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Abstract 

“Informal Inference” is an approach to statistical inference based on resampling methods and 

links Bootstrap as replacement for confidence intervals and re-randomisation tests as 

alternative to statistical tests. Informal inference, on the other hand, is a conceptualisation of 

statistical inference by elementarising the full complexity by context that makes the 

interpretation of the developed concepts meaningful, or by establishing analogies and meta-

knowledge that provide insight. Firstly, we illustrate the significance test by an elementary 

rank test. Secondly, we build informal ideas about inference by an analogy to the medical 

situation. Thirdly, we highlight the potential of informal ways to statistical inference by 

examples. Fourthly, we describe the “Informal Inference” approach. Finally, we draw some 

conclusions about the didactical potential and the drawbacks of “Informal Inference”. Our 

considerations are signified by the goal of facilitating conceptual understanding. 

Keywords: Statistical inference, simulation and resampling, conceptual understanding, 

statistical thinking, elementarisation 

Resumen 

“Inferencia Informal” es un enfoque de la inferencia estadística, que se basa en métodos de 

remuestreo y se vincula a Bootstrap como sustituto de los intervalos de confianza y a las 

pruebas de aleatorización como alternativa a los contrastes estadísticos. La inferencia 

informal, por otro lado, es una conceptualización de la inferencia estadística mediante la 

simplificación de su complejidad mediante contextos que hacen que la interpretación de los 

conceptos desarrollados sea significativa, o mediante el establecimiento de analogías y 

metaconocimientos que proporcionen comprensión. Primero, ilustramos la prueba de 

significación mediante una prueba de rangos elemental. Segundo, construimos ideas 

informales sobre la inferencia, por analogía con la situación médica. En tercer lugar, 

destacamos el potencial de las aproximaciones informales a la inferencia estadística mediante 

ejemplos. En cuarto lugar, describimos el enfoque de “Inferencia Informal”. Finalmente, 

sacamos algunas conclusiones sobre el potencial didáctico y los inconvenientes de la 

“Inferencia Informal”. Nuestras consideraciones están significadas por el objetivo de facilitar 

la comprensión conceptual.  

Keywords: Inferencia estadística, simulación y remuestreo, comprensión conceptual, 

pensamiento estadístico, elementarización 

1. Introduction 

The paper has two main goals: Firstly, to illustrate ways of elementarising the complex 

structure in statistical inference; secondly, to compare two different approaches to 

elementarisation. The difficulties in the concepts and the individual concept acquisition 

in stochastics in general and in statistical inference are well-known. That has induced the 

search for new learning forms; for elementarisation, the idea of visualisation and the New 

Technologies have been integrated into teaching very early. Computer-intensive methods 

of statistics have also served as incentive for didactic innovations.  

Informal inference may be used as a label for endeavours to simplify, visualise, or 

simulate the hypothetical model behind statistical inference. That means, the statistical 

model in the background is still the target of teaching and forms the background. That 

http://www.ugr.es/local/fqm126/civeest.html
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implies that the theoretical character of such models is visualised by simpler means. The 

elementarisation is viewed as a transient stage to statistical inference. 

“Informal Inference” – going back to the computer-intensive methods in statistics such 

as Bootstrap and re-randomisation – is an educational approach that reduces statistical 

inference completely to the observed data developing the methods solely based on 

resampling this data. There are only natural null hypotheses of no effect that can be tested 

for significance, or intervals are calculated from artificially simulated data that mimic 

confidence intervals. 

We illustrate both approaches and present a detailed discussion about the relative merits 

and show how to build conceptual understanding by meta-knowledge based on 

simplifications of – the full complexity of – statistical inference.  

2. An elementary approach to the significance test 

We illustrate the way of thinking in a significance test in a very simple situation, which 

has also been used by R. A. Fisher in his early justification of the method. The task is: 

The efficacy of an antihypertensive drug should be corroborated by a placebo-controlled, 

randomised, double-blind clinical study. The target variable is: The intra-individual 

difference of blood pressure = systolic blood pressure at baseline minus the value after 4 

weeks of medication measured in mm Hg. The hypotheses at test: The null hypothesis 

(H0) states that Verum (the medication) is equally effective as Placebo (a fake medication 

that can neither be recognised as such by the patients nor by the medical doctor). The 

alternative hypothesis (H1) is that Verum is better than Placebo. 

2.1. Re-arrangement and ranks  

The basic ideas are illustrated by the Mann-Whitney test for independent samples. We 

use ranks rather than the measurements of the patients and a re-randomisation argument 

to read a p value for H0 off the data. After ordering and ranking the data (see Figure 1), 

we find – surprisingly – all the data from the Placebo group in the lowest ranks with a 

rank sum of 10 while the Verum group attains the maximum rank sum of 26.  

The null hypothesis states that there is no difference in the effect of Verum or Placebo so 

that we should be allowed to perceive any 4 of the 8 persons as the control group (Placebo) 

and the others as the Verum group. The advantage of the present way to tackle the 

problem is the following: The null hypothesis has the obvious implication that any of 

these ways to recruit a hypothetical control group has the same justification and thus the 

same probability. We only have to find all re-attributions of 4 persons from the 8 to a 

control group. There are 70)4,8(
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C . In Figure 2 (left), we order 

these possibilities by the rank sum (only a few to show the principle); in Figure 2 (right), 

we show the possibilities of the rank sum by a bar chart.  

Under the null hypothesis, the distribution in Figure 2 (right) represents the probability 

distribution of the rank sum. As the probability to get the extreme rank sum of 10 for the 

Placebo group is only 1/70, we get a p value for H0 of 2/70 = 0.0286 < 0.05 (if the test is 

applied two-sided, i.e., if a difference between the two groups could be either way). In 

the usual perception of significance testing, we can reject H0 at the 5% level. 
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Figure 1. Data and ordered data of the Placebo-Verum experiment 

 
 

Figure 2. Left: Possible rankings ordered by the rank sum –  

Right: Possibilities of each of the rank sum as probability distribution under H0 

2.2. The p value: Some initial concerns 

We have calculated the probability for an observed result if the null hypothesis H0 applies 

and use this so-called p value to judge the credibility of H0. If p is smaller than 5%, H0 is 

rejected; p is the probability for a false positive statement, i.e., the test yields a significant 

result if the drug is not effective: 

p = P(Test significant | Drug is not effective). 

We have observed something that has less probability than 5% if H0 applies (drug not 

effective). Yet, we are only interested in the following probability: 

P (Drug is effective | Test significant). 

But this number cannot be calculated from the givens! The conclusion about a clinical 

study is based on statistical methods. Doctors are no experts in statistics and need not be. 

Yet, they should know the principles of scientific methods. Neyman and Pearson (1933) 

clearly limit the scope of statistical tests. They state that “No test based upon a theory of 

probability can by itself provide any valuable evidence of the truth or falsehood of a 

hypothesis.” A dialogue between a doctor and a statistician illustrates the conflict: 

Do: You tried hard to explain the statistical test to me – but what does it mean if my test yields a 

significant result? May I claim that the drug is effective? 

St: No – You can only calculate how probable such a test result is IF the drug is not effective. 

Do: The ethics commission has approved this study to investigate the efficiency of this drug. I did 

ask you whether you can prove this by a statistical test. As the result now is significant, I thought, 

that the probability that my drug is effective is 95% – because the p value is 5%. 

St: You did ask me something to which the p value has no answer. The error probability for your 

statement is higher – yet, I cannot calculate it. 

Do: You may be right but I have done it as all do – why should this be wrong? The result of the 

statistical test is significant and will be published: The drug is effective (p < 0.05). 
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3. Informal inference – An analogy to the medical situation 

We explore the situation in medicine where there is always a decision that may lead to 

various errors whatever the decision is. A diagnostic test may be compared to a statistical 

test. This serves to understand statistical tests better. It may also serve to understand and 

investigate the medical decision better. 

3.1. Separating the distribution of a variable among healthy and ill people 

The other standard task in medicine is the diagnosis of a disease under scrutiny according 

to the outcome of a medical test, i.e., a biometric variable. We compare the task of 

separating two groups from each other by the values of a variable in the different settings 

(Figure 3): the diagnostic test, the clinical trial of a drug, the statistical test. 

Distribution for ill and healthy persons Separating the groups: Diagnostic Test 

 

  

Separating the groups: Statistical Test Clinical trials of drugs as Statistical Test 

  

Figure 3. Contexts for separating two groups: Medical diagnosis – Statistical test – 

Clinical trials: Different terminology for the same concepts 

For drug testing, a standard has emerged with magic figures: power (probability to detect 

an effect of the drug if there is one) should attain 80%, type-I (drug wrongly assumed to 

have an effect) should not be larger than 5%. 

3.2. Medical test as decision 

We extend the test in Section 2 to include the alternative hypothesis (shift in the mean of 

the variable under scrutiny) to allow for power considerations. The clinical trial, the 

diagnosis problem, or the quality control (Section 4.4), all bear the structure of a decision 

situation. A decision has to be made about H0 or H1 based on data. 
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Table 1. The clinical trial as decision-making situation with the different errors 1 

1 The order of H0 and H1 as well as the decisions is different from before! 

It is helpful to recognise that the structure of the decision problem and the potential errors 

remains the same in all three contexts. The analogy (Table 1) illustrates the meaning of 

the same concept in various contexts: 

p = P(Test + | Ill)  Sensitivity in the diagnosing context, 

p = P(Test significant | Drug effective)  Power in statistical tests. 

Missing is any information on the Positive or Negative Predictive Value (PPV or NPV):  

P(Ill | Test +), or P(Drug effective | Test significant) and 

P(Healthy | Test –), or P(Drug not effective | Test not significant). 

This probability describes the quality of the decision procedure. Not only that we do not 

know it, it is also dependent on the prevalence of the disease or the quality of research 

hypotheses (in drug testing as in statistical tests). We use data on mammography in 

radiologic clinic and in screening in Table 2, which shows the absolute numbers of the 

various combinations of disease and diagnosis. If we read the columns, we obtain 

sensitivity and specificity. The table allows also calculating the proportions in rows, 

which are the most interesting figures from above, namely the PPV and NPV. Strikingly, 

the PPV – the probability that a person has a carcinoma after a positive diagnosis – 

depends on the context and the prevalence of the disease under scrutiny (the same holds 

for NPV). 

Table 2. Expected values of status (carcinoma or no carcinoma) and  

diagnosis (positive or negative) in radiologic clinic and in screening 

Gigerenzer (2002) has advocated reformulating probabilities (sensitivity and specificity 

are usually known) by expected values, which he calls natural frequencies. They allow 

for a quick orientation on relevant probabilities (see Batanero & Borovcnik, 2016). 
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PPV  80/84 = 95.2%    13.9% P(Ca|+) 

NPV  96/116 = 82.8%    99.8% P(No Ca|–) 
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3.3. Cut points to separate the groups of healthy and ill 

We show the difficulty to separate between the groups of tumour patients and tumour-

free patients by introducing a cut point. The faecal occult blood test (FOBT) is used to 

detect colon cancer. We use data on 20 patients in each group (Figure 4). If we diagnose 

a patient as positive if the FOBT exceeds 75 and negative else, we see that in the tumour 

group three persons are falsely misclassified as negative, which amounts to a sensitivity 

of 17/20 = 85%. On the other hand, this cut point leads to two cases of false positive 

diagnosis in the tumour-free group, which corresponds to a specificity of 18/20 = 90%. 

 

Figure 4. The choice of the cut point leads to a separation of the two groups with 

distinct quality as measured by the concepts of sensitivity and specificity  

Which cut point should be used for diagnosis? If we vary the cut point, we generate 

several procedures for the diagnosis, all with different properties (Figure 5).  

         

                         

Figure 5. Cut points lead to different methods of diagnosis with a different point on the 

ROC curve – a point in the upper left corner reflects a good diagnosis  

It is customary, to illustrate the quality of the diagnosis by the so-called ROC curve, which 

shows to each cut point the corresponding point (, 1 – ), i.e., the type-I error on the 

first coordinate and the sensitivity on the second. That means a point far left and up is 

linked to a diagnosis with good properties to separate the two groups. 
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We recognise that the higher the cut point is chosen, the further to the left (good for the 

diagnosis) and the further down (bad for the diagnosis) the corresponding point on the 

ROC curve will lie. We are faced with antagonistic consequences when shifting the cut 

point. We have to find a compromise between the two targets to get a small type-I error 

and a high power. Various diseases have different distributions for the target variable and 

correspond to different ROC curves. The disease with the dotted (blue) distribution, 

which is the same as the distribution among healthy people, turns the diagnosis to a coin 

tossing experiment, i.e., simple guessing. The corresponding ROC is the diagonal, all 

points of which are far off the upper left corner that hosts the points for diagnosing 

procedures with good properties. 

         

Figure 6. The closer the distributions of ill and healthy the more difficult the diagnosis  

3.4. Some conclusions from the analogy to medicine 

From the analogy to medicine, we learn that we normally face a decision problem, which 

may be described – for simplification – by two scenarios. Diagnosing for diseases is a 

decision problem, which compares distributions under the scenario of healthy and ill 

people. Whatever we decide, we are prone to committing an error. There are always – at 

least – two diverging errors in the play: 

 Diagnose for the disease when the person is healthy. 

 Not recognise the disease despite the fact that the person has it. 

Wherever we introduce the cut point between the two groups (scenarios), the errors are 

influenced by that choice and we should orientate ourselves on their magnitude. Several 

cut points for separating healthy and ill imply different sizes of these errors. There are 

diseases that are easy to diagnose. Reducing the complexity of the decision situation, the 

p value is used but it not easy to interpret this number in a practical meaningful way. 

There is a third error: Whether the decision is a good one, does not only depend on cut 

points but also on the prevalence of the disease. In summarising, we do not get well 

interpretable coefficients for the quality of decisions in many cases. 

4. Informal ways towards statistical inference 

We illustrate various informal ways to explore key statistical concepts. One main problem 

is to highlight the relevance and the meaning of the sampling distribution of statistics that 

estimate a parameter of the population. Another idea is to reduce the complexity of 

statistical tests to a comparison of two distributions that makes sense in the context so 

that decisions and their implications become a natural issue to discuss just as in the 

analogy to the medical situation (of diagnosing or testing drugs). The explorations serve 

to learn about key features, also by establishing meta-knowledge about the method 

beyond mathematics. The goal is to reduce the complexity of the situation but keep the 

path to the general situation open. 

ill

healthy
1-  = Sensitivity

 = 1 - Specifity
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4.1. Two different methods of estimating the mean 

The values of the population are marked by a bar (see Figure 7). Two homogenous strata 

are visible. If such a case of strata is known, it is advisable to consider that in sampling. 

We compare two methods: Method 1: Random sample of 6 elements from all neglecting 

the strata; Method 2: Random sample of 2 from stratum 1 and 4 from stratum 2. For both 

methods, we can see from the simulation scenario (Figure 7) that the mean of simulated 

data is roughly equal to the mean of the population (unbiased estimator). We see also that 

strata sampling (Method 2) delivers much more precise results. The improvement of the 

estimate by sampling from the strata as compared to sampling neglecting the strata is 

stable in the repetition of the scenario. 

 

Figure 7. Sampling unrestricted and from strata – sampling distribution of the mean 

One can visualise the persons who are sampled and their data and show – like in a video 

– how these change by renewing the sample to get an impression about the variability of 

sampling and the changing error in estimating the mean of the population by the mean of 

the sample. It will get immediately clear that Method 2 (stratified sampling) leads to 

smaller errors in general. It is important to see how single samples behave before 

summarising the result of many samples by the sampling distribution of the mean. This 

is important as in practice we have only one (!) sample. The result of this sampling process 

(with 1000 samples and their mean each) is shown in Figure 7: What has been an 

impression is now corroborated by the simulation scenario. By Method 1 (unrestricted 

sampling), the error is in general very large with means between 2 and 12 while for 

Method 2 (strata sampling) the error tends to be small with means between 7.5 and 9.5. 

4.2. The sampling distribution of the mean is an artificial distribution 

In the statistical laboratory, we can simulate samples from any population. The sampling 

distribution of the estimate of any parameter shows how the parameter estimation varies 

from one sample to another. Usually, we have only one sample and therefore it seems 

contra-intuitive to speak of the variation of the estimate. Yet, in a thought experiment, we 

can repeat the sample very often to illustrate the properties of the estimation. Are we 

lucky in one sample to have an estimate that is close to the pertaining parameter of the 

population, or may we rely on the fact that the general risk of getting large deviations 

from the parameter of the population is small? 
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We can simulate two completely different populations – one with a uniform and one with 

a J-shaped distribution on the population to highlight the concept of sampling distribution 

and to illustrate its key features (see Figure 8). Regardless of the parent population, the 

sampling distribution of the mean (as of many other parameters) restricts to the point of 

the mean of the population (the parameter of interest) and resembles more and more in 

shape to a normal distribution with increasing sample size. See also Batanero and 

Borovcnik (2016) for a scenario to show these properties of the sampling distribution of 

the mean; Figure 8 illustrates the development from 5 to 20 samples. Note that for the 

mean, the width of the distribution (as measured by the standard error) halves if we take 

a sample 4 times as large as before. It is instructive to see that the shape of the sampling 

distribution is nearly invariant with the repetition. 

 Uniform population J-shaped population 

Population 

  

Mean of samples  
with 5 data 

  

Mean of samples  
with 20 data 

  
Figure 8. Sampling distribution of the mean of a sample from  

a uniform (left) and a J-shaped population (right) 

4.3. Measuring an unknown probability as path to the Law of Large Numbers 

In the following (coin-tossing) experiment, the relative frequencies are investigated along 

an idea expressed in Batanero and Borovcnik (2016). Rather than showing how the 

relative frequencies converge (what should that mean and to where they should 

converge?), a task of estimating the unknown probability is posed. The estimation may 

be based on samples (blocks) of 5 trials (5 tosses of the coin) or 10 or 20. We show in 

Figure 9 how the relative frequencies converge with the number of trials and we observe 

the development until 1000 trials are performed. The current series (in Figure 9) cannot 

fluctuate much because of the past 1000 values. The curve suggests a great precision of 

less than 0.5 percentage points of fluctuation. Yet, a new experiment shows – like in a 

video – another curve with another “limiting point” within +/– 3 % points; a repetition of 

the series of 1000 trials will also “converge” yet to a different point.  

The Law of Large Numbers states that the theoretical (not the empirical) relative 

frequencies “converge” to the unknown probability. This “convergence” in a real 

experiment hides that current results are still prone to randomness. What about changing 

the task and measuring the unknown probability by short series and investigate the 

precision of such a measurement. After each block of 5 (10, or 20), the sample is 

summarised and used to estimate the unknown probability. The estimates may be 0.0, 0.2, 

…, 0.8, and 1.0 (according to 0, 1, …, 5 Heads). In Figure 9 (left), we see how these 

estimates fluctuate; many are beyond the dashed (red) lines with an estimation error larger 

than 0.2. Of course, the sample is very small, the error should be large.  
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Figure 9. Measuring an unknown probability – Investigation of the precision 

   

Figure 10. Distribution of the repeated measurements 

In the middle diagram of Figure 9, the results of measuring the probability by samples of 

10 is shown and the estimate fluctuates much less; even smaller is the variation of the 

estimate (and the errors are smaller) in the right diagram of Figure 9, which shows the 

estimates of the probability based on samples of 20. We see only two estimates beyond 

the dashed (red) lines. By a thought experiment, one may conclude that the precision of 

the estimate improves the larger the sample and its distribution will restrict to the 

(unknown) probability. This constriction of the distribution of the estimates, which is 

represented in Figure 10, may also be seen from the study of the sampling distribution of 

the mean (in Figure 8). The risk of committing an error larger than 0.2, is decreasing with 

the size of the series (sample) on which the measurement is based on. 

4.4. How to separate good and bad quality – Informal exercises in statistical tests 

The following example goes back to Batanero and Borovcnik (2016). The task is to judge 

whether the current production (or a lot that has come in) has a good or bad quality. Single 

items can show only this property, which is encoded by 0 (good) and 1 (defective). By 

inspecting a sample of n items, a decision should be made about the quality. The number 

of defectives in the sample is hyper-geometrically distributed; neglecting that sampling 

is without replacement, we can use the binomial distribution instead. Two scenarios are 

compared, which stand for different stakeholders: a lot has come into the consumer’s 

factory, sent from the producer; good quality is represented by p = 0.04, bad quality by p 

= 0.10 (p stands for proportion of defectives).  

Rather than using the binomial distribution, we have simulated 5000 samples of size n = 

100 and determined the relative frequency from the simulation scenario in order to 

estimate the probabilities. In Figure 11, we show the implication of a rejection number, 

let us say, reject the lot as bad (reject the null hypothesis of good quality) in favour of the 

alternative hypothesis. One may change the rejection number (shift the dashed bar in the 

diagram) and it becomes visible how the two types of error change and recognise that 

they are antagonistic, i.e., while the one gets smaller, the other gets larger.  
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Figure 11. A rejection number (vertical dashed line) is associated with two types of 

errors: the decision is based on a sample with n = 100 (left) and n = 400 (right) 

On the right side of Figure 11, we see the consequences of a larger sample for the decision. 

With 400 data, both errors become small. The choice of the rejection number balances 

the diverging interests of vendor and buyer. The diagram (Figure 11) with the threshold 

above which the null hypothesis is rejected in favour of the alternative reminds us to the 

diagrams from Section 3 in medical diagnosis. Basically, it is the same type of decision 

situation. Being above the rejection number corresponds to being above the cut point; the 

ensuing decision is that the lot has a bad quality, which corresponds to the positive 

diagnosis (the patient is classified to have the disease under scrutiny). 

We have many other tasks, in which we do not have to separate two or more groups from 

each other but to study the consequences of scenarios for different groups. For example, 

the case of single-choice exam papers. While the assumptions for a binomial distribution 

for the number of correctly solved items by merely guessing are undisputed, the 

assumptions are not really appropriate to describe someone who has learned. Yet, the 

scenarios may be played through with valuable insights into the way how such test papers 

have to be designed in order to keep the risk small that someone passes the exam who is 

merely guessing and – at the same time – to ensure that the risk gets small to fail in the 

exam for someone who has learned and has a solving capacity of 0.55 or even 0.80. More 

can be seen from Borovcnik (n.d.). Another prototype of tasks originates from statistical 

process control where the hourly inspection for the quality of the measurements should 

orientate about the present calibration of the production machine with a built-in alarm in 

case that the calibration has shifted. For details, see Borovcnik (n.d.). 

5. “Informal inference” 

Informal inference centres all considerations about generalising the information 

contained in a given data set solely on this data. Early steps of development of the 

informal approach are the following: Resampling as a didactical technique (Borovcnik, 

1996), as a transient stage to statistical inference (Borovcnik, 2006a, b); as method to 

replace statistical inference (Cobb, 2007); re-randomisation tests as replacement for the 

significance test (Rossman, 2008); Bootstrap intervals to replace confidence intervals 

(Engel, 2010). Stohl Lee, Angotti, & Tarr (2010) present a panoramic approach by 

examples. The methods are explained below; more about the methodology may be 

consulted from Lunneborg (2000); for extensive critique of the approach, see Howell 

(n.d.). 
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5.1. Introduction to the “informal inference” approach 

Estimation  Bootstrap is used to estimate the standard error. Instead of sampling from a 

true distribution function F, the estimate of F from the initial sample is sampled (with 

replacement). Bootstrap yields approximate intervals for the unknown parameter. 

Hypothesis testing  This is reduced to randomisation tests. Re-randomisation of 

assignment to groups to be compared provides artificial data that are used for the test. 

Either all permutations of the data are investigated, or sampling is from the data with no 

replacement, which is equivalent to sampling all permutations. This approach provides 

exact nonparametric tests in specific cases. 

The case of the natural null hypothesis  The intention of “Informal Inference” is to embed 

the complex situation in statistical inference in a natural, material setting (i.e., the data) 

leaving out any consideration about hypotheses except the natural null hypothesis (see 

Section 5.3) of pure random effects on the statistical units. 

Inference about one “group”  If one data set is to be judged, e.g., for a measure of 

location, a Bootstrap interval is obtained by repeatedly sampling from the given data 

(always calculating this statistical measure). This resampling provides an empirical basis 

(an empirical distribution) for the statistical measure. If a (hypothesised) parameter value 

falls outside the Bootstrap interval, then it is “rejected”.  

Inference about two groups  If two given data sets are to be compared for a measure of 

location (or any other parameter), then there are two options: First, we can resample from 

the given data on each group to derive the Bootstrap interval for this parameter. Second 

(and much more intuitive), we can re-randomise the attribution of single data to one of 

the groups by a random decision. If the null hypothesis of no difference between the two 

groups applies, then the data can be pooled and from this pool, the data for group 1 (and 

2) can be randomly selected so that again an empirical basis of the statistic of interest can 

be generated solely by the given data. The initial random attribution is randomly redone 

on the existing data, which reflects the natural null effect hypothesis. 

5.2. Bootstrap interval and classical confidence interval for the mean 

Given: A sample of size n with mean and SD for a specific variable (data below in Figure 

12). How precise is the mean of the sample as a measurement for the population? The 

variable Time = time worked for a seminar.  

Rather than sampling again from the population, which is impossible, we sample from 

the first sample (with replacement). The first Bootstrap yields a new measurement of the 

mean of the population, which differs not too much from the mean of the original sample. 

We repeat the Bootstrap and get 1000 (or more) artificial measurements.  

The artificial data obtained by this method reflect the variability of repeated 

measurements of the unknown mean of the population. From the Bootstrap distribution 

for the mean, we can easily cut off the lowest and highest 2.5% of the Bootstrapped means 

in order to get the 95% Bootstrap interval, which yields (3.60, 15.70) in our simulation 

scenario. This may be compared to the classical confidence interval of (2.46, 15.34). We 

see a good match of both methods. Yet, the interpretation differs. The Bootstrap interval 

reflects the precision of repeated measurements of the mean of the population while the 

confidence interval contains the mean of the population in 95% of “repeated” samples. 
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Figure 12. Left: Original sample of the time worked on a seminar and first Bootstrap 

sample from this data – Right: Histogram of 1000 Bootstrap samples 

The Bootstrap may be applied to estimate other parameters of the distribution. The 

procedure is analogue to that with the mean. Estimate the relevant parameter from the 

original sample, Bootstrap the first sample (by sampling with replacement) and calculate 

the parameter of the resampled sample in order to get artificial data about the parameter 

of interest and analyse the Bootstrap distribution of this parameter. Cut off the upper and 

lower end of this distribution to get a Bootstrap interval. One may also determine a 

Bootstrap interval for the correlation of two samples in this way. 

5.3. Re-randomisation test for the difference in means 

Is treatment effective (with respect to a target variable)? Treatment group (TG) gets 

Verum – control group (CG) gets Placebo. Re-randomisation offers an alternative to the 

two-sample t test. The procedure is similar to the significance test in Section 2. Rather 

than dealing with ranks of observations, we analyse the values of the data here. Rather 

than determining all possibilities of various rank sums, we simulate from the distribution 

of all possibilities. 

Under the null hypothesis of NO DIFF, it is intuitive that any re-arrangement of persons 

to treatments should have NO EFFECT. We therefore permute the persons and the next 

treatment group consists of 6, 5, 11, 7, 10, and 8. The first re-attribution yields a new 

measurement of the difference of the means (as measuring the effect of treatment); the 

difference between treatment and control group in the original sample is 33.58 while the 

first re-attribution yields a difference of –17.25 (see Figure 13).  

The distribution for the repeated re-randomisation is shown in Figure 13 (right); it yields 

the artificial results based on the hypothesis of NO DIFFERENCE, i.e., the null 

hypothesis. We can fit the result of the first sample into this distribution and see that the 

p value of it is 6.6% (two-sided). The whole simulation scenario may be repeated to show 

that the result is stable. Again, we can compare this re-attribution result to the classical 

two-sample t test, which yields 2.16 with a p value of 5.6% or 2.16 with 5.9% (depending 

on the additional assumption of equal or unequal variances).  

Again, the similarity of the classical results to the re-attribution test is striking. The 

procedure can be applied to other comparisons as well; for example, the correlation task 

may be rephrased as a test of the hypothesis that the correlation in the population is zero. 

See Borovcnik (n.d.) for details. 

  

Nr Times Nr Times
1 12 10 4
2 2 1 12
3 6 8 4
4 2 9 1
5 19 2 2
6 5 9 1
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8 4 5 19
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Figure 13. Left: Original sample of the target variable in treatment & control group and 

first re-attribution of persons to treatment – Right: Histogram of 1000 re-attributions  

5.4. “Informal inference” contrasted to key statistical notions 

“Informal inference” is not inference in a mathematical sense. It is NOT an informal 

approach to what the discipline of statistics calls inference. It presents a rather restricted 

approach to making inferences with no obvious links how to proceed from there to formal 

inference (unless one omits traditional statistical inference).  

Within “Informal Inference” it is impossible to address key concepts.  In Table 3 

(Borovcnik, 2017), Bootstrap and Re-randomisation are compared to key statistical ideas 

to highlight the deficits if taken as the sole approach towards statistical inference. 

Table 3. “Informal” inference and key statistical ideas 

Statistical inference implies a hypothetical approach. There have been several 

endeavours to compare the various schools of inference starting from Barnett (1982). 

They differ according to which hypotheses are included and how they are treated. 

 Alternative hypotheses. There is no way to introduce alternative hypotheses except 

by probabilistic assumptions and by simulation (or probability calculations). Any 

alternative cannot be resampled as is has not been sampled. The data are not suitable 

for investigating alternative hypotheses by resampling. 

 Hypothetical comparison of models. Modelling involves comparing scenarios 

(described by probability distributions) and not only judging a single one. 

Hypothesis tests are comparisons of models (while the model family is restricted).  

Resampling marks a change from probability models to data; it causes a shift in 

connotation from hypotheses to facts (data as facts); models are absorbed in (resampled) 

data. Yet, how judgement of hypotheses is done, lies at the core of statistical inference. 

Whether it is done by classical or Bayesian methods, there is no link from resampling. 

 

 

Concepts  Re-randomisation Bootstrap 

Hypotheses – scenarios Only NULL effect hypothesis Not possible to conceptualise 

Type I (or ) error Yes No 

Type II (or ) error No No 

Alternative hypotheses  Not possible to conceptualise Not possible to conceptualise 

Methods Only significance test of NULL effect No link to significance tests 

Nr E Random Nr E

1 69,0 0,48 6 40,0

2 24,0 0,74 5 77,5

3 63,0 0,17 11 -7,5
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Resampling reduces probability to the frequentist conception.  As statistical inference is 

reduced to resampling the data, there is no obvious link for other connotations of 

probability though they are relevant for the various schools of inference (see Barnett, 

1982). This narrows also the connection to decision theory. Many problems of statistical 

inference are enhanced if seen from a decision-theoretic perspective. 

The case of small probabilities.  In Bootstrap, a new error is introduced. If it is about the 

tails of a distribution (small probabilities), one would not get data about them so that the 

tails will not be resampled. If the first sample is not big enough, more regions of the 

distribution cannot be sampled well. If the first sample is big, then anyway the Central 

Limit Theorem delivers better results. If one resamples, then the additional variation is 

big unless one generates more than 10,000 re-samples. That makes it intractable for 

teaching. Simulation is misplaced for the problem of small probabilities; a problem, 

which is underestimated in statistics education (see Batanero & Borovcnik, 2016). 

6. Educational concerns about resampling and conclusions 

“Informal Inference” has been suggested as a way to revolutionise teaching statistical 

inference (Cobb, 2007; delMas, 2017; Ben-Zvi, Makar, & Garfield, 2018). Yet, there are 

issues to re-consider not only from an educational point of view. 

Re-randomisation is null hypothesis significance testing.  It deals with testing a null effect 

hypothesis. The difference in the mean, e.g., between two populations is compared by a 

random re-arrangement of the units to one of the groups. A distribution for the difference 

of means is generated, which corresponds to the null hypothesis of no difference between 

groups. A re-arrangement of the given data cannot be performed to reflect specific 

differences between the two groups so that the method fails to incorporate issues of errors 

of type II. We are stuck with a pure significance test with all the confusion that arises 

from the p value (see, e.g., Hubbard & Bayarri, 2003). 

Confusion of Bootstrap and confidence intervals.  Bootstrap intervals are not easy to 

implement when corrections are applied to adapt their coverage probability (for the 

sophisticated corrections, see Efron & Tibshirani, 1993). Bootstrap intervals are not easy 

to connect to traditional topics further on. Often, the specification “Bootstrap” is omitted. 

The same terms for widely different concepts may confuse learners.  

Simplifying the approach to a discipline for didactical purpose.  Brousseau (1984) warns 

of the implications of elementarisation in didactical considerations. In simplifying, one 

finally might end up with teaching a new object that does not even exist in mathematics 

(“glissement methadidactique”). Biehler (2014) states that: “[…] formal inferential 

reasoning as such is controversial itself […] This raises questions with regard to which 

view of formal […] inference we design […] informal inference activities for.” “Informal 

Inference” goes beyond informally exploring probabilistic models; it aims to replace 

traditional statistical inference. The advantages of an intuitive approach towards inference 

get lost if it is not seen as a transient stage in teaching and learning. 

Issues to re-consider for an” Informal Inference” approach: 

 “Informal Inference” is very convincing but leads to a restricted methodology that 

is a strict subset of statistical inference.  

 Bootstrap intervals differ from classical confidence intervals; to adapt them, 

requires sophisticated methods so that their intuitive advantage is lost (see Efron & 
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Tibshirani, 1993, Lunneborg, 2000, or Howell, n.d.). Re-randomisation does not 

permit errors of type II so that testing is reduced to the disputed significance test. 

 Bootstrap fails with small (tail) probabilities, which are not covered in the data 

unless the sample is very large so that one cannot resample them. It is a matter of 

modelling small probabilities and risks rather than only dealing smartly with data.  

 The “Informal Inference” approach unfeasibly reduces the conception of 

probability to the frequency aspect as inference is reduced to resampling and 

relative frequencies of artificial data. Here, we face the dilemma formulated by 

Carranza and Kuzniak (2008) with a pure frequentist approach to stochastics where 

the applied problems require a decision-theoretic approach and a qualitative 

(subjectivist) connotation of probability. 

 How to adapt the probability curriculum? Should we leave the normal distribution 

behind? Probabilistic modelling uses many other distributions (e.g., for risk 

analysis). How to deal with other approaches and interpretations (e.g., Bayes). 

 How to continue the curriculum within such a setting? There is no path from 

resampling to decision theory, which is much closer to many problems of everyday 

concern but also to many applications such as in medicine or economy. There is no 

connection from resampling to Bayes methods (though Bayesians use simulation a 

lot), which form a relevant approach for problems from real world. 

 Conceptual understanding differs from easier access and solving of tasks. 

Furthermore, modelling is absorbed in simulation. This may result in data as facts 

while models represent a hypothetical way of thinking. It might be better to teach 

classical and Bayesian inference in parallel to highlight the differences in the 

concepts and thus allow for a sustainable concept acquisition (see Vancsó, 2009). 

“Informal Inference” narrows the view on probabilistic modelling later. General 

educational questions that arise with the approach are: The statisticians use ever more 

sophisticated models but we have not even managed to teach the simplest. How will 

anyone be able to challenge the experts if educated only on this side-track? Should 

statistics for secondary level be a field that has nearly nothing in common with statistics 

at university and the abundant applications that intrude every sector of public and private 

life? Are we going to distract people from critically appraising and challenging those 

applications of statistics? We suggest using resampling (Bootstrap and re-randomisation) 

as a transient stage to statistical inference and focus on ways of elementarising the full 

complexity of statistical inference.  
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