriel Navarro

Departamento de Álgebra
Universidad de Granada

ICRA12
Toruń, August 2007
Joint with P. Jara and L. Merino

www.ugr.es/~gnavarro
Main aim

Study the representation theory of (infinite dimensional) coalgebras

That is, for instance, study

- quiver techniques
- A-R theory
- comodule types
- tame-wild dichotomy
- tilting theory
- some kinds: hereditary, serial, biserial, semiperfect,...
Main aim

Study the representation theory of (infinite dimensional) coalgebras

That is, for instance, study

- quiver techniques
- A-R theory
- comodule types
- tame-wild dichotomy
- tilting theory
- some kinds: hereditary, serial, biserial, semiperfect,....
What are we trying to do?

Main aim

Study the representation theory of (infinite dimensional) coalgebras

That is, for instance, study

- quiver techniques
- A-R theory
- comodule types
- tame-wild dichotomy
- tilting theory
- some kinds: hereditary, serial, biserial, semiperfect, ...
What are we trying to do?

Main aim

Study the representation theory of (infinite dimensional) coalgebras

That is, for instance, study

- quiver techniques
- A-R theory
- comodule types
- tame-wild dichotomy
- tilting theory
- some kinds: hereditary, serial, biserial, semiperfect,...
What are we trying to do?

Main aim

Study the representation theory of (infinite dimensional) coalgebras

That is, for instance, study:

- quiver techniques
- A-R theory
- comodule types
- tame-wild dichotomy
- tilting theory
- some kinds: hereditary, serial, biserial, semiperfect,...
Main aim

Study the representation theory of (infinite dimensional) coalgebras

That is, for instance, study

- quiver techniques
- A-R theory
- comodule types
- tame-wild dichotomy
- tilting theory
- some kinds: hereditary, serial, biserial, semiperfect,...
What are we trying to do?

Proposed Tool

Localization theory in categories of comodules

\[D_1 = \text{Coend}_C(E_1) \]
\[D_2 = \text{Coend}_C(E_2) \]
\[D_3 = \text{Coend}_C(E_3) \]
\[D_i = \text{Coend}_C(E_i) \]
What are we trying to do?

Proposed Tool

Localization theory in categories of comodules

\[D_1 = \text{Coend}_C(E_1) \]
\[D_2 = \text{Coend}_C(E_2) \]
\[D_3 = \text{Coend}_C(E_3) \]
\[D_i = \text{Coend}_C(E_i) \]

\[\cdots \]

\[\Rightarrow \quad C \]
A dense subcategory of an abelian category \mathcal{C}:

- There is a **quotient functor** $T : \mathcal{C} \to \mathcal{C}/\mathcal{A}$.
- \mathcal{A} is **localizing** if T has a right adjoint functor $S : \mathcal{C}/\mathcal{A} \to \mathcal{C}$ (**section functor**).
- \mathcal{A} is **perfect localizing** if S is exact.

\[
\begin{array}{ccc}
\mathcal{C} & \xleftarrow{T} & \mathcal{C}/\mathcal{A} \\
\xrightarrow{S} & & \\
\end{array}
\]

Proposition

- T is an exact functor.
- S is a fully faithful and left exact functor.
A dense subcategory of an abelian category \mathcal{C}:

- There is a **quotient functor** $T : \mathcal{C} \to \mathcal{C}/\mathcal{A}$.
- \mathcal{A} is **localizing** if T has a right adjoint functor $S : \mathcal{C}/\mathcal{A} \to \mathcal{C}$ (**section functor**).
- \mathcal{A} is **perfect localizing** if S is exact.

$$\begin{array}{ccc}
\mathcal{C} & \xrightarrow{T} & \mathcal{C}/\mathcal{A} \\
\xleftarrow{S} & & \\
\end{array}$$

Proposition

- T is an exact functor.
- S is a fully faithful and left exact functor.
A dense subcategory of an abelian category \mathcal{C}:

- There is a **quotient functor** $T : \mathcal{C} \to \mathcal{C}/\mathcal{A}$.
- \mathcal{A} is **localizing** if T has a right adjoint functor $S : \mathcal{C}/\mathcal{A} \to \mathcal{C}$ (section functor).
- \mathcal{A} is **perfect localizing** if S is exact.

\[
\begin{array}{ccc}
\mathcal{C} & \xleftarrow{T} & \mathcal{C}/\mathcal{A} \\
\xrightarrow{S}
\end{array}
\]

Proposition

- T is an exact functor.
- S is a fully faithful and left exact functor.
A dense subcategory of an abelian category \mathcal{C}:

- There is a quotient functor $T : \mathcal{C} \to \mathcal{C}/\mathcal{A}$.
- \mathcal{A} is localizing if T has a right adjoint functor $S : \mathcal{C}/\mathcal{A} \to \mathcal{C}$ (section functor).
- \mathcal{A} is perfect localizing if S is exact.

$$\begin{align*}
\mathcal{C} & \xleftarrow{T} \mathcal{C}/\mathcal{A} \\
& \xrightarrow{S}
\end{align*}$$

Proposition

- T is an exact functor.
- S is a fully faithful and left exact functor.
Dually,

- \mathcal{A} is **colocalizing** if T has a left adjoint functor $H : \mathcal{C}/\mathcal{A} \to \mathcal{C}$ (**colocalizing functor**).
- \mathcal{A} is **perfect colocalizing** if H is exact.

Proposition

- H is a fully faithful and right exact functor.
Dually,

- \mathcal{A} is **colocalizing** if T has a left adjoint functor $H : C/\mathcal{A} \to C$ (**colocalizing functor**).
- \mathcal{A} is **perfect colocalizing** if H is exact.

Proposition

- H is a fully faithful and right exact functor.
C be a coalgebra and \mathcal{M}^C the right C-comodules.

Theorem

There are one-to-one correspondences between:

- **Localizing subcategories** of \mathcal{M}^C.
- Classes of equivalence of **injective** C-comodules.
- **Coidempotent subcoalgebras** of C ($A \wedge A = A$).
- Sets of **indecomposable injective** C-comodules.
- Sets of **simple** C-comodules.
- Classes of equivalence of **idempotents** in C^*.

Corollary

$\mathcal{M}^C/\mathcal{T}_e \simeq \mathcal{M}^{eC_e}$
C be a coalgebra and \(\mathcal{M}^C \) the right \(C \)-comodules.

Theorem

There are one-to-one correspondences between:

- **Localizing subcategories** of \(\mathcal{M}^C \).
- Classes of equivalence of **injective** \(C \)-comodules.
- **Coidempotent subcoalgebras** of \(C \) (\(A \wedge A = A \)).
- Sets of **indecomposable injective** \(C \)-comodules.
- Sets of **simple** \(C \)-comodules.
- Classes of equivalence of **idempotents** in \(C^* \).

Corollary

\[
\mathcal{M}^C / T_e \cong \mathcal{M}^{eCe}
\]
Example: localization of path coalgebras

\[Q = (Q_0, Q_1) \text{ quiver} \]
\[e \text{ idempotent in } (KQ)^* \]
\[X \subseteq Q_0 \text{ vertices associated to } e \]

\[e(p) = \begin{cases} 1 & \text{if } p \in X \\ 0 & \text{otherwise} \end{cases} \]

Let \(p \) be a path in \(Q \)

\[x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_{n-1} \rightarrow x_n \]

\(p \) is a cell relative to \(X \) if

\[\begin{cases} x_1, x_n \in X, \\ x_2, x_3, \ldots, x_{n-1} \notin X \end{cases} \]
Example: localization of path coalgebras

\[Q = (Q_0, Q_1) \text{ quiver} \]
\[e \text{ idempotent in } (KQ)^* \]
\[X \subseteq Q_0 \text{ vertices associated to } e \]

\[X \longleftrightarrow e(p) = \begin{cases}
1 & \text{if } p \in X \\
0 & \text{otherwise}
\end{cases} \]

Let \(p \) be a path in \(Q \)

\[\begin{array}{cccccc}
\circ & \rightarrow & \bullet & \rightarrow & \bullet & \rightarrow & \cdots & \rightarrow & \bullet & \rightarrow & \bullet & \rightarrow & \circ \\
X_1 & & X_2 & & X_3 & & \cdots & & X_{n-1} & & X_n
\end{array} \]

• \(p \) is a cell relative to \(X \) if

\[\begin{cases}
x_1, x_n \in X, \\
x_2, x_3, \ldots, x_{n-1} \notin X
\end{cases} \]
Example: localization of path coalgebras

\[Q = (Q_0, Q_1) \text{ quiver} \]
\[e \text{ idempotent in } (KQ)^* \]
\[X \subseteq Q_0 \text{ vertices associated to } e \]

\[X \leftrightarrow e(p) = \begin{cases}
1 & \text{if } p \in X \\
0 & \text{otherwise}
\end{cases} \]

Let \(p \) be a path in \(Q \)

\[x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_{n-1} \rightarrow x_n \]

\[p \text{ is a cell relative to } X \text{ if } \begin{cases}
x_1, x_n \in X,
x_2, x_3, \ldots, x_{n-1} \notin X
\end{cases} \]
Example: localization of path coalgebras

Theorem

\[e(KQ) e \cong KQ^e, \text{ where } Q^e = (X, \text{Cell}^Q_X). \]

Example

\[e(\circ) = 1 \text{ and } e(\bullet) = 0 \]

\[\xymatrix{ & \circ \ar[r] & \bullet \ar[r] & \circ \\
A_3 : & \circ & & \circ \ar[lu] & & \circ \ar[u] & & \circ \ar[u] & & \circ } \]

\[(A_3)^e : \circ \ar[r] & \circ \]

Gabriel Navarro
Localization in coalgebras
Theorem

\[e(KQ) e \cong KQ^e, \text{ where } Q^e = (X, Cell^Q_X). \]

Example

\[e(\circ) = 1 \text{ and } e(\bullet) = 0 \]

\[A_3 : \circ \rightarrow \bullet \rightarrow \circ \]

\[(A_3)^e : \circ \rightarrow \circ \]
Theorem

$e(KQ)e \simeq KQ^e$, where $Q^e = (X, Cell^Q_X)$.

Example

$e(\circ) = 1$ and $e(\bullet) = 0$

$A_3 : \circ \longrightarrow \bullet \longrightarrow \circ$

$(A_3)^e : \circ \longrightarrow \circ$
Example: localization of path coalgebras

Theorem

\[e(KQ)e \cong KQ^e, \text{ where } Q^e = (X, Cell_X^Q). \]

Example

\[e(\circ) = 1 \text{ and } e(\bullet) = 0 \]

\[\begin{array}{cc}
A_3 : & \circ \rightarrow \bullet \rightarrow \circ \\
\downarrow & \\
(\circ A_3)^e & : \circ \rightarrow \circ \\
\end{array} \]
Theorem

\[e(KQ)e \cong KQ^e \text{, where } Q^e = (X, Cell_X^Q) \]

Example

\[e(\circ) = 1 \text{ and } e(\bullet) = 0 \]

\[A_3 : \circ \rightarrow \bullet \rightarrow \circ \]

\[(A_3)^e : \circ \rightarrow \circ \]
Example: localization of path coalgebras

Example

\[e(\circ) = 1 \text{ and } e(\bullet) = 0 \]

\[
\begin{array}{c}
\bullet \\
\circ
\end{array}
\]

Gabriel Navarro
Localization in coalgebras
Example: localization of path coalgebras

\[e(\circ) = 1 \text{ and } e(\bullet) = 0 \]
Example: localization of path coalgebras

Example

\[e(\circ) = 1 \text{ and } e(\bullet) = 0 \]
Example: localization of path coalgebras

Example

e(○) = 1 and e(●) = 0
Some consequences

Proposition

- If C is hereditary then eCe is hereditary.
- $e(x) \sim \{ S \mid S \rightsquigarrow S_x \}$
 - If $e(x)Ce(x)$ is hereditary for all x then C is hereditary.

Proposition

- If C is serial then eCe is serial.
- If any socle-finite eCe is serial then C is serial.
Technical point: simple comodules

Example

\[S(S_\circ) = S_\circ \Box_{\epsilon C_\epsilon} C_\epsilon \cong C_\epsilon \cong \langle \circ, \alpha \rangle \neq S_\circ \]

\(S \) does not preserve simples

Example

\[S(S_\circ) = S_\circ \Box_{\epsilon C_\epsilon} C_\epsilon \cong C_\epsilon \cong \langle \circ, \{\alpha_1 \cdots \alpha_{n-1} \alpha_n\}_{n \geq 1} \rangle \]

\(S \) does not preserve finite dimension
Technical point: simple comodules

Example

\[
\begin{array}{c}
\bullet & \xrightarrow{\alpha} & \circ \\
S(S_\circ) = S_\circ \Box_{eC_e} C_e \cong C_e \cong < \circ, \alpha > \neq S_\circ
\end{array}
\]

\(S\) does not preserve simples

Example

\[
\begin{array}{c}
\cdots & \xrightarrow{\alpha_{n+1}} & \bullet & \xrightarrow{\alpha_n} & \bullet & \xrightarrow{\alpha_{n-1}} & \bullet & \cdots & \bullet & \xrightarrow{\alpha_2} & \bullet & \xrightarrow{\alpha_1} & \circ \\
S(S_\circ) = S_\circ \Box_{eC_e} C_e \cong C_e \cong < \circ, \{\alpha_1 \cdots \alpha_{n-1} \alpha_n \}_{n \geq 1} >
\end{array}
\]

\(S\) does not preserve finite dimension
Theorem
S preserves f.g. comodules if and only if $S(S_x)$ f.g for all x.

Question
Who is $S(S_x)$? We have no idea!!

Example

- If $X = \{4\}$, then $S_4 \subseteq S(S_4) = E_4$.
- If $X = \{1, 2, 4\}$, then $S_4 \subseteq S(S_4) \subseteq E_4$.
- If $X = \{2, 3, 4\}$, then $S_4 = S(S_4) \subsetneq E_4$.
Technical point: simple comodules

Theorem

\[S \text{ preserves f.g. comodules if and only if } S(S_x) \text{ f.g for all } x. \]

Question

Who is \(S(S_x) \)? We have no idea!!

Example

- If \(X = \{4\} \), then \(S_4 \nsubseteq S(S_4) = E_4 \).
- If \(X = \{1, 2, 4\} \), then \(S_4 \nsubseteq S(S_4) \nsubseteq E_4 \).
- If \(X = \{2, 3, 4\} \), then \(S_4 = S(S_4) \nsubseteq E_4 \).

Gabriel Navarro
Localization in coalgebras
Technical point: simple comodules

Corollary

\[S(S_x) = E_x \text{ if and only if all predecessors of } S_x \text{ are torsion.} \]

Corollary

\[S(S_x) = S_x \text{ if and only if } S_x \text{ has no torsion immediate predecessors.} \]

Corollary

The KQ-comodule \(S(S_x) \) is generated by the set of paths

\[\bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \rightarrow \bullet \rightarrow \Box \]
Corollary

\(S(S_x) = E_x \) if and only if all predecessors of \(S_x \) are torsion.

Corollary

\(S(S_x) = S_x \) if and only if \(S_x \) has no torsion immediate predecessors.

Corollary

The KQ-comodule \(S(S_x) \) is generated by the set of paths

\[\bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \times \]
C is **tame** if for every $\nu \in K_0(C)$ there exist $K[t]$-C-bimodules $L^{(1)}, \ldots, L^{(r_\nu)}$, which are finitely generated free $K[t]$-modules, such that all but finitely many indecomposable finite dimensional left C-comodules M with $\text{length } M = \nu$ are of the form $M \cong K^1_\lambda \otimes_{K[t]} L^{(s)}$, where $s \leq r_\nu$, $K^1_\lambda = K[t]/(t - \lambda)$ and $\lambda \in K$ (algebraically closed field).

Theorem

Assume S preserves finite dimensional comodules. If C is tame then eCe is tame.

Example: left semiperfect coalgebras.
C is **tame** if for every $\nu \in K_0(C)$ there exist $K[t]$-C-bimodules $L^{(1)}, \ldots, L^{(\nu)}$, which are finitely generated free $K[t]$-modules, such that all but finitely many indecomposable finite dimensional left C-comodules M with $\text{length } M = \nu$ are of the form $M \cong K^1_\lambda \otimes_{K[t]} L^{(s)}$, where $s \leq \nu$, $K^1_\lambda = K[t]/(t - \lambda)$ and $\lambda \in K$ (algebraically closed field).

Theorem

Assume S preserves finite dimensional comodules. If C is tame then eCe is tame.

Example: left semiperfect coalgebras.
C is **wild** if there exists an exact K-linear embedding $F : \mathcal{M}^{\text{fd}}_{KQ} \to \mathcal{M}^{\text{fd}}_{C}$ that respects isomorphism classes and carries indecomposables right KQ-modules to indecomposable right C-comodules., where Q is the quiver $\circ \xrightarrow{} \circ \xrightarrow{} \circ$.

Proposition

Assume that T_e is perfect localizing and S preserves f. d. comodules.
If eC_e is wild then C is wild.

Proposition

Assume that T_e is perfect colocalizing.
If eC_e is wild then C is wild.
C is **wild** if there exists an exact K-linear embedding $F : \mathcal{M}^{KQ}_{\text{fd}} \rightarrow \mathcal{M}^{C}_{\text{fd}}$ that respects isomorphism classes and carries indecomposables right KQ-modules to indecomposable right C-comodules., where Q is the quiver $\bullet \xrightarrow{1} \bullet \xrightarrow{1} \bullet \xrightarrow{1} \bullet$.

Proposition

Assume that T_e is perfect localizing and S preserves f. d. comodules.

If eCe is wild then C is wild.

Proposition

Assume that T_e is perfect colocalizing.

If eCe is wild then C is wild.
C is **wild** if there exists an exact K-linear embedding $F : \mathcal{M}^{KQ}_{fd} \to \mathcal{M}^{C}_{fd}$ that respects isomorphism classes and carries indecomposables right KQ-modules to indecomposable right C-comodules., where Q is the quiver $\circ \overrightarrow{\rightarrow} \overrightarrow{\rightarrow} \overrightarrow{\rightarrow} \circ$.

Proposition
Assume that T_e is perfect localizing and S preserves f. d. comodules.
If eC_e is wild then C is wild.

Proposition
Assume that T_e is perfect colocalizing.
If eC_e is wild then C is wild.
Quiver techniques

Goal

Describe coalgebras by means of quivers

Theorem (Woodcock (1996))

Any pointed coalgebras is an admissible subcoalgebra of KQ_C

Definition (Simson)

(Q, Ω) quiver with relations,

$$C(Q, \Omega) = \{ a \in KQ \text{ such that } \langle a, \Omega \rangle = 0 \}$$

with $\langle \cdot, \cdot \rangle : KQ \times KQ \rightarrow K$ defined by $\langle v, w \rangle = \delta_{v,w}$ for all paths $v, w \in KQ$.
Quiver techniques

Goal

Describe coalgebras by means of quivers

Theorem (Woodcock(1996))

Any pointed coalgebras is an admissible subcoalgebra of KQ_C

Definition (Simson)

(Q, Ω) quiver with relations,

$$C(Q, \Omega) = \{ a \in KQ \text{ such that } \langle a, \Omega \rangle = 0 \}$$

with $\langle , \rangle : KQ \times KQ \rightarrow K$ defined by $\langle v, w \rangle = \delta_{v,w}$ for all paths $v, w \in KQ$.
Goal

Describe coalgebras by means of quivers

Theorem (Woodcock(1996))

Any pointed coalgebras is an admissible subcoalgebra of KQ_C

Definition (Simson)

(Q, Ω) quiver with relations,

$$C(Q, \Omega) = \{a \in KQ \text{ such that } \langle a, \Omega \rangle = 0\}$$

with $\langle , \rangle : KQ \times KQ \rightarrow K$ defined by $\langle v, w \rangle = \delta_{v,w}$ for all paths $v, w \in KQ$.

Gabriel Navarro | Localization in coalgebras
Problem

For any $C \leq KQ$ admissible, is there an admissible ideal Ω such that $C = C(Q, \Omega)$?

Not really!!

Example

Let Q be the quiver

\[H \leq KQ \text{ generated by } \Sigma = \{\gamma_i - \gamma_{i+1}\}_{i \in \mathbb{N}}. \]
Quiver techniques

Problem

For any $C \leq KQ$ admissible, is there an admissible ideal Ω such that $C = C(Q, \Omega)$?

Not really!!

Example

Let Q be the quiver

\[H \leq KQ \text{ generated by } \Sigma = \{ \gamma_i - \gamma_{i+1} \}_{i \in \mathbb{N}}. \]
Quiver techniques

Criterion (Jara–Merino-Navarro(2005))

Let $C \subseteq KQ$ be an admissible subcoalgebra. TFAE:

- **C is not** the path coalgebra of a quiver with relations.
- There exist an infinite number of different paths $\{\gamma_i\}_{i \in \mathbb{N}}$ in Q such that:
 - All of them have common source and common sink.
 - None of them is in C.
 - There exist elements $a_{j}^{n} \in K$ for all $j, n \in \mathbb{N}$ such that the set
 \[
 \{\gamma_{n} + \sum_{j>n} a_{j}^{n} \gamma_{j}\}_{n \in \mathbb{N}}
 \]
 is contained in C.

Gabriel Navarro
Localization in coalgebras
The problem is reformulated to consider a smaller class of coalgebras.

Conjecture (Simson)

Any basic tame coalgebra, over an algebraically closed field, is isomorphic to the path coalgebra of a quiver with relations.

Partial solution,

Corollary (Jara–Merino-Navarro(2007))

Let \(Q \) be an acyclic quiver. Then any tame admissible subcoalgebra of \(KQ \) is the path coalgebra of a quiver with relations.
Quiver techniques

The problem is reformulated to consider a smaller class of coalgebras.

Conjecture (Simson)

Any basic tame coalgebra, over an algebraically closed field, is isomorphic to the path coalgebra of a quiver with relations.

Partial solution,

Corollary (Jara–Merino-Navarro(2007))

Let Q be an acyclic quiver. Then any tame admissible subcoalgebra of KQ is the path coalgebra of a quiver with relations.
Special thanks to

Daniel Simson
Thank you!!