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Abstract

We show that, up to some natural normalizations, the moduli space
of singly periodic complete embedded maximal surfaces in the Lorentz-
Minkowski space L3 = (R3, dx2

1 + dx2
2 − dx2

3), with fundamental piece
having a finite number (n+1) of singularities, is a real analytic manifold
of dimension 3n+4. The underlying topology agrees with the topology
of uniform convergence of graphs on compact subsets of {x3 = 0}.

1 Introduction

A maximal surface in the Lorentz-Minkowski space L3 = (R3, dx2
1+dx2

2−dx2
3)

is a spacelike surface with zero mean curvature. It locally maximizes the area
functional associated to variations by spacelike surfaces. In a pioneering
work, Calabi [2] proved that the affine spacelike planes are the only com-
plete maximal surfaces in L3 (Calabi, in fact, showed the analogous result
for maximal hypersurfaces in L4 and this was later extended to maximal
hypersurfaces in Ln, for all n, by Cheng and Yau [3]). Nonetheless, re-
cent works show there is a rich global theory of complete maximal surfaces
with singularities in L3 ([8], [7], [10], [13], [14]). For instance, Umehara and
Yamada [14] have obtained results on the global behavior of immersed max-
imal surfaces having analytic curves of singularities. Of particular interest
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Figure 1: The Lorentzian catenoid

are the complete embedded maximal surfaces having a closed discrete set of
singularities. First it should be remarked that maximal surfaces in L3 share
some properties with minimal surfaces in the Euclidean space R3. Indeed,
Kobayashi [12] gave a Weierstrass type representation in terms of meromor-
phic data similar to the one of minimal surfaces in R3. Also, both types of
surfaces are locally represented as graphs of solutions of elliptic operators.
An important difference, however, is that the maximal surface equation for
graphs in L3 may have solutions with isolated singularities and this never
happens for the minimal surface equation in R3. Otherwise said, an em-
bedded maximal surface can have an isolated singularity, contrarily to an
embedded minimal surface in R3. This is illustrated by the Lorentzian half-
catenoid, [12] (see Figure 1). At a singular point around which a maximal
surface is embedded in L3, the Gauss curvature blows up, the limit tangent
planes become lightlike and the surface is asymptotic to a half lightcone at
the singularity (cf. [10], [12] and [8]). For these reasons, such points are
called conelike singularities.

Embedded complete maximal surfaces with a closed discrete set of singu-
larities are global graphs over any spacelike plane. Conformally, the regular
set of such a surface is a Riemann surface minus as many pairwise disjoint
closed conformal disks (without accumulation points) as singular points in
the surface. A fundamental observation is that the Weierstrass data for the
surface extends to the double Riemann surface, [7]. This allows one to work
on boundaryless Riemann surfaces.

In [8] we developed the theory of embedded complete maximal surfaces
in L3 of finite type, that is those having a finite number of singularities. We
showed, in particular, that the moduli space of such surfaces with n + 1 ≥ 2
singularities and vertical limit normal at infinity is a 3n + 4−dimensional
manifold.

The next simplest subclass of maximal surfaces in L3 with a closed dis-
crete set of singularities consists of the periodic ones with finite type in the
quotient. This refers to surfaces that are invariant under a discrete group
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G of isometries of L3 acting freely and properly and such that the quotient
surfaces are embedded and have a finite number of singularities in the flat
and complete 3-dimensional Lorentzian manifold L3/G. In [7], the first and
second author proved fundamental facts about the global geometry of these
surfaces. In particular, they classified the discrete groups G ⊂ Iso(L3) for
which L3/G contains complete maximal surfaces of finite type. If L3/G is
orientable and orthochronous (i.e the elements of G preserve the orientation
and the future time direction) and contain a complete embedded maximal
surface S of finite type then G is a group of spacelike translations of rank one
or two and S is an annulus of finite conformal type or a torus, respectively.

In this paper, we study the moduli space of (embedded) singly periodic
maximal surfaces in L3 having finite type in the quotient space. That is, we
consider the group < T > generated by a spacelike translation T in L3 and
complete embedded maximal surfaces with a finite number of singularities
in L3/ < T > . Several examples of this kind were constructed in [7] (see
figure 2).

First note that up to an ambient isometry of L3 and rescaling, we can
suppose that T = (1, 0, 0). In this case any complete embedded maximal
surface with a finite number of singularities in L3/〈(1,0,0)〉 is a graph over the
cylinder {x3 = 0} ⊂ L3/〈(1,0,0)〉. We also normalize so that one of the ends
of the surface is asymtpotic to {x3 = 0, x2 ≥ 0}. Our main result then says
that:

The space Mn of marked entire maximal graphs over the cylinder
{x3 = 0} in L3/ < (1, 0, 0) > having n + 1 ≥ 2 conelike singular-
ities (the mark is an ordering of the set of singularities) and an
end asymptotic to {x3 = 0, x2 ≥ 0}, is a real analytic manifold of
dimension 3n + 4. A global coordinate system is given by the or-
dered sequence of points in the mark and the normal to the second
end. This space is a (n + 1)!-sheeted covering of the space Gn of
(non marked) entire maximal graphs over the cylinder {x3 = 0}
in L3/〈(1,0,0)〉, having n +1 ≥ 2 conelike singularities and an end
asymptotic to {x3 = 0, x2 ≥ 0}. The underlying topology of Gn

is equivalent to the uniform convergence of graphs on compact
subsets of the cylinder {x3 = 0}.

We have organized our paper as follows: Section 2 contains some prelim-
inaries about the local behavior of maximal surfaces around isolated singu-
larities and the global behavior of complete maximal surfaces of finite type
in the quotient space L3/ < T > . Section 3 is devoted to the proof of the
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main theorem. Our approach relies on algebraic geometry tools: we define
some natural bundles on the moduli space Tn of once punctured marked
circular domains with n + 1 boundary components (a mark is an ordering
of the boundary circles), and introduce a spinorial bundle Sn associated to
the moduli space of Weierstrass data of surfaces in the space of graphs with
n + 1 singularities. The convergence in Mn means convergence of marked
conformal structures in Tn and of Weierstrass data.

2 Preliminaries

We denote by C, D the extended complex plane C ∪ {∞} and the unit disc
{z ∈ C : |z| < 1}, respectively.

Throughout this paper, L3 will denote the three dimensional Lorentz-
Minkowski space (R3, 〈, 〉), where 〈, 〉 = dx2

1 + dx2
2 − dx3

3. By definition, a
coordinate system (y1, y2, y3) in L3 is said to be a (2, 1)-coordinate system
if the Lorentzian metric is given by dy2

1 + dy2
2 − dy3

3. We say that a vector
u ∈ R3 − {0} is spacelike, timelike or lightlike if ‖u‖2 := 〈u,u〉 is positive,
negative or zero, respectively. When u is spacelike, ‖u‖ is chosen non neg-
ative. The vector 0 is spacelike by definition. A plane in L3 is spacelike,
timelike or lightlike if the induced metric is Riemannian, non degenerate and
indefinite or degenerate, respectively.

We call H2 = {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 − x2
3 = −1} the hyperbolic

sphere in L3 of constant intrinsic curvature −1. Note that H2 has two con-
nected components H2

+ := H2 ∩ {x3 ≥ 1} and H2
− := H2 ∩ {x3 ≤ −1}. The

stereographic projection σ for H2 is defined as follows:

σ : C− {|z| = 1} −→ H2 ; z →
(

2Im(z)
|z|2 − 1

,
−2Re(z)
|z|2 − 1

,
|z|2 + 1
|z|2 − 1

)
,

where σ(∞) = (0, 0, 1).
By definition, an isometry in L3 is said to be orthochronous if its associ-

ated linear isometry preserves H2
+ (and so H2

−). In other words, it preserves
the future direction.

In the sequel, N will denote a complete flat 3-dimensional Lorentzian
manifold (i.e., a 3-dimensional differential manifold endowed with a flat met-
ric of index one). It is well known that the universal isometric covering of
N is L3 (see for example [16],[15]).Thus N can be regarded as the quotient
of L3 under the action of a discrete group G of isometries acting freely and
properly on L3.
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In what follows, M will denote a differentiable surface.
An immersion X : M−→ N is spacelike if the tangent plane at any point

is spacelike, that is to say, the induced metric on M is Riemannian. In this
case, S = X(M) is said to be a spacelike surface in N . If N = L3/G, where
G is a (possibly trivial) group of translations acting freely and properly on
L3, the locally well defined Gauss map N0 of X assigns to each point of M a
point of H2. A connectedness argument gives that N0 is globally well defined
and N0(M) lies, up to a Lorentzian isometry, in H2

−. This means that M is
orientable.

A maximal immersion X : M −→ N is a spacelike immersion with null
mean curvature. In this case, S = X(M) is said to be a maximal surface
in N . Using isothermal parameters, M can be endowed with a conformal
structure. In the orientable case, M becomes a Riemann surface.

Theorem 2.1 (Weierstrass representation of maximal surfaces in L3 [12])
Let X : M→ L3 be a conformal maximal immersion of a Riemann surface.
Then g

def= σ−1 ◦N0 is a meromorphic function, and there exists a holomor-
phic 1-form φ3 defined on M such that

(i) the 1-forms given by φ1 = i
2(1

g − g)φ3 and φ2 = −1
2 (1

g + g)φ3 are
holomorphic on M

(ii) the induced Riemannian metric on M is given by ds2 = |φ1|2 + |φ2|2−
|φ3|2 = 1

4

(
1
|g| − |g|)2|φ3|2

(iii) for any closed curve γ in M we have Re
∫
γ(φ1, φ2, φ3) = 0

(iv) up to a translation, the immersion is given by X = Re
∫
P0

(φ1, φ2, φ3),
where P0 ∈ M is an arbitrary point.

Conversely, given g and φ3 a meromorphic function and a holomorphic
1-form on M, respectively, such that (i), (ii) and (iii) are satisfied, then (iv)
defines a conformal maximal immersion of M in L3.

Remark 2.1 (Weierstrass data of maximal surfaces in translational spaces)
The Weierstrass data (φ1, φ2, φ3) of a maximal surface in L3 are invariant
by translations. Therefore, maximal surfaces in a quotient L3/G, where G
is a group of translations acting properly and freely, also have a Weierstrass
representation as above except that the condition (iii) is replaced by the fol-
lowing one:

(iii′) for any closed curve γ in M the translation of associated vector
Re

∫
γ(φ1, φ2, φ3) is an element of the group G.
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Definition 2.1 Let X : M → N be a topological embedding of a smooth
surface in a Lorentzian 3-manifold and F ⊂ M a closed discrete subset.
We say that X is a maximal embedding with singular set F if X|M−F is a
maximal embedding and the induced metric on M− F converges to zero at
any point of F.

In this case we say that S = X(M) is a maximal surface in N with
singularities at X(F ).

Lemma 2.1 (structure of embedded singularities in L3 [8], [4]) Let X :
D → L3 be a maximal embedding defined on an open disk D, with an isolated
singularity at q ∈ D.

Then D−{q} is conformally equivalent to {z ∈ C : r < |z| < 1}, for some
r > 0, and if X0 : {r < |z| < 1} → L3 is a conformal reparameterization of
X, then X0 extends analytically to Ar := {1 ≤ |z| < 1} by setting X0({|z| =
1}) = P0 := X(q).

The Weierstrass data (g, φ3) of X0 satisfy: g is injective and |g| = 1 on
{|z| = 1}, and φ3(z) 6= 0, |z| = 1. In particular, X0 reflects analytically about
{|z| = 1} to the mirror surface A∗

r := {z ∈ C : 1 ≤ |z| < 1/r}, verifying
g ◦ J = 1/g and J∗(φ3) = −φ3, where J(z) = 1/z is the mirror involution.

Moreover for any spacelike plane Π plane containing P0 the Lorentzian
orthogonal projection π : X(D) → Π is a local homeomorphism and X(D) is
asymptotic near P0 to a half light cone with vertex at P0.

The point P0 is said to be a conelike singularity of X(D).

Remark 2.2 The universal covering of a complete flat Lorentzian 3-dimensional
manifold is isometric to L3 (cf. [15]). Therefore the above Lemma extends
to the more general context of complete flat Lorentzian 3-manifolds.

As a consequence of the previous lemma, if X : M → N is a complete
embedded maximal surface with a closed discrete set F ⊂M of singularities,
where N is complete and flat, then M − F is conformally equivalent to
Σ − ∪p∈F Dp, where Σ is a Riemann surface and the {Dp}p∈F are closed
pairwise disjoint conformal disks with no accumulation in Σ.

We also have that the conformal reparameterization X : Σ−∪p∈F Dp →
N extends analytically to M0 := Σ − ∪p∈F Int(Dp), by putting X(∂Dp) =
X(p) for each p ∈ F. In the sequel we will refer to M0 as the conformal
support of the embedding X. We also say that M0 is the conformal support
of the maximal surface X(M) ⊂ N .

In particular, if N = L3 or N = L3/G, where G is a translational group,
the Weierstrass data (φ1, φ2, φ3) extend analytically to M0.
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We denote by M∗
0 the mirror surface of M0 and by N the double surface,

that is, N = M0 ∪M∗
0 with the identification ∂(M0) ≡ ∂(M∗

0). Moreover,
we call J : N → N the antiholomorphic mirror involution, and observe that
the fixed point set of J coincides with ∂(M0). By Lemma 2.1, the Weier-
strass data Φ := (φ1, φ2, φ3) can be extended by Schwartz reflection to N
satisfying J∗(Φ) = −Φ.

For the sake of simplicity, complete maximal embedded surfaces with a
finite set of singularities in N will be called CMF surfaces.

Definition 2.2 (flux of a closed curve) Let S ⊂ N be an oriented CMF
surface, and let X : M0 → N be a conformal reparameterization of S.

For any closed curve γ(s) in M0 parameterized by the arclength, we label
ν as its unit conormal vector so that {ν, γ′} is positive with respect to the
orientation in M0. The flux vector of the curve γ is defined as

F (γ) :=
∫

γ
ν(s)ds

Since X is harmonic it follows from Stokes theorem that F (γ) depends
only on the homology class of γ in M0. If N = L3 or L3/G, where G is
translational, and we denote by Φ = (φ1, φ2, φ3) the Weierstrass data of X,
it is easy to check that

F (γ) = Im
( ∫

γ
Φ

)
We define the flux at a conelike singularity q ∈ S as the flux along any

curve homotopic to the boundary component γ0 of M0 corresponding to q.
It can be checked hat the flux at conelike singularity is always a timelike
vector (see [11]).

Definition 2.3 (CMSF surfaces) A complete embedded maximal surface
S̃ ⊂ L3 with a closed discrete set of singularities is said to be singly periodic
of finite type if:

• S̃ is invariant under the free and proper action of an infinite cyclic
group G of isometries of L3

• S̃/G is a CMF surface in L3/G.

In the sequel S̃ will be called for short a CMSF surface.
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Remark 2.3 There is a natural connection between CMSF surfaces in L3

and CMF surfaces in quotients L3/G, where G is cyclic.
As stated in the above definition a CMSF surface determines a CMF

surface in the corresponding space L3/G. Conversely, Theorem 2.2 below
will show that the universal covering of a CMF surface in L3/G is a CMSF
surface in L3.

2.1 Representation of CMSF surfaces

In the sequel we will denote by 〈u〉 the cyclic group generated by the trans-
lation of vector u ∈ L3.

Theorem 2.2 ([7]) Let S be a CMF surface with n + 1 singular points in
L3/G, where G is a cyclic group of isometries of L3 acting properly and
freely. Then

• The CMSF surface S̃ obtained by lifting S to L3 is an entire graph
over any spacelike plane.

• The group G is generated by a spacelike translation T.

• The conformal support M0 of S is C∗−∪n
i=0Int(Di) where the Di, i =

0, . . . , n are pairwise disjoint closed (circular) disks. The associated
double surface N is N − {0,∞, J(0), J(∞)}, where N is a compact
Riemann surface of genus n, the points 0,∞ ∈ N correspond to the
ends of M0 and J denotes the mirror involution.

• If X : M0 → L3/G is a conformal parameterization of S, X applies
each boundary circle ∂(Di) to a singular point of S.

• The Weierstrass data Φ := (φ1, φ2, φ3) of X can be extended by Schwarz
reflection to N, satisfying: J∗(Φ) = −Φ.

Moreover Φ has simple poles at 0,∞, J(0) and J(∞), and the topologi-
cal ends of S are of Scherk type, that is to say, asymptotic to spacelike
flat half cylinders in L3/G.

• T can be chosen as the translation of vector u = Re
∫
γ Φ, where γ ⊂M0

is a closed loop around 0.

Conversely given M0 := C∗−∪n
i=0Int(Di) where the Di, i = 0, . . . , n are

pairwise disjoint closed (circular) disks, define N and J as before and take

8



Figure 2: Examples of CMSF surfaces

a Weierstrass data Φ on N satisfying J∗(Φ) = −Φ and having simple poles
at the ends. Then

X : M0 → L3/〈u〉 X = Re
∫

P0

Φ

where u = Re
∫
γ Φ, defines a complete embedded maximal surface with n + 1

singularities and its universal covering is a CMSF surface in L3 invariant
under the group 〈u〉.

2.2 Uniqueness of CMSF surfaces

Theorem 2.3 (Uniqueness) Let Si denote a CMF surface in L3/〈u〉 with
singular points qi

1, . . . , q
i
n ∈ L3/〈u〉, i = 1, 2 where u ∈ {x3 = 0}, u 6= 0.

Suppose S1 and S2 are contained in {x3 ≥ 0} ⊂ L3/〈u〉, have the same limit
normal directions at the ends and that q1

j = q2
j , j = 1, . . . , n. Then S1 = S2.

Proof : The proof is based on the maximum principle. A regular maximal
surface in L3 can be represented locally as a graph x3 = u(x1, x2) of a smooth
function u, with u2

x1
+ u2

x2
< 1, satisfying the equation:

(1− u2
x1

)ux2x2 + 2ux1ux2ux1x2 + (1− u2
x2

)ux1x1 = 0.

The maximum principle for elliptic quasilinear equations then gives the
following geometric maximum principles for maximal surfaces:

Let S̃1 and S̃2 be two maximal embedded surfaces (possibly with bound-
ary) in L3 which intersect tangentially at a point p. Suppose that locally,
around p, S̃1 is above S̃2, that is to say, u1 ≥ u2 where ui denotes the func-
tion defining the graph S̃i, i = 1, 2. Then S̃1 = S̃2 locally around p if one of
the following hypotheses holds:

• p is an interior point of S̃1 and S̃2,
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• p is a boundary point of S̃1 and S̃2 and ∂S̃1 and ∂S̃2 are tangent at p.

In either case, by analyticity of solutions of elliptic equations, we also
infer that the two graphs S̃1 and S̃2 coincide whenever they are simultane-
ously defined. It is important to emphasize that this local statement only
works for maximal graphs without singularities.

Consider now S1 and S2 as in the statement of the theorem. Since u is a
horizontal vector, vertical translations are well defined isometries of L3/〈u〉.
For any t ∈ R, put Si(t) = Si + (0, 0, t), i = 1, 2.

¿From our assumptions and the asymptotic behavior of the ends given
in Theorem 2.2, we deduce that, for t > 0 big enough, S1(t) > S2, that is to
say S1(t) ∩ S2 = ∅ and S1(t) is above S2. Let t0 = inf{t > 0 : S1(t) > S2}.
We are going to prove that t0 = 0.

Suppose t0 > 0. If S1(t0)∩S2 6= ∅ then S1(t0) and S2 have a contact point
different from the singularities. But then the interior maximum principle
implies that S1(t0) = S2, which is absurd.

Assume now that S1(t0) ∩ S2 = ∅ (contact at infinity). Because the
ends of the surfaces are asymptotic to spacelike flat half cylinders, then for
ε > 0 small enough, S1(t0−ε)∩S2 is a non empty compact real 1-dimensional
analytic manifold containing a Jordan curve Γ spanning two parallel annular
ends without singular points E1 ⊂ S1(t0−ε) and E2 ⊂ S2, with E1∩E2 = Γ.
Let F1 =

∫
Γ ν1 and F2 =

∫
Γ ν2 the flux along Γ in S1(t0 − ε) and S2 resp.

(see definition 2.2). It is not hard to see that Fi is orthogonal to u and to
the limit normal vector at the end Ei. Moreover, 〈Fi, Fi〉 = 〈u, u〉, and so
we infer that F1 = F2. However by the boundary maximum principle, the
third coordinate of ν1 is strictly bigger than that of ν2 along Γ, which is a
contradiction. This proves that t0 = 0, and reversing the argument, that
S1 = S2.

2

Corollary 2.1 The group of ambient isometries preserving a CMF surface
S in L3/〈u〉 coincides with:

• the group of orthochronous (i.e., preserving the future direction) am-
bient isometries leaving invariant the set of its singularities and pre-
serving the set of normal directions at the ends in case the ends of S
are not parallel

• the group of ambient isometries leaving invariant the set of its singu-
larities and the limit normal vector at the ends in case S has parallel
ends.
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3 The space of CMSF surfaces

In this section we are going to study the moduli space of CMSF surfaces
in L3. By Remark 2.3, this space can be identified with the space of CMF
surfaces in quotients L3/G, where G = 〈u〉 and u is a spacelike vector.
Moreover, as shown in Theorem 2.2, we can restrict ourselves to the case of
CMF graphs over spacelike flat cylinders in L3/〈u〉.

First, we have to introduce some normalizations.
Let S̃ be a CMSF surface invariant by a spacelike translation T. Up to

a isometry in L3 and rescaling we will always suppose T (p) = p + (1, 0, 0).
From Theorem 2.2 we know that S := S̃/〈(1,0,0)〉 is a CMF graph over the
cylinder {x3 = 0} ⊂ L3/〈(1,0,0)〉 with flat ends. Up to a hyperbolic rotation
in L3/〈(1,0,0)〉 we can suppose that one of them is asymptotic to the half
cylinder {x3 = 0, x2 ≥ 0}.

In the sequel we denote by Gn the space of CMF graphs in L3/〈(1,0,0)〉
over the cylinder {x3 = 0} with one of their ends, which will be denoted E1

in the sequel, asymptotic to {x3 = 0, x2 ≥ 0} and having n + 1 singularities,
n ≥ 1. We will always suppose that all S ∈ Gn are oriented by the past
directed normal. Note that the limit normal to the second end E2 of S lies
in H2 ∩ {x3 < 0, x1 = 0}. The latter set is identified, through a suitable
stereographic projection, with the real interval ]− 1,+1[.

Let S ∈ Gn and label F as its set of singularities. By definition, a mark
in S is an ordering m = (q0, q1, . . . , qn) ∈

(
L3/〈(1,0,0)〉

)n+1 of the points in F,
and we say that (S, m) is a marked graph. We denote by Mn the space of
marked graphs and define the two following maps:

s1 : Mn → Gn and s2 : Mn →
(
L3/〈(1,0,0)〉

)n+1×]− 1, 1[
s1(S, m) = S s2(S, m) = (m, c)

where c ∈]− 1,+1[ is the limit normal at the end E2 as explained above.

Label Pn+1 as the symmetric group of permutations of order n + 1 and
denote by µ : Pn+1×Mn → Mn, the natural action µ(τ, (S, m)) := (S, τ(m)).
Observe that the space Gn can be naturally identified with the orbit space
of this action.

This section is devoted to prove the main result of this paper:

Main Theorem The set s2(Mn) ⊂
(
L3/〈(1,0,0)〉

)n+1×] − 1,+1[
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is open and the one to one map s2 : Mn → s2(Mn) provides a
global system of analytic coordinates on Mn.

Moreover, the action µ is discontinuous and hence Gn has a
unique analytic structure making s1 an analytic covering of (n +
1)! sheets.

This section is organized as follows: in Subsection 3.1 we identify Mn

with a set Sn×L3/〈(1,0,0)〉×{−1, 1}, where Sn is a divisor bundle associated to
the Weierstrass data. The definition of Sn involves some elements of classical
theory of Riemann surfaces, like the Jacobian variety and the Abel-Jacobi
map, which will be explained in this subsection.

In Subsection 3.2 we prove that Sn has a natural structure of differ-
entiable (3n + 1)−manifold, and thus we use the previous identification to
endow Mn with a structure of differentiable manifold of dimension 3n + 4.

Finally in Subsection 3.3 we prove the Main Theorem, first showing that
s2 is smooth when we consider the previous differentiable structure on Mn,
and then applying the Domain Invariance Theorem.

3.1 Identifying Mn

We split this subsection into three stages.

3.1.1 From marked graphs in Mn to divisors on marked circular
domains

The following definition and notations are required.
We label Tn ⊂ R3n+2 as the (3n + 1)-dimensional connected analytical

submanifold consisting of points v = (c0, c1, . . . , cn, r0, r1, . . . rn) in ]1,+∞[×Cn×
(R+)n+1 such that r0 = c0−1, the discs Dj := {|z−cj | ≤ rj}, j = 0, 1, . . . , n,
are pairwise disjoint and 0 /∈ Dj , for any j. We call aj := ∂Dj and write
cj(v) := cj , rj(v) := rj , Dj(v) := Dj and aj(v) := aj , j = 0, 1, . . . , n.

Definition 3.1 Given v ∈ Tn, the domain Ω(v) := C − ∪n
j=0Dj(v) is said

to be a marked circular domain (with n + 1 holes).
Two marked circular domains Ω(v1) and Ω(v2) are considered equal if

and only if v1 = v2.

For any v ∈ Tn, we call Ω(v)
∗

and N(v) the mirror of Ω(v) := Ω(v) ∪(
∪n

j=0 ∂aj(v)
)

and the double surface of Ω(v), respectively. Recall that

N(v) = Ω(v) ∪ Ω(v)∗
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with the identification ∂(Ω(v)) ≡ ∂(Ω(v)∗). We know that N(v) is a closed
Riemann surface, and Ω(v)∗∩Ω(v) consists of the n+1 analytic circles aj(v),
j = 0, . . . , n. Moreover, we denote by Jv : N(v) → N(v) the antiholomorphic
involution applying any point to its mirror image. Note that the fixed point
set of Jv coincides with ∪n

j=0aj(v).

Figure 3: Ω(v), N(v) and Jv.

Remark 3.1 A conformal model for Ω(v)
∗
, v ∈ Tn, consists of the planar

domain Ω(v)
∗

:= {Jv(z) : z ∈ Ω(v)}, where

Jv(z) := c0(v) +
r0(v)2

z̄ − c0(v)

is the Schwarz reflection about a0(v) = {|z − c0(v)| = r0}. Moreover, N(v)
can be identified to the quotient of Ω(v) ∪ Ω(v)

∗
under the identification

z ≡ Jv(z), z ∈ ∂Ω(v).

Let Y = (S, m) ∈ Mn. By Theorem 2.2 we know that the conformal
support of S with the prescribed orientation is biholomorphic to a twice
punctured circular domain, where the two punctures {0,∞} correspond to
the ends and the boundary circles to the singularities (without loss of gen-
erality, E1 corresponds to z = 0).

We can therefore associate to (Y, m) a unique element Ω(v) ∈ Tn and
conformal immersion X : Ω(v) − {0,∞} → L3/〈(1,0,0)〉, as stated in the
following lemma:

Lemma 3.1 Given Y = (S, m) ∈ Mn, where m = (q0 . . . , qn), there are
unique v ∈ Tn and conformal maximal immersion X : Ω(v) − {0,∞} →
L3/〈(1,0,0)〉 such that:
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(i) S − F is biholomorphic to Ω(v) − {0,∞} (in the sequel, they will be
identified),

(ii) S = X(Ω(v)− {0,∞}),

(iii) z = 0 correspond to the end E1,

(iv) qj = X(aj(v)), j = 0, . . . , n.

Lemma 2.1 and Theorem 2.2 also give that the Weierstrass data of X,
(g, φ3), satisfy the symmetries g ◦ Jv = 1/g and J∗v (φ3) = −φ3, and that g
has exactly n + 1 zeros 0, w1, . . . , wn ∈ Ω(v) counted with multiplicity.

Therefore, putting D = w1 · . . . · wn ∈ Divn(Ω(v)), it is easy to see that
divisors for the Weierstrass data must be:

(g) =
D · 0

Jv(D · 0)
and (φ3) =

D · Jv(D)
∞ · Jv(∞)

(1)

Since the divisor D determines uniquely the data (g, φ3) up to multi-
plicative constants, and these data control the immersion X, we infer that
the couple (v,D) encloses all the information about the surface.

3.1.2 The Abel-Jacobi map on the bundle of divisors

In order to understand the moduli space Mn, it is crucial to control the
structure of the family of couples (v,D) for which there exist Weierstrass
data (g, φ3) satisfying Equation (1). The Abel-Jacobi map (defined below)
will play here a fundamental role.

We need some extra notation.
Given a Riemann surface R, we denote by

Divk(R) = {D : D is an integral multiplicative divisor onR of degree k}

Recall that Divk(R) is the quotient of Rk under the action of the group of
permutations of order k, and we denote by pk : Rk → Divk(R) the canonical
projection. We endow Divk(R) with the natural analytic structure induced
by pk.

In what follows, for any k ∈ N, we denote by

Divk =
⋃

v∈Tn

Divk(Ω(v)) = {(v,D) : v ∈ Tn, D ∈ Divk(Ω(v))}

and we refer to it as the bundle of k-divisors.
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Obviously, Divk is a real analytical manifold (see [8] for more details).

Let J (v) be the Jacobian variety of the compact Riemann surface N(v)
associated to the following canonical homology basis:

We identify the homology classes of the boundary circles aj(v) in Ω(v)
with their representing curves j = 0, 1, . . . , n. Note first that Jv fixes aj(v)
pointwise, and so, Jv(aj(v)) = aj(v). Take a curve γj ⊂ Ω(v) joining
a0(v) to aj(v), in such a way that the curve bj(v) obtained by joining γj

and Jv(γj) satisfies that the intersection numbers (bj(v), bh(v)) vanish, and
(aj(v), bh(v)) = δjh, where δjh refers to the Kronecker symbol. Observe that
Jv(bj(v)) = −bj(v) in the homological sense, and its homology class does not
depend on the choice of γj . In other words, the identity Jv(bj(v)) = −bj(v)
characterizes B(v) = {a1(v), . . . , an(v), b1(v), . . . , bn(v)} as canonical homol-
ogy basis of N(v) (see Figure 4).

Figure 4: The canonical homology basis B(v)

Call {η1(v), . . . , ηn(v)} the dual basis of B(v) for the space of holomorphic
1-forms on N(v), that is to say, the unique basis satisfying

∫
ak(v) ηj(v) = δjk,

j, k = 1, . . . , n, and put Π(v) = (πj,k(v))j,k=1,...,n for the associated matrix
of periods, πj,k(v) =

∫
bj(v) ηk(v).

Then the Jacobian variety of N(v) is J (v) = Cn/L(v), where L(v) is the
lattice over Z generated by {e1, . . . , en, π1(v), . . . , πn(v)}, where

ej = T (0, . . . ,
j
1, . . . , 0) and πj(v) = T (π1,j(v), . . . , πn,j(v))

The Jacobian bundle is defined as

Jn =
⋃

v∈Tn

J (v)
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Jn has a natural structure of analytic manifold (see [8] for more details).

For any v ∈ Tn, we call ϕv : N(v) → J (v) the Abel-Jacobi embedding
defined by

ϕv(z) = pv

(∫ z

1

T (η1(v), . . . , ηn(v))
)

where pv : Cn → J (v) is the canonical projection (recall that 1 ∈ Ω(v) ⊂
N(v) uniformly on v). We extend ϕv with the same name to the Abel-Jacobi
map ϕv : Divk(N(v)) → J (v) given by

ϕv(P1 · . . . · Pk) =
k∑

j=1

ϕv(Pj), k ≥ 1.

We also define ϕ : Divk → Jn by ϕ(v,D) = (v, ϕv(D))

3.1.3 The identification Mn ≡ Sn × L3/〈(1,0,0)〉 × {−1, 1}

Summarizing, we know that given Y = (S, m) ∈ Mn its associated Weier-
strass data (defined on N(v) for the unique v ∈ Tn given in Lemma 3.1 )
satisfy Equation (1). Abel’s Theorem gives

ϕv(D ·0)−ϕv(Jv(D ·∞)) = 0 and ϕv(D ·Jv(D))−ϕv(∞·Jv(∞)) = T (v)

where T (v) ∈ J (v) is the image by ϕv of the divisor associated to a mero-
morphic 1-form on N(v). By Abel’s theorem, T (v) is independent of the
choice of the meromorphic 1-form (see [6]).

These two equations lead to 2ϕv(D · 0)−ϕv(0 ·∞ ·Jv(0) ·Jv(∞)) = T (v)
Therefore, it is natural to define, for any v ∈ Tn,

Sn(v) := {D ∈ Divn(Ω(v)) : 2ϕv(D · 0) = T (v) + ϕv(0 ·∞ · Jv(0) · Jv(∞))},

and also
Sn := {(v,D) : v ∈ Tn, D ∈ Sn(v)}

We refer to Sn as the spinorial bundle.

Definition 3.2 With the previous notation, we call E the map given by

E : Mn → Sn × L3/〈(1,0,0)〉 × {−1, 1}

E(S, m) =
(
(v,D), q0, ε0

)
where m = (q0, . . . , qn) and ε0 ∈ {−1, 1} is the sign of the third coordinate
of the flux at q0 (see Definition 2.2)
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The main goal of this paragraph is to show that E is bijective. Note
that the first coordinate of E encloses the information about the conformal
structure and Weierstrass data of the marked graph, while the second one
is simply translational. The third coordinate has been introduced just for
distinguishing between two graphs having q0 = 0 and being symmetric with
respect to the plane {x3 = 0}.

The following notation and lemmae are required.

Consider the holomorphic 1-form J∗v (ηj(v)). Taking into account that Jv

fixes aj(v) pointwise, we infer that
∫
ak(v) J∗v (ηj(v)) = δjk, and so, J∗v (ηj(v)) =

ηj(v). Moreover, since Jv(bj(v)) = −bj(v), then πj,k(v) =
∫
bk

ηj(v) is an
imaginary number, for any j and k.

It follows that there exists a unique analytic mirror involution Iv :
J (v) → J (v) satisfying Iv(pv(w)) = pv(w), for any w ∈ Cn. Moreover,
as Jv(1) = 1 then ϕv ◦ Jv = Iv ◦ ϕv.

We call I : Jn → Jn, the map given by I(v, pv(w)) = (v, Iv(pv(w))).

Lemma 3.2 ([8]) The maps ϕ : Divk → Jn, ϕ(v,D) = (v, ϕv(D)), and
T̂ : Tn → Jn, T̂ (v) = (v, T (v)) are smooth.

As a consequence of the smoothness of T̂ and ϕ it follows that there are
exactly 22n differentiable maps Ê1, . . . , Ê22n : Tn → Jn, Êj(v) = (v,Ej(v)),
satisfying 2Ej(v) = T (v) + ϕ(v, 0 · ∞ · Jv(0) · Jv(∞)) for any j.

The next result shows that these spinor sections are invariant under the
mirror involution. This fact will be crucial for recovering the Weierstrass
data from an element in the spinorial bundle.

Lemma 3.3 I ◦ Êj = Êj , for any j = 1, . . . , 22n.

Proof : Indeed, note that Iv(Ej(v)) = Ej(v)+pv

(
1
2

∑n
h=1(mh(v)eh+nh(v)πh(v))

)
,

where mh(v), nh(v) ∈ Z are continuous functions of v. Using that Tn is con-
nected we get that mh(v), nh(v) are constant. Hence, the set Aj := {v ∈
Tn : Iv(Ej(v)) = Ej(v)} is either empty or the whole of Tn. On the other
hand, Ej(v) = E1(v) + qj(v), where 2qj(v) = 0, and so, Iv(qj(v)) = qj(v).
Therefore A1 = Tn if and only if Aj = Tn for any j.

Consider the compact genus n Riemann surface N = {(z, w) ∈ C : w2 =∏2n+2
i=1 (z − ci)}, where ci ∈ R and c1 < c2 < . . . < c2n < 0 < c2n+1 < c2n+2.

The function w has a well defined branch w+ on the planar domain Σ = C−
∪n

i=0[c2i+1, c2i+2]. Moreover there exists a biholomorphism from the domain
{(z, w+(z)) : z ∈ Σ} ⊂ N to a circular domain Ω(v0), v0 ∈ Tn taking
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0+ := (0, w+(0)) to 0 and ∞+ := (∞, w+(∞)) to ∞. Furthermore, up to
this biholomorphism, N = N(v0) and J = Jv0 is given by J(z, w) = (z,−w).

Define the meromorphic 1-form ν =
∏n+1

i=1 (z−ci) dz
zw on N(v0) and observe

that its canonical divisor is given by

(ν) =
c2
1 · . . . · c2

n+1

0+ · Jv0(0+) · ∞+ · Jv0(∞+)

where we are identifying ci ≡ (ci, 0) ∈ N(v0). Since Jv0(ci) = ci, then l0 :=∑n+1
i=1 ϕv0(ci) ∈ J (v0) is invariant under Iv0 and 2l0 = T (v0) + ϕv0(0+ ·

Jv0(0+) ·∞+ ·Jv0(∞+)). Up to relabelling, we can suppose that l0 = E1(v0)
and hence A1 = Tn. This completes the proof. 2

Proposition 3.1 The map E : Mn → Sn×L3/〈(1,0,0)〉×{−1, 1} is bijective.

Proof : If x ∈ Sn, x = (v,D), then ϕv(D·0) = Ei(v) for some i ∈ {1, . . . , 22n}.
Since Iv(Ei(v)) = Ei(v), (Lemma 3.3) we have ϕv(D ·0)−ϕv(Jv(D ·0)) =

0. By Abel’s theorem, there exists a unique meromorphic function g0
x of

degree n + 1 on N(v) satisfying

(g0
x) =

D · 0
Jv(D · 0)

and g0
x(1) = 1 (2)

Observe that since Jv(1) = 1 we have g0
x ◦ Jv = 1/g0

x.
On the other hand, as ϕv(D ·Jv(D))−ϕv(Jv(∞) ·∞) = T (v), then there

exists a meromorphic 1-form φ on N(v) with canonical divisor D·Jv(D)
∞·Jv(∞) . Up

to a multiplicative constant we can suppose that φ satisfies J∗v (φ) = −φ.
If we write φ(z) = h(z) dz

z−c0(v) , z ∈ U(v) =
(
Ω(v) − {0,∞}

)
∪

(
Ω(v)∗ −

{Jv(0), Jv(∞)}
)
∪ a0(v), we infer that h(z) ∈ R∗, for any z satisfying |z −

c0(v)| = r0(v) = c0(v)− 1. Then, define

φ0
3(x) :=

1
h(1)

φ,

and observe that the equations

(φ0
3(x)) =

D · Jv(D)
∞ · Jv(∞)

and h0
3(1) = 1 (3)

characterize φ0
3(x) as meromorphic 1-form on N(v).
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Given χ =
(
x, q0, ε0

)
∈ Sn ×L3/〈(1,0,0)〉×{−1, 1} it is easy to check that

there exist unique θχ ∈ {|z| = 1} and rχ ∈ R such that, for φ3(χ) = rχφ0
3(x)

and gχ = θχg0
x, the map Xχ : Ω(v) → L3/〈(1,0,0)〉,

Xχ(z) := q0 + Real
∫ z

1

( i

2
(

1
gχ

− gχ),−1
2
(

1
gχ

+ gχ), 1
)
φ3(χ)

is well defined and determines a CMF graph Sχ := Xχ

(
Ω(v)−{0,∞}

)
∈ Gn

satisfying X(a0(v)) = q0 and ε0 is the sign of the third coordinate of the flux
along a0(v).

Defining the mark mχ by qj = Xχ(aj(v)), i = 0, . . . , n, it is now clear
that E−1(χ) = {(Sχ,mχ)}, and so, E is bijective. 2

3.2 Structure of the spinorial bundle Sn

In the previous subsection we have identified Mn with the space Sn ×
L3/〈(1,0,0)〉 × {−1, 1}. Our aim now is to show that Sn, and so Mn, has
a natural structure of differentiable manifold.

Theorem 3.1 (Structure of the spinorial bundle) The space Sn is a
smooth real (3n+1)-dimensional submanifold of Divn and the map v : Sn →
Tn, v(v,D) = v is a finite covering.

Proof : The fact Sn 6= ∅ follows from the existence of CMSF surfaces with
an arbitrary number of singularities in the quotient (see [7]) and Proposition
3.1. The key step of this proof is that Sn does not contain any special divisor
(see [6]).

Consider the differentiable map H : Divn → Jn given by

H(v,D) =
(
v, 2ϕv(D)− ϕv

(
0 · Jv(0) · ∞ · Jv(∞)

)
− T (v)

)
,

and note that Sn = {(v,D) ∈ Divn : H(v,D) = (v, 0)}. In order to prove
that Sn is a differentiable submanifold of Divn, it suffices to check that dHq

is bijective at any point q of Sn.
Let q0 := (v0, D0) be an arbitrary point of Sn. Observe that dHq0 is

bijective if and only if the map

H0 : Divn(Ω(v0)) → J (v0)

D 7→ ϕv0(D)− ϕv0(D0)

is a local diffeomorphism at D0.
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We are going to write the expression of H0 in local coordinates around
D0 ∈ Divn(Ω(v0)) and H0(D0) = 0 ∈ J (v0). To do this, write D0 = zm1

1 ·. . .·
zms
s ∈ Divn(Ω(v0)), and denote by (Uj , wj := z−zj) the conformal parameter

in Ω(v0), where Uj is the open disc of radius ε > 0 centered at zj , j =
1, . . . , s. Put U =

∏s
j=1 U

mj

j ⊂ Ω(v0)n = Ω(v0)× n. . . ×Ω(v0). Then pn(U) is
a neighborhood of D0 in Divn(Ω(v0)), where pn : Ω(v0)n → Divn(Ω(v0)) is
the projection associated to the action of the group of permutations of order
n on Ω(v0)n. A coordinate chart for Divn(Ω(v0)) around D0 is given by

ξ : pn(U) → Cn, ξ(
s∏

j=1

Q1,mj · . . . ·Qmj ,mj ) = ((t1,mj , . . . , tmj ,mj )j=1,...,s),

where th,mj
=

∑mj

l=1(zj(Ql,mj
))h, h = 1, . . . ,mj , j = 1, . . . , s. For more

details see [6].
Label p : Cn → J (v0) = Cn/L(v0) as the natural projection and consider

a neighborhood W ′ of H(D0) = 0 such that p : W := p−1(W ) → W ′ is a
diffeomorphism and H0(U) ⊂ W ′.

Write ηi(v0)(wj) = fi,j(wj)dwj on Wj := wj(Uj) for i = 1, . . . , n, j =
1, . . . s. The local expression Ĥ0 of H0 around D0, Ĥ0 = p−1 ◦ H0 ◦ ξ−1, is
given by

Ĥ0 : ξ(pn(U)) → W

Ĥ0(t) =
s∑

j=1

mj∑
h=1

∫ wh,mj

0
fj(wj)dwj

where fj = T (f1,j , . . . , fn,j), wh,mj
≡ wj , tl,mj

=
∑mj

h=1 wl
h,mj

, h = 1, . . . ,mj ,

t = (t1,mj , . . . , tmj ,mj )j=1,...,s.
Put fj(wj) =

∑∞
l=0 bj,lw

l
j , bj,l ∈ Cn, j = 1 . . . s. Then the Taylor series

for the holomorphic map wh,mj
7→

∫ wh,mj

0 fj(wj)dwj is
∫ wh,mj

0 fj(wj)dwj =∑∞
l=1 aj,lw

l
h,mj

, where aj,l = 1
l bj,l−1, l ≥ 1, j = 1, . . . , s. It is not hard to

check that Ĥ0(t)
∑s

j=1

∑mj

l=1 aj,ltl,mj
+ R(t), where the first derivatives of

R with respect to tl,mj
vanish at t = 0, and so the column vectors of the

Jacobian matrix of Ĥ0 are {al,j , l = 1, . . . ,mj , j = 1 . . . , s}.
Reasoning by contradiction, suppose that the rows of that matrix are

linearly dependent, which is equivalent to saying that there exists a holo-
morphic 1-form ω0 in N(v0) having a zero at zj ∈ Ω(v0) ⊂ N(v0) of order at
least mj , j = 1, . . . , s. A direct application of Riemann-Roch theorem gives
the existence of a non-constant meromorphic function f on N(v0) having
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poles at z1, . . . , zs with order at most m1, . . . ,ms, respectively. In particu-
lar, f has degree less than or equal to n. As Jv0(0) is not a pole of f, up to
adding a constant we can suppose that f(Jv0(0)) = 0.

On the other hand, since ϕv0(D0) + ϕv0(0) = Ei(v0) and Iv0(Ei(v0)) =
Ei(v0), i ∈ {1, . . . , 22n}, then we get ϕv0(D0 · 0) − ϕv0(Jv0(D0 · 0)) = 0.
Therefore, a direct application of Abel’s theorem gives the existence of a
meromorphic function g of degree n + 1 on N(v0) whose principal divisor
coincides with D0·0

Jv0 (D0·0) . As Jv0 is an antiholomorphic involution with fixed
points, it is not hard to check that g ◦ Jv0 = r/g, r > 0. Hence, up to
multiplying g by the factor r−1/2, we can suppose that g ◦ Jv0 = 1/g.

Note that g ∈ Fv0 , where for any v ∈ Tn, Fv denotes the family of
meromorphic functions h of degree n + 1 in N(v) with zeroes in Ω(v) and
satisfying h ◦ Jv = 1/h.

Claim: Let fλ denote the meromorphic function 1+λf

1+λ(f◦Jv0 )
, λ ∈

C. Then, fλ is not constant, for any λ ∈ C∗. Moreover, gλ :=
gfλ ∈ Fv0 for any λ ∈ C.

Assume fλ = c, where c, λ ∈ C∗. Then, we infer that 1 + λf = c(1 +
λ(f ◦ Jv0)) and so the polar divisor of f, which is contained in D0, is in-
variant under Jv0 . This is absurd because D0 ∈ Divn(Ω(v0)) and Ω(v0) ∩
Jv0(Ω(v0)) = ∅.

For the second part of the claim, first note that the principal divisor of
gλ is (gλ) = Dλ·∞

Jv0 (Dλ)·Jv0 (∞) , where Dλ is an integral divisor of degree ≤ n and
so the degree of gλ is ≤ n + 1, λ ∈ C. Moreover, gλ is not constant for any λ
(otherwise, Jv0(0) would be a zero of 1 + λf, contradicting f(Jv0(0)) = 0).

Let A be the set {λ ∈ C : gλ ∈ Fv0}, and observe that 0 ∈ A. It suffices
to see that A is open and closed.

The openness of A is an elementary consequence of Hurwitz theorem (we
are using the fact that the degree of gλ is at most n + 1).

Finally, let us prove that A is closed. Let λ0 ∈ A, and take {λn}n∈N → λ0,
where {λn : n ∈ N} ⊂ A. The sequence {gn := gλn}n∈N converges to
g0 := gλ0 uniformly on N(v0). We know that gn ◦ Jv0 = 1/gn and so the
zeros of gn lie in Ω(v0), therefore, gn is holomorphic on Ω(v0), n ∈ N and
so the same holds for g0. Moreover, since |g0| = 1 on ∂Ω(v0) and it is non
constant, the maximum principle implies that |g0| < 1 on Ω(v0) and we
infer that g0 has no critical points on ∂Ωv0 . As ∂Ωv0 consists of n+1 disjoint
circles, this means that g0 takes on any complex number θ ∈ S1 at least n+1
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times. Hence the degree of g0 must be n + 1 and g0 ∈ Fv0 . This concludes
the proof of the claim.

To get the desired contradiction take P ∈ ∂Ω(v0) such that f(P ) 6= 0, ∞,
and choose λ′ = −1

f(P ) . Since Jv0(P ) = P, the meromorphic function gλ′ has
degree less than n + 1, and so, λ′ /∈ A = C, which is absurd.

Summarizing, we have proved that H|Sn : Sn → 0, H(v,D) = (v, 0), is a
local diffeomorphism, where 0 = {(v, 0) : v ∈ Tn} ⊂ Jn is the null section in
the Jacobian bundle. Consequently, the projection v : Sn → Tn, v(v,D) = v,
is a local diffeomorphism too. To finish, it suffices to check that v is also
proper. Indeed, take a sequence {(vk, Dk)}k∈N ⊂ Sn such that {vk}k∈N
converges to a point v∞ ∈ Tn. We can assume that ϕvk

(Dk · 0) = Ei(vk) for
any k ∈ N. Since Ivk

(Ei(vk)) = Ei(vk), we get ϕvk
(Dk · 0) − ϕvk

(Jvk
(Dk ·

0)) = 0. By Abel’s theorem there is a meromorphic function gk ∈ Fvk
with

canonical divisor Dk·0
Jvk

(Dk·0) .

Let us see that, up to taking a subsequence, {gk}k∈N → g∞ ∈ Fv∞ .
Reflecting about all the components of ∂Ω(vk), we can meromorphically ex-
tend gk to a planar open neighborhood Wk of Ω(vk)), k ∈ N. By continuity
and for k0 large enough, the set W = ∩k≥k0Wk is a planar neighborhood of
Ω(v∞). Classical normality criteria show that, up to taking a subsequence,
{gk}k∈N converges uniformly on Ω(v∞) to a function g∞ which is meromor-
phic beyond Ω(v∞). It is clear that |g∞| = 1 on ∂Ω(v∞), |g∞| < 1 on Ω(v∞)
and g∞(0) = 0. This proves that g∞ is non constant and can be extended to
N(v∞) by the Schwarz reflection g∞ ◦ J∞ = 1/g∞. Since deg(gk) = n + 1,
then Hurwitz theorem implies that deg(g∞) ≤ n + 1. On the other hand,
|g∞| = 1 only on ∂Ω(v∞), and so g∞ is injective on every boundary com-
ponent of Ω(v∞). Therefore, the degree of g∞ must be exactly n + 1 and
g∞ ∈ Fv∞ .

Finally, note that D∞·0
Jv∞ (D∞·0) where D∞ ∈ Divn and use Hurwitz theorem

to infer that {Dk}k∈N → D∞ ∈ Divn. Since Sn is a closed subset of Divn,
we get D∞ ∈ Sn(i), which proves the properness of v : Sn → Tn and so the
theorem.

2

3.3 Proof of the Main Theorem

In the preceding section, we have endowed Mn of a differentiable structure.
It is natural to ask whether s2 : Mn → R3n+4 is a smooth map or not.

In order to do this, we have to show that the Weierstrass data of ele-
ments in Mn depends smoothly on its associated divisor in Sn. This requires
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a convenient concept of differentiability for maps from the bundle of divisors
to the space of meromorphic functions or 1-forms. The first part of this
subsection is devoted to present these concepts.

For any v ∈ Tn, call M(v) the family of meromorphic functions on N(v).
The corresponding bundle over Tn is denoted by Mn = ∪v∈TnM(v).

Likewise, we call H(v) the space of meromorphic 1-forms on N(v) and
denote by Hn = ∪v∈TnH(v) the associated bundle over Tn.

Given v ∈ Tn and k1, k2 ∈ N we denote by Divk1,k2(v) the product
manifold,

Divk1,k2(v) = Divk1(v)×Divk2(v),

and by Divk1,k2 its associated bundle over Tn, Divk1,k2 = ∪v∈TnDivk1,k2(v).
Like in the case of Divk, Divk1,k2 has a natural structure of analytical man-
ifold. We use the convention Divk,0 = Divk and Div0,0 = Tn.

Definition 3.3 (smoothness with k-regularity) Let Mj be a real man-
ifold of dimension mj , j = 1, 2, 3, and let f : M1 ×M2 → M3 be a Ck map.
The map f is said to be differentiable (or smooth) with k-regularity in M1 if,
for any charts

(
U1×U2,

(
x ≡ (x1, . . . , xm1), y ≡ (y1, . . . , ym2)

))
in M1×M2

and (U3, z ≡ (z1, . . . , zm3)) in M3, the local expression of f, f(x, y) : x(U1)×
y(U2) → z(U3), satisfies that f(·, y) is smooth in x(U1) for any y ∈ y(U2),
and all the partial derivatives of f(x, y) with respect to variables in x are Ck

in x(U1)× y(U2).

Definition 3.4 (smooth deformation of the double of a circular domain)
Let v0 ∈ Tn and ε > 0 small enough. Denote by V (ε) the Euclidean ball of
radius ε in Tn centered at v0. Since V (ε) is simply connected, standard ho-
motopy arguments in differential topology show the existence of a family of
diffeomorphisms {Fv : N(v0) → N(v) : v ∈ V (ε)} such that Fv0 = Id,
Fv(∞) = ∞, Jv ◦Fv ◦Jv0 = Fv, for any v ∈ V (ε), and F : V (ε)×Ω(v0) → C,
F (v, z) := Fv(z), is smooth.

By definition, we say that {Fv : N(v0) → N(v) : v ∈ V (ε)} is a smooth
deformation of N(v0). Moreover note that, for ε small enough, ∂F

∂z 6= 0 in
V (ε)× Ω(v0).

Let W ⊂ Divk1,k2 be a submanifold, and let h : W → Mn be a map
preserving the fibers, that is to say, hv,D1,D2 := h(v,D1, D2) ∈M(v) for any
(v,D1, D2) ∈ W. We are going to define the notion of differentiability with
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k-regularity of h. Take V any coordinate neighborhood in Divk1,k2 meeting
W. Denote by V the associated neighborhood to V in Tn and call v0 ∈ V an
interior point. Take a smooth deformation of N(v0), {Fv : N(v0) → N(v) :
v ∈ V (ε)}. We say that h is differentiable with k-regularity in V ∩W if the
map

ĥ : (V ∩W )×N(v0) → C,

ĥ((v,D1, D2), x) = hv,D1,D2(Fv(x))

is smooth with k-regularity in V ∩W . The map h is said to be differentiable
with k-regularity on W if it does in V ∩W, for any coordinate neighborhood
V meeting W. It is easy to check that this definition does not depend on
choice of neither v0 nor the smooth deformation of N(v0).

Likewise, for a map ω : W → Hn preserving the fibers, define ω̂ : V(ε) ∩
W → H(v0) by

ω̂(v,D1, D2) =
(
F ∗

v (ωv,D1,D2)
)(1,0)

where the superscript (1, 0) means the (1, 0) part of the 1-form (by def-
inition (f dz + g dz)(1,0) = f dz). We say that ω is differentiable with
k-regularity in V(ε) ∩ W if for any local chart (U, z) in N(v0), the map
f̂ : (V(ε) ∩W )× U → C, given by f̂((v,D1, D2), z) = ω̂(v,D1, D2)(z)/dz is
smooth with k-regularity in V(ε)∩W. The global concept of differentiability
with k-regularity in W is defined in the obvious way.

The following 1-forms we will play an important role during the proof of
the Main Theorem.

Given D =
∏s

j=1 w
mj

j ∈ Divk(Ω(v)), we denote by τD(v) the unique
meromorphic 1-form on N(v) satisfying:

• τD(v) has simple poles at wj and Jv(wj), j = 1, . . . , s, and no other
poles,

• Residuewj

(
τD(v)

)
= −ResidueJv(wj)

(
τD(v)

)
= −mj for any j

•
∫
ai(v) τD(v) = 0, for any i = 1, . . . , n.

Likewise, take D1 =
∏s

j=1 w
mj

j,1 , D2 =
∏r

h=1 wnh
h,2 ∈ Divk(Ω(v)) and define

κD1,D2(v) as the unique meromorphic 1-form on N(v) satisfying

• κD1,D2(v) has simple poles at wj,1, wh,2 and Jv(wj,1), Jv(wh,2(v), j =
1, . . . , s, h = 1, . . . , r, and no other poles,

• Residuewj,1

(
κD1,D2(v)

)
= ResidueJv(wj,1)

(
κD1,D2(v)

)
= −mj , for any j
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• Residuewh,2

(
κD1,D2(v)

)
= ResidueJv(wh,2)

(
κD1,D2(v)

)
= nh for any h

•
∫
ai(v) κD1,D2(v) = 0, for any i = 1, . . . , n.

Lemma 3.4 ([8]) The maps ηj : Tn → Hn, v 7→ ηj(v), τ : Divk → Hn,
(v,D) 7→ τD(v), and κ : Divk,k → Hn, (v,D1, D2) 7→ κD1,D2(v) are differen-
tiable with 1-regularity.

As a consequence, the functions πj,k(v) :=
∫
bj(v) ηk(v), are differentiable

on Tn.

The following theorem will show that Mn and Gn are analytic manifolds
of dimension 3n + 4. We first need the following lemma, proved in [8]:

Lemma 3.5 ([8]) Given v ∈ Tn, there exists a holomorphic 1-form ω0 in
N(v) having 2n − 2 distinct zeroes, none of them contained in ∂Ω(v), and
satisfying J∗v (ω0) = ω0.

Theorem 3.2 (Main theorem) The map

s2 : Mn →
(
L3/〈(1,0,0)〉

)n+1×]− 1, 1[, s2(G, m) = (m, c),

where c is the normal direction at the non-normalized end, is injective and
smooth. Hence, s2(Mn) is open and so s2 provides a global system of analytic
coordinates on Mn.

Moreover, the action of the group of permutations of order n + 1, µ :
Mn×Pn → Mn, is discontinuous. Hence the orbit space, naturally identified
to Gn, has a unique analytic structure making s1 : Mn → Gn, s1(G, m) = G,
an analytic covering of (n + 1)! sheets.

Proof : To see that s2 is one to one, suppose (Gi,mi) ∈ Mn, i = 1, 2 satisfy
s1(G1,m1) = s1(G2,m2) = (m, c). From our normalizations, one end of both
of them is asymptotic to {x3 = 0, x2 ≥ 0}. Since G1 and G2 are graphs over
{x3 = 0} ⊂ L3/〈(1,0,0)〉 it follows that, for both surfaces, the other end is
asymptotic to Π∩{x2 ≤ 0}, where Π is the plane determined by the normal
direction c. Therefore, G1 and G2 are contained in a common horizontal half
space and by Theorem 2.3 we get G1 = G2.

To finish the first part of the theorem, it is enough to check that s2

is smooth and then use the Domain Invariance Theorem. Here we have
endowed Mn with the differentiable structure induced by E : Mn → Sn ×
L3/〈(1,0,0)〉 × {1,−1} (see Definition 3.2).
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Let (S, m) ∈ Mn and label χ = (x, q0, ε0) = E(S, m). Following the
notation in the proof of the proposition 3.1, call Xχ the associated maximal
immersion and label as (gχ, φ3(χ)) its Weierstrass data.

Claim The maps

Sn × L3/〈(1,0,0)〉 × {1,−1} →Mn, and Sn × L3/〈(1,0,0)〉 × {1,−1} → Hn,

χ 7→ gχ χ 7→ φ3(χ)

are smooth with 2-regularity and 1-regularity, respectively. Con-
sequently, the map s2 is smooth.

First we prove that the maps Sn → Mn, x 7→ g0
x, and Sn → Hn, x 7→

φ0
3(x), given by equations (2) and (3), are smooth with 2-regularity and

1-regularity, respectively.
Indeed, take x0 = (v0, D0) ∈ Sn. From Theorem 3.1, there exists an open

ball V (ε) in Tn centered at v0 of radius ε > 0 and a local diffeomorphism
V (ε) → Sn, v 7→ (v,D(v)), where D(v0) = D0. We label V(ε) as the image
of V (ε) under this map. For simplicity, we write x(v) := (v,D(v)), v ∈ V (ε).

Therefore, the map V (ε) → Divn+1, v → (v,D(v) · 0) is smooth, and
since τ : Divn+1 → Hn is also smooth with 1-regularity (see Corollary 3.4),
the same holds for the map V (ε) → Hn, v 7→ τv := τD(v)·0(v).

Take a smooth deformation of N(v0), {Fv : N(v0) → N(v) : v ∈
V (ε)}. Let B(v0) = {a1(v0), . . . , an(v0), b1(v0), . . . , bn(v0)} be the canonical
homology basis on Ω(v0) defined as in Subsection 3.1. Observe that N(v0)−
∪n

j=1(aj(v0)∪bj(v0)) is simply connected, moreover, without loss of generality
we can suppose that this domain does not contains the points in D0 ·0. For v
close enough to v0 the curves aj(v) := Fv(aj(v0)), bj(v0) := Fv(bj(v0)) are a
canonical basis of N(v) and do not pass also through the points in D(v) · 0,
j = 1, . . . , n.

By Abel’s theorem, and for z ∈ N(v)− ∪n
j=1(aj(v) ∪ bj(v)) we have

g0
x(v)(z) = Exp

( ∫ z

1
(τv +

n∑
j=1

mj(v)ηj(v))
)

In this expresion, the integration paths lie in
(
N(v)−∪n

j=1(aj(v)∪ bj(v))
)
∪

{1}, and mj(v) ∈ Z are integer numbers determined by the equation:

ϕ̃v(D(v) · 0)− ϕ̃v(Jv(0) · Jv(D(v))) =
n∑

j=1

mj(v)πj(v),

where ϕ̃v is the branch of ϕv on N(v)− ∪n
j=1(aj(v) ∪ bj(v)) vanishing at 1.
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Since mj(v) depend continuously on v, then mj(v) = mj ∈ Z and so, by
Corollary 3.4, g0

x(v) depends smoothly on v with 2-regularity.

We have to obtain the analogous result for the map V(ε) → Hn, v →
φ0

3(x(v)). Take the holomorphic 1-form ω0 on N(v0) given in Lemma 3.5,
write ν(v0) := ω0 =

∑n
j=1 λjηj(v0), where λj ∈ R, and define ν(v) :=∑n

j=1 λjηj(v). Since the map v 7→ ν(v) is smooth with 1-regularity (see

Corollary 3.4) it suffices to prove that v 7→ φ0
3(x(v))
ν(v) is smooth with 2-

regularity.
By Hurwitz’s Theorem and the implicit function theorem, ν(v) satisfies

also the thesis in Lemma 3.5, for v ∈ V (ε), for ε > 0 small enough. More-
over, as explained during the proof of Lemma 3.5, the map V (ε) → Div2n−2,
v 7→ (v, (ν(v))) is at least C1, where as usually (ν(v)) is the canonical
divisor associated to ν(v). Hence, writing (ν(v)) = Av · Jv(Av), the map
V (ε) → Divn−1, v 7→ (v,Av), is also smooth, and therefore, the same holds
for V (ε) → Divn,n, v 7→ (v,D(v),∞ · Av). We infer from Corollary 3.4 that
the map V (ε) → Hn, v 7→ κv := κ∞·Av ,D(v)(v), is smooth with 1-regularity.
Reasoning as above, the map

fx(v)(z) = Exp
( ∫ z

1
(κv +

n∑
j=1

njηj(v))
)
,

is a well defined meromorphic function on N(v), for suitable integer num-
bers nj not depending on v and V (ε)Divn →Mn, v 7→ fx(v), is smooth with
2-regularity. The principal divisor associated to fx(v) is given by (fx(v)) =

D(v)·Jv(D(v))
∞·Av ·Jv(∞)·Jv(Av) . Therefore, if we write ν(v) = hv(z)dz

z on U(v) =
(
Ω(v)−

{0,∞}
)
∪

(
Ω(v)∗−{Jv(0), Jv(∞)}

)
∪a0(v), we infer that φ0

3(x(v))
ν(v) = 1

hv(1)fx(v),

and so v 7→ φ0
3(x(v)) is smooth with 1-regularity.

It follows that the map

X0
x := Real

∫
1
Φ(x)0 Φ(x)0 :=

( i

2
(

1
g0
x

− g0
x),−1

2
(

1
g0
x

+ g0
x), 1

)
φ0

3(x)

depends smoothly on x = (v,D) with 2-regularity and defines a complete
maximal surface in L3/〈Vx〉, where

Vx = Real
[
2πi Res 0(Φ(x)0)

]
Since φ0

3(x) is holomorphic at 0, the vector Vx = (wx, 0) ∈ C×R is horizontal.
Moreover, up to replacing φ0

3(x) by −φ0
3(x) we can suppose that the third

coordinate of the flux around the curve a0(v) is positive.
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It is straightforward to see that θχ = w̄x
|wx| and rχ = ε0

|wx| depend smoothly
on χ, and so, it follows that gχ = θχg0

x and φ3(χ) = rχφ0
3(x) depend smoothly

on χ with 2 and 1-regularity respectively.
To conclude the proof of the claim, observe that

Xχ = q0 + Real
∫

1

( i

2
(

1
gχ

− gχ),−1
2
(

1
gχ

+ gχ), 1
)
φ0

3(χ)

depends smoothly on χ = (x = (v,D), q0, ε0) with 2-regularity. Therefore
qj(χ) = Xχ(aj(v)) and c(χ) = gχ(∞) are smooth functions of χ, and the
same holds for s2. This proves the claim.

By the injectivity of s2 and the domain invariance theorem, s2(Mn) is
an open domain in

(
L3/〈(1,0,0)〉

)n+1×]−1,+1[. We can then endow Mn with
the unique analytic structure making s2 : Mn → s2(Mn) an analytic diffeo-
morphism.

To conclude, it remains to check that the action µ is discontinuous. In-
deed, let τ : Mn → Mn denote the diffeomorphism given by τ(S, m) =
(S, τ(m)), τ ∈ Pn+1. Let (S0,m0) ∈ Mn and write m0 = (q0, q1, . . . , qn) ∈(
L3/〈(1,0,0)〉

)n+1
. Take a neighborhood Uj of qj in L3/〈(1,0,0)〉, j = 0, 1, . . . , n,

such that Ui ∩ Uj = ∅, i 6= j, and call U =
∏n

j=0 Uj . Then, it is clear that
τ(s−1

2 (U ×R)) ∩ s−1
2 (U ×R) = ∅, for any τ ∈ Pn+1 − {Id}, which proves the

discontinuity of µ and concludes the proof.
2

To finish, we prove that the underlying topology in Gn corresponds to the
uniform convergence of graphs over compacts subsets of {x3 = 0}.

Theorem 3.3 Let {Gk}k∈N be a sequence in Gn, and G0 ∈ Gn.
Then {Gk)}k∈N → G0 in the topology of Gn if and only if {Gk}k∈N

converges to G0 uniformly on compact subsets of {x3 = 0}.

Proof : Suppose {Gk}k∈N → G0 ∈ Gn in the topology of Gn, and choose
marks in such a way that {(Gk,mk)}k∈N converges to (G0,m0) in Mn.

Write E((Gk,mk)) = (xk, q0(k), εk), Xk = X(xk,q0(k),εk) and xk = (vk, Dk) ∈
Sn, k ∈ N ∪ {0}. Observe that, without loss of generality, εk = ε0, for all
k ∈ N.

Since {(xk, q0(k), εk)} → (x0, q0(0), ε0) and X(x,q0,ε) depends smoothly on
(x, q0, ε) with 2-regularity (see the proof of Theorem 3.2), it is not hard to
check that {Xk}k∈N diverges uniformly on k, that is to say, for any compact

28



W in {x3 = 0} there is r > 0 such that |z +1/z| > r implies Xk(z) /∈ W ×R,
for all k.

Let W be any compact domain in the cylinder {x3 = 0} ⊂ L3/〈(1,0,0)〉
containing the singularities in m0 as interior points, and let Wk denote the
compact set X−1

k (W × R) ⊂ Ω(vk)− {0,∞}, k ∈ N ∪ {0}.
As the domains Wk are uniformly contained in a compact region of

C − {0}, then {Wk}k∈N → W0 in the Hausdorff distance and Xk converges
uniformly on W0 to X0. In the last statement we have used that Xk can be
reflected analytically about the circles in ∂Ω(vk), and so all the immersions
Xk, k large enough, are well defined in a universal neighborhood of W0 in
C. It is then obvious that the function uk : R2 → R defining the graph Gk

converges uniformly over W to the function u0 : R2 → R defining G0 (fur-
thermore, {vk}k∈N → v0 implies that {mk}k∈N → m0). Since W can be as
larger as we want, {uk}k∈N → u0 uniformly on compact subsets of R2.

Assume now that the functions uk : {x3 = 0} → R defining Gk converge,
as k → ∞, to the function u0 : {x3 = 0} → R defining G0 uniformly on
compact subsets of {x3 = 0}.

Let us show that singular points of G0 are limits of sequences of singular
points of graphs Gk, k ∈ N. Indeed, let p0 = (y0, u0(y0)) ∈ G0 be a singular
point, and without loss of generality, suppose that p0 is a downward pointing
conelike singularity. By Lemma 2.1, there exists ε > 0 small enough such that
u−1

0 ({x3 ≤ u0(y0) + ε}) contains a compact component C0(ε) with regular
boundary and containing y0 as the unique (interior) singular point. Since
{uk}k∈N → u0 uniformly on compact subsets, u−1

k ({x3 ≤ u0(y0) + ε}) must
contain a compact component Ck(ε) containing y0 as well, k large enough.
Furthermore, {Ck(ε)} → C0(ε) in the Hausdorff sense, and by the maximum
principle Ck(ε) must contain at least an interior singular point yk of uk,
k large enough. Since C0(ε) converges to {y0} as ε → 0, we deduce that
{pk := (yk, uk(yk))}k→∞ → p0.

As a consequence, there exist marked graphs (Gk,mk) ∈ Mn, k ∈ N∪{0},
such that {mk}k∈N → m0.

Call ck the stereographic projection of the normal vector at E2 of Gk,
k ∈ N ∪ {0}, and let us see that {ck} → c0. Indeed, take C < 0 small
enough such that {x3 = 0, x2 ≤ C} does not contain any singular point of
uk, k ∈ N ∪ {0}, let γ be a circle in {x3 = 0, x2 ≤ C} and let A denote a
closed tubular neighborhood of γ in {x3 = 0} not containing any singular
point of u0. It is well known that uk − u0 is solution of a uniformly elliptic
linear equation Lk(uk − u0) = 0 over A, k large enough. Moreover, the
fact that the functions 1

1−|∇uk| , k ∈ N, are uniformly bounded on A (see
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[1]) guarantee that the coefficients of operators Lk, k ∈ N, are uniformly
bounded too. Therefore, since {uk}k∈N → u0 uniformly on A, the classical
Schauder estimates ([9] p. 93) imply that {uk}k∈N → u0 in the C2 norm on
A. In particular,

{nk :=
∫

γ
νk(sk)dsk}k∈N → n0 :=

∫
γ
ν0(s0)ds0,

where νk and sk are the conormal vector and the arc-length parameter along
γ in Gk, respectively, for any k ∈ N ∪ {0}. Since the normal vector at E2

of Gk lies in {x1 = 0} and is orthogonal to nk, k ∈ N ∪ {0}, we infer that
{ck} → c0.

Since s2 : Mn → s2(Mn) ⊂ R3n+4 is an homeomorphism, {(Gk,mk)}k∈N →
(G0,m0) in the manifold Mn, and so, {Gk}k∈N → G0 in the manifold Gn.
This concludes the proof. 2
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Université Paris 7
Case 7012
2,place Jussieu
75251 Paris Cedex 05, France
e-mail: souam@math.jussieu.fr

31


