ON HYPERSURFACES OF &2 x G2
FRANCISCO URBANO

ABSTRACT. We classify the homogeneous and isoparametric hy-
persurfaces of $? x S2. In the classification, besides the hyper-
surfaces S!(r) x 82, r € (0,1], it appears a family of hypersur-
faces with three different constant principal curvatures and zero
Gauss-Kronecker curvature. Also we classify the hypersurfaces
of S x S? with at most two constant principal curvatures and, un-
der certain conditions, with three constant principal curvatures.

1. INTRODUCTION

Let (N, g) be a compact 4-dimensional Riemannian manifold and
® : M — N a two-sided hypersurface. We are interested in the
following properties:

(1) M is (extrinsically) locally homogeneous, i.e., for any points
p,q € M there exist neighbourhoods V and W of p and g and
an isometry F of N such that F(®(V)) = O(W).

(2) M has constant principal curvatures.

(3) M is isoparametric, i.e., there exists an isoparametric func-
tion F : N — R such that M = F~1(t), for some regular
value t of F. F is isoparametric if the gradient and the Lapla-
cian of F satisfy

[VE|> = f(F), AF=g(F),

where f, g : R — R are smooth functions.

When N is the 4-dimensional sphere $* or the complex projective
plane CIP?, these properties have been studied and the correspond-
ing classifications have been done (see [C], [K], [M] and [T]). In both
cases, the above three properties are equivalent and the number of
possible different principal curvatures are 1,2 or 3 when N = S*
and 2 or 3 when N = CIP2.

Research partially supported by a MINECO-FEDER grant no. MTM2014-
52368-P..
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Besides the above ambient spaces, $? x S? is the most interesting
compact 4-manifold to study its hypersurfaces. It is, together with
CIP?, the only compact Hermitian symmetric 4-manifold.

In this paper we start the study of the above properties for the
hypersurfaces of $* x §%. In section 3, we give a complete descrip-
tion of the most important examples, which appear in two fami-
lies of isoparametric hypersurfaces. The first one, {S!(r) x S, r €
(0,1]}, is a family of homogeneous and isoparametric hypersur-
faces with 1 or 2 constant principal curvatures. The second one,
{M;, t € (—1,1)}, with

My ={(p,q) € $* x S| < p,q>=t},

is also a family of homogeneous and isoparametric hypersurfaces
but with three constant principal curvatures and with Gauss-Kronecker
curvature K = 0. All these examples are tubes over distinguish to-
tally geodesic surfaces of $? x §?, and, in contrast with the cases of

S* and CIP?, the geodesic balls of $? x 52 do not belong to the above
families of examples.

As it is well-known, the Gauss and Codazzi equations (and hence
the curvature of §? x S?) play an important role in the study of
the above properties. In our case, the curvature depends of the
product structure of S? x S? (see section 2 ) and so the Codazzi
equation reflects the behaviour of the hypersurface with respect to
the product structure. This behaviour is described by a function C
(see (2.2)) defined on the hypersurface and satistying —1 < C <
1, and so, the properties of this function will be quite important
throughout the paper. This function is constant in all the above
examples ( C = 1 for the first family and C = 0 for the second one).

The first important results in the paper, Theorem 1 and Corol-
lary 1, provide a local characterization of the above examples among
the family of hypersurfaces of §? x $? where the function C is con-
stant. This characterization will be used along the paper.

In Corollary 2 and Corollary 3 we prove the following local result,
which classifies the homogeneous and isoparametric hypersurfaces
of §% x 82

(1) Open subsets of {S'(r) x S?, r € (0,1} and {M;, t €
(—=1,1)} are, up to congruences, the only locally ho-
mogeneous orientable hypersurfaces of > x S2.
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(2) {S'(r) xS?, r € (0,1]} and {M;, t € (—1,1)} are,

up to congruences, the only isoparametric orientable

hypersurfaces of S* x S2.
In fact, in Theorem 2 we prove a stronger result than in (2): we char-
acterize locally the above examples as the only orientable hypersur-
faces whose parallel hypersurfaces have constant mean curvature.
It is well-known that this property is satisfied by any isoparametric
hypersurface.

Finally in section 6, we study the orientable hypersurfaces of
S? x S? with constant principal curvatures. In Theorem 3 we locally
classify them, when the number of constant principal curvatures is
one or two, proving that

(1) Up to congruences, open subsets of S' x S? are the
only orientable hypersurfaces of S*> x S? with one con-
stant principal curvature.

(2) Up to congruences, open subsets of {S'(r) x S?, r €
(0,1)}, are the only orientable hypersurfaces of S* x
S? with two different constant principal curvatures.

When the number of different principal curvatures is three, the
classification problem is harder, and we have only got partial re-
sults. Using Theorem 4, where we study the critical points of the
function C in such hypersurfaces, we prove in Corollary 4 the fol-
lowing result:

{M;, t € (—1,1)} are, up to congruences, the only ori-
entable compact hypersurfaces with three different constant
principal curvatures, with scalar curvature p # 1/2 and
Gauss-Kronecker curvature K = 0.

2. PRELIMINARIES

Let S? be the 2-dimensional unit sphere, (, ) its standar metric and
J its complex structure defined by

Jpov=pAuv, pESZ,veTpSZ.

We endow S? x S? with the product metric (also denoted by (, )) and
the complex structures

]1:(]/])/ ]2:(]1_])

which define two structures of Kihler surface on $% x 82. It is clear
that, if Id : §> — §? is the identity map and F : $> — S? is any



4 FRANCISCO URBANO

anti-holomorphic isometry of S?, then Id x F : (S* x S2, J;) — (S? x
S2, J») is a holomorphic isometry.
The product structure P on $? x S2, defined by

P(v]./ UZ) = (v]_/ _02)/ 01,02 € TSz/

satisfies P = —J;J, = —J»J; and VP = 0, where V is the Levi-Civita
connection on §% x S2.

On the other hand, using that $? x S? is a product manifold, its
curvature tensor R is given by

R(e,0,3,y) = (09w, ) = (0,)(w,9)
+(Pv,y)(Pw, x) — (Pv, x)(Pw,y)},

where v, w, x,y € T(S2 X Sz), and hence 52 x S? is an Einstein man-
ifold with scalar curvature 4 and non-negative sectional curvature.

Finally, the group of isometries of §? x S? is the 6-dimensional
subgroup of the orthogonal group O(6) given by

1) {(g‘ g)(g §>/A,B€O(3)}.

Let ® : M — S? x 52 be an orientable hypersurface of $? x §% and
N a unit normal vector field to ®. The behaviour of M with respect
to the product structure is given by the smooth function C and the
vector field X tangent to M defined by

C:M—R, C = (PN,N) = (J1N, ]2N),
X =PN —CN.
It is clear that —1 < C < 1, that X is the tangential component of
PN and that | X2 =1 — C2.
From the Gauss equation it follows that the scalar curvature p of
M is given by

(2.2)

o =2+9H? — |of,
where H is the mean curvature vector field and ¢ the second fun-
damental form of ®. The Codazzi equation is given by

(Vo)(v,w,x) — (Vo) (w,v,x) = %((X,v)(Pw,x) — (X, w)(Pv,x)),

where Vo is the covariant derivative of the second fundamental
form.

In the following result we describe some properties of C and X
which will be used along the paper.
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Lemma 1. Let ® : M — S? x S? be an orientable hypersurface and A the
shape operator associated to the unit normal field N. Then

(1) The gradient of C and the covariant derivative of X are given by
VC = -2AX, VyX=CAV —PTAV,
(2) The Hessian of C is given by
(V2C)(V,W) = —2(Ve)(V,X, W) —2C{AV, AW) + 2(PAV, AW).
(3) The Laplacian of C and the divergence of X are given by
AC = —6(X,VH) —2C|o|* + 2tr(PTA?), divX =3CH —tr(PTA),

where PT : TM — TM is the tangential component of the restriction of P
to M, tr stands for the trace and V, W are vector fields on M.

Proof. Derivating the second equation of (2.2) and taking into ac-
count that P is parallel, we get easily (1). Now, (2) and (3) follow
easily from (1) using the Codazzi’s equation. [

Finally, if ® : M — S? x 2 is an orientable hypersurface and
{e1,e3,e3} is an orthonormal reference of M such that {e1, ez, e3, N}
is positively oriented and P;; = (Pe;, ej), b; = (Pe;, N) = (X, ¢;), then
the product structure P, in the above reference, is written as follows

Py P Pz by
Py Py Py b
P31 P P33 b3
by by by C

P =

As P € SO(4), P = P! and tr P = 0, it follows that for i # j # k

2.3) CP; — b = PjjPy — P,  CP;j — bibj = PyPjx — P;jPy,

3. EXAMPLES

In this section we are going to give the most regular examples of
hypersurfaces of 5% x $2, some of them will be characterized in the

paper.
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3.1. Hypersurfaces with function C satisfying C> = 1. Given a €
S, let G : S? x S — R be the function defined by

G(p.q) = {p.a).
Then it is easy to check that the gradient and the Laplacian of G
satisfy
VG| =1-G? AG = —2G.

This means that G is an isoparametric function on $? x S? and hence
the level hypersurfaces of G define a one-parameter family of hy-
persurfaces of 52 x §% with constant mean curvature.

In this particular case, G~ 1(t) = @ if |t| > 1, G"1(1) = {a} x
G2 and G1(—1) = {—a} x S? are the focal sets, which are totally
geodesic surfaces of 5 x S2. Finally, for t € (—1,1) we have that

Gl (t) ={(p.q) €8x S*|(p,a) = t}
is a hypersurface of $* x 52 with constant mean curvature. The
isometry of §? x §% given by —Id x Id transforms G~ !(—t) onto
G I(t). Also, it is clear that, up to congruences, we can take a =
(0,0,1). So we have a family of hypersurfaces

Glt)=8'(r)xS?, r*=1-13tc]0,1),rc (0,1],

where S!(r) = {(x,y,v1—7r2) € §2}. It is trivial to check that
G 1(0) = S! x 82 is totally geodesic and that S'(r) x 82, r € (0,1),
has two constant principal curvatures: 0 with multiplicity two and
@ with multiplicity one.

Also, {S!(r) x S?, r € (0,1]} are tubes of radius arcos /1 — r2
over the focal surface {a} x §?, with a = (0,0,1).

Finally, the group of isometries of $? x $? given by

A0 A0 A
{(o B)/A:(O 1>,AESO(2),BGSO(3)}

acts transitively on S!(r) x §% and hence these hypersurfaces are
homogeneous. Sumarizing, we have that
{S1(r) x S?, r € (0,1]} is a family of homogeneous isopara-
metric hypersurfaces of S* x S? with two constant princi-
pal curvatures when v € (0,1) and totally geodesic when
r=1
These hypersurfaces satisfy that C = 1, because the unit normal
field has no component in the second factor. We remark that the
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isometry of $% x 2 given by (p,q) — (g,p) transforms S'(r) x S?
onto $2 x S!(r) whose function C = —1.

Now we are going to characterize locally the hypersurfaces satis-
fying C? = 1. Without loss of generality we can assume that C = 1.

If ® = (¢,¢) : M — S? x §? is an orientable hypersurface with
C=1,then X =0, PN = N and J;N = J,N. Hence, from Lemma 1
we get that A = PA. Moreover the tangent bundle decomposes as
TM =< J1N > @D, where D is the two-dimensional distribution
orthogonal to J1N. As P(J;N) = J1N, it is clear that P|p = —Id, and
SO A| p = 0. Also, if V, W are vector fields on D, we have that

(VyvW,iN) = —=(W,VyiN) = (W, J;(AV)) =0,

which means that D is a totally geodesic foliation on M. If X is a
leaf of D, it follows that ¢ : & — S? is a local isometry, and hence

Any hypersurface of S*> x % with C = 1 is locally the
product of a integral curve of J{N in S? and an open subset
of S2.

3.2. Hypersurfaces with three constant principal curvatures. Let
F:S? x §* — R be the function defined by

F(p,q) = (p.q)-
Then it is not difficult to check that

IVF|> =2(1 - F?), AF = —4F,

and so F is an isoparametric function on $? x $2. Hence the level hy-
persurfaces of F have constant mean curvature. In this case, F~!(t)
is empty if [t| > 1, and the diagonal surface F~1(1) = {(p, p) € S? x
S2} and the anti-diagonal surface F~1(—1) = {(p, —p) € S? x §?}
of §% x §? are the focal sets of F.

For t € (—1,1) we have that

M; = {(p.q) €S> xS*|(p,q) =t}

is an hypersurface of 5> x 5% with constant mean curvature.

The hypersurfaces M; and M_; are congruents because the iso-
metry I of S? x S? given by I(p,q) = (p, —q) transforms M; onto
M_;.

Moreover, the tube of radius arccos(t/+/2) over the diagonal sur-
face F71(1) = {(p,p) € S? x $?} is given by the sets of points
{(x,y) € $? x $?} such that
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(x,y) = (cos(%)p + \/Esin(%)v, cos(%)p — \/Esin(%/_)v),

peS’ve T, o] =1/V2.

N

As (x,y) = cos? % — sin® % = cos(\/2t), we obtain that the hy-

persurface M; is a tube of radius arccos(t/+/2) over the diagonal
surface.

On the other hand, it is clear that SO(3) acts transitively by isome-
tries on M; by

A(p,q) = (Ap,Agq), A€ SO(3),

and hence {M;, t € (—1,1)} is a family of homogeneous hypersur-
faces.

Also, the isotropy subgroup of the above action at any point of
M; is the identity. So M; is diffeomorphic to SO(3) = RIP3. Hence
M is a homogeneous Riemannian manifold and SO(3) is the group
of isometries of M; when t # 0 and that SO(3) joint with the one-
parameter group of isometries {h; : My — My, t € R} defined by

he(p,q) = (tp+ V1 — 129,/ 1— 2p — tg),

is the group of isometries of My. We remark that {4} is only well-
defined on My and that they are the restriction to My of isometries
of O(6), which no define isometries of 5% x S2.

In [MP], the simply connected homogeneous Riemannian three-
manifolds are described in detail. Following its notation, M is the
Berger projective space with x = 1 and > = 1/2. Also, My, t # 0
is the projective space with the metric given by the parameters c; =
2=cy+czwithcp =1+tandcz =1— ¢

Now, we are going to study more properties of the hypersurfaces
{M;}. It is easy to check that

S S P —
p.q) 2(1_t2) q p.p q

N
is a unit normal vector field to M; in S? x S? and so we have that
these hypersurfaces have the function C constantly zero. Hence,
if J;, i = 1,2, and P are the complex structures and the product
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structure on $% x S2, then

N = PA P A (PAGPAG)
(r4) 2(1—t2) / (p.q) 2(1—t2) /
1
X = PN = —e—=(q— tp,—p + 17),
(pa) T tz)(q p,—p+1tq)

is a trivialization of M; by orthonormal vectors fields, where A
stands for the vectorial product in IR®. If A denotes the shape ope-
rator associated to N, then for any vector (v1,v;) tangent to M;, we
have that

1

A(v1,17) = ———1{t(v1,02) — (v2,v1) + (p, , — .
(v1,02) 0P {t(v1,02) — (v2,01) + (p,v2) (P, —4) }
From here we obtain that

1 1+t 1 /1-—t
A(]lN) = = —]1N/ A(]ZN) = ]ZN/ AX=0.

NANET: V2V 1+t

So, {M;, t € (—1,1)} are hypersurfaces of $? x 5% with three con-
stant principal curvatures, A; = 0, ApA3 = —1/2. So the Gauss-
Krocneker curvature of M; is zero. The lengths of the mean curva-
ture vector field and the second fundamental form are given by

V2t 1+ 12
H= ’ |U| = :
3v1—12 1t

Among all the M;, only Mj is minimal. From the Gauss equation we
obtain that the sectional curvature, the Ricci tensor and the scalar
curvature of M; satisfy the following properties:

K(AN A JoN) = —%, K(iINAX) = K(JaN A X) = %
Ric(v) = (v,X)> >0, p=1.

We remark that the curvatures of M; do not depend of t. Sumariz-
ing, we have that

{Mi = {(x,y) € 8> x| {x,y) =1}, t € (-1,1)}

is a family of homogeneous isoparametric hypersurfaces of
S? x S2 with three constant principal curvatures. Their
Gauss-Krocneker curvatures vanish and only My is a mi-
nimal hypersurface. Moreover, all these hypersurfaces have
C=0.
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Remark 1. The above examples can be defined in higher dimension.
In fact, if §" is the n-dimensional unit sphere with its canonical
metric and in §" x §" we consider the product metric, then

My ={(p.q) € 5" xS"[(p.q) = t}, tec(=11)

define a one-parameter family of homogeneous isoparametric hy-
persurfaces of 5" x 5" with three constant principal curvatures: 0

. 1 VIEE I T B
with multiplicity one and TR o Ry with multiplicities n
1.

3.3. Other interesting examples. 1) Given a,b € S? we define

M, = {(p,q) € > x S*| (p,a) + (q,b) = 0}.

Then it is easy to check that M, ; is a compact hypersurface of 5% x
S? with two isolated singularities: (a, —b), (—a,b). Outside of these
singularities, a unit normal vector field to M, is defined by

1
N(p,q) = (a—(p,a)p,b—(q,b)q),
2(1—(p,a)?)
and hence the function C = (PN, N) = 0.
Also it is straighforward to see that the orthonormal reference
{X,E; = (iN + JoaN)/v/2,E3 = (1N — [,N)/+/2} diagonalizes the
second fundamental form with

_ _ (p,a) ___—(pa)
Y AR A T AT

Hence M, ; is a minimal hypersurface with Gauss-Kronecker cur-
vature K = 0 and with scalar curvature

~2-3(p,a)?

= — < 2.
olpa) =3, gz ~®<PS2

A parametrization of M, ;, whena = (0,0,1), b = (0,0, —1), is given
by the triply periodic ramified immersion
®:R3 — 52 x G2

)(a, —b).

d(t,r,s) = cos(i)((cos r,sinr,0), (coss, sins, 0)) + sin(

V2

2) Given a,b € S* we define

M., ={(p,q) € $* x S*|(p,a)*> + (q,b)* = 1}.

t
V2
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Then it is easy to check that M, ; is a compact hypersurface of S? x
S? with four curves of singularities

{(p,£b) | (p,a) =0}, {(Fa,q)|(q,b) =0}

Outside of these singularities, a unit normal vector field to Ma,b is
defined by

1
N(p,q) = VAT ((p,a)(a = (p,a)p), (q,b)(b—(q,b)q)),

and hence the function C = (PN, N) = 0.
Also it is straighforward to see that the orthonormal reference

{X,E; = (JiN + JaN)/v/2,E3 = (JiN — JoN)/+/2} diagonalizes the
second fundamental form with

_ ___(pa? _ {gb)?
AX=0 A= e T e

Hence M, ; is a hypersurface with Gauss-Kronecker curvature K =
0, with constant curvature 1/2 and the length of the mean curvature
vector field is given by

1
H(p,q) = 3v2|(p,a){g,b)|

A parametrization of Ma,b/ when a = b = (0,0,1), is given by the
triply periodic ramified immersion

® = (¢,9) : R® — 8% x &2

cos(—=) — sin(-L2) cos(—L2) + sin(-L-)
Pp(t,r,s) = NG (cosr,sinr,0) + (0,0, 7 ),

cos(—L2) + sin(-L2) cos(—L) — sin(-L-)
Y(t,r,s) = 7 (coss,sins,0) + (0,0, 7 )

4. CHARACTERIZATIONS OF THE EXAMPLES. HOMOGENEOUS
HYPERSURFACES

In the next result we give two local characterizations of the exam-
ples defined in section 3.

Theorem 1. Let ® : M — S? x S? be an orientable hypersurface with
C = (PN, N) constant, where N is a unit normal field to ®. Then

(1) M has constant mean curvature if and only if either
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(a) C?> =1 and ®(M) is congruent to an open set of S*(r) x S?
for some r € (0,1],

(b) or C = 0 and (M) is congruent to an open set of M; for
some t € (—1,1),

(c) or C = 0and M is a non-compact minimal hypersurface with
non-constant scalar curvature.

(2) M has constant scalar curvature if and only if either

(a) C?> =1 and ®(M) is congruent to an open set of S*(r) x S?
for some r € (0,1],

(b) or C = 0 and (M) is congruent to an open set of M; for
some t € (—1,1),

(c) or C = 0and M is a non-complete hypersurface with constant
curvature 1/2 and non-constant mean curvature.

Remark 2. (1) The family of minimal hypersurfaces in item (1c) is
not empty, because the hypersurface M, given in section 3.3
is a non-complete minimal hypersurface with non-constant
scalar curvature and with C = 0.

(2) The family of hypersurfaces in item (2c) is also not empty,
because the hypersurface M, given in section 3.3 is a non-
complete hypersurface with constant curvature 1/2 , non-
constant mean curvature and with C = 0.

Corollary 1. (1) {S'(r) x S2,r € (0,1]}, {M}, t € (—1,1)} and
their compact coverings are the only compact orientable constant
mean curvature hypersurfaces of S x S? with C constant.

(2) {S'(r) x S%, r € (0,1]}, {My, t € (—1,1)} and their compact
coverings are the only complete orientable hypersurfaces with con-
stant scalar curvature of > x S% with C constant.

(3) Open subsets of {S'(r) x 8%, r € (0,1]} and {M;, t € (—1,1)},
are the only orientable hypersurfaces of S? x S? which have the
mean curvature, the scalar curvature and the function C constants.

Proof. Taking into account section 3, the sufficient conditions in (1)
and (2) are clear.

In order to prove the neccesary conditions, first we suppose that
C? = 1, and without loss of generality we consider C = 1. In Section
3.1, we prove that M is locally congruent to the product of a curve
in G2 and an open subset of $2. If the mean curvature or the scalar
curvature of the hypersurface is constant, then the curvature of the
curve of S? is also constant and so we obtain the case (1a) or (2a).
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Now we suppose that C = ¢y € (—1,1). Then from Lemma 1 (1),
it follows that AX = 0 with |X|?> = 1—cZ > 0. So, at any point of
M, 0 is a principal curvature of the hypersurface with correspond-
ing eigenvector X. Hence, on M we can consider the orthonormal
reference {E;, i = 1,2,3} where

E, = X E, = JiN+ >N s = hN— N
h-a V21 +co) V2(1=co)

Using (2.2), the shape operator A and the tangential component of
the product structure PT are given, with respect to this reference, by

0 0 O —co 0 0
A= 0 022 023 , PT = 0 1 0
0 023 033 0 0 —1

Using Lemma 1 and that J;, i = 1,2, are K&hler structures on
52 x Q2 je. V]; = 0, it is not difficult to check that the Levi-Civita
connection V of the induced metric on M is given by

Vg Ei =0, VgEs=—y\/1—clonsE1, ViEy =4/1—cionsk,

1—c¢p 1+ ¢co
E, = — E E
Vi Eq 1+COO’23 2+ 1_000'33 3,
1—¢g 1+ ¢
E, = E Ey = — E
VE, E» 1+C0(722 1, VEE3 1_C0(733 1

The knowledge of the Levi-Civita connection and the Codazzi
equation, joint with Lemma 1, allow us to get the derivatives of the
second fundamental form, obtaining

1—¢?
X(op) = 5 0+ (1—co)og — (1+ 00)02231
C% —1 2 2
(4.1) X(o33) = + (1 = co)ozz — (1 +co)ozs,

2
X(023) = (1 —¢0)022023 — (1 + ¢0) 033023,
Ey(033) = E3(023), E3(022) = Ez(023).

Case (1): the mean curvature H is constant.
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In this case, from Lemma 1,(3) it follows that cg|c|> = trace PT A2
Using the above reference, this equation becomes in

(4.2) colo|* = 3H (022 — 033).

First we are going to prove that cp = 0. In fact, if H = 0, as
the hypersurface cannot be totally geodesic because in such case
C? = 1, the equation (4.2) says that cg = 0. If H # 0, derivating (4.2)
with respect to X and using (4.1) and (4.2) it is straightforward to
get that

_ 9H?(1+9H?)

43 o|?
(4:3) o1 3 +9H?

In particular |o]? is constant and from (4.2) , the function 2 — 033
is also constant. This implies, taking into account that H and |o|?
are constant functions, that all the functions ¢;; are constants. Using
in (4.1) that X(0y3) = 0 and (4.2) we get

C00'23(9H2 — |U’|2) =0.

If 9H? — |0|? = 0, equation (4.3) says that ¢5 = 1, which is imposible.
If 093 = 0, using that X(02,) = 0in (4.1), it follows that ¢y = 1, which
is imposible. Hence last equation says that cp = 0 again.

Hence we have proved that ¢y = 0 and so (4.2) says that either M
is minimal, i.e. H = 0, or 0y = 033. We are going to study these
cases separately.

First case: 050 = 033. In this case we have that 3H = 20>, and hence
027 and o33 are constant functions. Using this in (4.1) we obtain that
03, = 1/2+ 03, and so 073 is also constant and the hypersurface has
constant scalar curvature p = 1.

Now, taking into account that ¢cp = 0, the second fundamental
form, with respect to the orthonormal reference on M given by
{X, 1N, ,N}, is given by

AX =0, A(hN)=(on+023)iN, A(2N) = (022 — 023) 2N,
with (02 + 093) (022 — 023) = —1/2. As these principal curvatures
are constant and their product is —1/2, these numbers can be writ-
ten, without loss of generality, as

22 23—\/§ 1—p 27 03= NARET

for certain 0 < t < 1.
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Now to find the focal set of M, we consider the parallel hy-
persurfaces to M. As C = 0, we have that N = (Nj, N;) with
IN1/> = |N,|?> = 1/2. Hence, the parallel hypersurfaces to M are
given by ®; : M — S? x 82,5 > 0, where

:(p,q) = (exp, (sN1), exp, (sN2)) = cos(%)(m) +ﬁsin<%>N.

Then
(D)« (X) = cos(%)X — % sin(%)cﬁ
(@:).(hN) = (cos( ) = /T sin( ) N,
(@:).(2N) = (cos( ) + /T sin( S N,

where ® = S o ®, S being the isometry of S? x S? given by S(p,q) =
(P, —1).
Hence, the focal surface of M happens when cot(\if) = /1,

i.e., when cos(\%) = /(1+1)/2, sin( = /(1 —1)/2. But this
means that cos(v/2s) = t, and so s = Lz arcos t.

It X is the focal surface of M and we denote by ¥ the restriction

of ®; (with s = ﬁ arcos t) to ¥, then the immersion ¥ : & — 52 x G2
is given by
V1+t
v=Y""lo L ViTiN
V2
As (P5)4(J1N) = 0, for s = L arcos , it is clear that {X, N} is an

V2
orthonormal reference of the tangent bundle to X and that

N—
RN,
N

(T)* UZN

Hence, {]1N, ¥ 12_t P — V\}f N} is an orthonormal reference on the

normal bundle of ¥. Now, it is easy to check that the correspond-
ing Weingarten endomorphisms associated to these two unit nor-
mal vector fields vanish, and so ¥ is a totally geodesic immersion.
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Moreover, as [1X = J;N, the immersion ¥ is a complex surface
with respect to the complex structure J; and a Lagrangian surface
with respect to the other complex structure J,. From [CU], we
have that ¥ is congruent to an open subset of the diagonal sur-
face {(p,p) € $* x §? | p € S} and our hypersurface M is an open

subset of the tube of radius s = \% arcos t over the diagonal surface.

Taking into account section 3.2, we get that M is locally congruent
to some {M;, t € (—1,1)}. Hence we have obtained (1b).
Second case: H = 0. In this case, equation (4.1) becomes in

1
X(o22) = 5t 03 — 033, X(023) = 202073,

(Vo Ez) = —(Voas, E3), (Vo Es) = (Voos, E).

(4.4)

Now, if A = Z?zl(EiE,- — Vg E;) is the Laplacian of the induced
metric on M, from (4.4) we have that

Aoy = Aoyz =0,

that is 09> and 0»3 are harmonic functions on M.

If M is compact, then o7 and 0,3 are constant functions. Using
(4.4) again we have two posibilities: 09 = 0 or 23 = 0. In the first
case, 02, = 1/2 and hence we are again in the situation of the first
case. So our hypersurface is congruent to My and we obtain (1b).
In the second case (023 = 0), if v : R — M is an integral curve of
X, which is defined on all R, we can integrate X(o2) = 1/2 + (7222
along v and we get o (t) = (1/\/5) tan(t/\/i +a),a € R, who is
not defined in all R. This is a contradiction and the hypersurface
cannot be compact.

Also, if the scalar curvature is constant, then (7222 + (7223 will be
constant, and so, derivating with respect to X and using (4.4) we
will obtain that

0=0x0n(1+ 2(7222 + 20223),

which implies that 02 = 0 and hence 03, = 1/2. This says that M
is locally congruent to M. Hence, in this case we get that either M
is locally congruent to My or H = 0, C = 0 and M is not compact
with non-constant scalar curvature. This implies (1c).

Case (2): the scalar curvature p is constant.



ON HYPERSURFACES OF &2 x G2 17

In this case, as the scalar curvature p = 2+ 2(09033 — (7223) is
constant, from (4.1) it follows that

4.5  (co—1)(co—p+3)o2 = (co+1)(co+p —3)ozs.

Using again (4.1) and derivating equation (4.5) with respect to X we
obtain that

(p—=1)(0—3)+c5=0.
Hence there are two possible values of the scalar curvature: p =
2+4/1—c3.
First case: p = 2 — /1 —c2. Puting this information in (4.5) it
follows that

(4.6) vV 1—cogoam = /14 cooss.
v

. . 2 o .
As in this case 0033 — 0353 = >, (4.6) becomes in

\/1—C0 2 2 \/1_6(2)

maﬂ — U3 = — 2

Using the last equation of (4.1) in the above equation and taking
into account (4.6) we get

023E>(023) — 0 E3(023) =0,
V11— Co
V14 co

Now, the only solution to this compatible homogeneous system is
Ez(023) = E3(023) = 0.

But
[Ez, B3] = —24/1 — cBonsEy,

and so 0 = [E2, Eg] ((723) = —20’23X(0'23) = —20’220’223. As >3 can not
have zeroes, we get that 0, = 0 and so 033 = 0. Going again to (4.1)
we get that ¢p = 0, and so p = 1. This situation has been studied en
Case 1, and we obtain (2b).

Second case: p = 2+ (/1 —c3. As in the above case, putting the

022E>(093) — 093E3(023) = 0.

value of the scalar curvature in (4.5) it follows that

\/1—00(\/1—|-C0—\/1—C0)0'22:—\/1—|—C0(\/1—|—C0—\/1—Co)(733.
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If ¢y # O, from the above equation we get that \/1 — coo = —v/1+ o033

and using that o033 — (7223 = ~——" we have that
2
_(\/1 —002 402 = vi-a

m 22 23 2

which is impossible. Hence, in this second case, we get that ¢y = 0,

— 2 _ 1
P = 3 and 022033 — U3 = 5.

If {v,w} is an orthonormal basis of a plane IT C T, M, then the
Gauss equation says that the curvature K of I1 is given by

K = R(v,w,w,v) + o(v,v)0(w,w) — o(v,w)>.
Using the above information it is easy to check that
R(v,w,w,v) =1/2 —1/2({v, E2){w, E3) — (v, E3)(w, E3))?,
o(v,v)o(w,w) — o(v,w)* =
= (022033 — 033) (v, E2){w, E3) — (v, E3) (w, E2))?,

and so K = 1/2. This means that M has constant curvature 1/2.
Now, we are going to see that M is not complete. In fact, if M

is complete, as M has constant positive curvature, Myers’ theorem

says that M is compact. On the other hand, from (4.1) we have that

X(o20 — 033) =2+ (022 — 033)*
But Lemma 1 says that div (X) = — (022 — 033). So
div((divX)X) = X(divX) + (divX)?
= —2— (0 — 033)* + (022 — 033)* = =2,

and the divergence Theorem gives a contradiction. Hence M is not
complete.

Also, we are going to see that the mean curvature H is not con-
stant. In fact, if H is constant, from Lemma 1 we get that

0=tr (PTAZ) = 3H (02 — 033).

As H cannot be zero, because 07,033 — (7223 = 1/2, we obtain that
02 — 033 = 0, which contradicts, using (4.1), the equation of its
derivative with respect to X. Hence M has not constant mean cur-
vature, and we get (2c). L]

As a consequence of Corollay 1 we classify locally the homoge-
neous hypersurfaces of 5% x S2.
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Corollary 2. Let ® : M — S? x S? be an orientable hypersurface . If M
is locally homogeneous, then ®(M) is congruent to either an open subset
of S'(r) x S2, r € (0,1], or an open subset of My, t € (—1,1).

Proof. [

Let N be a unit normal vector field. We fix a point pg € M.
Then, as M is locally homogeneous, for any p € M there exist open
sets po € Uy, p € U and an isometry F of 5% x $? such that (F o
®)(Up) = @(U) and F(P(po)) = ®(p). Then N, = £dF, (Np,) and
dFy, o P = £PodF,,. Hence C(p) = +C(po) and as M is connected,
C is constant. Also, it is clear that F keeps the second fundamental
form, and so the mean curvature and the scalar curvature of M are
also constant. Hence Corollay 2 follows from Corollay 1.

5. ISOPARAMETRIC HYPERSURFACES

In this section we classify the isoparametric hypersurfaces of S? x
S2. If M is an isoparametric hypersurface of 2 x S?, then there exists
an isoparametric function F : $* x 2 — R such that M = F~!(t,)
for some regular value ty. Then it is well-known that M; := F~1(¢)
are also hypersurfaces for t € (ty —,t9 + ), parallel to M and
with constant mean curvature. We start classifying hypersurfaces
of §% x §? satisfying this property.

Theorem 2. Let ® : M — S% x S? be an orientable hypersurface. If
the parallel hypersurfaces & : M — S? x 8%, t € (—€,€), Py = D,
have constant mean curvature, then ®(M) is congruent either to an open
subset of S'(r) x S, r € (0,1], or to an open subset of My, t € (—1,1).

Proof. We are going to consider the open subset of M defined by
O = {p € M|C?(p) < 1}. If O is empty, then M has constant
mean curvature and C2 = 1, and hence Theorem 1 says that ®(M)
is congruent to an open subset of S!(r) x S2, r € (0,1].

Now we suppose that O is not empty. We write ® = (¢, ) : O —
52 x 82 with $,p:0 — S2. If N = (Nj, N,) is a unit normal vector
field to ®, then the parallel hypersurfaces ®; : O — 52 x S? are
given by

Dy = (exp, tN1,exp, tN2), t€ (—€,€), Py=P,
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where exp denotes the exponential map in $%. As |[N;|?> = (1+C)/2
and |N>|? = (1 — C) /2, then ®; = (¢, ;) is defined by

¢r = cos(CTt)p + (1/CT)sin(CTt) Ny,

Py = cos(C H)p+ (1/C7)sin(C )Ny,

where C* = /14 C/v2and C~ =/1-C/V2.
Now, it is straightforward to check that N' = (N}, N}) defined by

N! = cos(CTt)Ny — C*sin(CTt)¢,
N3 = cos(Ct)N, — C™ sin(C ™ t)y,

is a unit normal vector field to the hypersurface ®;. Under these
conditions it is easy to see that

Ci=C, hN'=JN, LN'=]LN, Vte (—ee).
Hence, in (;)«(TM)|p) we can consider the orthonormal reference
{E!,i=1,2,3} where
¢ Xt ¢ IN'+DNY o IN' = HN!

Yvi-—c P 20+0)° 7 Jea-ao)
Taking into account the above relations, if we denote E? = E;, it is
clear that E} = E,, EL = E3, Vi € (—¢,¢€).

Now, let {e1,e5,e3} be a local orthonormal reference on O such
that ®.(e;) = E;, i = 1,2,3. We denote 0;; = (P, (Ae;), Pi(ej)) the
second fundamental form of ® associated to the normal field N.
Then, from a simply but long computation, we obtain that
(1)« (ei) = (817 — toy; ) E

sin(Ctt
+ (82 cos(Ctt) — 021'%)]55

+(83i cos(C™t) — qysméith E:

and
(®1)+(Ale;) = o
+ (09 cos(CTt) 4 6,C T sin(CTt)) ES
+ (0’3i cos(C™t) + 93,C™ sin(C‘t)) Eé,

where A' is the shape operator of ®; associated to the normal field
Nt
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]
expressions that (®;),(Ale;) = — ?:1 Q’-].E]"f, where ’ stands for de-
rivative with respect to t. Hence the induced metric g; on O by the

immersion ®; and the second fundamental form ¢ of ®; are given

by

If we denote (®;).(e;) = Y5, Q,-]-E]t-, it is clear from the above

g =QQ", o =-0(Q"),
where Q is the matrix Q = (Q;j) and (-)” stands for the transpose.
The mean curvatures of the immersions ®; are given by

SH() = (g ') =~ (@0 7'ee)) = -,

where tr stands for the trace and det stands for the determinant.
Hence (detQ)’ = —3H(t)detQ and as Q(0) = Id, an inductive
argument says that

d*detQ
(F ), k=0,

are constants functions on O.

From the definition, the determinant of Q is given by

det Q = (1 — toyy) cos(CTt) cos(C™t) + (Haz — tK) sin(C™t) sin(C™t)

CtC~

sin(Ctt) cos(Ct
+(—0'22 + tle) ( ) ( )

+ (—o33 + tHy3)

cos(CTt)sin(C™t)

Ct C-
where H;j = ;0 — O’izj and K = det A is the Gauss-Kronecker cur-
vature of M.

Now, computing the Taylor serie of the function detQ around
t = 0 and from a very long computation we get that

detQ:1_3Ht+3—pt2+9H—6K—(1—|—C)0’22—(1—C)0’33t3

2 3!
L26-p) - C? —2((1 - C)H1p + (1+ C)Hu3) 4
4!
| 52— C)3H + 20K +4(1+ C = C)om +4(1 - C = C)og 5
5!
+4(P —3)+(5-p)C*+4((1 - C)(4+C)Hia + (1 +C)(4 — C)Hy3)
6!

As all the coefficients of the above serie are constant functions, we
get that not only the mean curvature but also the scalar curvature p
of M is constant.

7

4. ..
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Now we work on the open subset V. = {p € O|C(p) # 0}.
Taking into account that the coefficients corresponding to t* and t°
are constant and that p is also constant, we obtain on V that

b _(4OR(C) . (1-C)Rs(C)
27 sc(1—-c2) BT sc(-c?)
where R; and Rj3 are non-trivial polynomials of degree 3 in C with
constant coefficients. Computing the term of the Taylor serie corre-
sponding to t3, we have that

—8(p —3) +4(p —4)C*+ (=37 +11C + 17C* — C*)Hyy
+(=37 —=11C +17C* 4+ C®)Hy3 = A,

for certain constant A. Using the above expressions of Hy; and His
in this equation, we finally prove that C satisfies a non trivial poly-
nomial of degree 7 with constant coefficients. This means that C is
constant on each connected component of the open set V.

Hence the function C on the connected hypersurface M takes only
a discrete number of values. This means that the function C is con-
stant and the result follows from Corollay 1. O

Corollary 3. Let ® : M — S? x S? be an isoparametric hypersurface.
Then M is congruent either to S'(r) x %, r € (0,1], or to My, t €
(—1,1).

6. HYPERSURFACES WITH CONSTANT PRINCIPAL CURVATURES

In this section we are going to study orientable hypersurfaces of
S? x §? with constant principal curvatures.

6.1. Hypersurfaces with one or two constant principal curvatures.
In the following result we classify locally the orientable hypersur-
faces of 5% x §? with at most two constant principal curvatures.

Theorem 3. Let ® : M — S? x S? be an orientable hypersurface of
S2 x S2. If M has at most two constant principal curvatures, then ®(M)
is either an open subset of S! x S? (M is totally geodesic), or ®(M) is an
open subset of S'(r) x S2, r € (0,1) (if M has two constant principal
curvatures).

Remark 3. When the hypersurface has only one principal curvature,
not necessarely constant, i.e.,when the hypersurface is umbilical, it
is easy to conclude that the mean curvature is constant and hence
the hypersurface is totally geodesic.
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Proof. If M has only one constant principal curvature, then M is
an umbilical hypersurface with constant mean curvature. Then in
[TU], Proposition 1, it was proved that M is congruent to an open
subset of S x S2.

Now, we suppose that M has two constant principal curvatures.
Let A1, Ay be the corresponding different principal curvatures hav-
ing A1 multiplicity one and A, multiplicity two.

Under these conditions, let E; be a unit vector field on M such
that AE; = AEq. Then, we have that the second fundamental form
and its covariant derivative are given by

6.1)
o(V,W) = A(V, W) + (A — A2)(V, E1)(W, Eq),
(Vo) (Z,V,W) = (A — A2) (W, E1){(V,VzE1) +(V, E1)(W,VzE1)),

for any vector fields V, W, Z on M.
Using (6.1), Codazzi equation and the fact that M has constant
mean curvature, we obtain
3 3

0=Y (Vo) (Ze,e) =) (Vo)e, Z,e) =

i=1 i=1
(M = A2) ((Er, Z)div Ey + (VE E1, Z)),
for any vector field Z on M, being {ej, €3, e3} an orthonormal refer-
ence on M and div the divergence operator.
As |E1|> = 1, from the last equation we get that the vector field
E, is a geodesic vector field with zero divergence, i.e.,
(6.2) divE; =0 and VgE; =0.
Using (6.2) in the second equation of (6.1) we obtain
(Vo)(Ey,V,W) =0, (Vo)(V,E;, W)= (M —A2)(VyE, W),
and hence, the Codazzi equation says that
(X,V)PTE; — (X,E{)PTV
2(A = Ag) ’
for any vector field V tangent to M, where PT denotes the tangential
component of P, i.e., PTZ = PZ — (X, Z)N.
Now, from (6.2) and (6.3) and making a direct computation, we
obtain that the Ricci curvature of E; is given by
(X, E1)?
2(A1 — Ap)?

(6.3) VyE; =

RiC(El) = —
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But, on the other hand, the Gauss equation says that

(X,E1)> C(PEy, Ei)

1
Ric(Er) = 5 +2MA2 + -5 TR

2
and hence finally we get that

G °

Now we proceed as follows. From Lemma 1,(1) and (6.3) it is
clear that

E1(C) = —2A1(X,Eq1), E1({PEy, E1)) =2A1(X, Ey),
E1({X, E1)) = M(C — (PEy, Ex)).

Hence, taking derivatives in (6.4) with respect to E; and taking into
account the above expressions, we get that

0 = (X, E1) ((PEy, E1) — C).

Taking derivatives again this equation with respect to E; and using
again the above expressions we obtain 4(X, E;)2 = ((PEy, E1) — C)?,

and hence the above equation implies that
(X,E1) =0, (PEy,Eq)=C.

Now, (6.4) becomes in C?> = 1+ 4A; 5. This means that C is a con-
stant function and the result follows from Corollary 1. OJ

(6.4) 1+4MAy = C(PEy, Ey) — (14

6.2. Hypersurfaces with three constant principal curvatures. From
now on, let ® : M — S2 x S2 be an orientable hypersurface with
three different constant principal curvatures {A1, A2, A3}. Then there
exists a trivialization of M by unit vector fields {Ej, Ep, E3} with
AE; = AE;, i = 1,2,3. These principal curvatures are the roots of
the polynomial

6.5) A3 —3HA? + ‘)ZLZA _K=0.

For simplicity, we will denote
ojj = 0(E; Ej), Vo= (Vo)(E;, Ej Ex), Pj=(PE,E)),
bi = (X,E), T§=(VgEjEx).
Lemma 2. The above functions satisfy the following properties
(D) TE+T) =0, 1<ijk<3.
(2) Vo + (A — Aj)rg. =0, 1<i,j,k<3.
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(3) (Ap— Aj)rg. — (A — Ai)r;g. = 5 (biPk — biPy), 1<i,jk<3
j . b;P;;—b:P; .o . .
(4)Fii—m, 1§z,]§3, i #J.

(5) (A = AT = —(A— ATy, 1<i,j<3, i#j#k
Proof. (1) is trivial. Taking derivatives in ¢j = A;6j with respect to
E; we get (2). From Codazzi equation and (2) we prove (3). Taking
k = iin (3) and using (1) we get (4). Finally from (2.3) and (4) it
follows (5). ]

Lemma 3. The functions A; = b? — CPy;, i = 1,2, 3, satisfy the following
equation

BA = By + D,
where
A2 —-M 2(A1 = Ap) Aq
B = A3 2(A1 — Az) M , A= A
2(Ay — A3) A3 —Ap Az

()\1 — )\2)(1 + 2)\1)\2) Dq»

By = ()\1 — )\3)(1 + 2)\1)\3) , D= Dq3
()\2 — )\3)(1 + 2)\2)\3)

and Dj;, i # | are defined by

Dij = 4(Ai — Aj) (T2 + (T%)%) +4(Ae — A7) (T5)? — 4(Ax — M) (T)?,

with k # 1 # |.

Remark 4. We observe that Lemma 3 provides that the functions A;
satisfy a compatible linear system because

det B = —6(A1 — A2)(A1 — A3) (A2 — A3) # 0.

Proof. For i,j € {1,2,3},i # j, let K;; be the sectional curvature
of the plane spanned by {E; E;}. Then from the definition of the
sectional curvature we have that
Ky = E(I))+ E(r)) — (T2 — (12— Thr
rﬁfj(r;k +T) + rjg.r;(j,
where k # i and k # j.

Now, using Lemma 2 and Lemma 1, (1) and from a straightfor-
ward computation it is easy to conclude that
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. . 1
Ky = =2((CL) + (T)?) — 5 (Pay — )
1
oty —ay i~ A

2 k2 k2 .
"‘W((/\k = A)T5)" = (A= A)(T5)%), k#Fi#].
Finally using the Gauss equation, 2K;; = 1+ P;Pj; — Pl% +2MAiA,
and (2.3) in the above equation we obtain that
)\]’Ai — )\1‘/\]‘ —+ 2()\1' — /\])Ak = (/\i — )L]) (1 + 2)\1'/\]‘) + Di]', i 75 ] 7é k,
and the Lemma is proved. [

Lemma 4. If there exists a point p on M with C?(p) = 1, then
2 1
Ailp) = 5(Af =3HA +p = 3)
12\V‘7’2(P) 2112 3 O ,
+W{2(p 2 —6H")A7 +3(3K + 12H EH(p 2))A;
+(0—2)(p —2—3H?) —18HK}, i€ {1,2,3},
and
oy — V(o1 3H2 /) [Val?(p)
1-20=18{(p—2)(p — 2 — 3H2/2) — 27HK} et B

Proof. Suppose now that p is a point with C?(p) = 1. Then X, = 0
and so b;(p) =0, 1 <i < 3. Using Lemma 2 we have that
4(A; —A) (A, — A
Dyi(p) = % 3 1)(;\]( 7)(r§fj)2(p), 1<i,j,k<3,i<jk#ik#]j
k=M
On the other hand, using again Lemma 2 it is easy to check that

Vol?(p) = 6(A = A2 (T5)2(p), i# ] #k
From the last two equatios it follows that

o2 (A1 —Ap)?
oo = (i)

Now, solving the system of Lemma 3 and using (6.5) we get the
tirst part. The last assertion in the Lemma follows from the fact that
2?:1 A; =1, which easily follows from Lemma 2. 0]
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Theorem 4. Let ® : M — S? x S? be an orientable hypersurface with
three constant principal curvatures.
(1) If the scalar curvature p satisfies 20 # 1 and the Gauss-Kronecker
curvature K = 0, then C? < 1.
(2) If po is a critical point of the function C, then either C?(pg) = 1
or C(po) = 0. Moreover, in the second case, the Gauss-Kronecker
curvature K = 0 and the scalar curvature p = 1.

Proof. First we are going to prove part (1).

Suposse that there exists a point pg € M such that C?>(py) = 1
and without loss of generality we can take C(pg) = 1. Then we are
going to get a contradiction.

As K = 0, one of the principal curvatures is zero, for instance
A = 0. Let v : (—e,e) = M be the integral curve of E; with
7(0) = po. Then

C'(t) = ((VO)(t), Ex(t)) = —2(AX(t), E1(t)) =0,

and hence C(t) = 1for all t € (—¢,€). Now, as the Gauss-Kronecker
curvature K = 0, from Lemma 4 it follows that

(1—2p)(detB)? =18(p — 2)(p — 2 — 3H%/2)|V|?(t).

As 1—2p # 0, we have that |[Vo|?(t) = 6(A3 — A2)?(I3,)%(t) is a
non-null constant function and that p # 2. Hence, from Lemma 4,
the functions A;(t) = —P;(t) are also constant. So

0 = Pyy(t) = 23, (1) Ps(1),
which implies that P»3(t) = 0. Derivating again

0 = Po(t) = T3, (1) (Pss(t) — Poo(t)),

and so Pxn(t) = Ps3(t). Using all the information about the P;; in
(2.3) we obtain that

Pi1(t) = —Pp(t) = —Ps3(t) = 1.
Using the first part of Lemma 4, and as Ay(t) = As(t) and 3H =
Ay + Az we get that

2
18H(p — 2)% =0,

which implies that H = 0 because p # 2.
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Now, as A1(t) = —1, H = 0 and Ay = 0, first part of Lemma 4
says that

o 2
—(p+1) =18(p— 2)2—|(Zet|B()t2)’

that joint with the information given in the second part of Lemma 4

Vol (t)
1 —2p = 18(p — 22 YOI
P =180 =2) et B
imply that p = 2, which is a contradiction. This proves (1).
Now, we are going to prove part (2).
Let po be a point of M such that (VC)(pg) = 0 and C?(po) < 1.
We are going to prove that C(pg) = 0.
In this case, AX(py) = 0 and as |X|> = 1 — C?(py) > 0, one of
the three principal curvatures is zero. For instance A; = 0 and so
1—C?(po)E1(po). Now, let v : (—€,e) — M be the
integral curve of E; with v(0) = po. As
C'(t) = ((VO)(), Ea (1)) = —2(AX (), Ea (1)) = 0,

because AE; = 0, then C is constant along v and (VC)(t) = a(t)Ex(t) +
B(t)Es(t). Hence, derivating with respect to f we have that

(V2C)(Er, E2)(t) = o/ () — T, (1) B(1),
(V2C)(En, Es)(t) = B'(t) + T (t)a(t).
On the other hand, from Lemma 1 we obtain that
(V2C)(E1, Ez) = —2A5T3(X, Eo) +2A3T5, (X, E3),
(V2C)(Ey, E3) = 2203, (X, Ep) — 2A3T35(X, E3).

But, by definition a(t) = —2A5(X, E)(t) and B(t) = —2A3(X, E3)(t),
and so the above information about the Hessian of C says that « and
B satisfy the following ODE system

o (1) = Tp(t)a(t) + (T5(t) = T3, (1)) B(t)
B'(t) = — (T () + T3, ())a(t) + I35(1) B ().
As (VC)(0) = 0, i.e. «(0) = B(0) = 0, it follows thata = g = 0

is the only solution to the above system with that initial conditions.
Hence, (VC)(t) =0, Vt, and so

X() = /1 C2(po) Ea(t).
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This relation between X and E; joint with (2.3) and Lemma 2 imply
that on the curve v we have the following relations

bl(t) = \/1 — Cz(p()), bz(t) = b3(t) = 0,

Ar(H) =0, Ax(t)+ As(t) =0, Pra(t) = Pa(t) =0,
TT(t) = T5,(t) = To() =T5(t) =0,  Aal(t) = AsT3(t).

Now, using the above relations and Lemma 2, the linear system
of Lemma 3 becomes in

6.6)

225 (T3)2 (1) +2(Ag — A3)(T3,)%(t) +2A3(T3,)2(t) = —Ax(1 4 Ax(t)),

_%(F%z)z(t) +2(Ay — A3)(T3,)%(t) — ZA—);%(T%)Z(t) (1= Ax(D),
_/4\12)\3 (T31)%(8) = 1= 24225 + 22 i ZAZ(t).

This means that the functions (I'},)?(t), (I%,)?(t) and (T3,)?(t) sat-
isfy a linear system whose determinant is —16(A3 — Ap) (A3 + A3).
In what follows we are going to consider two cases:
First case: H = Ay + A3z = 0. In this case, (6.6) becomes in

Aa(t) =0,
6.7) 4(T3)%(t) = 1+ 243,
2052 (1) + 4 (1) = —5 + 23

Firstly we prove that C(pg) = 0. If not, as Ay(t) = B3(t) — C(po) P (t) =
—C(po)Pay(t), it follows from (6.7) that Pyy(t) = 0 and so Py (t)? =
1. Hence

0 = Py(t) = 2% (t) P (1),
which means that I'3,(t) = 0. But, from Lemma 2, I'},(t) = 0 and
so (6.7) says that A3 = 1/2 and (T3,)%(t) = 1/2. Finally, from
Lemma 2 it follows that A,I5,(t) = —byPx(t)/2, which implies
using the above information that b2 = 1. This is a contradiction
because b7 = 1 — C?(py) and we are assuming that C(pg) # 0.

Secondly we prove that the scalar curvature p = 1. From Lemma 2
we have that

(68)  Py(t) = =225 (t), Pas(t) = 4AT5,(t) — 24215, (1).
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Now using (6.7), (6.8) and the fact that P5 () + P2 (t) = 1, we obtain
that I', (t) satysfies the following non-trivial second order equation

8A3(T3,)%(t) — 16A3T5, T3, (1) +4A5 —1 = 0.

As from (6.7) the function I3, (#) is constant, the coefficients of the
above polynomial are constant, and so I'3,(t) is also constant. Now
(6.7) says that I'3,(t) is also a constant function and from (6.8) we
get that Py (t) and Pp3(t) are constant functions too. Hence

0 = Ph(t) = 2T%,Px3, 0 = Phy(t) = —T3,Ps3 +T3,Pp = —2T3, Py,

So I'},(t) = 0 and from the above equation it follows that A3 = 1/2,
i.e., the scalar curvature p = 1.

Second case: H # 0. In this case the system (6.6) is compatible and
it is easy to check that

(6.9) %(r%z)z(ﬂ =

B 14 2AA3 /\% + /\% — 6A3A

2 2(A2 = A2) Aalt).

Firstly we prove that C(pg) = 0. If not, from Lemma 2, it follows
that

1 B b1C(P0)P22(t) B blAg(t)
2= ""53,Ch) ~ 20Go
2C(Po) 2Co

Putting this information in (6.9), it follows that A,(t) satisfies a non-
trivial polynomial of degree two with constant coefficients. This
means that Ay(t) is a constant function and hence Py () and Pp3(t)
are also constant. Using that P}, (t) = Pi;(t) = 0, like in the above
minimal case, we get that I', (¢) = 0. But then, the solution of I'%,(¢)
which provides (6.6) implies that

(A3 + Az)(1+2A37,)

1 A = .
(6 O) Z(t) )Lg . AZ
From (6.9) and (6.10) it follows that
A2(1+2A375) A2
I)2(t) = = =2 = — 2 Ay(h).
( 22)() ()\3—)\2)2 /\g_/\% 2()

But we know that

_ (1=Cp)Ad
(TR0 ="zt
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which implies that

(O=Cone | A

43C(po) M- A3

Hence we have two possibilities. If A, = 0, then P» = 0 and from

(6.10) it follows that ApAz3 = —1/2 and 1“%2 = 0. Now (6.6) says

that I3, = 0 and I'3; = A3. Finally, from Lemma 2, (3) we get that
1 — C?(pg) = 1 which is a contradiction.

%

.. (1-C2 A
[ n theotherfand ¥ kot wn
a

) =0,

= 0, then (6.10) implies

> (A3 4+ A2)2(1 +2A3A5)
C*(po) = 2 2., 22 ’
(/\3 + /\2) + 2/\3/\2()\:;) + /\2)
which is also a contradiction. Hence we have proved that C(py) = 0.

Secondly we prove that the scalar curvature p = 1. In this case,
as

Ap(t) = b3(t) — C(po) Pa(t) = 0,
(6.6) becomes in the following equations

3020 _ A2(24245 — 1)

(T)°(t) = 1, ,
—205(Th)?(£) +2(A3 — A2)(T])?(£) = A2(A2A3 +1/2),

2A3
Ta T2)() +2(As = A2)(TR) (1) = ~As(A2As +1/2),
which implies that
—A3(AA3+1/2 ApA3+1/2
(L) = 2D g g = (A2 L)

As (T3,)%(t) and (I%,)?(t) are non-negative functions, the above
equations say that ApA3 +1/2 = 0 and so the scalar curvature of
Mis 1. O

Corollary 4. Let ® : M — S? x S? be an orientable compact hypersurface
with three different constant principal curvatures. If the scalar curvature
p satisfies 20 # 1 and the Gauss-Kronecker curvature K = 0, then ®(M)
is congruent to M; for some t € (—1,1).

Proof. From Theorem 4, (1), the function C satisfies C> < 1. As M is
compact, from Theorem 4, (2), the maximum and the minimum of
C is zero. So C = 0 and the resul follows from Corollary 1. L]
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