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Abstract. We classify the homogeneous and isoparametric hy-
persurfaces of S2 × S2. In the classification, besides the hyper-
surfaces S1(r) × S2, r ∈ (0, 1], it appears a family of hypersur-
faces with three different constant principal curvatures and zero
Gauss-Kronecker curvature. Also we classify the hypersurfaces
of S2×S2 with at most two constant principal curvatures and, un-
der certain conditions, with three constant principal curvatures.

1. Introduction

Let (N, g) be a compact 4-dimensional Riemannian manifold and
Φ : M → N a two-sided hypersurface. We are interested in the
following properties:

(1) M is (extrinsically) locally homogeneous, i.e., for any points
p, q ∈ M there exist neighbourhoods V and W of p and q and
an isometry F of N such that F(Φ(V)) = Φ(W).

(2) M has constant principal curvatures.
(3) M is isoparametric, i.e., there exists an isoparametric func-

tion F : N → R such that M = F−1(t), for some regular
value t of F. F is isoparametric if the gradient and the Lapla-
cian of F satisfy

|∇F|2 = f (F), ∆F = g(F),

where f , g : R→ R are smooth functions.

When N is the 4-dimensional sphere S4 or the complex projective
plane CP2, these properties have been studied and the correspond-
ing classifications have been done (see [C], [K], [M] and [T]). In both
cases, the above three properties are equivalent and the number of
possible different principal curvatures are 1, 2 or 3 when N = S4

and 2 or 3 when N = CP2.
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Besides the above ambient spaces, S2 × S2 is the most interesting
compact 4-manifold to study its hypersurfaces. It is, together with
CP2, the only compact Hermitian symmetric 4-manifold.

In this paper we start the study of the above properties for the
hypersurfaces of S2 × S2. In section 3, we give a complete descrip-
tion of the most important examples, which appear in two fami-
lies of isoparametric hypersurfaces. The first one, {S1(r)× S2, r ∈
(0, 1]}, is a family of homogeneous and isoparametric hypersur-
faces with 1 or 2 constant principal curvatures. The second one,
{Mt, t ∈ (−1, 1)}, with

Mt = {(p, q) ∈ S2 × S2 | < p, q >= t},

is also a family of homogeneous and isoparametric hypersurfaces
but with three constant principal curvatures and with Gauss-Kronecker
curvature K = 0. All these examples are tubes over distinguish to-
tally geodesic surfaces of S2 × S2, and, in contrast with the cases of
S4 and CP2, the geodesic balls of S2× S2 do not belong to the above
families of examples.

As it is well-known, the Gauss and Codazzi equations (and hence
the curvature of S2 × S2) play an important role in the study of
the above properties. In our case, the curvature depends of the
product structure of S2 × S2 (see section 2 ) and so the Codazzi
equation reflects the behaviour of the hypersurface with respect to
the product structure. This behaviour is described by a function C
(see (2.2)) defined on the hypersurface and satisfying −1 ≤ C ≤
1, and so, the properties of this function will be quite important
throughout the paper. This function is constant in all the above
examples ( C = 1 for the first family and C = 0 for the second one).

The first important results in the paper, Theorem 1 and Corol-
lary 1, provide a local characterization of the above examples among
the family of hypersurfaces of S2 × S2 where the function C is con-
stant. This characterization will be used along the paper.

In Corollary 2 and Corollary 3 we prove the following local result,
which classifies the homogeneous and isoparametric hypersurfaces
of S2 × S2:

(1) Open subsets of {S1(r)×S2, r ∈ (0, 1]} and {Mt, t ∈
(−1, 1)} are, up to congruences, the only locally ho-
mogeneous orientable hypersurfaces of S2 × S2.
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(2) {S1(r)× S2, r ∈ (0, 1]} and {Mt, t ∈ (−1, 1)} are,
up to congruences, the only isoparametric orientable
hypersurfaces of S2 × S2.

In fact, in Theorem 2 we prove a stronger result than in (2): we char-
acterize locally the above examples as the only orientable hypersur-
faces whose parallel hypersurfaces have constant mean curvature.
It is well-known that this property is satisfied by any isoparametric
hypersurface.

Finally in section 6, we study the orientable hypersurfaces of
S2× S2 with constant principal curvatures. In Theorem 3 we locally
classify them, when the number of constant principal curvatures is
one or two, proving that

(1) Up to congruences, open subsets of S1 × S2 are the
only orientable hypersurfaces of S2× S2 with one con-
stant principal curvature.

(2) Up to congruences, open subsets of {S1(r)× S2, r ∈
(0, 1)}, are the only orientable hypersurfaces of S2 ×
S2 with two different constant principal curvatures.

When the number of different principal curvatures is three, the
classification problem is harder, and we have only got partial re-
sults. Using Theorem 4, where we study the critical points of the
function C in such hypersurfaces, we prove in Corollary 4 the fol-
lowing result:

{Mt, t ∈ (−1, 1)} are, up to congruences, the only ori-
entable compact hypersurfaces with three different constant
principal curvatures, with scalar curvature ρ 6= 1/2 and
Gauss-Kronecker curvature K = 0.

2. Preliminaries

Let S2 be the 2-dimensional unit sphere, 〈, 〉 its standar metric and
J its complex structure defined by

Jpv = p ∧ v, p ∈ S2, v ∈ TpS2.

We endow S2× S2 with the product metric (also denoted by 〈, 〉) and
the complex structures

J1 = (J, J), J2 = (J,−J)

which define two structures of Kähler surface on S2 × S2. It is clear
that, if Id : S2 → S2 is the identity map and F : S2 → S2 is any



4 FRANCISCO URBANO

anti-holomorphic isometry of S2, then Id× F : (S2× S2, J1)→ (S2×
S2, J2) is a holomorphic isometry.

The product structure P on S2 × S2, defined by

P(v1, v2) = (v1,−v2), v1, v2 ∈ TS2,

satisfies P = −J1 J2 = −J2 J1 and ∇̄P = 0, where ∇̄ is the Levi-Civita
connection on S2 × S2.

On the other hand, using that S2 × S2 is a product manifold, its
curvature tensor R̄ is given by

R̄(v, w, x, y) =
1
2
{〈v, y〉〈w, x〉 − 〈v, x〉〈w, y〉

+〈Pv, y〉〈Pw, x〉 − 〈Pv, x〉〈Pw, y〉},

where v, w, x, y ∈ T(S2 × S2), and hence S2 × S2 is an Einstein man-
ifold with scalar curvature 4 and non-negative sectional curvature.

Finally, the group of isometries of S2 × S2 is the 6-dimensional
subgroup of the orthogonal group O(6) given by

(2.1)
{(

A 0
0 B

)
,
(

0 A
B 0

)
/ A, B ∈ O(3)

}
.

Let Φ : M→ S2× S2 be an orientable hypersurface of S2× S2 and
N a unit normal vector field to Φ. The behaviour of M with respect
to the product structure is given by the smooth function C and the
vector field X tangent to M defined by

C : M→ R, C = 〈PN, N〉 = 〈J1N, J2N〉,
X = PN − CN.

(2.2)

It is clear that −1 ≤ C ≤ 1, that X is the tangential component of
PN and that |X|2 = 1− C2.

From the Gauss equation it follows that the scalar curvature ρ of
M is given by

ρ = 2 + 9H2 − |σ|2,
where H is the mean curvature vector field and σ the second fun-
damental form of Φ. The Codazzi equation is given by

(∇σ)(v, w, x)− (∇σ)(w, v, x) =
1
2
(
〈X, v〉〈Pw, x〉 − 〈X, w〉〈Pv, x〉

)
,

where ∇σ is the covariant derivative of the second fundamental
form.

In the following result we describe some properties of C and X
which will be used along the paper.
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Lemma 1. Let Φ : M→ S2× S2 be an orientable hypersurface and A the
shape operator associated to the unit normal field N. Then

(1) The gradient of C and the covariant derivative of X are given by

∇C = −2AX, ∇V X = CAV − PT AV,

(2) The Hessian of C is given by

(∇2C)(V, W) = −2(∇σ)(V, X, W)− 2C〈AV, AW〉+ 2〈PAV, AW〉.

(3) The Laplacian of C and the divergence of X are given by

∆C = −6〈X,∇H〉 − 2C|σ|2 + 2 tr(PT A2), div X = 3CH− tr(PT A),

where PT : TM→ TM is the tangential component of the restriction of P
to M, tr stands for the trace and V, W are vector fields on M.

Proof. Derivating the second equation of (2.2) and taking into ac-
count that P is parallel, we get easily (1). Now, (2) and (3) follow
easily from (1) using the Codazzi’s equation. �

Finally, if Φ : M → S2 × S2 is an orientable hypersurface and
{e1, e2, e3} is an orthonormal reference of M such that {e1, e2, e3, N}
is positively oriented and Pij = 〈Pei, ej〉, bi = 〈Pei, N〉 = 〈X, ei〉, then
the product structure P, in the above reference, is written as follows

P =


P11 P12 P13 b1
P21 P22 P23 b2
P31 P32 P33 b3
b1 b2 b3 C


As P ∈ SO(4), P = Pt and tr P = 0, it follows that for i 6= j 6= k

CPii − b2
i = PjjPkk − P2

jk, CPij − bibj = PikPjk − PijPkk,

biPij − bjPii = −bkPkj + bjPkk.
(2.3)

3. Examples

In this section we are going to give the most regular examples of
hypersurfaces of S2 × S2, some of them will be characterized in the
paper.
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3.1. Hypersurfaces with function C satisfying C2 = 1. Given a ∈
S2, let G : S2 × S2 → R be the function defined by

G(p, q) = 〈p, a〉.
Then it is easy to check that the gradient and the Laplacian of G
satisfy

|∇̄G|2 = 1− G2, ∆̄G = −2G.
This means that G is an isoparametric function on S2× S2 and hence
the level hypersurfaces of G define a one-parameter family of hy-
persurfaces of S2 × S2 with constant mean curvature.

In this particular case, G−1(t) = ∅ if |t| > 1, G−1(1) = {a} ×
S2 and G−1(−1) = {−a} × S2 are the focal sets, which are totally
geodesic surfaces of S2 × S2. Finally, for t ∈ (−1, 1) we have that

G−1(t) = {(p, q) ∈ S2 × S2 | 〈p, a〉 = t}
is a hypersurface of S2 × S2 with constant mean curvature. The
isometry of S2 × S2 given by −Id × Id transforms G−1(−t) onto
G−1(t). Also, it is clear that, up to congruences, we can take a =
(0, 0, 1). So we have a family of hypersurfaces

G−1(t) = S1(r)× S2, r2 = 1− t2, t ∈ [0, 1), r ∈ (0, 1],

where S1(r) = {(x, y,
√

1− r2) ∈ S2}. It is trivial to check that
G−1(0) = S1 × S2 is totally geodesic and that S1(r)× S2, r ∈ (0, 1),
has two constant principal curvatures: 0 with multiplicity two and√

1−r2

r with multiplicity one.
Also, {S1(r) × S2, r ∈ (0, 1]} are tubes of radius arcos

√
1− r2

over the focal surface {a} × S2, with a = (0, 0, 1).
Finally, the group of isometries of S2 × S2 given by{(

A 0
0 B

)
/ A =

(
Â 0
0 1

)
, Â ∈ SO(2) , B ∈ SO(3)

}
acts transitively on S1(r) × S2 and hence these hypersurfaces are
homogeneous. Sumarizing, we have that

{S1(r)×S2, r ∈ (0, 1]} is a family of homogeneous isopara-
metric hypersurfaces of S2 × S2 with two constant princi-
pal curvatures when r ∈ (0, 1) and totally geodesic when
r = 1.

These hypersurfaces satisfy that C = 1, because the unit normal
field has no component in the second factor. We remark that the
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isometry of S2 × S2 given by (p, q) 7→ (q, p) transforms S1(r) × S2

onto S2 × S1(r) whose function C = −1.
Now we are going to characterize locally the hypersurfaces satis-

fying C2 = 1. Without loss of generality we can assume that C = 1.
If Φ = (φ, ψ) : M → S2 × S2 is an orientable hypersurface with

C = 1, then X = 0, PN = N and J1N = J2N. Hence, from Lemma 1
we get that A = PA. Moreover the tangent bundle decomposes as
TM =< J1N > ⊕D, where D is the two-dimensional distribution
orthogonal to J1N. As P(J1N) = J1N, it is clear that P|D = −Id, and
so A|D = 0. Also, if V, W are vector fields on D, we have that

〈∇VW, J1N〉 = −〈W, ∇̄V J1N〉 = 〈W, J1(AV)〉 = 0,

which means that D is a totally geodesic foliation on M. If Σ is a
leaf of D, it follows that ψ : Σ→ S2 is a local isometry, and hence

Any hypersurface of S2 × S2 with C ≡ 1 is locally the
product of a integral curve of J1N in S2 and an open subset
of S2.

3.2. Hypersurfaces with three constant principal curvatures. Let
F : S2 × S2 → R be the function defined by

F(p, q) = 〈p, q〉.

Then it is not difficult to check that

|∇̄F|2 = 2(1− F2), ∆̄F = −4F,

and so F is an isoparametric function on S2×S2. Hence the level hy-
persurfaces of F have constant mean curvature. In this case, F−1(t)
is empty if |t| > 1, and the diagonal surface F−1(1) = {(p, p) ∈ S2×
S2} and the anti-diagonal surface F−1(−1) = {(p,−p) ∈ S2 × S2}
of S2 × S2 are the focal sets of F.

For t ∈ (−1, 1) we have that

Mt = {(p, q) ∈ S2 × S2 | 〈p, q〉 = t}

is an hypersurface of S2 × S2 with constant mean curvature.
The hypersurfaces Mt and M−t are congruents because the iso-

metry I of S2 × S2 given by I(p, q) = (p,−q) transforms Mt onto
M−t.

Moreover, the tube of radius arccos(t/
√

2) over the diagonal sur-
face F−1(1) = {(p, p) ∈ S2 × S2} is given by the sets of points
{(x, y) ∈ S2 × S2} such that
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(x, y) =
(

cos(
t√
2
)p +

√
2 sin(

t√
2
)v, cos(

t√
2
)p−

√
2 sin(

t√
2
)v
)
,

p ∈ S2, v ∈ TpS2, |v| = 1/
√

2.

As 〈x, y〉 = cos2 t√
2
− sin2 t√

2
= cos(

√
2t), we obtain that the hy-

persurface Mt is a tube of radius arccos(t/
√

2) over the diagonal
surface.

On the other hand, it is clear that SO(3) acts transitively by isome-
tries on Mt by

A(p, q) = (Ap, Aq), A ∈ SO(3),

and hence {Mt, t ∈ (−1, 1)} is a family of homogeneous hypersur-
faces.

Also, the isotropy subgroup of the above action at any point of
Mt is the identity. So Mt is diffeomorphic to SO(3) ≡ RP3. Hence
Mt is a homogeneous Riemannian manifold and SO(3) is the group
of isometries of Mt when t 6= 0 and that SO(3) joint with the one-
parameter group of isometries {ht : M0 → M0, t ∈ R} defined by

ht(p, q) = (tp +
√

1− t2q,
√

1− t2p− tq),

is the group of isometries of M0. We remark that {ht} is only well-
defined on M0 and that they are the restriction to M0 of isometries
of O(6), which no define isometries of S2 × S2.

In [MP], the simply connected homogeneous Riemannian three-
manifolds are described in detail. Following its notation, M0 is the
Berger projective space with κ = 1 and τ2 = 1/2. Also, Mt, t 6= 0
is the projective space with the metric given by the parameters c1 =
2 = c2 + c3 with c2 = 1 + t and c3 = 1− t.

Now, we are going to study more properties of the hypersurfaces
{Mt}. It is easy to check that

N(p,q) =
1√

2(1− t2)
(q− tp, p− tq)

is a unit normal vector field to Mt in S2 × S2 and so we have that
these hypersurfaces have the function C constantly zero. Hence,
if Ji, i = 1, 2, and P are the complex structures and the product
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structure on S2 × S2, then

J1N(p,q) =
(p ∧ q,−p ∧ q)√

2(1− t2)
, J2N(p,q) =

(p ∧ q, p ∧ q)√
2(1− t2)

,

X = PN(p,q) =
1√

2(1− t2)
(q− tp,−p + tq),

is a trivialization of Mt by orthonormal vectors fields, where ∧
stands for the vectorial product in R3. If A denotes the shape ope-
rator associated to N, then for any vector (v1, v2) tangent to Mt, we
have that

A(v1, v2) =
1√

2(1− t2)
{t(v1, v2)− (v2, v1) + 〈p, v2〉(p,−q)} .

From here we obtain that

A(J1N) =
1√
2

√
1 + t
1− t

J1N, A(J2N) = − 1√
2

√
1− t
1 + t

J2N, A X = 0.

So, {Mt, t ∈ (−1, 1)} are hypersurfaces of S2 × S2 with three con-
stant principal curvatures, λ1 = 0, λ2λ3 = −1/2. So the Gauss-
Krocneker curvature of Mt is zero. The lengths of the mean curva-
ture vector field and the second fundamental form are given by

H =

√
2t

3
√

1− t2
, |σ| =

√
1 + t2

1− t2 .

Among all the Mt, only M0 is minimal. From the Gauss equation we
obtain that the sectional curvature, the Ricci tensor and the scalar
curvature of Mt satisfy the following properties:

K(J1N ∧ J2N) = −1
2

, K(J1N ∧ X) = K(J2N ∧ X) =
1
2

,

Ric(v) = 〈v, X〉2 ≥ 0, ρ = 1.

We remark that the curvatures of Mt do not depend of t. Sumariz-
ing, we have that

{Mt = {(x, y) ∈ S2 × S2 | 〈x, y〉 = t}, t ∈ (−1, 1)}
is a family of homogeneous isoparametric hypersurfaces of
S2 × S2 with three constant principal curvatures. Their
Gauss-Krocneker curvatures vanish and only M0 is a mi-
nimal hypersurface. Moreover, all these hypersurfaces have
C = 0.
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Remark 1. The above examples can be defined in higher dimension.
In fact, if Sn is the n-dimensional unit sphere with its canonical
metric and in Sn × Sn we consider the product metric, then

Mt = {(p, q) ∈ Sn × Sn | 〈p, q〉 = t}, t ∈ (−1, 1)

define a one-parameter family of homogeneous isoparametric hy-
persurfaces of Sn × Sn with three constant principal curvatures: 0
with multiplicity one and

√
1+t√

2(1−t)
,−

√
1−t√

2(1+t)
with multiplicities n−

1.

3.3. Other interesting examples. 1) Given a, b ∈ S2 we define

Ma,b = {(p, q) ∈ S2 × S2 | 〈p, a〉+ 〈q, b〉 = 0}.

Then it is easy to check that Ma,b is a compact hypersurface of S2 ×
S2 with two isolated singularities: (a,−b), (−a, b). Outside of these
singularities, a unit normal vector field to Ma,b is defined by

N(p, q) =
1√

2(1− 〈p, a〉2)
(a− 〈p, a〉p, b− 〈q, b〉q),

and hence the function C = 〈PN, N〉 = 0.
Also it is straighforward to see that the orthonormal reference
{X, E2 = (J1N + J2N)/

√
2, E3 = (J1N − J2N)/

√
2} diagonalizes the

second fundamental form with

AX = 0, AE2 =
〈p, a〉√

2(1− 〈p, a〉2)
E2, AE3 =

−〈p, a〉√
2(1− 〈p, a〉2)

E3.

Hence Ma,b is a minimal hypersurface with Gauss-Kronecker cur-
vature K = 0 and with scalar curvature

ρ(p, q) =
2− 3〈p, a〉2
1− 〈p, a〉2 , −∞ < ρ ≤ 2.

A parametrization of Ma,b when a = (0, 0, 1), b = (0, 0,−1), is given
by the triply periodic ramified immersion

Φ : R3 → S2 × S2

Φ(t, r, s) = cos(
t√
2
)
(
(cos r, sin r, 0), (cos s, sin s, 0)

)
+ sin(

t√
2
)(a,−b).

2) Given a, b ∈ S2 we define

M̂a,b = {(p, q) ∈ S2 × S2 | 〈p, a〉2 + 〈q, b〉2 = 1}.
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Then it is easy to check that M̂a,b is a compact hypersurface of S2 ×
S2 with four curves of singularities

{(p,±b) | 〈p, a〉 = 0}, {(±a, q) | 〈q, b〉 = 0}.

Outside of these singularities, a unit normal vector field to M̂a,b is
defined by

N(p, q) =
1√

2 |〈p, a〉〈q, b〉|
(
〈p, a〉(a− 〈p, a〉p), 〈q, b〉(b− 〈q, b〉q)

)
,

and hence the function C = 〈PN, N〉 = 0.
Also it is straighforward to see that the orthonormal reference
{X, E2 = (J1N + J2N)/

√
2, E3 = (J1N − J2N)/

√
2} diagonalizes the

second fundamental form with

AX = 0, AE2 =
〈p, a〉2√

2 |〈p, a〉〈q, b〉|
E2, AE3 =

〈q, b〉2√
2 |〈p, a〉〈q, b〉|

E3.

Hence M̂a,b is a hypersurface with Gauss-Kronecker curvature K =
0, with constant curvature 1/2 and the length of the mean curvature
vector field is given by

H(p, q) =
1

3
√

2 |〈p, a〉〈q, b〉|
.

A parametrization of M̂a,b, when a = b = (0, 0, 1), is given by the
triply periodic ramified immersion

Φ = (φ, ψ) : R3 → S2 × S2

φ(t, r, s) =
cos( t√

2
)− sin( t√

2
)

√
2

(cos r, sin r, 0) + (0, 0,
cos( t√

2
) + sin( t√

2
)

√
2

),

ψ(t, r, s) =
cos( t√

2
) + sin( t√

2
)

√
2

(cos s, sin s, 0) + (0, 0,
cos( t√

2
)− sin( t√

2
)

√
2

).

4. Characterizations of the examples. Homogeneous

hypersurfaces

In the next result we give two local characterizations of the exam-
ples defined in section 3.

Theorem 1. Let Φ : M → S2 × S2 be an orientable hypersurface with
C = 〈PN, N〉 constant, where N is a unit normal field to Φ. Then

(1) M has constant mean curvature if and only if either
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(a) C2 = 1 and Φ(M) is congruent to an open set of S1(r)× S2

for some r ∈ (0, 1],
(b) or C = 0 and Φ(M) is congruent to an open set of Mt for

some t ∈ (−1, 1),
(c) or C = 0 and M is a non-compact minimal hypersurface with

non-constant scalar curvature.
(2) M has constant scalar curvature if and only if either

(a) C2 = 1 and Φ(M) is congruent to an open set of S1(r)× S2

for some r ∈ (0, 1],
(b) or C = 0 and Φ(M) is congruent to an open set of Mt for

some t ∈ (−1, 1),
(c) or C = 0 and M is a non-complete hypersurface with constant

curvature 1/2 and non-constant mean curvature.

Remark 2. (1) The family of minimal hypersurfaces in item (1c) is
not empty, because the hypersurface Ma,b given in section 3.3
is a non-complete minimal hypersurface with non-constant
scalar curvature and with C = 0.

(2) The family of hypersurfaces in item (2c) is also not empty,
because the hypersurface M̂a,b given in section 3.3 is a non-
complete hypersurface with constant curvature 1/2 , non-
constant mean curvature and with C = 0.

Corollary 1. (1) {S1(r) × S2, r ∈ (0, 1]}, {Mt, t ∈ (−1, 1)} and
their compact coverings are the only compact orientable constant
mean curvature hypersurfaces of S2 × S2 with C constant.

(2) {S1(r) × S2, r ∈ (0, 1]}, {Mt, t ∈ (−1, 1)} and their compact
coverings are the only complete orientable hypersurfaces with con-
stant scalar curvature of S2 × S2 with C constant.

(3) Open subsets of {S1(r)× S2, r ∈ (0, 1]} and {Mt, t ∈ (−1, 1)},
are the only orientable hypersurfaces of S2 × S2 which have the
mean curvature, the scalar curvature and the function C constants.

Proof. Taking into account section 3, the sufficient conditions in (1)
and (2) are clear.

In order to prove the neccesary conditions, first we suppose that
C2 = 1, and without loss of generality we consider C = 1. In Section
3.1, we prove that M is locally congruent to the product of a curve
in S2 and an open subset of S2. If the mean curvature or the scalar
curvature of the hypersurface is constant, then the curvature of the
curve of S2 is also constant and so we obtain the case (1a) or (2a).
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Now we suppose that C = c0 ∈ (−1, 1). Then from Lemma 1 (1),
it follows that AX = 0 with |X|2 = 1− c2

0 > 0. So, at any point of
M, 0 is a principal curvature of the hypersurface with correspond-
ing eigenvector X. Hence, on M we can consider the orthonormal
reference {Ei, i = 1, 2, 3} where

E1 =
X√

1− c2
0

, E2 =
J1N + J2N√

2(1 + c0)
, E3 =

J1N − J2N√
2(1− c0)

.

Using (2.2), the shape operator A and the tangential component of
the product structure PT are given, with respect to this reference, by

A =

 0 0 0
0 σ22 σ23
0 σ23 σ33

 , PT =

 −c0 0 0
0 1 0
0 0 −1

 .

Using Lemma 1 and that Ji, i = 1, 2, are Kähler structures on
S2 × S2, i.e. ∇̄Ji = 0, it is not difficult to check that the Levi-Civita
connection ∇ of the induced metric on M is given by

∇E1 Ei = 0, ∇E2 E3 = −
√

1− c2
0σ23E1, ∇E3 E2 =

√
1− c2

0σ23E1,

∇E2 E1 = −

√
1− c0

1 + c0
σ22E2 +

√
1 + c0

1− c0
σ23E3,

∇E3 E1 = −

√
1− c0

1 + c0
σ23E2 +

√
1 + c0

1− c0
σ33E3,

∇E2 E2 =

√
1− c0

1 + c0
σ22E1, ∇E3 E3 = −

√
1 + c0

1− c0
σ33E1.

The knowledge of the Levi-Civita connection and the Codazzi
equation, joint with Lemma 1, allow us to get the derivatives of the
second fundamental form, obtaining

X(σ22) =
1− c2

0
2

+ (1− c0)σ
2
22 − (1 + c0)σ

2
23,

X(σ33) =
c2

0 − 1
2

+ (1− c0)σ
2
23 − (1 + c0)σ

2
33,

X(σ23) = (1− c0)σ22σ23 − (1 + c0)σ33σ23,

E2(σ33) = E3(σ23), E3(σ22) = E2(σ23).

(4.1)

Case (1): the mean curvature H is constant.
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In this case, from Lemma 1,(3) it follows that c0|σ|2 = trace PT A2.
Using the above reference, this equation becomes in

(4.2) c0|σ|2 = 3H(σ22 − σ33).

First we are going to prove that c0 = 0. In fact, if H = 0, as
the hypersurface cannot be totally geodesic because in such case
C2 = 1, the equation (4.2) says that c0 = 0. If H 6= 0, derivating (4.2)
with respect to X and using (4.1) and (4.2) it is straightforward to
get that

(4.3) |σ|2 =
9H2(1 + 9H2)

c2
0 + 9H2

.

In particular |σ|2 is constant and from (4.2) , the function σ22 − σ33
is also constant. This implies, taking into account that H and |σ|2
are constant functions, that all the functions σij are constants. Using
in (4.1) that X(σ23) = 0 and (4.2) we get

c0σ23(9H2 − |σ|2) = 0.

If 9H2− |σ|2 = 0, equation (4.3) says that c2
0 = 1, which is imposible.

If σ23 = 0, using that X(σ22) = 0 in (4.1), it follows that c0 = 1, which
is imposible. Hence last equation says that c0 = 0 again.

Hence we have proved that c0 = 0 and so (4.2) says that either M
is minimal, i.e. H = 0, or σ22 = σ33. We are going to study these
cases separately.

First case: σ22 = σ33. In this case we have that 3H = 2σ22 and hence
σ22 and σ33 are constant functions. Using this in (4.1) we obtain that
σ2

23 = 1/2+ σ2
22 and so σ23 is also constant and the hypersurface has

constant scalar curvature ρ = 1.
Now, taking into account that c0 = 0, the second fundamental

form, with respect to the orthonormal reference on M given by
{X, J1N, J2N}, is given by

AX = 0, A(J1N) = (σ22 + σ23)J1N, A(J2N) = (σ22 − σ23)J2N,

with (σ22 + σ23)(σ22 − σ23) = −1/2. As these principal curvatures
are constant and their product is −1/2, these numbers can be writ-
ten, without loss of generality, as

σ22 + σ23 =
1√
2

√
1 + t
1− t

, σ22 − σ23 = − 1√
2

√
1− t
1 + t

for certain 0 ≤ t < 1.
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Now to find the focal set of M, we consider the parallel hy-
persurfaces to M. As C = 0, we have that N = (N1, N2) with
|N1|2 = |N2|2 = 1/2. Hence, the parallel hypersurfaces to M are
given by Φs : M→ S2 × S2, s ≥ 0, where

Φs(p, q) = (expp(sN1), expq(sN2)) = cos(
s√
2
)(p, q)+

√
2 sin(

s√
2
)N.

Then

(Φs)∗(X) = cos(
s√
2
)X− 1√

2
sin(

s√
2
)Φ̂

(Φs)∗(J1N) =
(

cos(
s√
2
)−

√
1 + t
1− t

sin(
s√
2
)
)

J1N,

(Φs)∗(J2N) =
(

cos(
s√
2
) +

√
1− t
1 + t

sin(
s√
2
)
)

J2N,

where Φ̂ = S ◦Φ, S being the isometry of S2× S2 given by S(p, q) =
(p,−q).

Hence, the focal surface of M happens when cot( s√
2
) =

√
1+t
1−t ,

i.e., when cos( s√
2
) =

√
(1 + t)/2, sin( s√

2
) =

√
(1− t)/2. But this

means that cos(
√

2s) = t, and so s = 1√
2

arcos t.
It Σ is the focal surface of M and we denote by Ψ the restriction

of Φs (with s = 1√
2

arcos t) to Σ, then the immersion Ψ : Σ→ S2× S2

is given by

Ψ =

√
1 + t√

2
Φ +
√

1− t N.

As (Φs)∗(J1N) = 0, for s = 1√
2

arcos t, it is clear that {X, J2N} is an
orthonormal reference of the tangent bundle to Σ and that

(Ψ)∗(X) =

√
1 + t√

2
X−

√
1− t
2

Ψ̂,

(Ψ)∗(J2N) =

√
2√

1 + t
J2N.

Hence, {J1N,
√

1−t
2 Φ−

√
1+t√

2
N} is an orthonormal reference on the

normal bundle of Ψ. Now, it is easy to check that the correspond-
ing Weingarten endomorphisms associated to these two unit nor-
mal vector fields vanish, and so Ψ is a totally geodesic immersion.
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Moreover, as J1X = J2N, the immersion Ψ is a complex surface
with respect to the complex structure J1 and a Lagrangian surface
with respect to the other complex structure J2. From [CU], we
have that Ψ is congruent to an open subset of the diagonal sur-
face {(p, p) ∈ S2 × S2 | p ∈ S2} and our hypersurface M is an open
subset of the tube of radius s = 1√

2
arcos t over the diagonal surface.

Taking into account section 3.2, we get that M is locally congruent
to some {Mt, t ∈ (−1, 1)}. Hence we have obtained (1b).

Second case: H = 0. In this case, equation (4.1) becomes in

X(σ22) =
1
2
+ σ2

22 − σ2
23, X(σ23) = 2σ22σ23,

〈∇σ22, E2〉 = −〈∇σ23, E3〉, 〈∇σ22, E3〉 = 〈∇σ23, E2〉.
(4.4)

Now, if ∆ = ∑3
i=1(EiEi − ∇Ei Ei) is the Laplacian of the induced

metric on M, from (4.4) we have that

∆σ22 = ∆σ23 = 0,

that is σ22 and σ23 are harmonic functions on M.
If M is compact, then σ22 and σ23 are constant functions. Using

(4.4) again we have two posibilities: σ22 = 0 or σ23 = 0. In the first
case, σ2

23 = 1/2 and hence we are again in the situation of the first
case. So our hypersurface is congruent to M0 and we obtain (1b).
In the second case (σ23 = 0), if γ : R → M is an integral curve of
X, which is defined on all R, we can integrate X(σ22) = 1/2 + σ2

22
along γ and we get σ22(t) = (1/

√
2) tan(t/

√
2 + a), a ∈ R, who is

not defined in all R. This is a contradiction and the hypersurface
cannot be compact.

Also, if the scalar curvature is constant, then σ2
22 + σ2

23 will be
constant, and so, derivating with respect to X and using (4.4) we
will obtain that

0 = σ22(1 + 2σ2
22 + 2σ2

23),

which implies that σ22 = 0 and hence σ2
23 = 1/2. This says that M

is locally congruent to M0. Hence, in this case we get that either M
is locally congruent to M0 or H = 0, C = 0 and M is not compact
with non-constant scalar curvature. This implies (1c).

Case (2): the scalar curvature ρ is constant.
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In this case, as the scalar curvature ρ = 2 + 2(σ22σ33 − σ2
23) is

constant, from (4.1) it follows that

(4.5) (c0 − 1)(c0 − ρ + 3)σ22 = (c0 + 1)(c0 + ρ− 3)σ33.

Using again (4.1) and derivating equation (4.5) with respect to X we
obtain that

(ρ− 1)(ρ− 3) + c2
0 = 0.

Hence there are two possible values of the scalar curvature: ρ =

2±
√

1− c2
0.

First case: ρ = 2 −
√

1− c2
0. Puting this information in (4.5) it

follows that

(4.6)
√

1− c0 σ22 =
√

1 + c0 σ33.

As in this case σ22σ33 − σ2
23 = −

√
1−c2

0
2 , (4.6) becomes in

√
1− c0√
1 + c0

σ2
22 − σ2

23 = −

√
1− c2

0

2
.

Using the last equation of (4.1) in the above equation and taking
into account (4.6) we get

σ23E2(σ23)− σ22E3(σ23) = 0,
√

1− c0√
1 + c0

σ22E2(σ23)− σ23E3(σ23) = 0.

Now, the only solution to this compatible homogeneous system is
E2(σ23) = E3(σ23) = 0.

But

[E2, E3] = −2
√

1− c2
0σ23E1,

and so 0 = [E2, E3](σ23) = −2σ23X(σ23) = −2σ22σ2
23. As σ23 can not

have zeroes, we get that σ22 = 0 and so σ33 = 0. Going again to (4.1)
we get that c0 = 0, and so ρ = 1. This situation has been studied en
Case 1, and we obtain (2b).

Second case: ρ = 2 +
√

1− c2
0. As in the above case, putting the

value of the scalar curvature in (4.5) it follows that√
1− c0(

√
1 + c0−

√
1− c0)σ22 = −

√
1 + c0(

√
1 + c0−

√
1− c0)σ33.
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If c0 6= 0, from the above equation we get that
√

1− c0 σ22 = −
√

1 + c0 σ33

and using that σ22σ33 − σ2
23 =

√
1−c2

0
2 we have that

−
(√1− c0√

1 + c0
σ2

22 + σ2
23
)
=

√
1− c2

0

2

which is impossible. Hence, in this second case, we get that c0 = 0,
ρ = 3 and σ22σ33 − σ2

23 = 1
2 .

If {v, w} is an orthonormal basis of a plane Π ⊂ TpM, then the
Gauss equation says that the curvature K of Π is given by

K = R̄(v, w, w, v) + σ(v, v)σ(w, w)− σ(v, w)2.

Using the above information it is easy to check that

R̄(v, w, w, v) = 1/2− 1/2(〈v, E2〉〈w, E3〉 − 〈v, E3〉〈w, E2〉)2,

σ(v, v)σ(w, w)− σ(v, w)2 =

= (σ22σ33 − σ2
23)(〈v, E2〉〈w, E3〉 − 〈v, E3〉〈w, E2〉)2,

and so K = 1/2. This means that M has constant curvature 1/2.
Now, we are going to see that M is not complete. In fact, if M

is complete, as M has constant positive curvature, Myers’ theorem
says that M is compact. On the other hand, from (4.1) we have that

X(σ22 − σ33) = 2 + (σ22 − σ33)
2.

But Lemma 1 says that div (X) = −(σ22 − σ33). So

div((divX)X) = X(divX) + (divX)2

= −2− (σ22 − σ33)
2 + (σ22 − σ33)

2 = −2,

and the divergence Theorem gives a contradiction. Hence M is not
complete.

Also, we are going to see that the mean curvature H is not con-
stant. In fact, if H is constant, from Lemma 1 we get that

0 = tr (PT A2) = 3H(σ22 − σ33).

As H cannot be zero, because σ22σ33 − σ2
23 = 1/2, we obtain that

σ22 − σ33 = 0, which contradicts, using (4.1), the equation of its
derivative with respect to X. Hence M has not constant mean cur-
vature, and we get (2c). �

As a consequence of Corollay 1 we classify locally the homoge-
neous hypersurfaces of S2 × S2.
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Corollary 2. Let Φ : M → S2 × S2 be an orientable hypersurface . If M
is locally homogeneous, then Φ(M) is congruent to either an open subset
of S1(r)× S2, r ∈ (0, 1], or an open subset of Mt, t ∈ (−1, 1).

Proof. �

Let N be a unit normal vector field. We fix a point p0 ∈ M.
Then, as M is locally homogeneous, for any p ∈ M there exist open
sets p0 ∈ U0, p ∈ U and an isometry F of S2 × S2 such that (F ◦
Φ)(U0) = Φ(U) and F(Φ(p0)) = Φ(p). Then Np = ±dFp0(Np0) and
dFp0 ◦ P = ±P ◦ dFp0 . Hence C(p) = ±C(p0) and as M is connected,
C is constant. Also, it is clear that F keeps the second fundamental
form, and so the mean curvature and the scalar curvature of M are
also constant. Hence Corollay 2 follows from Corollay 1.

5. Isoparametric hypersurfaces

In this section we classify the isoparametric hypersurfaces of S2×
S2. If M is an isoparametric hypersurface of S2×S2, then there exists
an isoparametric function F : S2 × S2 → R such that M = F−1(t0)
for some regular value t0. Then it is well-known that Mt := F−1(t)
are also hypersurfaces for t ∈ (t0 − δ, t0 + δ), parallel to M and
with constant mean curvature. We start classifying hypersurfaces
of S2 × S2 satisfying this property.

Theorem 2. Let Φ : M → S2 × S2 be an orientable hypersurface. If
the parallel hypersurfaces Φt : M → S2 × S2, t ∈ (−ε, ε), Φ0 = Φ,
have constant mean curvature, then Φ(M) is congruent either to an open
subset of S1(r)× S2, r ∈ (0, 1], or to an open subset of Mt, t ∈ (−1, 1).

Proof. We are going to consider the open subset of M defined by
O = {p ∈ M |C2(p) < 1}. If O is empty, then M has constant
mean curvature and C2 = 1, and hence Theorem 1 says that Φ(M)
is congruent to an open subset of S1(r)× S2, r ∈ (0, 1].

Now we suppose that O is not empty. We write Φ = (φ, ψ) : O→
S2 × S2, with φ, ψ : O → S2. If N = (N1, N2) is a unit normal vector
field to Φ, then the parallel hypersurfaces Φt : O → S2 × S2 are
given by

Φt = (expφ tN1, expψ tN2), t ∈ (−ε, ε), Φ0 = Φ,
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where exp denotes the exponential map in S2. As |N1|2 = (1+C)/2
and |N2|2 = (1− C)/2, then Φt = (φt, ψt) is defined by

φt = cos(C+t)φ + (1/C+) sin(C+t)N1,

ψt = cos(C−t)ψ + (1/C−) sin(C−t)N2,

where C+ =
√

1 + C/
√

2 and C− =
√

1− C/
√

2.
Now, it is straightforward to check that Nt = (Nt

1, Nt
2) defined by

Nt
1 = cos(C+t)N1 − C+ sin(C+t)φ,

Nt
2 = cos(C−t)N2 − C− sin(C−t)ψ,

is a unit normal vector field to the hypersurface Φt. Under these
conditions it is easy to see that

Ct = C, J1Nt = J1N, J2Nt = J2N, ∀t ∈ (−ε, ε).

Hence, in (Φt)∗(TM|O) we can consider the orthonormal reference
{Et

i , i = 1, 2, 3} where

Et
1 =

Xt√
1− C2

, Et
2 =

J1Nt + J2Nt√
2(1 + C)

, Et
3 =

J1Nt − J2Nt√
2(1− C)

.

Taking into account the above relations, if we denote E0
i = Ei, it is

clear that Et
2 = E2, , Et

3 = E3, ∀t ∈ (−ε, ε).
Now, let {e1, e2, e3} be a local orthonormal reference on O such

that Φ∗(ei) = Ei, i = 1, 2, 3. We denote σij = 〈Φ∗(Aei), Φ∗(ej)〉 the
second fundamental form of Φ associated to the normal field N.
Then, from a simply but long computation, we obtain that

(Φt)∗(ei) = (δ1i − tσ1i)Et
1

+
(
δ2i cos(C+t)− σ2i

sin(C+t)
C+

)
Et

2

+
(
δ3i cos(C−t)− σ3i

sin(C−t)
C−

)
Et

3

and

(Φt)∗(Atei) = σ1iEt
1

+
(
σ2i cos(C+t) + δ2iC+ sin(C+t)

)
Et

2

+
(
σ3i cos(C−t) + δ3iC− sin(C−t)

)
Et

3,

where At is the shape operator of Φt associated to the normal field
Nt.
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If we denote (Φt)∗(ei) = ∑3
j=1 QijEt

j , it is clear from the above

expressions that (Φt)∗(Atei) = −∑3
j=1 Q′ijE

t
j , where ′ stands for de-

rivative with respect to t. Hence the induced metric gt on O by the
immersion Φt and the second fundamental form σt of Φt are given
by

gt = QQT, σt = −Q(QT)′,
where Q is the matrix Q = (Qij) and (·)T stands for the transpose.
The mean curvatures of the immersions Φt are given by

3H(t) = tr (g−1
t σt) = − tr

(
(QT)−1Q−1Q(QT)′

)
= − (det Q)′

det Q
,

where tr stands for the trace and det stands for the determinant.
Hence (det Q)′ = −3H(t)det Q and as Q(0) = Id, an inductive
argument says that (dk det Q

dtk

)
(0), k ≥ 0,

are constants functions on O.
From the definition, the determinant of Q is given by

det Q = (1− tσ11) cos(C+t) cos(C−t) + (H23 − tK)
sin(C+t) sin(C−t)

C+C−

+(−σ22 + tH12)
sin(C+t) cos(C−t)

C+
+ (−σ33 + tH13)

cos(C+t) sin(C−t)
C−

,

where Hij = σiiσjj − σ2
ij and K = det A is the Gauss-Kronecker cur-

vature of M.
Now, computing the Taylor serie of the function det Q around

t = 0 and from a very long computation we get that

det Q = 1− 3H t +
3− ρ

2
t2 +

9H − 6K− (1 + C)σ22 − (1− C)σ33

3!
t3

+
2(3− ρ)− C2 − 2((1− C)H12 + (1 + C)H13)

4!
t4

+
−5(2− C2)3H + 20K + 4(1 + C− C2)σ22 + 4(1− C− C2)σ33

5!
t5

+
4(ρ− 3) + (5− ρ)C2 + 4((1− C)(4 + C)H12 + (1 + C)(4− C)H13)

6!
t6 + . . .

As all the coefficients of the above serie are constant functions, we
get that not only the mean curvature but also the scalar curvature ρ
of M is constant.
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Now we work on the open subset V = {p ∈ O |C(p) 6= 0}.
Taking into account that the coefficients corresponding to t4 and t6

are constant and that ρ is also constant, we obtain on V that

H12 =
(1 + C)R2(C)

8C(1− C2)
, H13 =

(1− C)R3(C)
8C(1− C2)

,

where R2 and R3 are non-trivial polynomials of degree 3 in C with
constant coefficients. Computing the term of the Taylor serie corre-
sponding to t8, we have that

−8(ρ− 3) + 4(ρ− 4)C2 + (−37 + 11C + 17C2 − C3)H12

+(−37− 11C + 17C2 + C3)H13 = λ,

for certain constant λ. Using the above expressions of H12 and H13
in this equation, we finally prove that C satisfies a non trivial poly-
nomial of degree 7 with constant coefficients. This means that C is
constant on each connected component of the open set V.

Hence the function C on the connected hypersurface M takes only
a discrete number of values. This means that the function C is con-
stant and the result follows from Corollay 1. �

Corollary 3. Let Φ : M → S2 × S2 be an isoparametric hypersurface.
Then M is congruent either to S1(r) × S2, r ∈ (0, 1], or to Mt, t ∈
(−1, 1).

6. Hypersurfaces with constant principal curvatures

In this section we are going to study orientable hypersurfaces of
S2 × S2 with constant principal curvatures.

6.1. Hypersurfaces with one or two constant principal curvatures.
In the following result we classify locally the orientable hypersur-
faces of S2 × S2 with at most two constant principal curvatures.

Theorem 3. Let Φ : M → S2 × S2 be an orientable hypersurface of
S2 × S2. If M has at most two constant principal curvatures, then Φ(M)
is either an open subset of S1 × S2 (M is totally geodesic), or Φ(M) is an
open subset of S1(r) × S2, r ∈ (0, 1) (if M has two constant principal
curvatures).

Remark 3. When the hypersurface has only one principal curvature,
not necessarely constant, i.e.,when the hypersurface is umbilical, it
is easy to conclude that the mean curvature is constant and hence
the hypersurface is totally geodesic.
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Proof. If M has only one constant principal curvature, then M is
an umbilical hypersurface with constant mean curvature. Then in
[TU], Proposition 1, it was proved that M is congruent to an open
subset of S1 × S2.

Now, we suppose that M has two constant principal curvatures.
Let λ1, λ2 be the corresponding different principal curvatures hav-
ing λ1 multiplicity one and λ2 multiplicity two.

Under these conditions, let E1 be a unit vector field on M such
that AE1 = λ1E1. Then, we have that the second fundamental form
and its covariant derivative are given by

σ(V, W) = λ2〈V, W〉+ (λ1 − λ2)〈V, E1〉〈W, E1〉,
(∇σ)(Z, V, W) = (λ1 − λ2)

(
〈W, E1〉〈V,∇ZE1〉+ 〈V, E1〉〈W,∇ZE1〉

)
,

(6.1)

for any vector fields V, W, Z on M.
Using (6.1), Codazzi equation and the fact that M has constant

mean curvature, we obtain

0 =
3

∑
i=1

(∇σ)(Z, ei, ei) =
3

∑
i=1

(∇σ)(ei, Z, ei) =

(λ1 − λ2)
(
〈E1, Z〉div E1 + 〈∇E1 E1, Z〉

)
,

for any vector field Z on M, being {e1, e2, e3} an orthonormal refer-
ence on M and div the divergence operator.

As |E1|2 = 1, from the last equation we get that the vector field
E1 is a geodesic vector field with zero divergence, i.e.,

(6.2) div E1 = 0 and ∇E1 E1 = 0.

Using (6.2) in the second equation of (6.1) we obtain

(∇σ)(E1, V, W) = 0, (∇σ)(V, E1, W) = (λ1 − λ2)〈∇V E1, W〉,
and hence, the Codazzi equation says that

(6.3) ∇V E1 =
〈X, V〉PTE1 − 〈X, E1〉PTV

2(λ1 − λ2)
,

for any vector field V tangent to M, where PT denotes the tangential
component of P, i.e., PTZ = PZ− 〈X, Z〉N.

Now, from (6.2) and (6.3) and making a direct computation, we
obtain that the Ricci curvature of E1 is given by

Ric(E1) = −
〈X, E1〉2

2(λ1 − λ2)2 .
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But, on the other hand, the Gauss equation says that

Ric(E1) =
1
2
+ 2λ1λ2 +

〈X, E1〉2
2

− C〈PE1, E1〉
2

,

and hence finally we get that

(6.4) 1 + 4λ1λ2 = C〈PE1, E1〉 − (1 +
1

(λ1 − λ2)2 )〈X, E1〉2.

Now we proceed as follows. From Lemma 1,(1) and (6.3) it is
clear that

E1(C) = −2λ1〈X, E1〉, E1(〈PE1, E1〉) = 2λ1〈X, E1〉,
E1(〈X, E1〉) = λ1(C− 〈PE1, E1〉).

Hence, taking derivatives in (6.4) with respect to E1 and taking into
account the above expressions, we get that

0 = 〈X, E1〉
(
〈PE1, E1〉 − C

)
.

Taking derivatives again this equation with respect to E1 and using
again the above expressions we obtain 4〈X, E1〉2 = (〈PE1, E1〉 −C)2,
and hence the above equation implies that

〈X, E1〉 = 0, 〈PE1, E1〉 = C.

Now, (6.4) becomes in C2 = 1 + 4λ1λ2. This means that C is a con-
stant function and the result follows from Corollary 1. �

6.2. Hypersurfaces with three constant principal curvatures. From
now on, let Φ : M → S2 × S2 be an orientable hypersurface with
three different constant principal curvatures {λ1, λ2, λ3}. Then there
exists a trivialization of M by unit vector fields {E1, E2, E3} with
AEi = λiEi, i = 1, 2, 3. These principal curvatures are the roots of
the polynomial

(6.5) λ3 − 3Hλ2 +
ρ− 2

2
λ− K = 0.

For simplicity, we will denote

σij = σ(Ei, Ej), ∇σijk = (∇σ)(Ei, Ej, Ek), Pij = 〈PEi, Ej〉,
bi = 〈X, Ei〉, Γk

ij = 〈∇Ei Ej, Ek〉.

Lemma 2. The above functions satisfy the following properties

(1) Γk
ij + Γj

ik = 0, 1 ≤ i, j, k ≤ 3.
(2) ∇σijk + (λk − λj)Γk

ij = 0, 1 ≤ i, j, k ≤ 3.
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(3) (λk − λj)Γk
ij − (λk − λi)Γk

ji =
1
2

(
bjPik − biPjk

)
, 1 ≤ i, j, k ≤ 3

(4) Γj
ii =

biPij−bjPii
2(λi−λj)

, 1 ≤ i, j ≤ 3, i 6= j.

(5) (λi − λj)Γ
j
ii = −(λk − λj)Γ

j
kk, 1 ≤ i, j ≤ 3, i 6= j 6= k.

Proof. (1) is trivial. Taking derivatives in σjk = λjδjk with respect to
Ei we get (2). From Codazzi equation and (2) we prove (3). Taking
k = i in (3) and using (1) we get (4). Finally from (2.3) and (4) it
follows (5). �

Lemma 3. The functions Λi = b2
i −CPii, i = 1, 2, 3, satisfy the following

equation
BΛ = B0 + D,

where

B =

 λ2 −λ1 2(λ1 − λ2)
λ3 2(λ1 − λ3) −λ1

2(λ2 − λ3) λ3 −λ2

 , Λ =

 Λ1
Λ2
Λ3



B0 =

 (λ1 − λ2)(1 + 2λ1λ2)
(λ1 − λ3)(1 + 2λ1λ3)
(λ2 − λ3)(1 + 2λ2λ3)

 , D =

 D12
D13
D23


and Dij, i 6= j are defined by

Dij = 4(λi−λj)((Γ
j
ii)

2 +(Γi
jj)

2)+ 4(λk−λj)(Γk
ij)

2− 4(λk−λi)(Γk
ji)

2,

with k 6= i 6= j.

Remark 4. We observe that Lemma 3 provides that the functions Λi
satisfy a compatible linear system because

det B = −6(λ1 − λ2)(λ1 − λ3)(λ2 − λ3) 6= 0.

Proof. For i, j ∈ {1, 2, 3}, i 6= j, let Kij be the sectional curvature
of the plane spanned by {Ei, Ej}. Then from the definition of the
sectional curvature we have that

Kij = Ei(Γi
jj) + Ej(Γ

j
ii)− (Γj

ii)
2 − (Γi

jj)
2 − Γk

iiΓ
k
jj

− Γk
ij(Γ

i
jk + Γi

kj) + Γk
jiΓ

i
kj,

where k 6= i and k 6= j.
Now, using Lemma 2 and Lemma 1, (1) and from a straightfor-

ward computation it is easy to conclude that
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Kij = −2((Γj
ii)

2 + (Γi
jj)

2)− 1
2
(PiiPjj − P2

ij)

+
1

2(λj − λi)
(λiΛj − λjΛi)

+
2

(λj − λi)
((λk − λj)(Γk

ij)
2 − (λk − λi)(Γk

ji)
2), k 6= i 6= j.

Finally using the Gauss equation, 2Kij = 1 + PiiPjj − P2
ij + 2λiλj,

and (2.3) in the above equation we obtain that

λjΛi− λiΛj + 2(λi− λj)Λk = (λi− λj)(1+ 2λiλj) + Dij, i 6= j 6= k,

and the Lemma is proved. �

Lemma 4. If there exists a point p on M with C2(p) = 1, then

Λi(p) =
2
3
(λ2

i − 3Hλi + ρ− 1
2
)

+
12|∇σ|2(p)
(det B)2 {2(ρ− 2− 6H2)λ2

i + 3(3K + 12H3 − 5
2

H(ρ− 2))λi

+(ρ− 2)(ρ− 2− 3H2)− 18HK}, i ∈ {1, 2, 3},
and

1− 2ρ = 18{(ρ− 2)(ρ− 2− 3H2/2)− 27HK} |∇σ|2(p)
(det B)2 .

Proof. Suppose now that p is a point with C2(p) = 1. Then Xp = 0
and so bi(p) = 0, 1 ≤ i ≤ 3. Using Lemma 2 we have that

Dij(p) =
4(λj − λi)(λk − λj)

λk − λi
(Γk

ij)
2(p), 1 ≤ i, j, k ≤ 3, i < j, k 6= i, k 6= j.

On the other hand, using again Lemma 2 it is easy to check that

|∇σ|2(p) = 6(λk − λj)
2(Γk

ij)
2(p), i 6= j 6= k.

From the last two equatios it follows that

D(p) =
4|∇σ|2(p)

det B

 (λ1 − λ2)
2

−(λ1 − λ3)
2

(λ2 − λ3)
2


Now, solving the system of Lemma 3 and using (6.5) we get the
first part. The last assertion in the Lemma follows from the fact that
∑3

i=1 Λi = 1, which easily follows from Lemma 2. �
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Theorem 4. Let Φ : M → S2 × S2 be an orientable hypersurface with
three constant principal curvatures.

(1) If the scalar curvature ρ satisfies 2ρ 6= 1 and the Gauss-Kronecker
curvature K = 0, then C2 < 1.

(2) If p0 is a critical point of the function C, then either C2(p0) = 1
or C(p0) = 0. Moreover, in the second case, the Gauss-Kronecker
curvature K = 0 and the scalar curvature ρ = 1.

Proof. First we are going to prove part (1).
Suposse that there exists a point p0 ∈ M such that C2(p0) = 1

and without loss of generality we can take C(p0) = 1. Then we are
going to get a contradiction.

As K = 0, one of the principal curvatures is zero, for instance
λ1 = 0. Let γ : (−ε, ε) → M be the integral curve of E1 with
γ(0) = p0. Then

C′(t) = 〈(∇C)(t), E1(t)〉 = −2〈AX(t), E1(t)〉 = 0,

and hence C(t) = 1 for all t ∈ (−ε, ε). Now, as the Gauss-Kronecker
curvature K = 0, from Lemma 4 it follows that

(1− 2ρ)(det B)2 = 18(ρ− 2)(ρ− 2− 3H2/2)|∇σ|2(t).

As 1− 2ρ 6= 0, we have that |∇σ|2(t) = 6(λ3 − λ2)
2(Γ3

12)
2(t) is a

non-null constant function and that ρ 6= 2. Hence, from Lemma 4,
the functions Λi(t) = −Pii(t) are also constant. So

0 = P′22(t) = 2Γ3
12(t)P23(t),

which implies that P23(t) = 0. Derivating again

0 = P′23(t) = Γ3
12(t)(P33(t)− P22(t)),

and so P22(t) = P33(t). Using all the information about the Pij in
(2.3) we obtain that

P11(t) = −P22(t) = −P33(t) = 1.

Using the first part of Lemma 4, and as Λ2(t) = Λ3(t) and 3H =
λ2 + λ3 we get that

18H(ρ− 2)
|∇σ|2(t)
(det B)2 = 0,

which implies that H = 0 because ρ 6= 2.
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Now, as Λ1(t) = −1, H = 0 and λ1 = 0, first part of Lemma 4
says that

−(ρ + 1) = 18(ρ− 2)2 |∇σ|2(t)
(det B)2 ,

that joint with the information given in the second part of Lemma 4

1− 2ρ = 18(ρ− 2)2 |∇σ|2(t)
(det B)2

imply that ρ = 2, which is a contradiction. This proves (1).

Now, we are going to prove part (2).
Let p0 be a point of M such that (∇C)(p0) = 0 and C2(p0) < 1.

We are going to prove that C(p0) = 0.
In this case, AX(p0) = 0 and as |X|2 = 1− C2(p0) > 0, one of

the three principal curvatures is zero. For instance λ1 = 0 and so
X(p0) =

√
1− C2(p0)E1(p0). Now, let γ : (−ε, ε) → M be the

integral curve of E1 with γ(0) = p0. As

C′(t) = 〈(∇C)(t), E1(t)〉 = −2〈AX(t), E1(t)〉 = 0,

because AE1 = 0, then C is constant along γ and (∇C)(t) = α(t)E2(t)+
β(t)E3(t). Hence, derivating with respect to t we have that

(∇2C)(E1, E2)(t) = α′(t)− Γ3
12(t)β(t),

(∇2C)(E1, E3)(t) = β′(t) + Γ3
12(t)α(t).

On the other hand, from Lemma 1 we obtain that

(∇2C)(E1, E2) = −2λ2Γ1
22〈X, E2〉+ 2λ3Γ3

21〈X, E3〉,
(∇2C)(E1, E3) = 2λ2Γ2

31〈X, E2〉 − 2λ3Γ1
33〈X, E3〉.

But, by definition α(t) = −2λ2〈X, E2〉(t) and β(t) = −2λ3〈X, E3〉(t),
and so the above information about the Hessian of C says that α and
β satisfy the following ODE system

α′(t) = Γ1
22(t)α(t) + (Γ3

12(t)− Γ3
21(t))β(t)

β′(t) = −(Γ3
12(t) + Γ2

31(t))α(t) + Γ1
33(t)β(t).

As (∇C)(0) = 0, i.e. α(0) = β(0) = 0, it follows that α = β = 0
is the only solution to the above system with that initial conditions.
Hence, (∇C)(t) = 0, ∀t, and so

X(t) =
√

1− C2(p0)E1(t).
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This relation between X and E1 joint with (2.3) and Lemma 2 imply
that on the curve γ we have the following relations

b1(t) =
√

1− C2(p0), b2(t) = b3(t) = 0,

Λ1(t) = 0, Λ2(t) + Λ3(t) = 0, P12(t) = P13(t) = 0,

Γ2
11(t) = Γ3

11(t) = Γ3
22(t) = Γ2

33(t) = 0, λ2Γ1
32(t) = λ3Γ1

23(t).

Now, using the above relations and Lemma 2, the linear system
of Lemma 3 becomes in

2λ2(Γ1
22)

2(t) + 2(λ2 − λ3)(Γ3
12)

2(t) + 2λ3(Γ3
21)

2(t) = −λ2(1 + Λ2(t)),

−2λ2
2

λ3
(Γ1

22)
2(t) + 2(λ2 − λ3)(Γ3

12)
2(t)−

2λ2
3

λ2
(Γ3

21)
2(t) = λ3(1−Λ2(t)),

−4λ3

λ2
(Γ3

21)
2(t) = 1− 2λ2λ3 +

λ3 + λ2

λ2 − λ3
Λ2(t).

(6.6)

This means that the functions (Γ1
22)

2(t), (Γ3
12)

2(t) and (Γ3
21)

2(t) sat-
isfy a linear system whose determinant is −16(λ3 − λ2)(λ3 + λ2).

In what follows we are going to consider two cases:
First case: H = λ2 + λ3 = 0. In this case, (6.6) becomes in

Λ2(t) = 0,

4(Γ3
21)

2(t) = 1 + 2λ2
2,

2(Γ1
22)

2(t) + 4(Γ3
12)

2(t) = −1
2
+ λ2

2.

(6.7)

Firstly we prove that C(p0) = 0. If not, as Λ2(t) = B2
2(t)−C(p0)P22(t) =

−C(p0)P22(t), it follows from (6.7) that P22(t) = 0 and so P23(t)2 =
1. Hence

0 = P′22(t) = 2Γ3
12(t)P23(t),

which means that Γ3
12(t) = 0. But, from Lemma 2, Γ1

22(t) = 0 and
so (6.7) says that λ2

2 = 1/2 and (Γ3
21)

2(t) = 1/2. Finally, from
Lemma 2 it follows that λ2Γ3

21(t) = −b1P23(t)/2, which implies
using the above information that b2

1 = 1. This is a contradiction
because b2

1 = 1− C2(p0) and we are assuming that C(p0) 6= 0.
Secondly we prove that the scalar curvature ρ = 1. From Lemma 2

we have that

(6.8) P22(t) = −2λ2Γ1
22(t), P23(t) = 4λ2Γ3

12(t)− 2λ2Γ3
21(t).
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Now using (6.7), (6.8) and the fact that P2
22(t)+ P2

23(t) = 1, we obtain
that Γ3

12(t) satysfies the following non-trivial second order equation

8λ2
2(Γ

3
12)

2(t)− 16λ2
2Γ3

21Γ3
12(t) + 4λ4

2 − 1 = 0.

As from (6.7) the function Γ3
21(t) is constant, the coefficients of the

above polynomial are constant, and so Γ3
12(t) is also constant. Now

(6.7) says that Γ1
22(t) is also a constant function and from (6.8) we

get that P22(t) and P23(t) are constant functions too. Hence

0 = P′22(t) = 2Γ3
12P23, 0 = P′23(t) = −Γ3

12P33 + Γ2
13P22 = −2Γ3

12P22.

So Γ3
12(t) = 0 and from the above equation it follows that λ2

2 = 1/2,
i.e., the scalar curvature ρ = 1.

Second case: H 6= 0. In this case the system (6.6) is compatible and
it is easy to check that

(6.9)
2λ2

λ3
(Γ1

22)
2(t) = −1 + 2λ2λ3

2
+

λ2
3 + λ2

2 − 6λ3λ2

2(λ2
3 − λ2

2)
Λ2(t).

Firstly we prove that C(p0) = 0. If not, from Lemma 2, it follows
that

Γ1
22(t) = −

b1C(P0)P22(t)
2λ2C(P0)

=
b1Λ2(t)
2λ2C0

.

Putting this information in (6.9), it follows that Λ2(t) satisfies a non-
trivial polynomial of degree two with constant coefficients. This
means that Λ2(t) is a constant function and hence P22(t) and P23(t)
are also constant. Using that P′22(t) = P′23(t) = 0, like in the above
minimal case, we get that Γ3

12(t) = 0. But then, the solution of Γ3
12(t)

which provides (6.6) implies that

(6.10) Λ2(t) =
(λ3 + λ2)(1 + 2λ3λ2)

λ3 − λ2
.

From (6.9) and (6.10) it follows that

(Γ1
22)

2(t) = −
λ2

3(1 + 2λ3λ2)

(λ3 − λ2)2 = −
λ2

3

λ2
3 − λ2

2
Λ2(t).

But we know that

(Γ1
22)

2(t) =
(1− C2(p0))Λ2

2
4λ2

2C2(p0)
,
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which implies that

Λ2
( (1− C2(p0))Λ2

4λ2
2C2(p0)

+
λ2

3

λ2
3 − λ2

2

)
= 0.

Hence we have two possibilities. If Λ2 = 0, then P22 = 0 and from
(6.10) it follows that λ2λ3 = −1/2 and Γ1

22 = 0. Now (6.6) says
that Γ3

12 = 0 and Γ3
21 = λ2

2. Finally, from Lemma 2, (3) we get that
1− C2(p0) = 1 which is a contradiction.

On the other hand, if (1−C2(p0))Λ2
4λ2

2C2(p0)
+

λ2
3

λ2
3−λ2

2
= 0, then (6.10) implies

that

C2(p0) =
(λ3 + λ2)

2(1 + 2λ3λ2)

(λ3 + λ2)2 + 2λ3λ2(λ2
3 + λ2

2)
> 1,

which is also a contradiction. Hence we have proved that C(p0) = 0.
Secondly we prove that the scalar curvature ρ = 1. In this case,

as
Λ2(t) = b2

2(t)− C(p0)P22(t) = 0,

(6.6) becomes in the following equations

(Γ3
21)

2(t) =
λ2(2λ2λ3 − 1)

4λ3
,

−2λ2(Γ1
22)

2(t) + 2(λ3 − λ2)(Γ3
12)

2(t) = λ2(λ2λ3 + 1/2),

2λ2
2

λ3
(Γ1

22)
2(t) + 2(λ3 − λ2)(Γ3

12)
2(t) = −λ3(λ2λ3 + 1/2),

which implies that

(Γ1
22)

2(t) =
−λ3(λ2λ3 + 1/2)

2λ2
, (Γ3

12)
2(t) = − (λ2λ3 + 1/2)

2
.

As (Γ1
22)

2(t) and (Γ3
12)

2(t) are non-negative functions, the above
equations say that λ2λ3 + 1/2 = 0 and so the scalar curvature of
M is 1. �

Corollary 4. Let Φ : M→ S2× S2 be an orientable compact hypersurface
with three different constant principal curvatures. If the scalar curvature
ρ satisfies 2ρ 6= 1 and the Gauss-Kronecker curvature K = 0, then Φ(M)
is congruent to Mt for some t ∈ (−1, 1).

Proof. From Theorem 4, (1), the function C satisfies C2 < 1. As M is
compact, from Theorem 4, (2), the maximum and the minimum of
C is zero. So C ≡ 0 and the resul follows from Corollary 1. �
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