ESPACIOS TOPOLOGICOS

FRANCISCO URBANO

1. INTRODUCCION

Cronologia de los Origenes de la Topologia

® 1679 Leibniz (1646-1716) crea la expresion Analysis situs.

© 1736 Euler (1707-1783) resuelve el problema de los puentes de Konigs-
berg.

¢ 1750  Euler descubre el teorema sobre los poliedros y d4 una tenta-
tiva de demostracién.

e 1794 Legendre (1752-1833) demuestra el teorema de Euler en un
caso particular.

e 1799  Gauss (1777-1855) demuestra el teorema fundamental del Al-
gebra usando un argumento de naturaleza topoldgica.

e 1813  Lhuilier (1750-1840) decubre poliedros en los que la relaciéon
de Euler no es vélida. Nocién de género de un poliedro.

e 1836 Listing (1808-1882) crea el término topologia.

e 1847 Von Staudt (1798-1868) descubre la hipétesis bajo la cual el
enunciado de Euler es valido; surge asi el concepto de superficie poliédrica
simplemente conexa.

¢ 1850  Schlifli (1814-1895) extiende el teorema de Euler a espacios de
n-dimensiones.

e 1858 Listing y Mobius (1790-1868) descubren la cinta de Mobius.

e 1871 Betti (1823-1892) define el orden de conexion de variedades de
dimensién n.

e 1874  Schlifli y Klein (1849-1925) establecen la nocién de no-orientabilidad
del plano proyectivo.

¢ 1877  Cantor establece una correspondencia biunivoca entre R y R".

e 1882 Klein construye la botella de Klein, primera superficie com-
pacta no orientable, depués del plano proyectivo.

e 1887 Jordan (1838-1922) publica su teorema sobre las curvas cer-
radas.

e 1893 Poincaré (1854-1912).

De una carta de Leibniz a Huygens el 8 de Septiembre de 1679:

Después de todos los progresos que he hecho en estas ma-
terias, no estoy en absoluto contento del algebra, porque
no proporciona ni los caminos mds cortos, ni las mds bellas

construcciones de la geometria. Es por lo que creo que nos
1
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falta otro tipo de andlisis propiamente geométrico o lineal
que exprese directamente la localizacion, asi como el élge-
bra expresa la magnitud.

Henri Poincaré, de forma intuitiva y notable, dié una definicién, en
absoluto técnica, de lo que es la topologia:

Comtnmente los gedmetras distinguen dos clases de ge-
omatrias, la primera de las cuales califican de métrica y
la segunda de proyectiva; la geomatria métrica estd fun-
dada en la nocién de distancia; en ella dos figuras se con-
sideran equivalentes cuando son iguales en el sentido que
los matematicos dan a esta palabra; la geometria proyectiva
estd fundada en la nocién de linea recta. Para que, en ella,
dos figuras sean consideradas equivalentes, basta que una
sea la perspectiva de la otra. A veces este segundo cuerpo
de doctrina se ha denominado geometria cualitativa; lo es,
en efecto, si se la opone a la primera: es claro que la medida,
la cantidad, desempefian en ella un papel menos impor-
tante. Sin embargo, no es enteramente asi. El hecho de que
una linea sea recta no es puramente cualitativo; no se po-
dria asegurar que una linea es recta sin realizar mediciones,
o sin deslizar sobre esta linea un instrumento llamado regla,
que es una especie de instrumento de medida.

Pero hay una tercera geometria, en la cual la cantidad
estd suprimida por completo, y que es puramente cualita-
tiva: el Analysis situs o la topologia. En esta disciplina, dos
figuras son equivalentes, siempre que podamos pasar de
una a otra por medio de una deformacién continua, cua-
lesquiera sea la ley de esta deformacién, a condicién de que
respete la continuidad. Asi, un circulo es equivalente a una
elipse o también a una curva cerrada cualquiera, pero no es
equivalente a un segmento de recta, porque tal segmento no
es cerrado; una esfera es equivalente a una superficie con-
vexa cualquiera pero no es equivalente a un toro, porque en
un toro hay una abertura que la esfera no posee. Supong-
amos un modelo cualquiera y la copia de este modelo re-
alizada por un dibujante poco diestro; las proporciones es-
tan alteradas, las rectas, trazadas por una mano temblorosa,
han sufrido desviaciones y presentan curvaturas. Desde
el punto de vista de la geometrfa métrica, y aun desde el
de la geometria proyectiva, las dos figuras no son equiva-
lentes; por el contrario, lo son, desde el punto de vista de la
topologia.

Lo que despierta en nosotros el interés por la topologia
es que en ella interviene verdaderamente la intuiciéon ge-
ométrica. Cuando en un teorema de geometria métrica
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apelamos a esta intuicién, es porque resulta imposible es-
tudiar las propiedades métricas de una figura haciendo ab-
straccion de sus propiedades cualitativas, es decir, de aque-
llas que son el objeto propio de la topologia. Se ha dicho a
menudo que la geometria es el arte de razonar bien sobre
figuras mal hechas. Esto no es una humorada, sino una ver-
dad que merece se reflexione sobre ella. ;Pero qué es una
figura mal hecha? Es aquella que puede ejecutar el dibu-
jante poco diestro del que habldbamos antes. El altera las
proporciones mas o menos groseramente, sus lineas rectas
tienen zigzags inquientantes, sus circulos presentan protu-
berancias faltas de gracia. Todo esto no importa: no pertur-
bard en lo méds minimo al geémetra, ni le impedira razonar
bien.

Pero lo que no debe ocurrir, es que el artista inexperto
represente una curva cerrada por medio de una curva abierta,
tres lineas que se cortan en un punto por medio de tres
lineas que no tengan ningtin punto en comun, una superfi-
cie con abertura por medio de una superficie sin abertura.
En tal caso no se podria utilizar mds su figura, y el razon-
amiento se harfa imposible. La intuicién no habria sido ob-
staculizada por los defectos de dibujo que sélo interesarian
a la geometria métrica o proyectiva; ambas se hardn imposi-
bles ya que estos defectos tienen que ver con la topologia.

Esta observacion bien simple nos muestra el verdadero
papel de la intuicién geométrica; es para favorecer tal intu-
icién que el geémetra tiene necesidad de dibujar figuras o,
por lo menos, representdrselas mentalmente. Ahora bien,
si desprecia las propiedades métricas o proyectivas de es-
tas figuras, si solo se atiene a sus propiedades puramente
cualitativas, solamente entonces la intuicién geométrica in-
terviene verdaderamente. No es que quiera decir con esto
que la geometria métrica reposa sobre la l6gica pura; pero
éstas son intuiciones de otra naturaleza, andlogas a las que
juegan un papel esencial en aritmética y dlgebra.

2. Esracios ToroLOGICOS

Sea f : R — R una aplicaciéon y typ € R un ntimero real. La aplicacion
f es continua en #y si Ve > 0 existe 6 > Otal quesit € Ry |t —fo| <&
entonces |f(t) — f(to)| < e.

El primer objetivo en este epigrafe es generalizar este concepto de con-
tinuidad a aplicaciones entre conjuntos que posean una cierta estructura
que me permita medir distancia entre puntos, tal y como pasa en R.

Este paso importante fue dado por Frechet en 1906 cuando definio el
concepto de espacio métrico.
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Definicién 1. Un espacio métrico es un par (X, d) donde X es un conjunto
y d: X x X — R una aplicaciéon cumpliendo:

(1) d(x,y) >0,

(2) d(x,y) =0siysoélosix =y,

(3) d(x,y) = d(y, x),

(4) d(x,y) <d(x,z)+d(z,y),
donde x, y,z son puntos arbitrarios de X.

A d se le llama una distancia en X.

Ejemplo 1. Sea (R",d) donde

n

d(x,y) = Z(x,- —vy)%, VxyeR"

i=1

N N N N

donde x = (x1,...,%4),y = (y1,--.,Yn). Entonces (R",d) es un espacio
métrico y a d se le llama la distancia Euclidea en R". Conviene observar que
enelcason =1,d(xy) =[x —y|, Vx,y € R.

Ejemplo 2. Sea X = {f : [0,1] — R | fes continua}. Entonces d y d’ definidas
por

d(f,8) = /(;1 f(t) —g(t)|dt, d'(f,g) =sup{|f(t) —g(t)||t € [0,1]}
son distancias en X.

Ejemplo 3. Sea X un conjunto y d definida por
0 six=y

dlxy) = {1 six # .

Entonces d es una distancia en X llamada la distancia discreta.

Haciendo uso del concepto de espacio métrico, Frechet defini6 la con-
tinuidad de aplicaciones entre espacios métricos de la siguiente manera.
Definicién 2. Sea f : (X,d) — (X', d’) una aplicacién y xp un punto de X.
La aplicacién f es continua en xg si Ve > O existe § > O tal quesix € Xy
d(x,x0) < & entonces d'(f(x), f(x0)) < €.

Si (X,d) es un espacio métrico, x € X y € > 0, se define la bola de
centro x y radio € y se representa por B(x, €) por

B(x,e) ={y € X|d(y,x) < €}.
Observemos que la definiciéon 2 equivale a la siguiente
Definicién 3. Sea f : (X,d) — (X',d’) una aplicacién y xp un punto de
X. La aplicacién f es continua en xp si Ve > 0 existe 6 > 0 tal que
f(B(x0,9)) € B'(f(x0),€)-

Haciendo uso del concepto de bola, vamos a definir el concepto de
subconjunto abierto de un espacio métrico.

Definicién 4. Si (X,d) es un espacio métrico, un subconjunto O C X se
llama abierto si V x € O existe un € > 0 tal que B(x,¢e) C O.
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Es un ejercicio muy sencillo probar que las bolas de un espacio métrico
son abiertos de dicho espacio, sin mas que usar la desigualdad triangular
(4% propiedad en la definicién 1).

Ahora el concepto de abierto nos permite caracterizar la continuidad
sin alusién directa a las distancias.

Proposicién 1. Sea f : (X,d) — (X',d") una aplicacion y xo un punto de
X. La aplicacién f es continua en xq si y sélo si para todo abierto O' de X' con
f(x0) € O existe un abierto O de X con xp € O tal que f(O) C O'.

Usando la Proposicion 1, parece que seria posible definir continuidad
de aplicaciones entre espacios dotados no de una distancia, sino de una
estructura consistente en un conjunto de abiertos. Esta idea la desar-
rollo Hausdorff dando lugar a la definicién de espacio topolégico. Es
razonable que dicho conjunto de abiertos deberia de cumplir una serie de
propiedades.

Proposicién 2. Sea (X, d) un espacio métricoy T (d) = {O C X | O es abierto}.
Entonces T (d) cumple las siguientes propiedades:

(1) X,@ e T(d).

(2) Si{O)|A € A} C T(d), entonces UpepO, € T (d).

(3) Si{O;|i=1,...,n} C T(d), entonces NI ,0; € T (d).

Ejemplo 4. (1) Los abiertos del espacio métrico R con la distancia Euclidea
son las uniones numerables de intervalos abiertos.
(2) Los abiertos del espacio métrico discreto son los subconjuntos de dicho
espacio.
(3) Consideramos en R? la distancia Euclidea d y la distancia d’ dada por

d'(x,y) = max{|x; — |, |x2 — y2|}, Vx=(x1,x2), y = (y1,92) € R

Entonces, aunque las bolas de ambas distancias son diferentes, es fdcil

comprobar que T (d) = T (d’).

El ejemplo 4,(3) pone de manifiesto que la continuidad de funciones
entre espacios métricos en realidad depende de la familia 7 (d) asociada a
la distancia d. Esta consideracién sugiere la siguientes definiciones.

Definicién 5. Un espacio topoldgico es un par (X,7) donde X es un con-
junto y 7 es una familia de subconjuntos de X cumpliendo las siguientes
propiedades:

1) X,0eT.

(2) Si {O)|A € A} C T, entonces UyepO, € T.

() Si{O;|i=1,...,n} CT,entonces N ,0; € T.
A T le llamaremos una topologia en X y a los elementos de 7 les llamare-
mos abiertos del espacio.

Definicién 6. Sea f : (X,7) — (X',7’) una aplicacién entre espacios
topoldgicos v xg € X. Diremos que f es continua en xp si para todo
abierto O’ € T’ con f(xy) € O existe un abierto O € 7 con xp € Oy
f(O) cO.
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Ejemplo 5. (1) Si (X,d) es un espacio métrico, entonces (X, T (d)) es un

espacio topoldgico.

(2) Si X es cualquier conjunto, Tr = {@, X} es una topologia en X llamada
trivial.

(3) Sea X = {a,b} y T = {X,@,{a}}. Entonces T es una topologia en X
llamada de Sierpinski.

(4) Sea X cualquier conjunto y Tcp = {O C X|X — Oes finito} U {D}.
Entonces Tcr es una topologia en X llamada cofinita.

Una cuestion razonable es: Dado un espacio topoldgico (X, T), ; existe
una distancia d en X tal que 7(d) = 7 ?. La respuesta es no, como lo
prueba la topologia de Sierpinski.

3. BASE DE UNA TOPOLOGIA

Como puede comprobarse analizando la topologfa usual de R? (esto es
la topologifa asociada a la distancia Euclidea de IR?), los abiertos de una
topologia son en general numerosos y dificiles de describir. A veces es
facil describir una subfamilia de los mismos y generar el resto a partir de
esta subfamilia. Por ejemplo en R con su topologia usual (ver Ejemplo
4(1)). Esta observacion sugiere la siguiente definicion:

Definicién 7. Sea (X,7) un espacio topoldgico. Un base de la topologia
T es una familia B C 7 tal que para todo abierto O € T existe {B;|i €
I} C B tal que

O = U;¢1B;.
Es decir la topologia se genera de la base haciendo todas las posibles
uniones de elementos de la misma.

Proposicién 3. Sea (X, T ) un espacio topolégico. Una familia B C T es una
base de la topologia ‘T si y sélo si para todo abierto O € T y todo punto x € O
existe un B € B con x € B C O.

Usando esta proposicién, es claro que el conjunto de bolas de un espacio
métrico (X, d) es una base de la topologia 7 (d).

Tambien es claro que la topologia discreta en X tiene por base a B =
{{x}|x € X

En el siguiente resultado se estudian propiedades que tiene cualquier
base de una topologia.

Proposicién 4. Sea (X, T") un espacio topoldgico y BB una base de T. Entonces
(2) Para todos By, By € By x € By N By existe Bz € B tal que

x € B3 C B1N Bs.

Lo interesante de estas propiedades es que son suficientes para que una
familia de subconjuntos cumpliendolas genere una topologia.

Proposicién 5. Sea X un conjunto y B una familia de subconjuntos de X
cumpliendo
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(1) X = UgepB.
(2) Para todos By, B, € By x € By N By existe Bz € B tal que

x € B3 C B1N By,

Entonces existe una tinica topologia T (B) en X que posee a I3 como base. A dicha
topologia le llamaremos generada por B y viene dada por

T (B) = {uniones de elementos de 3}.

Para ilustrar la Proposicién 5, vamos a introducir un nuevo espacio
topoldgico llamado el semiplano de Moore.

Ejemplo 6. Sea X = {(x,y) € R?|y > 0}. Definimos la siguiente familia de
subconjuntos de X:

B={B((x,y),¢e)|(xy) € X,0<e<y}
U{B((x,¥),y) U{(x,0)} | (x,y) € X,y >0},

donde B((x,y),€) es la bola Euclidea de centro (x,vy) y radio €. Entonces B es
base de topologia y a (X, T (B)) se le llama el semiplano de Moore.

4. CERRADOS

Definicién 8. Un subconjnto C de un espacio topoldgico (X, T) es cerrado
si X — C € T. Esto es los subonjuntos cerrados de un espacio topolégico
son los complemetarios de los abiertos.

Es muy sencillo probar el siguiente resultado qur describe las propiedades
de los subconjuntos cerrados de un espacio.

Proposicién 6. Sea (X, T') un espacio topologico y C(T) la familia de sus sub-
conjuntos cerrados. Entonces se cumplen las siguientes propiedades:

(1) X, e C(T).

(2) Si{Cy|A € A} CC(T), entonces NyeaCy € C(T).

(3) Si{C;i|i=1,...,n} CC(T), entonces Ut_,C; € C(T).

Ejemplo 7. (1) Si (X,d) es un espacio métrico, entonces un subconjunto C
de X es cerrado de (X, T) si y sélo si para todo punto x ¢ C existe € > 0
tal que B(x,e) NC = Q.
(2) Si (X, Tr) es el espacio trivial, entonces C(Tr) = {X, D}.
(3) Si (X,Tp) es el espacio discreto, entonces C(Tp) = Tp.
(4) Si‘Tcr es la topologia cofinita en X, entonces

C(Tcr) = {subconjuntos finitos de X} U {X}.

En estas condiciones, es un ejercicio muy facil probr el siguiente resul-
tado:

Proposiciéon 7. Sea X un conjunto y C una familia de subconjuntos de X
cumpliendo las siguientes propiedades:

(1) X, 0 eC.

(2) Si{Cy| A € A} CC, entonces NycpCy € C.

(3) Si{C;i|i=1,...,n} CC, entonces U ,C; € C.
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Entonces existe una tinica topologia T (C) en X que tiene por cerrados a los
subconjuntos de C. Dicha topologia es definida por

T(C)={X—-C|CeC).

5. ENTORNOS

Hasta ahora hemos hablado de topologia considerando los subconjun-
tos abiertos del espacio ( o los cerrados). En este epigrafe vamos a estudiar
la informacién que la topologia tiene alrededor de un punto del espacio.
Aunque las topologias mas naturales dan la misma informacién alrededor
de cualquier punto (por ejemplo la topologia usual de R"), no siempre
es asi y a veces el comportamiento de la topologia altededor de puntos
distintos es muy diferente. Para esto es importante el siguiente concepto.

Definicién 9. Sea (X,7) un espacio topolégico y x € X un punto de
X. Un entorno de x es un subconjunto V de X cumpliendo la siguiente
propiedad

existe un abierto O €7 talque x€OCV.

Es claro que cualquier abierto que contenga a x es un entorno suyo.
Si representamos por U* al conjunto de los entornos de x, entonces se
cumplen las siguientes propiedades:

(1) Para todo V € U, se tiene que x € V.

(2) SiVelUu*yV CW,entonces W € U*.

(3) SiV,W € U¥, entonces VW € U*.

(4) SiV € U* existe W € U™ tal que V € UY paratodoy € W.

A la familia ¢/ le llamamos el sistema de entornos de x.
En estas condiciones los abiertos y cerrados de un espacio topolégico
(X, T) se caracterizan en términos de entornos de la siguiente manera:
O C X es abierto si y solo si para todo x € O existe V. € U™ tal
que V C O.
C C X es cerrado si y solo si para todo x ¢ C existe V. € U*
tal que VN C = Q.

De manera similar al caso de base de topologia, tambien para los entornos
podemos decir que no es necesario describir todos los entornos de un
punto, sino que haciendo uso de la propiedad (2) de los entornos vamos a
dar la siguiente definicion.

Definicién 10. Sea (X,7) un espacio topoldgico y x € X. Una base de
entornos del punto x es una familia B* C U* con la propiedad

paratodo V €U’ existe WeB* talque WCV.

Es claro que los entornos se construyen a partir de una base de la sigu-
iente manera

U ={VCX|WCV pareaalgin W € B*}.

A los elementos de B* se les llama entornos bdsicos de x.
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Un primer ejemplo de base de entornos es:
B*=U"nT,

esto es el conjunto de entornos abiertos de x.
Si B* es una base de entornos de x, entonces se cumplen las siguientes
propiedades:

(1) Para todo W € B, se tiene que x € W.
(2) Si Wy, W, € B¥, entonces existe W3 € B* tal que W3 C Wy N Wa.
(3) Si W € B* existe Wy € B* tal que para todo y € Wy existe W € BY
con W C W.
En estas condiciones los abiertos y cerrados de un espacio topolégico
(X,T) se caracterizan en términos de entornos basicos de la siguiente
manera:

O C X es abierto si y sélo si para todo x € O existe W € B* tal
que W C O.

C C X es cerrado si y sélo si para todo x ¢ C existe W € B*
tal que WNC = @.

6. POSICION DE UN PUNTO RESPECTO A UN SUBCONJUNTO

Definicién 11. Sea (X, 7') un espacio topolégico, x un punto suyoy A C X
un subconjunto.
(1) x es un punto interior a A si existe V € U* tal que V C A.
(2) x es un punto adherente a A si para todo V € U* se cumple que
VNA#Q.
(3) x es un punto frontera de A si para todo V € U* se cumple que
VNA#QOyVN(X—-A) #Q.
Representaremos por
(1) A° = {x € X |xes interior a A},
(2) A={x € X|xis adherente a A},
(3) Fr(A) = {x € X|xes frontera de A},

y lo llamaremos el interior, la adherencia y la frontera de A respectiva-
mente.

De la definicién anterior es un ejercicio simple comprobar que
Fr(A)=ANX—-A, X-A°=X-A, X-A=(X-A)"

En los siguientes resultados se exponen propiedades de los anteriores sub-
conjuntos.

Proposicién 8. Sea (X, T") un espacio topoldgico. Entonces dados subconjuntos
A, B C X se cumple:

(1) A° C A.

(2) Si A C B, entonces A° C B°.

(3) (A%)° = A°.

(4) A°NB° = (ANB).

(5) A°UB° C (AUB)°.
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(6) A>=U{0C X|0eTyOC A}
(7) AT siysolosi A= A°.
Conviene resaltar que (6) nos asegura que A° es el mayor abierto contenido en A.

Proposicién 9. Sea (X, T") un espacio topoldgico. Entonces dados subconjuntos
A, B C X se cumple:

(1) AC A

(2) Si A C B, entonces A C B.

3) A=A

(4) AUB = (AUB).

(5) ANBC ANB.

(6) A=nN{F C X|Fescerradoy A C F}.

(7) A es cerrado si y sélo si A = A.

Conviene resaltar que (6) nos asegura que A es el menor cerrado que contiene a
A.

Ejemplo 8. Si consideramos el espacio topoldgico R con su topologia usual y los
subconjuntos A = [0,1], B = [1,2], entonces se tiene que
A°UB°=(0,1)U(1,2) v (AUB)’=(1,2),
lo que prueba que la igualdad en Proposicion 8,(5) no tiene que darse.
Analogamente, si A = (0,1), B = (1,2), entonces se tiene que
AnNB={1} yv ANB=0Q,
lo que prueba que la igqualdad en Proposicién 9,(5) no tiene que darse.
Proposicién 10. Sea (X,7T") un espacio topolégico y A un subconjunto de X.
Entonces:
(1) A= A°U Fr(A) (union disjunta) .
(2) X=A°UFr(A)U(X—A)".
Definicién 12. Sea (X, 7") un espacio topolégico y A un subconjunto suyo.

Un punto de acumulacién de A es un punto x € X tal que para todo
entorno V € U* de x se cumple que

(V—{x})NA#Q.
Al conjunto de puntos de acumulacion de A lo representaremos por A’.

Si decimos que un punto x € A es aislado si existe un entorno suyo
V € U* cumpliendo VN A = {x}, entonces es facil comprobar que

A=AUA', A= {puntosaisladosde A} U A’,

donde la segunda unién es disjunta.

7. ToPOLOGIA INDUCIDA. SUBESPACIOS TOPOLOGICOS.

Muchos espacios topolégicos interesantes aparecen como subespacios
de otros. Un caso particularmente importante son los subespacios de R"
con su topologia ususal. En esta seccion estudiaremos como una topologia
induce en los subconjuntos del espacio estructura de espacio topolégico y
relacionaremos ambas topologias.
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Proposicién 11. Sea (X,T") un espacio topoldgico y A C X un subconjunto.
Entonces

Ta={ONA|O€T}
es una topologia en A llamada la topologia inducida por T en A. Al par (A, Tx)
se le llama subespacio topoldgico de (X, T ).

Conviene poner de manifiesto que

(1) SiO e T yO C A, entonces O € Ty.

(2) SiAcT,entonces TaoCTyTa={0OcT|OCA}
Proposicién 12. Sea (X, T") un espacio topoldgicoy (A, Ta) un subespacio suyo.
Entonces:

(1) Los cerrados de (A, Ta) vienen dados por

{FN A|Fes cerrado de X}.
(2) Si B es una base de la topologia ‘T, entonces
Bo={BNA|Be B}

es una base de la topologia Ty.
(3) Sia e AyU" es el sistema de entornos de a en (X, T ), entonces

Uy, ={VnA|Vv eu}

es el sistema de entornos de a en (A, Ty).
(4) Sia € Ay B” es una base de entornos de a en (X, T ), entonces

By ={WnNA|W e B}
es una base de entornos de a en (A, Ty).

Proposicién 13. Sea (X, T") un espacio topologico, (A, Ta) un subespacio suyo
y B C A. Entonces:

(1) (B)4 =BnNA.

(2) BPNA C (B),.

(3) (Fr(B))a C Fr(B) N A.
En (2) y (3) de la Proposicion 13 no tiene por qué darse la igualdad, como

lo prueba el siguiente ejemplo:
Sea (X,7T) = (R, topologia usual) y B = A = [0, 1]. Entonces

B°NA=(0,1), (B)a=[0,1, (Fr(B)a=®@, Fr(B)NnA=1{0,1}.



