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Abstract

This paper deals with the study of those closed subsets F ⊂ R3 for which the following
statement holds:

If S is a properly immersed minimal surface of finite topology and eventually disjoint from
F, then S has finite total curvature.

The same question is also considered when the conclusion is finite type or parabolicity.
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1 Introduction

By definition, a surface has finite topology if it is homeomorphic to a connected compact surface with
(maybe empty) boundary minus a finite set of interior points. A properly immersed minimal surface
is said to be of finite conformal type if it is conformally equivalent to a compact Riemann surface
with compact boundary minus a finite set of interior points. In other words, finite conformal type
means finite topology and parabolicity. Surfaces of finite conformal type that can be parameterized
by meromorphic data on the compactification will be called of finite type [21]. Complete minimal
surfaces of finite total curvature are of finite type [18], but the contrary is false: the helicoid is
the counterexample. We say that two closed subsets of R3 are eventually disjoint is they do not
intersect outside a compact set.

In this paper we are going to consider some Picard type problems for minimal surfaces of finite
topology in R3. More precisely, label P0 (respectively, P1 and P2) as the space of properly immersed
minimal surfaces of finite conformal type (respectively, finite type and finite total curvature). Our
interest resides on studing those closed subsets F ⊂ R3 for which the following statements hold:

Statement j(= 0, 1, 2):
The space of properly immersed minimal surfaces of finite topology and eventually
disjoint from F lies in Pj .

Obviously, if Statement j holds, the same occurs for Statement i, i ≤ j, but Statement h could not
be valid, h > j.
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It is known that Statement 2 holds when F is a shallow enough double cone (The Cone Lemma
[8]), and when F is a closed half space and the surfaces have no boundary (The Strong Half Space
Theorem [9]). In the second case, the surfaces must be planes.

In the embedded case, Statement 2 holds for F = ∅ and surfaces with more than one end [15],
[3]. It is also valid when F is a sufficiently narrow downward sloping cone and the number of ends
of the surface is arbitrary [4].

Statement 1 holds for F = ∅ and embedded surfaces with one end and empty boundary [17].
Finally, Statement 0 is valid for F a closed half space and arbitrary immersed surfaces [5].
The main goal of this paper is showing some new closed subsets for which the Main Statement

is valid (see Figure 1 below).

Figure 1: (a) A collection of planar sectors; (b) Three vertical half planes with convex hull R
3; (c)

Three half planes with convex hull a half space; (d) The planar complements of three parallel city
maps.

The following results have been stablished:

(a) If F is a suitable collection of truncated non compact planar sectors, then Statement 2 holds.
Roughly speaking, the sectors in F must satisfy that: they have the same angle, they are
contained in pairwise non parallel planes, they are pairwise disjoint, they are transverse to a
double cone, they are homogeneously distributed in R3, the convex hull of the collection is R3,
and the number of sectors is large enough in terms of their angle. See Definition 4.1, Figure
4 and Theorem 4.1 for details.
The definition and construction of these families of planar sectors strongly depend on the non
existence results stated in Theorem 2.5.

(b) If F consists of three disjoint and vertical half planes not contained in a half space, then
Statement 2 holds. Furthermore, the surfaces disjoint from F have only planar ends with
horizontal limit normal vectors. See Theorem 4.2 and Corollary 4.4.
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(c) If F consists of three disjoint and vertical half planes and F is not contained in a wedge of
angle less than π of R

3, then Statement 0 holds. Moreover, Statement 2 holds for surfaces with
bounded curvature. See Theorem 4.3 and Corollary 4.5.

(d) If F consists of the planar complements of three city maps in parallel planes, then Statement
0 holds. Moreover, Statement 1 holds for surfaces with bounded curvature.

Roughly speaking, this result is valid when the city maps are parallel and the width of their
streets is less than the distance between the planes containing them. See Theorem 4.4 for
details.

Furthermore, if we do not assume that the curvature is bounded, then Statement 1 fails for
closed subsets like in (c) and (d), and the same occurs for Statement 2 when F is a closed half
space. See Remark 4.1.

The key step in the proof of these results is the existence of finite planes, that is to say, planes
splitting the surface into a finite number of connected components. This fact guarantees that the
surface is parabolic [16] and yields interesting information about the Gauss map of the surface.
So, we can prove:

If a properly immersed minimal surface of finite topology S has a finite plane Σ, then the Gauss
map of S takes on the two normal vectors of Σ a finite number of times. As a consequence, S
has finite total curvature if and only if it has two non parallel finite planes (see Theorem 3.1 and
Corollary 3.1).

The existence of finite planes have been basically derived from two ingredients. Firstly, from the
non existence results of properly immersed minimal surfaces with planar boundary in truncated
tetrahedral domains stated in Theorem 2.5 and Corollary 4.3, and secondly, from Lemma 4.2,
which is devoted to the geometry of properly immersed minimal discs in a wedge of R

3.
Finally, and as a consequence of all the above ideas, the following characterizations of the plane

have been obtained:
The plane is the only properly immersed minimal surface of finite topology and empty boundary

satisfying either of the following conditions:

(i) There exist two planes meeting the surface into a straight line (which depends on the plane).
See Corollary 3.2.

(ii) The surface has only one end and is disjoint from a closed subset F as in (b). See Corollary
4.4.

(iii) The surface has bounded curvature, only one end and is disjoint from a closed subset F as in
(c). See Corollary 4.5.

Concerning to (i), note that we have not assumed that the surface is embedded, and so, the
straight lines in (i) could be multiple. Furthermore, the same result is false if we only assume that
there is one plane meeting the surface in a straight line, even in the finite total curvature case. See
Figure 13 for a counterexample. Some closely related results can be also found in [2] and [22].

The paper is laid out as follows. In Section 2, we introduce some notation and state some
known results. In Section 3 we study the Gauss map of properly immersed minimal surfaces of
finite topology having finite planes. In Subsection 3.1 we study the relationship between finite
planes and finite total curvature. The deepest results lie in Section 4, where the asymptotic
behavior of properly immersed minimal surfaces with finite topology is studied. So, (a) and (b)
have been proved in Subsections 4.1 and 4.2, respectively, while (c) and (d) have been proved in
Subsection 4.3.
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2 Notation and Preliminaries

By definition, a simple arc in a surface M is a properly embedded curve in M homeomorphic to
an interval. As usual, Sn−1(R) = {x ∈ Rn : ||x|| = R}, R > 0, and if R = 1, we simply write
Sn−1 = Sn−1(1), n = 1, 2.

Let A ⊂ R3 be a non compact subset, and call A[R] the homothetical shrinking

1
R

· (A ∩ S
2(R)

) def= { 1
R

· P : P ∈ A ∩ S
2(R)},

R > 1. Assume that limR→+∞ A[R] = A0 ⊂ S2 in the Hausdorff sense, i.e.,

A0 = {p ∈ R
3 : lim inf

R→∞
d(p, A[R]) = 0}.

Then, we refer to A0 as the base of A, and write B(A) = A0.
Let A1 and A2 be subsets of R3 for which the base is well defined, and assume there are an

open domain Ω in S2 and a real number R0 > 1 such that B(A1) ⊂ Ω ⊂
◦

A2[R], for any R ≥ R0.
Then, it is easy to check that, up to a compact subset,

A1 ⊂ A2. (1)

We will need the following theorems:

Theorem 2.1 (Jorge and Meeks [11]) Let X : A → R3, A ∼=]0, 1]×S1, be a complete immersed
minimal annulus with finite total curvature. Let Σ denote the only plane passing through the origin
and orthogonal to the limit normal vector of X(A) at infinity, and label p : X(M) → Σ as the
orthogonal projection of X(M) on Σ.

Then, p is proper, and up to removing a compact subset, X(A) is a multi sheeted graph of
sublinear growth over Σ. Furthermore, the base of X(A) is well defined and B(X(A)) = S2 ∩ Σ.

By definition, the multiplicity of the annular end is the number of sheets of p, that is to say,
the winding number of B(X(A)) as limit curve. So, the end X(A) is eventually embedded if and
only if the multiplicity is equal to one.

Theorem 2.2 (Fang-Meeks [6]) Let X : M → R3 be a properly immersed minimal surface
contained in a half space H, and assume that X(∂(M)) ⊂ ∂(H). Then,

Supremum{d(X(P ), ∂(H)) : P ∈ M} = +∞,

where d means Euclidean distance.

The following definition will be useful:

Definition 2.1 Let X : M → R3 be a properly immersed minimal surface in R3, and let Σ be
a plane in R

3. We say that Σ is a finite plane for X, (and that X has Σ as finite plane) if, up
to removing a compact subset of M, the set X−1(X(M) − Σ) is empty or contains finitely many
connected components.

We have:

Theorem 2.3 (Meeks, Rosenberg [16]) Let X : M → R3 be a properly immersed minimal
surface with finite topology. If X has a finite plane, then M is of finite conformal type.
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Given A ⊂ R3, the convex hull of A will be denoted as E(A). The symbol ⊥ means orthogonal,
and ‖ means parallel.

Let C be a right solid cylinder over a compact planar domain, and let Σ be a plane transversal
to C, that is to say, meeting C in a compact set. Label Σ+ and Σ− as the the closed half spaces
bounded by Σ. By a truncated solid cylinder we mean any closed subset of C eventually disjoint
from Σ− and containing C ∩ Σ+.

A wedge W of R3 is the non void intersection of two closed half spaces H and H ′ with non
parallel boundary planes. The planes ∂(H) and ∂(H ′) make in W and angle a(W ) ∈]0, π[. Slabs
and half spaces can be considered as wedges of angles 0 and π, respectively. If a(W ) ∈]0, π[, the
straight line l(W ) = ∂(H) ∩ ∂(H ′) is the axis of W. If a(W ) = 0 (resp., a(W ) = π), an axis l(W )
of W is any straight line in the only plane which is parallel to ∂(H) and bisects the slab W (resp.,
any straight line in ∂(W )). If a(W ) > 0, the bisector plane of W is the plane Π(W ) containing
l(W ) and splitting W into two pieces symmetric with respect to Π(W ). If W is a slab, Π(W ) is
the plane parallel to W and bisecting it. The plane Π(W ) is uniquely determined, except when
a(W ) = π in which case Π(W ) depends on the axis l(W ). If W is a wedge and C is a solid circular
cylinder with axis parallel to l(W ) and meeting W, then E(W − C) is said to be a truncated wedge.

Given a plane Π ⊂ R3, a domain S in Π is said to be a sector if S is the intersection of Π and
a wedge W whose axis is not parallel to Π. If 0 < a(W ) < π, the angle made in S by the two half
lines in ∂(S) will be denoted as a(S). By definition, strips and half planes are sectors of angles 0
and π, respectively.

We will need the following result:

Theorem 2.4 ([14]) Let S be a properly immeresed minimal surface contained in a wedge W of
angle less than π, and assume there exists a half space H such that ∂(S) ⊂ H and ∂(H) is not
parallel to l(W ).

Then S ⊂ E(∂(S)).

Let W and W ′ be two wedges satisfying: a(W ) ∈ [0, π[, Π(W ) = {x3 = 0}, l(W )⊥{x2 = 0},
a(W ′) ⊂]0, π[, Π(W ′) = {x2 = 0}, l(W ′)⊥{x3 = 0}, and {(x1, 0, 0) : x1 ≥ 0} ⊂ W ∩W ′. Consider
the truncated tetrahedral domain C = W ∩W ′∩{x1 ≥ 0}. Then, denote by: F1(C), F2(C) the two
faces of ∂(C) in ∂(W ); F+(C), F−(C) the two faces of ∂(C) in ∂(W ′); and F0(C) the face of ∂(C)
in {x1 = 0}. Only F0(C) is compact, and it consists of either a rectangle, a segment or a point.
Moreover, denote by h(C) and o(C) the height and the width of the base of C, respectively. We also
call ϑ(C) def= a(W ) and �(C) def= a(W ′). See Figure 2 for details. We call ∂(F+(C)) the polygonal
boundary of F+(C) as planar domain, and in a similar way, we define ∂(F−(C)). Finallly, call
Υ(C) def= ∂(F+(C)) ∪ ∂(F−(C)).

A deep study of the domains C as above which admit a minimal surface spanning Υ(C) can
be found in [14]. These surfaces can be used, in a elaborated way, as barriers for the maximum
principle application, leading to some non existence results for non flat minimal surfaces S ⊂ C
whose boundary lies in the vertical faces F+(C) and F−(C) :

Theorem 2.5 ([14]) There exists an increasing analytical diffeomorphism

[0, π[→ [0, π[, θ → ρθ,

and and a positive continuous map

A →]0, +∞[, (θ, ρ) → oθ,ρ,

where A = {(θ, ρ) : θ ∈ [0, π[, ρ ∈]ρθ, π[}, such that:

(a) If (θ, ρ), (θ′, ρ′) ∈ A and θ ≥ θ′, ρ ≤ ρ′, then oθ,ρ ≥ oθ′,ρ′ .
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Figure 2: The domain C.

(b) If C is a domain like in Figure 2 such that h(C) = 1, (ϑ(C), �(C)) ⊂ A, o(C) > oϑ(C),�(C),
and S ⊂ C is a connected properly immersed minimal surface with boundary ∂(S) lying in
F+(C) ∪ F−(C), then S is a planar domain (lying in either F+(C) or F−(C)).

3 Finite planes and Gauss map.

This section is devoted to the study of the Gauss map of properly immersed minimal surfaces with
finite topology. So, we are going to prove that the normal vector of a finite plane is taken by the
Gauss map a finite number of times. This result was inspired by some nice ideas in [6].

First of all, we introduce the following notation.
Let Σ0 be the plane {x ∈ R

3 : 〈x, v〉 = 0}, where v is a non zero vector and 〈, 〉 is the
Euclidean metric in R3. Label Σt = {x ∈ R3 : 〈x, v〉 = t}, Σ+

t = {x ∈ R3 : 〈x, v〉 > t} and
Σ−

t = {x ∈ R3 : 〈x, v〉 < t}, t ∈ R.
Let X : A → R3 be a properly immersed minimal annulus, A ∼=]0, 1]× S1, and denote N : A →

R3 as its Gauss map.
Write At = X−1(Σt), A+

t = X−1(Σ+
t ) and A−

t = X−1(Σ−
t ). The nodal set At consists of a

family of properly immersed analytic curves in A. If P ∈ At ∩ N−1({v,−v}), then there is a cross
of higher order singularity in At at P. In fact, if the Gauss curvature of X(A) at P does not
vanish, then in At near P there are two curves that cross orthogonally at P ; if the Gauss curvature
vanishes, and the multiplicity of the Gauss map at P is k ≥ 2, then, near P, At consists of k + 1
curves that cross at equal angles at P. In the following, we denote by Vt the set At∩N−1({v,−v}),
and refer to v-points as the points of ∪t∈RVt.

The connected components of A − At, (i.e., the ones of A+
t and A−

t ) will be called regions of
A − At. By the maximum principle, for two regions of A − At which have an arc in At as part of
their common boundary, one lies in A+

t and the other lies in A−
t .

Let P ∈ Vt and take a small disk D ⊂ A centered at P such that D ∩ Vt = {P} and At ∩ D
divides D into at least four components, all of them having P in its boundary. Among these
components, there are two in A+

t and two in A−
t . We say an embedded curve γ in A+

t ∪ Vt (resp.,
A−

t ∪ Vt) passes through P ∈ Vt if P ∈ γ and the component of γ ∩ D which contains P crosses
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two distinct components of D ∩A+
t (resp., D ∩A−

t ). Hence, if γ ⊂ A+
t ∪ Vt (resp., γ ⊂ A−

t ∪ Vt) is
an embedded loop passing through P ∈ Vt, then the two connected components of A − γ contain
a region of A−

t (resp., A+
t ).

We need the following lemma.

Lemma 3.1 Let t0 ∈ R, and assume that either A−
t0 is empty or it has finitely many regions.

Then, up to removing a compact piece of A, either A−
t is empty or it has finitely many regions,

t ≥ t0. Moreover, the set ∪t≥t0Vt is finite.

Proof : Up to removing a compact subset of A, we can assume that: ∂(A) is analytic, ±v /∈
N(∂(A)), and the collection of points B in ∂(A) whose tangent line is orthogonal to v is a finite
set. Hence, it is not hard to see that �(At ∩ ∂(A)) ≤ �(B), t ∈ R.

Let Ω be a region of A − At, t ∈ R. During the proof, ∂(Ω) = (Ω − Ω) ∪ (∂(A) ∩ Ω).
By the maximum principle, ∂(Ω) − ∂(A) does not contain any homotopically trivial embedded
loop. Thus, the domains Ω such that ∂(Ω) ⊂ At are not compact, and from Theorem 2.2,
Supremum{dist(X(P ), Σt) : P ∈ Ω} = +∞.

Therefore: (i) if Ω contains an embedded loop homotopic to ∂(A), then either Ω is homeomor-
phic to a closed annulus minus a (maybe empty) set of boundary points, or it is homeomorphic to
a closed disk minus an interior point; (ii) if Ω does not contain an embedded loop homotopic to
∂(A), then Ω is homeomorphic to a closed disk minus a (maybe empty) set of boundary points;
and (iii) if Ω contains an embedded loop homotopic to ∂(A), but Ω does not, then Ω − ∂(A) is
homeomorphic to an open disk and ∂(Ω) contains a v-point. In case (iii), the region Ω is said to
be special, and there is a v-point P ∈ ∂(Ω) such that, for a small disk D centered at P, D ∩ Ω
contains two connected components sharing P as boundary point. Any v-point in ∂(Ω) with this
property will be called special.

Claim 1: Let t ∈ R, and suppose there is an embedded loop Γ in A−
t ∪ Vt passing through a

point of Vt. Then, Γ is homotopic to ∂(A).
The loop Γ bounds a compact region R in A containing points of A+

t , and so, R contains a
region of A+

t with compact closure. By the maximum principle, Γ is not homotopically trivial, and
so, it is homotopic to ∂(A). This proves the claim.

Claim 2: Let t ∈ R. Then, A−
t ∪ Vt does not contain two embedded loops Γ, Γ′ satisfying: (i)

they are homotopic to ∂(A), (ii) Γ ∩ Γ′ ⊂ Vt, (iii) either Γ′ passes through a point P ∈ Vt − Γ or
Γ′ intersects a region of A−

t which is disjoint from Γ.
As some consequences: (a) the intersection of the boundaries of two distinct connected compo-

nents of A−
t contains at most two v-points; (b) the boundary of a special region of A−

t contains at
most one special v-point; (c) if A−

t contains a special region, then, for any t′ > t, A−
t′ contains an

embedded loop homotopic to ∂(A); (d) if A−
t contains an embedded loop homotopic to ∂(A), then

A−
t contains no special region; and (e) if A−

t contains finitely many connected components, then
Vt is finite.

We reason by contradiction, and suppose there are two loops Γ and Γ′ satisfying (i), (ii) and
(iii) in Claim 2. The loops Γ and Γ′ bound two compact domains R and R′, respectively, in A,

and the open set (
◦
R′ −R) ∪ (

◦
R −R′) contains a region of A+

t bounded by curves in At, which
contradicts the maximum principle.

Let us see (a). Let Ω′ and Ω′′ be two distinct connected components of A−
t , and suppose that

∂(Ω′)∩∂(Ω′′)∩Vt contains three distinct points P1, P2 and P3. Let γ′ and γ′′ denote two embedded
arcs in Ω′∪{P1, P2} and Ω′′∪{P1, P2}, respectively, joining P1 and P2. The loop Γ = γ′∪γ′′ passes
through P1 and P2, and from Claim 1, it is homotopic to ∂(A). Likewise, we can find a loop Γ′ in
Ω′ ∪ Ω′′ ∪ {P1, P3} passing through P1 and P3 and homotopic to ∂(A). Without loss of generality,
we can suppose that Γ∩Γ′ = {P1}. Hence, Γ and Γ′ satisfy (i), (ii) and (iii) in Claim 2, which is a
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contradiction. To prove (b), let Ω′ be a special region of A−
t . If P ∈ ∂(Ω′)∩ Vt is a special v-point,

there is an embedded loop Γ in Ω′ ∪ {P} passing through P, and From Claim 1, Γ is homotopic to
∂(A). Suppose that ∂(Ω′) ∩ Vt contains another special v-point P ′. The same argument gives the
existence of an embedded loop Γ′ in Ω′ ∪ {P ′} passing through P ′, homotopic to ∂(A). Note that
such loops Γ and Γ′ and be chosen disjoint. Therefore, Γ and Γ′ satisfy (i), (ii) and (iii) in Claim
2 getting a contradiction again.

To prove (c), assume that Ω is a special region. Since Ω contains a special v-point P0 in its
boundary, we can construct as above an embedded loop Γ in Ω ∪ {P0} passing through P0. From
Claim 1, we deduce that Γ is homotopic to ∂(A). Then, note that Γ ⊂ A−

t′ , t′ > t.
The proof of (d) is similar to the ones of (a) and (b).
Finally, to prove (e), note that each point of Vt lies in the boundary of a finite collection of

connected components of A−
t . So, if �(Vt) = ∞, we can find two regions Ω′ and Ω′′ in A−

t (which
maybe the same) containing infinitely many v-points in their common boundary, which contradicts
either (a) or (b) and proves the claim.

In accordance with Claim 2, there exists at most one special region in A−
t , t ∈ R : otherwise,

reasoning like in the proof of (b) in Claim 2, we can construct two embedded loops satisfying the
conditions (i), (ii) and (iii) in Claim 2, which is absurd. Furthermore, in accordance with (c) and
(d) in Claim 2, there is at most one t ∈ R such that A−

t contains a special region.
It is clear that any region in A−

t lies in a region of A−
t′ , t ≤ t′. For any t ∈ R, denote by nt the

number of regions of A−
t .

We say that t ∈ R is of the first kind if and only if there is an ε > 0 such that, for any
t′ ∈]t, t+ε[, A−

t′ contains a region disjoint from A−
t . From Theorem 2.2 and the maximum principle,

any region in A−
t′ disjoint from A−

t intersects ∂(A), and so, it contains an open arc γ in ∂(A)
whose closure joins two points of At′ , t′ ∈]t, t + ε[. Hence, the collection of points P0 ∈ γ such
that 〈X(P0), v〉 = Minimum{〈X(P ), v〉 : P ∈ γ}, is a non empty and discrete set contained in
At ∩B. Therefore, there are at most �(B) values of the first kind in R, and if t is of the first kind,
nt′ ≤ nt + �(B), t′ ∈]t, t + ε[.

Call I = {t ∈ R : A−
t contains an embedded loop homotopic to ∂(A)} �= ∅, and take tI

def=
Infimum I. It is not hard to see that I is open, and so, I =]tI , +∞[, where maybe tI = −∞. From
(c) and (d) in Claim 2, A−

t′ does not contain any special region, t′ �= tI , and if A−
t contains a special

region then t = tI .
Let t0 as in the hypothesis of the lemma.

Claim 3: For any t ≥ t0, nt and �(Vt) are finite numbers. Moreover, nt ≤ nt0 + �(B) and
Vt ≤ (nt0 + �(B))2.

From Theorem 2.2, any region of A−
t intersects A−

t0 ∪ ∂(A), t ≥ t0.

It is clear that at most nt0 regions of A−
t intersect A−

t0 . If a region of A−
t meets ∂(A), then

it contains an open arc lying in ∂(A) whose closure joins two points of At. Reasoning as above,
it contains at least a point of B, and so, there exist at most �(B) such regions. We deduce that
nt ≤ nt0 + �(B) < ∞, and in accordance with (e) in Claim 2, �(Vt) < ∞. As a matter of fact, (a)
and (b) in Claim 2 and a combinatorial argument give �(Vt) < n2

t ≤ (nt0 + �(B))2.

To complete the proof of the lemma, we reason by contradiction and suppose that ∪t≥t0Vt

contains infinitely many points. From Claim 3, there exists an increasing sequence {tk}k∈N ⊂
[t0, +∞[ such that Vtk

�= ∅, k ∈ N. Observe that Claim 2 and Claim 3 imply that the sequences
{�(Vtk

)}k∈N and {ntk
}k∈N are both bounded. Up to removing a finite set of values in the sequence,

we can assume that tI /∈ [t1, t∞[, where t∞ = Supremum{tk : k ∈ N}. Furthermore, since the
collection of values of the first kind is a finite set, we can also suppose that [t1, t∞[ does not
contain any such value. On the other hand, Theorem 2.2 implies that no region in A−

tk+1
is disjoint

from A−
tk
∪∂(A), and thus, any region in A−

tk+1
contains a region of A−

tk
. Hence, ntk+1 ≤ ntk

, k ∈ N.
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Since tI /∈ [t1, t∞[, any v-point in Vtk
lies in the boundary of two distinct regions of A−

tk
, and these

two regions lie in the same region of A−
tk+1

. So, in fact ntk
> ntk+1 , k ∈ N, which contradicts that

{ntk
}k∈N is a sequence of non negative integer numbers. �

Now we can prove that:

Theorem 3.1 Let X : M → R3 be a properly immersed non flat minimal surface in R3 of finite
topology. Assume that X has a finite plane Σ.

Then, the collection of points whose normal vector is orthogonal to Σ is a finite set.

Proof : Since M has finite topology, there is a compact subset K ⊂ M such that M− ◦
K is the

union of a finite collection of once punctured closed disks. Moreover, since Σ is a finite plane,
we can choose K in such a way that (M− ◦

K) ∩ X−1(R3 − Σ) contains finitely many connected
components.

Since K contains finitely many points whose tangent plane is parallel to Σ, it suffices to prove
the theorem for properly immersed minimal annuli. The theorem follows from Lemma 3.1. �

3.1 Finite planes and finite total curvature.

We are going to derive some basic consequences from Theorem 3.1.

Corollary 3.1 A properly immersed non flat minimal surface of finite topology X : M → R3 has
finite total curvature if and only if X has two finite non parallel planes.

Proof : The geometry of minimal annular ends with finite total curvature is well known (see [18]
and [11]). As a matter of fact, if X has finite total curvature, any plane Σ is a finite plane for X.

Let X : M → R3 be a properly immersed minimal surface admitting two non parallel finite
planes, where M has finite topology and compact boundary. Thanks to Theorem 2.3, M is of finite
conformal type. Since X has two non parallel finite planes, Theorem 3.1 implies that the Gauss
map N of X has four exceptional values. In accordance with Picard’s Theorem, the conformal
map g = s ◦ N, where s is the stereographic projection from the North pole, extends conformally
to the ends, and thus X has finite total curvature. �

As a consequence of this corollary, the only properly embedded simply connected minimal
surface admitting two non parallel finite planes is the plane. See Xavier [22] for a related result.

Corollary 3.2 Let X : M → R3 be a properly immersed minimal surface of finite topology,
∂(M) = ∅. Assume there exist two non parallel 2 planes Σ1 and Σ2 such that lj

def= X(M) ∩ Σj is
a straight line, j = 1, 2.

Then, X(M) is a plane.

Proof : Since X is proper, the set X−1(lj) consists of finitely many open simple arcs, and so
X−1(R3 − Σj) contains finitely many connected components, j = 1, 2, that is to say, Σ1 and Σ2

are finite planes for X. From Theorem 3.1, X has finite total curvature.
In accordance with Schwarz’s reflection principle, X(M) is invariant under the 180o rotation

about the straight lines lj, j = 1, 2. If l1 ∩ l2 = ∅, the composition of these two rotations gives
either a translation or a screw motion. However, no complete minimal surface with finite total
curvature is invariant under such a rigid motion, and thus, l1 ∩ l2 �= ∅.

2If X has finite total curvature, we can substitute non parallel for distinct, because any such surface of finite
topology does not contain a pair of disjoint straight lines.
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Let A be an annular end of M, A ∼=]0, 1]×S1. As X has finite total curvature, then Osserman’s
Theorem [18] implies that A is conformally diffeomorphic to D − {0}, and the composition of the
Gauss map of X with the stereographic projection is a meromorphic map extending analytically
to 0.

Claim 1 X(A) is a planar embedded end.
Assume for the moment that X(A) includes a non compact connected piece of a line lj , j ∈

{1, 2}. Up to removing a compact piece of A, we can suppose that X(A) is invariant under the
180o rotation about lj . We label Rj as the only antiholomorphic automorphism on A ≡ D − {0}
induced by this rotation (of course, we are understanding that X �= Y ◦ p, where Y : N → R3 is
a minimal immersion and p : M → N is a non trivial covering map). It is clear that Rj extends
conformally to 0 and Rj(0) = 0. Thus, up to a conformal transformation, we can suppose that
Rj(z) = z, z ∈ D. Moreover, X(M) ∩ Σj = lj gives that the fixed point set of Rj is X−1(lj), and
thus X−1(lj) ∩ A consists of two divergent curves.

Now we can prove the claim. Since Σ1 and Σ2 are not parallel, up to relabeling, we can assume
that the limit normal vector of A at the end is not orthogonal to Σ2. So, X(A) ∩ Σ2 �= ∅, and it
contains at least one divergent curve. As X(A) ∩ Σ2 ⊂ l2, X(A) contains a non compact piece of
l2. If the multiplicity of the annular end X(A) is greater than 1 , then A ∩ X−1(Σ2) = X−1(l2)
consists of at least four distinct divergent curves (see Theorem 2.1), which is absurd. Therefore,
the multiplicity is 1 and X(A) is an embedded end. Since X(A) contains a straight line, it is
planar.

Claim 2 Up to a compact set, (l1 ∪ l2) is contained in X(A).
Assume that l1 − X(A) is not compact. Since X(A) is an embedded planar end, we infer that

X(A) ∩ l1 is compact, and so, up to removing a compact piece of A, X(A) ∩ Σ1 = ∅. Hence, the
normal vector at the end of A is orthogonal to Σ1, and thus, it is not orthogonal to Σ2. We deduce
that Σ2 ∩X(A) is not empty and consists of two divergent curves. Therefore, up to a compact set,
l2 ⊂ X(A), and the limit tangent plane at the end of A contains l2. But l1∩ l2 �= ∅ gives Σ1∩ l2 �= ∅.
So, Σ1 is the limit tangent plane at the end of A, and it contains l2. This fact contradicts that
Σ1 ∩ X(A) = ∅, and proves that, up to a compact set, l1 ⊂ X(A). In a similar way, and up to a
compact set, l2 ⊂ X(A), which proves the claim.

To finish the theorem, we distinguish two cases: l1 �= l2 and l1 = l2.
If l1 �= l2, then the limit tangent plane at the end of A is the only plane containing l1∪ l2. Since

A is an arbitrary annular end of M, all the planar ends of M have the same limit tangent plane,
and so, X(M) lies in a slab. Since M is parabolic, we deduce that X(M) is a plane. Assume
now that l1 = l2. In this case all the planar embedded ends contain the same straight line, namely
l

def= l1 = l2. Hence, X−1(P ) contains as many points as ends has M, P ∈ X−1(l). If M has more
than one end, this contradicts a well known consequence of the monotonicity formula for minimal
surfaces (see [12] for details). So M has only one embedded end, i.e., X(M) is a plane. �

It is known that the only properly embedded minimal surface of finite total curvature meeting
a plane in a straight line is the plane [2]. However, there exist complete immersed minimal surfaces
with finite total curvature meeting a plane in a straight line. For instance, take N = C − {0} and

X(z) = Re
∫ z

i

(
i(v−2 + v2)dv, (v2 − v−2)dv, 2dv

)
, z ∈ N.

The surface X(N) has two ends, one of them embedded and of Riemann type, and the other one
asymptotic to Meeks’ Möbius strip. It is not hard to see that X(N) meets the plane {x3 = 0} in
the x1-axis, which is a double straight line in X(N) (See Figure 3).
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Figure 3: Two views of X(N) ∩ {x3 ≥ 0}.

4 The asymptotic behavior of properly immersed minimal
surfaces with finite topology.

In this section is devoted to get some information about the set B(X(M)), where X : M → R3 is
a properly immersed minimal surface with finite topology.

4.1 A characterization of minimal surfaces with finite total curvature.

In this subsection we construct some collections of planar sectors in R3 (see Definition 4.1 below),
that we have called stars of planar sectors, having the property of intersecting at infinity (i.e.,
outside any compact subset) any properly immersed minimal surface with finite topology and
infinite total curvature. As a matter of fact, a complete minimal surface X : M → R3 has finite
total curvature if and only if there is a star of planar sectors eventually disjoint from X(M).

The following notation is required (see Section 2). Let Π be a plane in R3, and let S′ be a
sector in Π. If B is an open Euclidean ball in R3, we refer to S

def= E(S′ −B) as a truncated planar
sector in Π. We call ∂(S) the boundary of S as topological surface. The base B(S) of S is well
defined and consists of an closed arc of the spherical geodesic S

2 ∩ Π0, where Π0 is the only plane
passing through the origin and parallel to Π. Up to translations and up to a compact set, S is
determined by B(S).

Let L be a straight line, and let P0 and Σ be a point in L and a plane orthogonal to L and
not containing P0, respectively. Let C be a double cone in R3 with vertex P0 and axis L, i.e.,
C = {P0 + tv : t ∈ R, v ∈ γ}, where γ is a circle in Σ centered at Σ ∩ L. Call Ω(C) as the closure
of the non convex region of R3 − C. The plane orthogonal to the axis L and passing through the
vertex P0 of C will be denoted by Σ(C), and we also label Hi(C), i = 1, 2, as the two closed half
spaces determined by Σ(C). We define the angle of C as the angle made in Ω(C) by the two straight
lines in C ∩ Π, where Π is any plane satisfying Π⊥Σ(C) and L ⊂ Π. We say that a double cone C′

is close enough to C if the vertex, the angle and the direction of the axis of C′ are close enough to
the ones of C.

Definition 4.1 Let C be a double cone, let F = {S1, . . . , Sr} be a finite family of pairwise even-
tually disjoint truncated planar sectors in R

3, and label |F| = ∪r
j=1Sj . The family F is said to be

a star of planar sectors associated to C if it satisfies:

(a) The planes Π1, . . . , Πr containing S1, . . . , Sr, respectively, are pairwise non parallel and the
angles a(Sj) lie in ]0, π[, j = 1, . . . , r. Moreover, E(|F|) = R3 and C is transverse to F , i.e., the
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Figure 4: |F|, C and Σ(C).

end points of the spherical arcs B(Sj), j = 1, . . . , r, lie in different components of S2−B(Ω(C)).

(b) There exists an Euclidean ball B such that the following property is satisfied by any double
cone C′ close enough to C :

If S ⊂ Hi(C′) is a properly immersed connected minimal surface satisfying S∩(B ∪ (|F|)) = ∅,
∂(S) ∩ Ω(C′) �= ∅ and ∂(S) ∩ Ω(C′) ⊂ Σ(C′), then S ⊂ Σ(C′), i ∈ {1, 2}.

Note that if F is a star of planar sectors associated to C, then F is also a star of planar sectors
associated to any double cone C′ close enough to C.

Next lemma yields a general method for constructing stars of planar sectors associated to double
cones. We are specially interested in those whose base is disjoint from a given finite collection of
spherical geodesics.

Lemma 4.1 (Existence of stars of planar sectors) Let Γ = {γj : j = 1, . . . , s} be a (maybe
empty) family of pairwise distinct spherical geodesics in S2. Label |Γ| = ∪s

j=1γj and V = {γi ∩ γh :
i �= h}. Let Σ0 be a plane in R3 passing through the origin such that γ0 = Σ0 ∩ S2 ≡ B(Σ0) does
not lie in Γ and is disjoint from V.

Then, there exists a double cone C0 with vertex at the origin and a star of planar sectors
F = {S1, . . . , Sr} associated to C0 satisfying Σ(C0) = Σ0 and B(|F|) ∩ |Γ| = ∅.
Proof : Let v be a unit vector orthogonal to Σ0, and let t be the arc length parameter of γ0,
γ0(t) : [0, 2π] → S2, γ0(0) = γ0(2π). Write γ−1

0 (|Γ|) = {t1, . . . , tk}, where t1 < t2 < . . . < tk.
Without loss of generality, we can assume that t1 = 0, and so, tk = 2π.

Let γj(i) ∈ Γ be the geodesic containing γ0(ti), and let vi be the unit tangent vector of γj(i)

at γ0(ti) satisfying 〈v, vi〉 > 0, i = 1, . . . , k. Let V denote a smooth field along γ0 satisfying:
||V (t)|| = 1, 〈V (t), γ0(t)〉 = 0, t ∈ [0, 2π[, V (γ0(ti)) = vi, i = 1, . . . , k − 1, and 〈V (t), v〉 > 0,
t ∈ [0, 2π[. Since the vectors γ′

0(t) and V (t) are linearly independent, t ∈ [0, 2π[, the smooth map
F : [0, 2π]× R → S2 given by:

F (t, s) = expγ0(t)(sV (t)),

satisfies Jac (Fi) (t, 0) �= 0, t ∈ [0, 2π]. Here, exp is the exponential map of the sphere S2.
Hence, it is not hard to find a small enough ε > 0 such that F |F−1(U(ε)) : F−1(U(ε)) → U(ε) is

one to one, where U(ε) is the spherical tubular neighborhood {p ∈ S2 : dist(p, γ0) ≤ ε}.
For any t ∈ [0, 2π], define αt : [−ε, ε] → U(ε) by αt(s) = F (t, s), and note that αt is the piece

of the geodesic F (t, ·) contained in U(ε). In the following, αt will be identified with their image in
S2.
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Let C be a truncated tetrahedral domain satisfying the hypothesis of Theorem 2.5, (b). The sets
B(C) and B(∂(C)) and well defined, and B(∂(C)) = B(F1(C))∪B(F2(C))∪B(F+(C))∪B(F−(C)).
Furthermore, from Theorem 2.5 (a), C can be chosen in such a way that the angles ϑ(C) and �(C)
are greater that zero and as small as we want. Therefore, we can suppose

ϑ(C) > 0, and diameter(B(C)) < ε,

where the diameter is computed in S2.
Let ε′ ∈]diameter(B(C)), ε[, and call U(ε′) the family of double cones C with vertex in {x ∈

R3 : ||x|| < 1} and satisfying:

{p ∈ S
2 : dist(p, γ0) ≤ ε′} ⊂

◦
B(Ω(C))⊂ B(Ω(C)) ⊂

◦
U(ε) .

For any C ∈ U(ε′), label γ0(C) as the spherical geodesic B(Σ(C)).
Let ε0 ∈]ε′, ε[, and let C0 ∈ U(ε′) denote the double cone with vertex at the origin given by:

B(C0) = {p ∈ S
2 : dist(p, γ0) = ε0}.

We are going to see that C0 is the double cone which solves the lemma.
Indeed, if we choose ε′ ∈]diameter(C), ε[ close enough to ε, it is not hard to find a small

positive number κ (which depends on ε′ and C) such that the following property is satisfied by any
C ∈ U(ε′) :

Given t, t′ ∈ [0, 2π[, |t−t′| < κ, and i ∈ {1, 2}, there is a rigid motion R depending on t, t′, i and C
such that the spherical domain R(B(C)) is contained in B(

◦
Hi(C) ∩ Ω(C)), the arcs αt∩B (Hi(C))

and αt′∩B (Hi(C)) do not meet R(B(Fj(C))), j = 1, 2 and both split R(B(C)) into two domains.
(2)

Figure 5:

Let P = {t0, t′1, . . . , t′r+1} ⊂ [0, 2π] be a finite sequence of points satisfying: (i) 0 = t′0 <

t′1 < t′2 < . . . < t′r < t′r+1 = 2π; (ii) t′h /∈ {t1, . . . , tk}, for any h ∈ {1, . . . , r}; and (iii) ||P|| def=
Minimum{t′i+1 − t′i : i = 0, . . . , r} < κ. In the following, and for the sake of simplicity, we label
βj as the geodesic αt′j . Write βi

j(C) = βj ∩B(Hi(C)), for any j ∈ {1, . . . , r}, i = 1, 2 and C ∈ U(ε′),
and see Figure 4.1 for an explanation of this setting.
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Since βj is disjoint from the great circle containing βj+1 and vice versa, we can find a sequence

of planar sectors {T1, . . . , Tr+1}, where Tr+1 = T1, such that B(Tj) = βj and lj
def= Tj ∩ Tj+1 is a

compact segment containing the origin as interior point.
Thus, for any j ∈ {1, . . . , r}, i ∈ {1, 2} and C ∈ U(ε′), we can find a rigid motion Ri

j(C) verifying
that: (i) the property stated in equation (2) holds for R = Ri

j(C) and (t, t′, i) = (tj , tj+1, i); (ii)
the straight line Lj containing lj is disjoint from Ri

j(C)(F0(C)); (iii) Lj passes through the interior
of Ri

j(C)(C), meeting both faces Ri
j(C)(F+(C)) and Ri

j(C)(F−(C)) into a point.
Observe that, up to a homothetical expansion centered at the origin, the length of the segments

lj can be as large as we want, and the same holds for the length of lij(C) def= lj ∩ Hi(C). Hence,
and without loss of generality, we can suppose that the length of Lj ∩ Ri

j(C)(C) is less than the
length of lij(C), for any j ∈ {1, . . . , r}, i ∈ {1, 2} and C ∈ U(ε′). Therefore, and up to composing
with a translation in the direction of Lj which depends on i and C, we can assume that the closed
segment Lj ∩ Ri

j(C)(C) lies in the interior of the segment lij(C), for any j ∈ {1, . . . , r}, i ∈ {1, 2}
and C ∈ U(ε′).

If we label A1 = Ri
j(C)(C) and A2 = Hi(C) ∩ Ω(C), these subsets satisfy the conditions for

which equation (1) holds, and thus it is not hard to find an Euclidean ball B such that ∪r
j=1lj ⊂ B

and
Ri

j(C)(C) − B ⊂ Hi(C) ∩ Ω(C), ∂(Tj) ∩ Ω(C) ⊂ B,

for any j ∈ {1, . . . , r}, i ∈ {1, 2}, and C ∈ U(ε′). Then, we define Sj = E(Tj − B), j = 1, . . . , r,
and F = {S1, . . . , Sr}. It is clear that F is a family of pairwise disjoint planar sectors. We are
going to see that F is a star of planar sectors associated to C0. Obviously, and thanks to equation
(2), (a) in Definition 4.1 holds.

Figure 6: The surface S0.

Let C ∈ U(ε′), and following the notation fixed in Definition 4.1, let S be a properly immersed
non flat minimal surface in Hi(C). Assume that S ∩ (B ∪ (∪r

j=1Sj)
)

= ∅, ∅ �= ∂(S) ∩ Ω(C) ⊂ Σ(C)
and S ∩ Hi(C) �⊆ Σ(C). Then, taking into account the choice of B, there exists j ∈ {1, . . . , r}
and a non void connected component S0 of S ∩ Ω(C) satisfying that: (i) S0 passes through the
region in Hi(C) ∩ Ω(C) bounded by the truncated sectors Sj and Sj+1 (see Figure 6), and so, is
must also pass through Ri

j(C)(C) from Ri
j(C)(F+(C)) to Ri

j(C)(F−(C)); (ii) S0 does not touch
Ri

j(C)
(∪2

i=0Fi(C)
)
; and (iii) ∂(S0) is disjoint from Ri

j(C)(C). Hence, the surface Ri
j(C)−1(S0)∩C

contradicts (b) in Theorem 2.5, getting a contradiction. Therefore, (b) in Definition 4.1 holds.
Since |F| = ∪r

j=1βj = ∪r
j=1αt′j , and αt′j are disjoint from |Γ|, j = 1, . . . , r, |F| ∩ |Γ| = ∅. This

concludes the proof. �

If Γ = ∅, the proof of the lemma is very simple. Indeed, we can take V (t) as the only orthogonal,
unitary and parallel field along γ0 satisfying 〈V (t), v〉 > 0. Now, the map F is injective in [0, 2π[×]−
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π
2 , π

2 [, and so, the truncated tetrahedral domain C used in the proof (and satisfying the hypothesis
of Theorem 2.5, (b),) can be chosen arbitrarily. In this case, take the sectors Tj satisfying that:
(i) they are orthogonal to Σ0 and symmetric with respect to this plane; (ii) a(Tj) = a(Th), j �= h,

where α
def= a(Tj), j = 1 . . . , r, is greater than 2diameter(B(C)); (iii) the angle made by the planes

containing Tj and Tj+1 is small enough in terms of ϑ(C), in such a way that (2) holds (and so,

r must be large enough); and (iv) lj = lh, j �= h, where l0
def= lj , j ∈ {1, . . . , r}, is a segment

orthogonal to Σ0, symmetric with respect to Σ0, passing through the origin and of length greater
than 2o(C). Finally, choose C0 any double cone with vertex at the origin, axis orthogonal to Σ0

and angle lying in ]2diameter(B(C)), α[, and define B and Sj as in the proof of the lemma. The

star of planar sectors F def= {S1, . . . , Sr} associated to C0 so constructed is said to be simple.
Since the approach to the existence of barriers in [14] is constructive, it can be applied to

numerical algorithms. Hence, the domains C satisfying the hypothesis of Theorem 2.5, (b), and
thus, the star of sectors F in Lemma 4.1, can be determined by using a computer.

Now we can prove:

Theorem 4.1 Let X : M → R
3 be a properly immersed minimal surface in R

3 of finite topology.
Then, X has finite total curvature if and only if there exists a star of planar sectors F (asso-

ciated to a double cone C) such that X(M) is eventually disjoint from |F|.

Proof : Since M has finite topology and compact boundary, it suffices to prove that the theorem is
valid for annular ends X : A → R3, A ∼=]0, 1]× S1. Furthermore, the theorem trivially holds when
X(M) lies in a plane. Hence, in the following, we will suppose that M = A is an annulus and X
is non flat.

Suppose that X(A) ∩ |F| is compact, where F = {S1, . . . , Sr} is a star of planar sectors
associated to a double cone C, and let us see that X |A has finite total curvature.

From Definition 4.1, (b), the boundary of any connected component of X(A)− Σ(C) intersects
X(∂(A))∪B∪(X(A)∩|F|). As X is proper, then X(A)−Σ(C) has a finite number of non compact
connected components, and therefore, up to removing a compact subset of A, Σ(C) is a finite plane
for X. The same argument works for double cones close enough to C, and thus, X admits infinitely
many non parallel finite planes. Lemma 3.1 and Mo-Osserman Theorem [19] (or Theorem 3.1)
imply that X |A has finite total curvature.

To finish the proof, assume now that X has finite total curvature. From Theorem 2.1, the
base B(X(M)) is well defined and B(X(M)) = ∪s

j=1γj , where the curves γj are pairwise distinct
spherical geodesics in S2. From Lemma 4.1, there exists a star of sectors F associated to a double
cone C satisfying B(|F|) ∩ B(X(M)) = ∅. It is not hard to see that |F| ∩X(M) is compact, which
completes the proof. �

As a consequence, we have:

Corollary 4.1 (Cone Lemma, Hoffman-Meeks [9]) There exists a shallow enough double cone
C such that the following statement holds:

If X : A → R3 is a properly immersed minimal annulus, A ∼=]0, 1]×S1, and X(A) is eventually
disjoint from C, then X has finite total curvature.

Proof : We use Lemma 4.1 to construct a simple star of planar sectors F associated to a double
cone C0. Obviously, there exists a shallow enough double cone C such that |F| ∩ Ω(C) is compact
(See Figure 7). Assume that X(A)∩C is compact. By the convex hull property (see [9] or Theorem
2.4), the closure of X(A)∩ (R3 −Ω(C)) is compact, and so, X(A)∩ |F| is compact. In accordance
with Theorem 4.1, X has finite total curvature. �
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Figure 7: A two dimensional view of |F| and C.

4.2 Minimal surfaces with flat ends.

In this subsection we obtain a characterization of minimal surfaces with planar ends.
We start with the following Lemma, which contains quite a lot of information about the geom-

etry of properly immersed minimal discs with boundary in a wedge of R3.

Figure 8: W and X(U).

Lemma 4.2 Let W ⊂ {x3 ≥ 0} be a wedge of satisfying: a(W ) < π, l(W ) is the x2-axis, and
Π(W ) = {x1 = 0}. Let X ≡ (X1, X2, X3) : U → R3 be a proper conformal minimal immersion,
where U is homeomorphic to a closed disc minus a boundary point. Assume that X(U) ⊂ W and
X3(∂(U)) is bounded (see Figure 8).

Then, X(U) lies in a slab S. Moreover, if X3(U) is not bounded, then:

(a) There exists T > 0 such that X−1
3 ([T, +∞[) is a simply connected graph over any plane Λ

parallel to S.

(b) If {Pn}n∈N ⊂ U and limn→∞ X3(Pn) = +∞, then limn→∞ N(Pn) = v0, where N is the Gauss
map of X and v0 is orthogonal to Λ.

Proof : There is t0 > 0 large enough such that {x3 ≥ t0} ∩ X(∂(U)) = ∅.
In the following, and up to the translation x → x − (0, 0, t0), we suppose that X(U) ⊂ {x3 ≥

−t0} and X3(∂(U)) ⊂ {x3 < 0}. For simplicity, the wedge (0, 0,−t0) + W will be also denoted by
W.

If X−1
3 (0) = ∅, X(U) lies in the solid horizontal cylinder W ∩ {x3 < 0} and the lemma holds.
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In what follows, we assume that X−1
3 (0) �= ∅. By Theorem 2.2, we deduce that, in fact, X−1

3 (t) �=
∅, t ≥ 0.

Claim 1:For any t ≥ 0, Ωt
def= X−1

3 (] −∞, t]) and Ut
def= X−1

3 ([t, +∞[) are simply connected.
In particular, ∂(Ut) = X−1

3 (t) is a simple arc, t ≥ 0.
Let Ω be a connected component of Ut, t ≥ 0. Thanks to Theorem 2.4, X2(∂(Ω)) is not bounded

neither from above nor from below. On the other hand, Theorem 2.2 implies that any connected
component of Ωt contains ∂(U), and so, Ωt is connected, t ≥ 0. Therefore, any connected component
of Ut is bounded by only one simple arc whose image under X2 is the whole real line, t ≥ 0. Since
X is proper, we deduce that Ut contains a finite number of connected components, and so, Ωt is
simply connected and bounded by a finite set of pairwise disjoint, divergent and regular simple
arcs, and this for any t ≥ 0. In particular, no point of Ut has vertical normal vector, t ≥ 0. Assume

Figure 9: Ωt, Ut and Dt.

that Ut is not connected, that is to say, Ut contains at least two connected components, t ≥ 0.
Then we can find a closed domain Dt ⊂ Ωt homeomorphic to a closed disc minus one boundary
point and satisfying that ∂(Dt)∩∂(U) = ∅ and ∂(Dt)− ∂(Ωt) is compact (see Figure 9). From [5],
Dt is parabolic, and so, there exist an homeomorphism F : Dt → D − {1} which is holomorphic

on
◦

Dt (see [7]). Since X3 ◦ F−1 is bounded and continuous on D − {1}, harmonic in D, and it is
constant and equal to t in a neighborhood of 1 in ∂(D), then X3 ◦ F−1 extends continously to D

taking the value t on 1. Therefore, X(Dt) is asymptotic at infinity to the plane {x3 = t}.
Let t′ > t. From Theorem 2.2, Ut′ meets any connected component of Ut, and so, reasoning

as above, we can find a closed domain Dt′ ⊂ Ωt′ homeomorphic to D − {1} and satisfying that
Dt′ ⊂ Dt, ∂(Dt′)∩∂(U) = ∅ and ∂(Dt′)−∂(Ωt′) is compact. As above, X(Dt′) must be asymptotic
at infinity to the plane {x3 = t′}, which gets a contradiction (t �= t′!!) and proves the claim.

Label X∗
3 as the harmonic conjugate of X3, and define h : U0 → {z ∈ C : Re(z) ≥ 0},

h(P ) def= X3(P ) + iX∗
3 (P ). As a consequence of Claim 1, the third coordinate function X3 has no

singular point in U0, and thus, h is a holomorphic and injective function. As U0 is parabolic (see
[5]), h(U0) = {z ∈ C : Re(z) ≥ 0}.

In what follows, we identify Ut ≡ h(Ut) = {z ∈ C : Re(z) ≥ t}, t ≥ 0, and if t ≤ 0, we label
Ut = {z ∈ C : Re(z) ≥ t} too.

Note that the third holomorphic 1-form in the Weierstrass representation of X(U0) is given
by Φ3(z) = dz, z ∈ U0, and the Gauss map g of X is a zero-free holomorphic function in U0.
Take t > 0, and let Qt be the collection of planes whose intersection with W lies in the open slab
{0 < x3 < t}. Take Υ ∈ Qt, and label Υ+ as the connected component of R3 − Υ containing
X(Ut). Reasoning as in Claim 1, the family of planes which are parallel to Υ induces a foliation
of X−1(Υ+) by simple arcs, and so, g(Ut) omits the two normal vectors of Υ. Hence, g omits on
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Ut the collection Vt of normal vectors of planes Υ ∈ Qt. It is clear that Vt is an open subset of
R ∪ {∞} ⊂ C containing 0 and ∞, and invariant under the antipodal map. In particular, g omits
on Ut, t > 0, more than three points of C. Note that Vt ⊂ Vt′ , t ≤ t′, and label V = ∪t>0Vt. It is
clear that V is the open arc in R∪ {∞} defined by the normal vectors of the planes meeting W in
l(W ).

In the following, we call A = ∩t≥0g(Ut) and A0 = {z ∈ C : lim inft→∞ χ(z, g(Ut)) = 0}, where
χ is the standard metric in the Riemann sphere. Note that V ∩ A = ∅ and A ⊂ A0.

Claim 2. A0 ∩ V = ∅. In particular, if t > 0 is large enough, X(Ut) is a minimal graph.
A point w ∈ C belongs to A0 if and only if there exist a sequence {zn}n∈N in U0 satisfying

limn→∞ Re(zn) = +∞ and limn→∞ g(zn) = w. Let w ∈ A0, and take {zn}n∈N ⊂ U0 such a
sequence. Up to a rigid motion, we can suppose that w �= 0,∞ (in this case and if necessary,
choose a new W containing X(U) but keeping l(W ) and Π(W ) invariant).

Let Sn denote the surface defined by the homothetical shrinking 1
X3(zn) · (−X(zn) + X(U0)).

To be more precise, define the Weierstrass data gn(u) = g (Re(zn)u + zn) , Φ3(u) = du on U−1,
and consider the associated minimal immersion:

Xn(u) =
∫ u

0

(
1
2
(

1
gn(v)

− gn(v)),
i

2
(

1
gn(v)

+ gn(v)), 1
)

dv.

As X3(z) = Re(z), z ∈ U0, it is clear that Sn = Xn(U−1).
Since the family {(gn)|U−1+ε : n ∈ N} omits three values of C, and this holds for any ε > 0, then

{gn : n ∈ N} is normal on
◦

U−1 . So, up to taking a subsequence, {gn}n∈N converges on compact

subsets of U−1, as n → ∞, to a meromorphic function G :
◦

U−1→ C. Therefore, the sequence

{Xn}n∈N converges on compact subsets of
◦
U−1 to Y :

◦
U−1→ R3, where

Y (u) =
∫ u

0

(
1
2
(

1
G(v)

− G(v)),
i

2
(

1
G(v)

+ G(v)), 1
)

dv.

Assume that G is constant, i.e., G ≡ w (remember that G(0) = w). In this case, Y (
◦
U−1) is a half

plane whose normal vector projects stereographically on w. Since X(U0) ⊂ W and X3(z) = Re(z),
the sequence { 1

Re(zn)
·X1(zn)}n∈N is bounded, and so, there exists a wedge W ′ such that W ⊂ W ′,

a(W ′) = a(W ) and ∪n∈NSn ⊂ W ′. This implies that Y (
◦
U−1) ⊂ W ′, and so, w ∈ R − V.

Suppose now that G is not constant. Hence, G is holomorphic and G(0) = w. In particular, G
is open. Label D(z, R) ⊂ C as the disc of radius R centered at z, and take R ∈]0, 1[ and ε > 0 such
that D(w, 2ε) ⊂ G(D(0, R)) − G(∂(D(0, R))). Since {gn}n∈N → G uniformly on D(0, R), there is
N ∈ N such that D(w, ε)∩gn(∂(D(0, R))) = ∅, n ≥ N. By Hurwitz theorem, D(w, ε) ⊂ gn(D(0, R)),

n large enough, and thus, D(w, ε) ⊂ ∩n∈Ng(U(1−R)Re(zn)) = ∩t≥0g(Ut). This means that w ∈ ◦
A .

Summarizing, we have proved that:

A ⊂ A0 ⊂ (R − V )∪ ◦
A .

Taking into account that A0 is a closed subset of C, Fr(A0)
def= A0−

◦
A0⊂ A0−

◦
A⊂ R − V. Hence,

any connected component of A0 − (R − V ) is open and closed in C − (R − V ), and so, either

A0 ⊂ (R− V ) or C− (R− V ) ⊂ A0. If the second possibility holds, V ⊂ A0, that is to say, V ⊂ ◦
A,

which is obviously absurd. This proves that A0 ⊂ R − V.
Finally, since g(Ut) is connected and lies in an arbitrarily small neighborhood of R− V, t large

enough, the image under the Gauss map of X(Ut) lies in a hemisphere of S2. It is not hard to see
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that X(Ut) is a graph over, for instance, the plane {x1 = 0}, t large enough. This concludes the
claim.

Label l1 and l2 as the two parallel boundary lines of {x3 = 0}∩W, and let Wj denote the smallest
wedge in {x3 ≥ 0} satisfying l(Wj) = lj and X(U0) ⊂ Wj , j = 1, 2. Since X(∂(U0)) ⊂ {x3 = 0},
one of the two half planes in ∂(Wj) lies in {x3 = 0}, j = 1, 2, and so, W1∩W2 is the truncated wedge
bounded by the two half planes Π′

1 ⊂ ∂(W1), Π′
2 ⊂ ∂(W2) that are not contained in {x3 = 0}, and

the strip {x3 = 0} ∩ W. Let W0 denote the only wedge satisfying W0 ∩ {x3 ≥ 0} = W1 ∩ W2, and
observe that X(U0) ⊂ W0. Let Πj denote the plane containing Π′

j , j = 1, 2.

Claim 3. lim inft→+∞
d(X(∂(Ut)),Πj)

t = 0, j = 1, 2, where d means Euclidean distance.

Assume there is j ∈ {1, 2} such that lim inft→+∞
d(X(∂(Ut)),Πj)

t = C > 0. Then, it is not
hard to find a wedge W ′

j ⊂ {x3 ≥ 0} satisfying: l(W ′
j) = lj , a face of ∂(W ′

j) lies in {x3 = 0},
a(W ′

j) < a(Wj) (and thus, W ′
j ⊂ Wj), and X(Ut′) ⊂ W ′

j , t′ > 0 large enough.
Let us see that X(U0) ⊂ W ′

j . Otherwise, X(U0) − W ′
j would be a properly immersed minimal

surface in the solid cylinder W ∩{0 ≤ x3 ≤ t′} and with planar boundary lying in ∂(W ′
j)−{x3 = 0}.

Using Theorem 2.2, we would deduce that X(U0)− W ′
j is a collection of planar domains, which is

absurd. Therefore, W ′
j contains X(U0) and is smaller that Wj , which contradicts the choice of Wj

and proves the claim.

Claim 4. For any a ∈ R, lim supt→+∞
|X2(t+ai)|

t = 0.

Note that d X2(t+ai)
dt = − 1

2 Im(g(t+ai)+ 1
g(t+ai) ), and so, Claim 2 gives limt→+∞

d X2(t+ai)
dt = 0.

The claim follows easily.

Now we can prove the lemma. Label U+
0 = {z ∈ U0 : Im(z) ≥ 0} and U−

0 = {z ∈ U0 :
Im(z) ≤ 0}. Since X is proper and X(∂(U0)) ≡ X({ia : a ∈ R}) lies in the strip {x3 = 0} ∩ W0,
lim|t|→+∞ |X2(it)| = +∞. On the other hand, as we have mentioned at the beginning of the proof
of the lemma, X2(∂(U0)) is not bounded neither from above nor from below. Hence, and without
loss of generality, we can assume that limt→+∞ X2(it) = +∞ and limt→−∞ X2(it) = −∞. From
Claim 4, the boundary of X(U+

0 ) lies in a cone, and the same holds for X(U−
0 ). Thus, Theorem

2.4 gives that X(U+
0 ) lies in the convex hull of its boundary, and the same occurs for X(U−

0 ).
Therefore, X(U0) ⊂ W ′

0 ⊂ W0, where W ′
0 = E (({x3 = 0} ∩ W0) ∪ X([0, +∞[)) . So, taking into

account the definition of W0 and Claim 3, it is not hard to deduce that

lim inf
t→+∞

d(X(t), Πj)
t

= 0, j = 1, 2.

Hence, labeling vj as the normal vector of Πj pointing to W0, the harmonic function fj : U0 → R,

fj(z) def= 〈X(z), vj〉 satisfies: (i) it is bounded from below; (ii) |fj| is bounded on ∂(U0); and
(iii) lim inft→+∞

fj(t)
t = 0, j = 1, 2. By Jorgensen Theorem (see [1] [pp.164, 284]), fj is bounded,

j = 1, 2, and so, Π1‖Π2, v1 = −v2 and W0 is a slab. Therefore, taking into account Theorem 2.2
once again, it is not hard to check that X(U) lies in a wider slab S containing W0, which proves
the first part of the lemma and (a).

To see (b), let {zn}n∈N be a sequence in U0 satisfying {Re(zn)} → +∞, and define Y n(v) =
X(v + zn) − X(zn), z ∈ U−Re(zn), n ∈ N. Using Claim 2, and reasoning as in the proof of this
claim, the sequence {Y n}n∈N converges in a natural way to a complete minimal surface Y : C → R3

contained in S, and whose Gauss map omits C − (R − V ). By Picard Theorem, the Gauss map of
Y is constant and Y (C) is a plane parallel to S. So, {N(zn)} → v0, where v0 is a normal vector of
this plane, which proves (b) and the lemma.

�

19



Corollary 4.2 Let X : U → R3 and W as in Lemma 4.2, and assume that X−1
3 (t) �= ∅, for any

t > 0. Let Π be a plane which is not parallel to l(W ).
Then, X−1(Π ∩ {x3 ≥ 0}) contains only one divergent simple arc.

The following lemma deals with a non existence theorem for properly immersed minimal surfaces
in solid right cylinders over a quadrilateral. The proof is an easy consequence of some existence
results of minimal graphs by Jenkins and Serrin [10] and the maximum principle.

Let D be a convex quadrilateral in {x3 = 0} with edges A1, C1, A2 and C2, where

A1 ∩ A2 = C1 ∩ C2 = ∅.

Let V denote the set of vertices of ∂(D), that is, the endpoints of the four edges of D. Let
p3 : R

3 → {x3 = 0} denote the orthogonal projection, and call D = p−1
3 (D), Ai = p−1

3 (Ai) and
Ci = p−1

3 (Ci), i = 1, 2. Label |Ai| and |Ci| as the length of Ai and Ci, respectively, i = 1, 2.

Lemma 4.3 If |A1| + |A2| < |C1| + |C2|, then there are no properly immersed non flat minimal
surfaces S such that S ⊂ D ∩ {x3 ≥ 0} and ∂(S) ⊂ (A1 ∪ A2) − p−1(V ).

Proof : Using Jenkins and Serrin results [10], there exists a unique properly immersed minimal
surface G ⊂ D ∩ {x3 ≤ 0} such that: (i) p3|G−(A1∪A2) : G − (A1 ∪A2) → D − (A1 ∪ A2) is one to
one and ∂(G) = (C1 ∪ C2) ∪ (p−1

3 (V ) ∩ {x3 ≤ 0}); and (ii) if {Pn}n∈N ∈ G and {p3(Pn)} → P ∈
(A1 ∪ A2) − V, then {y(Pn)} → −∞.

Reasoning by contradiction, assume there exists S satisfying the above conditions. Label Gt =
(0, 0, t) + G, t ∈ R. For any t < 0, Gt ∩ S = ∅, and if t > 0 is large enough, Gt ∩ S �= ∅. Moreover,
Gt ∩ S is disjoint from ∂(Gt) ∪ ∂(S), t ∈ R. Let t0 = Infimum{t ∈ R : Gt ∩ S �= ∅}. As S and
Gt are properly immersed, it is not hard to see that Gt0 ∩ S �= ∅. Therefore, Gt0 touches S at an
interior point, which contradicts the maximum principle. �

A first version of this lemma corresponding to the case where D is a rectangle was proved in
[13]. As a consequence, we have:

Corollary 4.3 Let X : M → R3 be a properly immersed minimal surface of finite topology and
compact boundary.

Let W be a wedge as in Lemma 4.2, and suppose that X(M)∩∂(W ) lies in a solid right circular
cylinder with axis parallel to l(W ).

Then, there exists T > 0 such that X−1(R3−(W∩{x3 = t})) has a finite number of components,
t ≥ T.

Moreover, if t ≥ T and Ωt is any connected component of X−1(W ∩ {x3 ≥ t})), then X(Ωt)
satisfies:

• It is a graph homeomorphic to a closed half plane.

• It is contained in a slab, and so, the Gauss map of X(Ωt) uniformly converges, as the distance
to l(W ) goes to infinity, to the normal vector of the slab.

In particular, X−1(W ∩{x3 = t}) consists of a finite set of pairwise disjoint divergent simple arcs.

Proof : Take t0 > 0 large enough such that {x3 ≥ t0} ∩ X(∂(M)) = ∅. Up to the translation
x → x − (0, 0, t0), X3(∂(M)) ⊂ {x3 < 0}. For simplicity, the new wedge (0, 0,−t0) + W will be
also denoted by W. Label Π1 and Π2 as the two half planes in ∂(W ).

For any t > t′ ≥ 0 consider the solid right cylinder Ct,t′
def= {t′ ≤ x3 ≤ t} ∩ W over the

quadrilateral Dt,t′ = {x2 = 0}∩Ct,t′. We label At,t′
1 , Ct,t′

1 , At,t′
2 and Ct,t′

2 as the edges of Dt,t′ lying
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Figure 10: Ct′,0 and Ct,t′ .

in {x3 = t}, Π1, {x3 = t′} and Π2, respectively. If t′ and t − t′ are large enough, the lengths of
these edges satisfy

|At′,0
1 | + |At′,0

2 | < |Ct′,0
1 | + |Ct′,0

2 |, |At,t′
1 | + |At,t′

2 | < |Ct,t′
1 | + |Ct,t′

2 |.
By Lemma 4.3, the image under X of any connected component of X−1(Ct′,0) meets Dt′,0, and

likewise, the same holds for X−1(Ct,t′) and Dt,t′ . Since X is proper and Dt′,0 ∪ Dt,t′ is compact,
we deduce that X−1(Ct′,0) and X−1(Ct,t′) have a finite number of connected components. Since
any connected component of X−1(R3 − (W ∩ {x3 = t′})) meets either X−1(Ct′,0) or X−1(Ct,t′),
the first part of the corollary follows for any T ≥ t′. See Figure 10.

For the second part, note that no properly immersed annular end lies in a wedge (see [9] or
Theorem 2.4). Therefore, there exists T0 large enough such that Mt

def= X−1(R3 − (W ∩{x3 ≥ t}))
consists of a finite collection of simply connected domains bounded by finite number of simple
arcs, t ≥ T0. Take a compact subset K ⊂ M such that MT0−

◦
K is the union of a finite number of

domains homeomorphic to a closed half plane. Then, choose T > T0 in such a way that K∩MT = ∅.
From Theorem 2.2, it is not hard to see that Mt consists of a finite collection of simply connected
domains homeomorphic to a closed half plane, t ≥ T. Using Lemma 4.2 we conclude. �

Now we can prove the main results of this subsection.

Theorem 4.2 Let Π1, Π2 and Π3 be three pairwise non parallel and disjoint closed half planes in
R3 satisfying ∂(Πj)‖∂(Πh), h �= j, and E (∪3

j=1Πj

)
= R3.

Let X : M → R3, be a properly immersed minimal surface of finite topology, and suppose that
X(M) ∩ (∪3

j=1Πj) = ∅.
Then, X has finite total curvature, and all its ends are asymptotic to planes.

Proof : By standard arguments, it suffices to prove the Theorem for a properly immersed minimal
annulus X : A → R

3, A ∼= S
1×]0, 1].

Let C be a solid circular cylinder containing ∂(Πj), j = 1, 2, 3. In what follows, and for the sake
of simplicity, the closed half plane Πj − C will be also denoted as Πj .

We label Π4 = Π1 and lj = ∂(Πj) ⊂ ∂(C), j = 1, 2, 3, 4. Up to relabeling, Wj
def= E(Πj ∪ Πj+1)

is a truncated wedge, Wj ∩ (∪3
j=1Πj

)
= Πj ∪ Πj+1 and a(Wj) < π, j = 1, 2, 3. Without loss of
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generality, we can suppose that X(∂(A))∩Wj = ∅, j = 1, 2, 3. Call Sj the strip E(lj∪lj+1) ⊂ ∂(Wj),
Σj the plane containing Sj , and vj the normal vector of Σj pointing to Wj , j = 1, 2, 3. We also
denote Σt

j as the plane tvj +Σj , and W t
j as the truncated wedge Wj ∩

(∪s≥tΣs
j

)
, t ∈ R, j = 1, 2, 3.

From Corollary 4.3, there is T > 0 large enough such that X(M) ∩ (∪3
j=1W

T
j ) consist of a

finite set of graphs homeomorphic to a closed half plane and lying in slabs. Let Σ be an arbitrary
plane meeting the polyhedral cylinder R3 − ∪3

j=1W
T
j in a compact set. By Corollary 4.2, X−1(Σ)

contains finitely many divergent simple arcs, and so, Σ is a finite plane for X. From Corollary 3.1
(or Lemma 3.1 and Mo-Osserman Theorem [19]), we get that X has finite total curvature.

Finally, Osserman theorem implies that A is conformally equivalent to a compact once punc-
tured disc, and the Gauss map extends meromorphically to the puncture. From Lemma 4.2, X(A)
lies in a slab, and so, X(A) is a planar end.

�

Corollary 4.4 Let Π1, Π2 and Π3 and X : M → R3 as in Theorem 4.2. Assume that M has only
one end and ∂(M) = ∅.

Then, X(M) is a plane.

Proof : Take into account that the only complete minimal surfaces with empty boundary, finite
total curvature and only one planar end are planes. �

4.3 Minimal surfaces of bounded curvature.

In this subsection we improve Theorem 4.2 and Corollary 4.4 for minimal surfaces of bounded
curvature. As we will see later in Remark 4.1, this hypothesis is fundamental. We also deal with
the problem of deciding whether a properly immersed minimal surfaces has finite type or not.

The following notation will be required:
Let X : M → R3 be a properly immersed minimal surface of finite topology. Label (η, g)

as the Weierstrass data of X. Remember that X = Re
∫
(Φ1, Φ2, Φ3), where Φ1 = 1

2 (1 − g2)η,

Φ2 = i
2 (1 + g2)η and Φ3 = gη. Following [21], X is said to be of finite type if M is conformally

equivalent to a compact Riemann surface with compact boundary punctured in a finite set of
interior points, and the 1-forms dg

g and Φ3 extend meromorphically to the punctures.

Theorem 4.3 Let Π1, Π2 and Π3 be three pairwise non parallel and disjoint closed half planes in
R

3, satisfying that ∂(Πj)‖∂(Πh), h �= j, and E (∪3
j=1Πj

)
= {x3 ≥ 0}.

Let X : M → R3 be a properly immersed minimal surface of finite topology such that X(M) ∩
(∪3

j=1Πj) = ∅.
Then, M is parabolic. Furthermore, if X has bounded curvature, then X has finite total cur-

vature.

Proof : It suffices to prove the theorem for a properly immersed minimal annulus X : A → R3,
A ∼= S1×]0, 1].

Let C be a solid circular cylinder containing ∪3
i=1∂(Πi), and for simplicity, label Πj − C as

Πj , j = 1, 2, 3. Denote lj = ∂(Πj) ⊂ ∂(C), j = 1, 2, 3. Up to relabeling, we can suppose that

Wj
def= E(Πj ∪ Πj+1) is a truncated wedge of angle less than π, and Wj ∩

(∪3
j=1Πj

)
= Πj ∪ Πj+1,

j = 1, 2. Therefore, Π1 and Π3 lie in horizontal planes.
Moreover, take C of large enough radius in such a way that X(∂(A)) ∩ Wj = ∅, j = 1, 2.
Call Sj the strip E(lj ∪ lj+1) ⊂ ∂(Wj), Σj the plane containing Sj , and vj the normal vector

of Σj pointing to Wj , j = 1, 2. Denote Σt
j as the plane t · vj + Σj , and W t

j as the truncated wedge
Wj ∩

(∪s≥tΣs
j

)
, t ∈ R, j = 1, 2.
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Reasoning as in the proof of Theorem 4.2, there is T > 0 large enough such that X(A)∩ (WT
1 ∪

WT
2 ) consists of a finite set of graphs lying in slabs and homeomorphic to a closed half planes.

Moreover, thanks to Lemma 4.2, we can fin a large enough t0 > 0 such that: (i) ∪2
j=1(Σ

T
j ∩Wj) ⊂

{x3 < t0}; and (ii) X(A)∩ ({x3 ≥ t0}) consists of a finite number (maybe zero) of graphs lying in
non horizontal slabs and homeomorphic to a closed half plane. In particular, {x3 = t0} is a finite
plane, and from [15] we infer that M is parabolic.

Assume now that, in addition, X has bounded curvature. Since X−1
3 (t0) consists of a finite

set of curves, it is not hard to check that φ3 is extends meromorphically to the end. Hence, X
is of finite type (see Xavier [22] and [20]). Summarizing, A is conformally equivalent to an once
punctured closed disc: A ≡ D

∗ def= D−{0}, ηg extends meromorphically to 0, and g = PeQ, where
P and Q extend meromorphically to 0 too.

Reasoning by contradiction, suppose that X has not finite total curvature. Thus, Q has a pole
of order k > 0 at the end, and so, there are 2k divergent Julia rays {r1 . . . , r2k} in D

∗
meeting at

equal angles at 0 (up to a biholomorphism and up to removing a compact piece of A if necessary,
we will suppose that ri is a segment joining 0 and ∂(D), i = 1, . . . , 2k, that is to say, Q(z) = cz−k,

c ∈ C∗). This means that g has well defined limit, as z → 0, on radial closed sectors of D
∗

contained in D
∗ −∪2k

j=1rj , and this limit is equal to either 0 or ∞. From Lemma 4.2 (b), there are
no connected components of X−1({x3 ≥ t0}) whose image under X lies in non horizontal slabs
(the only asymptotic values for g are 0 and ∞), and so, X(A) ⊂ {x3 < t0}.

Since X has not finite total curvature, Theorem 4.1 (or the Cone Lemma [9]) imply that X(A)
does not lie in a slab. Thus, the third coordinate function is proper, and up to scaling and removing
a compact subset of A,

A ≡ D − {0}, and ηg =
1
z
.

Since the Gauss curvature is given by

K(z) = −
(

4|d log(g)|
|ηg|( 1

|g| + |g|)2
)2

= −
(

4|z||P ′
P + Q′||dz|

( 1
|g| + |g|)2

)2

, z ∈ D
∗
,

then K is not bounded on the non compact set |g|−1(1), which is absurd and proves the theorem.
�

Corollary 4.5 Let Π1, Π2, Π3, and X : M → R
3 like in Theorem 4.3. Assume that ∂(M) = ∅,

M has only one end and X has bounded curvature.
Then, X(M) is a plane.

Proof : From Theorem 4.3, X has finite total curvature. We can suppose that Π1 and Π3 are
horizontal planes, and define the truncated wedges W1 and W2 as in the proof of this theorem.

The result is clear if X(M) lies in a horizontal half space.
Assume that X(M) does not lie in a horizontal half space. Therefore, reasoning as in the proof

of Theorem 4.2, X(M) ∩ (W1 ∪ W2) contain a properly immersed closed half plane satisfying the
hypothesis of Lemma 4.2.

Hence, X(M) contains a graph over a half plane lying in a slab. Since X has finite total
curvature, it is not hard to check that the unique end of X(M) is planar, and so, X(M) is a plane.
�

An interesting problem is to decide whether a minimal surface is of finite type or not. We
are going to answer this question when the surface has bounded curvature and the level curves
associated to three parallel planes lie in some special planar domains (that we will call city maps).
The following notation is required:
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Let {l1, . . . , lr} be a finite set of pairwise disjoint half lines in a plane Π of R3, and let B be an
open Euclidean ball in Π such that B∩lj �= ∅, j = 1, . . . , r. Let L be denote the set {(l1 . . . , lr), B},
and call |L| = B ∪ (∪l∈Ll) . Let τL denote the number

τL = Minimum{d(lj , lh) : lj‖lh},

where d means Euclidean distance, and take ε ∈]0, τL[. If {l1, . . . , lr} does not contain any pair of
parallel half lines, τL = +∞ and ε can be any positive real number. Then, label

N (L, ε) = {P ∈ Π : d(P, |L|) <
ε

2
}.

By definition, N (L, ε) is said to be the city map of radius ε associated to L.

Figure 11: A city map N (L, ε).

Let L = ({l1, . . . , lr}, B) ⊂ Π and L′ = ({l′1, . . . , l′r}, B′) ⊂ Π′ as above. We say that the city
maps N (L, ε) and N (L′, ε′) are parallel if Π‖Π′, p(B′) = B and p(l′j) = lj , j = 1, . . . , r where p is
the orthogonal projection on the plane Π.

Theorem 4.4 Let Nj ≡ N (Lj , εj), j = 1, 2, 3, be three parallel city maps, and label Πj as the
plane containing Nj , j = 1, 2, 3. Assume that Π2 lies in the slab bounded by Π1 and Π3, and that

ε2εj < d(Πj , Π2)2 < (τ − ε2)(τ − εj), j = 1, 3.

where τ = τLj , j = 1, 2, 3.
Let X : M → R3 be a properly immersed minimal surface of finite topology and satisfying that

X(M) ∩ (∪3
j=1Πj

) ⊂ ∪3
j=1Nj .

Then, M is parabolic. Moreover, if X has bounded curvature, then X is of finite type.

Proof : It suffices to check the theorem for a properly immersed minimal annulus X : A → R3,
A ∼=]0, 1] × S1.

Suppose that X(A) is not a piece of a plane. For the sake of simplicity, write δj = d(Πj , Π2),
j = 1, 3. Denote by S, S1 and S3 as the slabs bounded by Π1∪Π3, Π1∪Π2 and Π3∪Π2, respectively.

24



Let p denote the orthogonal projection on Π2. Write Lj = {(lj1, . . . , ljr), Bj}, j = 1, 2, 3, where
p(ljh) = l2h, h = 1, . . . , r, p3(Bj) = B2, j = 1, 3. Let C denote a solid circular cylinder orthogonal
to Π2 and satisfying C ∩ Πj = Bj , j = 1, 2, 3. Up to enlarging the radius of the squares Bj of the
city maps, we can assume that X(∂(A)) ⊂ C.

We are going to prove that Π2 is a finite plane for X. It is sufficient to check that for C of large
enough radius, any component of X−1(R3 − Π2) meets the compact set X−1(C ∩ S).

Let T j
1 , . . . , T j

r denote the connected components of Πj −Nj, j = 1, 2, 3, where p(T j
h)∩T 2

h �= ∅,
h = 1, . . . , r, j = 1, 3. Up to adding a suitable set of half lines to {lj1, . . . , ljr}, j = 1, 2, 3, and
without loss of generality, we will suppose that Sj

h
def= E(T h

j ) is a truncated planar sector in Πj of
angle a(Sj

h) < π, h = 1, . . . , r, j = 1, 2, 3. Call Cj
h the truncated tetrahedral domain E(Sj

h ∪ S2
h),

and label F+(Cj
h) and F−(Cj

h) as the two non compact faces of Cj
h not contained in Π2 ∪ Πj ,

h = 1, . . . , r, j = 1, 3.
Let C be a truncated tetrahedral domain satisfying the hypothesis of Theorem 2.5, (b). Up to

an homothety, suppose δj < 1, and so, note that h(C) = 1 > δj , j = 1, 3. Moreover, take C in such
a way that 0 < �(C) < a(Si

h), and this for any h ∈ {1, . . . , r} satisfying a(Si
h) > 0, i = 1, 2, 3. If the

radius of Bj (and so, the one of C) is large enough, j = 1, 2, 3, there exists a rigid motion Rj
h such

that (F1(C) ∪ F2(C)) ∩Rj
h(Cj

h) = ∅, Rj
h

(
F+(Cj

h) ∪ F−(Cj
h)
)
∩C = ∅, and the faces Rj

h(F+(Cj
h))

and Rj
h(F−(Cj

h)) lie in distinct connected components of Rj
h(Cj

h) − C, j = 1, 3 (see Figure 12).
Hence, thanks to Theorem 2.5, there is no connected properly immersed non flat minimal surface
in Cj

h with planar boundary lying in F+(Cj
h)∪F−(Cj

h), j = 1, 3, and this and for any h such that
a(Si

h) > 0, i = 1, 2, 3.

Figure 12: C and Rj
h(Cj

h).

Since X(A)∩ (∪3
j=1Πj

) ⊂ ∪3
j=1Nj , the above arguments imply that the image under X of any

connected component of X−1(Cj
h) intersects C ∩ S, j = 1, 3, provided that a(Si

h) > 0, i = 1, 2, 3.

Let us see that the same holds when a(Si
h) = 0, i = 1, 2, 3. In this case, Cj

h is a truncated
solid right cylinder over a quadrilateral, j = 1, 3. Thanks to Lemma 4.3, we know that there is
no connected properly immersed non flat minimal surface in Cj

h with boundary lying in F+(Cj
h)∪

F−(Cj
h), provided that

2

√
δ2
j + (

εj − ε2
2

)2 < 2τ − εj − ε2, j = 1, 3,

that is to say, δ2
j < (τ − ε2)(τ − εj), j = 1, 3, which holds from our assumptions. Therefore, taking

into account that X(A)∩ (∪3
j=1Πj

) ⊂ ∪3
j=1Nj once again, we infer that the image under X of any

connected component of X−1(Cj
h) intersects C ∩ S too, j = 1, 3.
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Reasoning by contradiction, assume there is a connected component Ω of X−1(R3 −Π2) whose
imaged under X is disjoint from C ∩ S. Taking into account the above arguments, X(Ω) is in fact
disjoint from

G
def= (C ∩ S) ∪ (∪r

h=1(C
1
h ∪ C3

h)
)
.

Let Ω0 denote a connected component of Ω ∩ X−1(S), and call N = X(Ω0). Up to relabeling,
we will suppose that N ⊂ S1. The set S1 − G consists of a finite number of pairwise disjoint solid
truncated tetrahedral cylinders, and only one of them, that we call F, contains N. Observe that
F has only one compact face lying in C. Moreover, two opposite non compact faces of F lie in Π2

and Π1, and correspond to parallel streets in N2 and N1 which contain ∂(N). The hypothesis of
the theorem give

ε1 + ε2 < 2

√
δ2
1 + (

ε2 − ε1
2

)2,

and this contradicts Lemma 4.3.
As a consequence, Π2 is a finite plane, and from [15], A is parabolic.
If in addition X has bounded curvature, we can use [22] or [20] ideas to infer that X is of finite

type, which concludes the proof. �

Corollary 4.6 Let X : M → R3 be a properly embedded simply connected minimal surface with
bounded curvature. Assume that the level curves associated to three parallel planes lie in three
parallel city maps as in Theorem 4.4.

Then, X(M) is the helicoid.

A considerable improvement of this corollary can be found in [17].

Proof : Since Π2 is a finite plane, the result follows from [20]. �

We finish with the following remark.

Remark 4.1 The hypothesis of having finite topology is fundamental in Theorems 3.1, 4.1and 4.2,
and in the second part of theorems 4.3 and 4.4. Scherk singly periodic minimal surfaces are the
counterexamples.

The same occurs with the hypothesis of having bounded curvature in the second part of Theorems
4.3 and 4.4. Indeed, there exist a simply connected properly immersed non flat minimal surface
without boundary which is not of finite type and is contained in the union of a half space and a
slab orthogonal to the half space:

Consider on C−{0} the Weierstrass data (g = ez, η = dz
zez ). It is clear that Φ1 = 1

2 (1−g2)η and
Φ3 = gη have no real periods on C−{0}. However,

∫ 2π

0 Φ2(α′(t))dt �= 0, where α(t) = eit. Therefore,
the associated minimal immersion determines a singly periodic minimal surface invariant under
a horizontal translation T parallel to the x2-axis. The induced immersion Y : C − {0} → R3/T,
Y (z) = Re

∫ z

1 (Φ1, Φ2, Φ3), is proper and has two ends which correspond to the points 0 and ∞.
The first one is of Scherk type, and its is asymptotic to a half flat cylinder in R3/T parallel to the
plane {x1 = 0} and lying in the half space {x3 ≤ 0}. The second end has unbounded curvature,
and it is contained in the half space {x3 ≥ 0}. The immersion X : C → R

3 given by X(z) = Y (ez)
satisfies the desired properties (see Figure 13).

On the other hand, it is well known that the only properly embedded minimal surface foliated
by Jordan curves in parallel planes is the catenoid [3]. The similar result for properly immersed
minimal cylinders in R3 fails, as shows the following example:

Consider on C − {0} the Weierstrass data (g = ez+ a
z , η = dz

zg ), where a ∈ R. It is clear that
Φ3 = dz

z have no real periods. Moreover, by an intermediate value argument, there exists a ∈ R such
that Φ1 and Φ2 have no real periods too. Hence, the minimal immersion Y (z) = Re

∫ z

1
(Φ1, Φ2, Φ3)
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Figure 13: X(C).

is well defined, and its third coordinate function Y3(z) = log(|z|) is proper. The two ends of
Y (C − {0}) lie in a half space of R3, and so, they are critical from the point of view of Theorem
4.3. Of course, both ends have unbounded curvature. Hence, the hypothesis of having bounded
curvature in the second part of Theorem 4.3 is fundamental even if we assume that the surface is
of finite type.

-
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