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Abstract

A maximal surface S with isolated singularities in a complete flat Lorentzian 3-manifold
N is said to be entire if it lifts to a (periodic) entire multigraph S̃ in L3. In addition, S is
called of finite type if it has finite topology, finitely many singular points and S̃ is a finitely
sheeted multigraph. Complete (or proper) maximal immersions with isolated singularities in
N are entire, and entire embedded maximal surfaces in N with a finite number of singularities
are of finite type.

We classify complete flat Lorentzian 3-manifolds carrying entire maximal surfaces of finite
type, and deal with the topology, Weierstrass representation and asymptotic behavior of this
kind of surfaces.

Finally, we construct new examples of periodic entire embedded maximal surfaces in L3

with fundamental piece having finitely many singularities.

1 Introduction

A 3-dimensional complete flat Lorentzian manifoldN is a connected 3-manifold with a geodesically
complete flat Lorentz (2, 1)-metric. In terms of geometric structures, it can be identified with a
quotient L3/G, where L3 is the Lorentz Minkowski space and G ⊂ Iso(L3) is a discrete group of
isometries acting properly and freely on L3. Therefore, the problem of classifying complete flat
Lorentzian manifolds can be rewritten in terms of discrete groups of isometries in the Lorentz-
Minkowski space. By definition, a Lorentzian manifold N is said to be orthochronous if any
element of G preserves the future direction.

Maximal surfaces in N ≡ L3/G appear as critical points (local maxima) for the area functional
associated to variations by spacelike surfaces. Among spacelike surfaces, they are characterized by
the property of having zero mean curvature, and besides of their mathematical interest, they play
an interesting role in classical Relativity (see [22] for more details). From the point of view of L3,
maximal surfaces in L3/G correspond, up to liftings, to periodic maximal surfaces in L3 invariant
under G.

Calabi [5] proved that the only complete hypersurfaces with zero mean curvature in L3 and
L4 are spacelike hyperplanes, solving the so called Bernstein-type problem in dimensions 3 and 4.
Cheng and Yau [7] extended this result to Ln+1, n ≥ 4.

A basic consequence of Calabi’s theorem is the systematic arranging of groups G ⊂ Iso(L3) for
which L3/G contains an entire maximal surface S. For topological considerations, it is natural to
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assume that the fundamental group of the surface is isomorphic to G. Under these conditions, G
contains a maximal free Abelian normal subgroup G↑

+ of spacelike translations of rank one or two,
and the quotient G/G↑

+ is either trivial, Z2 or Z2 ×Z2. Moreover, S must be a flat cylinder, torus,
Möbius strip or Klein bottle.

Therefore, it is meaningless to consider global problems on maximal and everywhere regular
surfaces in 3-dimensional complete flat Lorentzian manifolds, and for a long time, the theory of
maximal surfaces dealt with the existence and regularity of solutions to the boundary value problem
(see for instance Bartnik and Simon [3]).

A point of a spacelike surface in N is singular if the induced metric degenerates. Although there
exist spacelike surfaces admitting curves of singularities, there are several reasons to think that
isolated singular points are specially interesting. For instance, they generally provide topological
branch points of the orthogonal projection of the surface over spacelike planes. A relevant example
of this kind of singularities are the so called conical points of maximal surfaces (see Figure 2.2).
From the PDE point of view, they appear as interior points where the elliptic operator for the
maximal graph equation degenerates. Conformally, conelike singularities correspond to analytical
Jordan curves in the conformal support (see Definition 2.2) of the maximal surface that are mapped
by the immersion into single points. Moreover, the surface reflects analytically to its mirror about
them. From the geometrical point of view, they are points where the curvature blows up, the
Gauss map has no well defined limit and the surface is locally embedded and asymptotic to the
light cone. We refer to [16] for a good setting.

It is then interesting to understand the global geometry of maximal surfaces with isolated
singularities. A spacelike surface S with singularities in N ≡ L3/G is said to be entire if its lifting
to L3 is an entire multigraph over any spacelike plane (i.e., the orthogonal projection of S over any
spacelike plane is a branched covering). It is not hard to see that complete (or proper) spacelike
surfaces in L3/G with isolated singularities are entire, but the contrary is false. An entire spacelike
surface S in N ≡ L3/G is said to be of finite type if it has finite topology, a finite number of singular
points and it lifts to a finitely sheeted entire multigraph in L3. The last condition means causality
in the sense that timelike geodesics in N meet S at finite time. As we will show later, entireness,
properness and completenes are equivalent properties for maximal surfaces of finite type, and any
entire embedded maximal surface with a finite number of singularities in L3/G is of finite type.

It is not hard to see that entire embedded maximal surfaces with isolated singularities are
graphs over spacelike planes. The finite type case in L3 has been recently developed in [9]. In
Figure 1 we have illustrated some known examples, including the Lorentzian catenoid and the
Riemann type examples (see [18] and [9] for more details).

Figure 1: From left to right, the catenoid, a Riemann’s example and two complete maximal graphs
with four and three singularities asymptotic to a plane.

However , there are many entire maximal graphs with an infinite closed discrete set of singular
points prividing embedded maximal surfaces of finite type in suitable quotients L3/G, where G is
a group of translations. Among them, we distinguish the one-parameter family of Scherk’s type
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maximal surfaces (see Figure 2), and the doubly and singly periodic examples illustrated in Figure
3.

The former results suggest that many open questions still remain about entire maximal surfaces
with singularities. We emphasize two of them:

(I) The classification of Lorentzian manifolds L3/G containing entire maximal surfaces of finite
type, and the geometrical description of these surfaces.

(II) The global geometry of entire maximal surfaces in L3/G of finite type, starting with the
periodic embedded case.

The aim of this paper is to approach the above two problems.

Figure 2: A Scherk’s type maximal surface.

Regarding problem (I), we will assume that the fundamental group of surfaces in N = L3/G
surjects by the immersion onto Π1(N ) ≡ G (replace N by a suitable covering if necessary). If
in addition this group homomorphism is injective, the surface is said to be incompressible. For
instance, complete embedded maximal surfaces with a closed discrete set of singularities are always
incompressible.

The classification of discrete groups G acting freely and properly in L3 is far from being trivial
(we refer to the surveys [6], [2] for a good setting). Among other relevant results, Margulis [19]
constructed Lorentzian manifolds L3/G with (non abelian) free group G, and Mess [21] proved
that G can not be cocompact (i.e., isomorphic to the fundamental group of a closed surface with
negative Euler characteristic). Mess result has played a fundamental role in the proof of the Main
Theorem below, which is devoted to classify complete flat Lorentzian manifolds L3/G carrying
entire embedded maximal surfaces of finite type.

Main Theorem: Let N := L3/G, G 6= {Id}, be a complete flat Lorentzian manifold,
and suppose that N contains an entire maximal surface S of finite type.

Then the subgroup G↑
+ ⊂ G of positive orthochronous isometries consists of spacelike

translations and has rank ≤ 2.

Moreover, S is complete and proper, and S is compact if and only if G↑
+ has rank 2.

If in addition S is embedded, then it is homeomorphic to either a cylinder, a Möbius
strip, a torus or a Klein Bottle.

If G↑
+ = G, the conformal support of S is biholomorphic to a compact Riemman surface

minus a finite set of interior points, and its Weierstrass data extend meromorphically
to the ends of the surface.

It still remains open to know if entire maximal surfaces in L3 with an infinite closed discrete
set of singularities are complete. The Main Theorem shows that this holds when the surface is the
lifting of an entire maximal surface of finite type in L3/G, G 6= {Id}.

As regard to the problem (II), we deal with the asymptotic behavior and analytical represen-
tation of entire maximal surfaces of finite type in L3/G, where G is a group of translations of rank
≤ 2.
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Figure 3: From left to right, examples of doubly and singly periodic maximal surfaces.

We obtain a geometrical formula of Jorge-Meeks type ( see [15], [20]). These equations have
significant importance, because they involve topological obstructions to the existence of this kind
of surfaces. A similar formula for maxfaces in L3 was obtained by Umehara and Yamada [26].

By definition, an entire maximal surface in L3 with a closed discrete set of singularities is said to
be singly periodic (respectively, doubly periodic) if it is invariant under the action of a discrete group
generated by a spacelike translation T1 (respectively, two translations T1, T2 spanning a group of
spacelike translations), and the subsequent quotient surface is of finite type. As a consequence of
above Theorem, the lifting S̃ ⊂ L3 of an entire maximal surface S of finite type in N ≡ L3/G is
either singly periodic or doubly periodic. Indeed, simply observe that the surface S̃/G↑

+ is entire
and of finite type in L3/G↑

+.

Doubly periodic entire maximal surfaces S̃ are contained in a spacelike slab invariant under
G. If we call S0 the conformal support of S, the Weierstrass representation Φ := (φ1, φ2, φ3)
of S ≡ S̃/〈T1, T2〉 consists of three holomorphic 1-forms without common zeroes on the double
compact Riemann surface S := S0 ∪ S∗

0 satisfying J∗(Φj) = −Φj , j = 1, 2, 3, where S∗
0 is the

mirror surface of S0 and J the mirror involution. In this case, 〈T1, T2〉 is given by the real periods
of Φ over H1(S, Z).

The singly periodic case admits a similar treatment. Now S has at least two ends asymptotic
(possibly with multiplicity) to flat spacelike half cylinders in L3/〈T1〉 (exactly two Sherk’s type
ends in the embedded case). The Weierstrass representation Φ := (φ1, φ2, φ3) of S consists of three
holomorphic 1-forms without common zeroes on S := S0 ∪ S∗

0 , extending meromorphically to the
conformal compactification S. Moreover, they have single poles at the ends of S0 and their mirror
images (ends of S∗

0 ), and satisfy J∗(Φj) = −Φj , j = 1, 2, 3. Likewise, the group 〈T1〉 is given by
the real periods of Φ over H1(S, Z). The moduli problem associated to singly periodic embedded
maximal surfaces has been studied in [10].

This paper is lead out as follows: In Section 2 we fix some notations and state some prelimi-
nary results. The proof of the Main Theorem as well as the study of the global geometry of entire
maximal surfaces of finite type lies in Section 3. Finally, in Section 4 we study the analytical
representation of entire singly and doubly periodic maximal surfaces, prove the Jorge-Meeks type
formula and construct the examples exhibited in Figures 2 and 3.

Acknowledgments: We would like to thanks to M. Sanchez for helpful conversations during the

preparation of this work. We are also indebted to A. Zeghib for some useful comments.

2 Notations and Preliminary results

We denote by C, D the extended complex plane C ∪ {∞} and the unit disc {z ∈ C : |z| < 1}.
Throughout this paper, L3 will denote the three dimensional Lorentz-Minkowski space (R3, 〈, 〉),
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where 〈, 〉 = dx2
1 + dx2

2 − dx3
3. By definition, a coordinate system (y1, y2, y3) in L3 is said to be

a (2, 1)-coordinate system if the Lorentzian metric is given by dy2
1 + dy2

2 − dy3
3. We say that a

vector v ∈ R3 − {0} is spacelike, timelike or lightlike if ‖v‖2 := 〈v,v〉 is positive, negative or
zero, respectively. When v is spacelike, ‖v‖ is chosen non negative. The vector 0 is spacelike by
definition. A plane in L3 is spacelike, timelike or lightlike if the induced metric is Riemannian, non
degenerate indefinite or degenerate, respectively.

We denote by Cx = {y ∈ L3 : ‖y − x‖ = 0} the lightcone with vertex at x, and write
Ext(Cx) = {y ∈ L3 : ‖y − x‖ > 0}, x ∈ L3.

We call H2 = {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 − x2
3 = −1} the hyperbolic sphere in L3 of constant

intrinsic curvature −1. Note that H2 has two connected components H2
+ := H2 ∩ {x3 ≥ 1} and

H2
− := H2 ∩ {x3 ≤ −1}. The stereographic projection σ for H2 is defined as follows:

σ : C − {|z| = 1} −→ H2 ; z →
(

2Im(z)
|z|2 − 1

,
2Re(z)
|z|2 − 1

,
|z|2 + 1
|z|2 − 1

)
,

where σ(∞) = (0, 0, 1).
Denote by Iso(L3) and Iso+(L3) the group of affine isometries of L3 and the group of positive

affine isometries of L3, respectively. By definition, an element of Iso(L3) is said to be orthochronous
if its associated linear isometry preserves H2

+ (and so H2
−). We call Iso↑(L3) and Iso↑+(L3) the group

of orthochronous and orthochronous positive affine isometries, respectively.
A rotation in L3 is an element of Iso+(L3) whose fixed points are just the points on a line `,

called the axis of the rotation. The rotation is called elliptic, hyperbolic or parabolic provided ` is
a timelike, spacelike or lightlike line, respectively.

An element of Iso+(L3) is said to be a screw motion in L3 if it is the composition of a rotation
followed by a translation and is not a rotation. A screw motion is said to be elliptic, hyperbolic or
parabolic provided its associated rotation is elliptic, hyperbolic or parabolic, respectively.

Positive isometries of L3 are either translations, rotations or screw motions. Hence, the only
positive isometries in L3 without fixed points are translations of non zero vector and screw motions.
Rotations and screw motions in L3 have been carefully described in the following remark.

Remark 2.1 Given a positive isometry R ∈ Iso+(L3), it is possible to find a suitable (2, 1)-
coordinate system where:

(1) R((x, y, z)) =




cos t sin t 0
− sin t cos t 0

0 0 1







x
y
z


 +




0
0
λ


 , λ ∈ R, t ∈]0, 2π[, if R is elliptic.

(2) R((x, y, z)) =




1 0 0
0 ε cosh t ε sinh t
0 ε sinh t ε cosh t







x
y
z


 +




λ
0
0


 , λ ∈ R, ε = ±1, t ∈ R (t 6= 0 if ε = 1), if

R is hyperbolic.

(3) R((x, y, z)) =




1 −t t
t 1 − t2/2 t2/2
t −t2/2 1 + t2/2







x
y
z


 +




0
0
λ


 , λ ∈ R, t 6= 0, if R is parabolic.

The parameter t is called the angle of R. Moreover, R is a screw motion if and only if λ 6= 0.

An elliptic or hyperbolic screw motion leaves globally (not pointwise) invariant a straight line
parallel to the axis of its associated rotation, which is called the axis of the screw motion. This
property does not hold for parabolic screw motions. Observe also that any elliptic or parabolic
screw motion is orthochronous, while a hyperbolic screw motion is orthochronous if and only if
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ε = 1 in the above representation.

If N is a complete flat Lorentzian 3-manifold (i.e., a 3-dimensional differential manifold endowed
with a complete flat metric of index one), it is well known that the universal isometric covering of
N is L3 (see for example [23],[25]).Thus N can be regarded as the quotient of L3 inder the action
of a discrete group G ⊂ Iso(L3) acting freely and properly on L3.

If G ⊂ Iso(L3) acts freely and properly on L3, we denote by G↑
+ = G ∩ Iso↑+(L3), G+ =

G ∩ Iso+(L3) and G↑ := G ∩ Iso↑(L3) the subgroup of orthochronous positive, positive and or-
thochronous isometries, respectively. We know that G↑

+ (resp., G+, G↑) is a subgroup of index
k↑
+ ≤ 4 (resp., k+ ≤ 2, k↑ ≤ 2) in G, and the N ↑

+ := L3/G↑
+ (resp., N+ := L3/G+, N ↑ := L3/G↑)

is a k↑
+-sheeted (resp., k+-sheeted, k↑-sheeted) covering of N := L3/G. By definition, N ↑

+ (resp.,
N+, N ↑) is said to be the orientable orthochronous (resp., orientable, orthochronous) covering of
N . Note also that G↑

+ is a subgroup of index ≤ 2 of G+, (resp., G↑) and N ↑
+ is the orthocronous

(resp., orientable) covering of N+ (resp., N ↑).

Given a continuous map X : M → N ≡ L3/G, where M is a surface, we call M̃ := M̂/H0,
where M̂ is the universal covering of M and H0 is the kernel of the induced group homomorphism
X∗ : Π1(M) → Π1(N ) ≡ G. If p1 : M̃ → M and p2 : L3 → N denote the natural covering
projections, elementary topology implies the existence of a map X̃ : M̃ → L3 satisfying p2 ◦ X̃ =
X ◦ p1. This map, uniquely determined up to the initial condition, will be called a lifting of X to
L3. In this context, we also say that M̃ is the lifting of M.

Remark 2.2 Thoroughout this paper, we always assume that X∗ : Π1(M) → Π1(N ) ≡ G is
surjective. This fact is not restrictive, because we can replace X by the induced map Y : M →
L3/X∗(Π1(M)) satisfying p ◦ Y = X, where p : L3/X∗(Π1(M)) → L3/G is the natural covering
projection.

If in addition X∗ is injective, X is said to be incompressible.

In what follows, M will denote a differential surface, Π a spacelike plane and π : L3 → Π the
orthogonal Lorentzian projection.

A continouos map h : M → Π is a branched local homeomorphism if given p ∈ M, there are
open discs V ⊂ M and U ⊂ Π containing p and h(p), respectively, such that h(V ) = U and
h|V : V → U is equivalent to the map ϕn : D → D, ϕn(z) = zn, n ≥ 1 (this means that there are
homeomorphisms ξ1 : D → V and ξ2 : U → D such that ξ2 ◦ (h|V ) ◦ ξ1 = ϕn). In this case, the
neighbourhood V is called a regular neighbourhood for h at p. The integers n and n− 1 are called
the multiplicity and the branching number of h at p, respectively, and h is said to have a branch
point at p if n − 1 > 0.

A branched local homeomorphism h : M → Π is said to be a branched covering if it has the
path lifting property, i.e., for any curve β : [0, 1] → Π, β(0) = x, and any p ∈ h−1(x), there is a (not
necessarily unique) curve α : [0, 1] → M̃ satisfying α(0) = p and h ◦ α = β. Branched coverings
have well defined number of sheets.

A continous map X : M → L3 is said to be an entire multigraph over Π if the map π◦X : M →
Π is a branched covering. We also say that X(M ) is an entire multigraph over Π. By definition,
the number of sheets of X as multigraph over Π is the number of sheets of π ◦ X.

2.1 Spacelike immersions with singularities

An immersion X : M −→ N is said to be spacelike if for any p ∈ M, the tangent plane TpM with
the induced metric is spacelike, that is to say, the induced metric on M is Riemannian. In this
case, S = X(M) is said to be a spacelike surface in N .
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If N = L3/G, where G is a (possibly trivial) group of translations acting freely and properly
on L3, the locally well defined Gauss map N0 of X assigns to each point of M a point of H2. A
connection argument gives that N0 is globally well defined and N0(M) lies, up to a Lorentzian
isometry, in H2

−. This means that M is orientable.
Let M and F ⊂ M be a differentiable surface and a discrete closed subset of M. Let ds2

denote a Riemannian metric in M − F. Take a point q ∈ F, an open disk D(q) in M such that
D(q) ∩ F = {q} and an isothermal parameter z : D(q) − {q} → A ⊂ C for ds2. Then write
ds2 = H|dz|2, where H(w) > 0 for any w ∈ A. By definition, the Riemannian metric ds2 is
singular at q if for any disk D(q) and any parameter z as above, the limit limp→q H(z(p)) vanishes
(as a matter of fact, it suffices to check this condition just for one disc and conformal parameter).
The metric ds2 is said to be singular in F if it is singular at any point of F. In this case, (M, ds2)
is said to be a Riemannian surface with isolated singularities and F the singular set of (M, ds2).

Definition 2.1 Let N be a flat 3-dimensional Lorentzian manifold, and let X : M → N be a
continuous map. Suppose there is a discrete and closed F ⊂ M such that X|M−F is a spacelike
immersion and (M, ds2) is a Riemannian surface with isolated singularities in F, where ds2 is the
metric induced by X.

Then, X is said to be an immersion with (isolated) singularities at F, and X(M) a spacelike
surface with singularities at X(F ).

As stated before, throughout this paper we will always assume that the set F of isolated
singularities is closed (and so the set of regular points is always open). This restriction is quite
natural for the global results we will approach later. Of course, this does not prevent the existence
of spacelike surfaces with points where isolated singularities accumulate, although this theory will
not be treated in this paper.

In the following definition we fix the notion of conformal support of a spacelike surface with
isolated singularities.

Definition 2.2 Let X : M → N be an orientable spacelike immersion with a closed discrete set
F = {qn : n ∈ Λ}, Λ ⊂ N, of isolated singularities. The surface M− F is conformally equivalent
to R− (∪n∈ΛDn), where R is a Riemann surface and {Dn : n ∈ Λ} are pairwise disjoint closed
conformal discs in Int(R) without accumulation in R and whose boundaries {γn := ∂(Dn) : n ∈
Λ} correspond to the singularities (some discs Dn could be points, and in this case γn = Dn).

By definition, the Riemann surface M0 := R ∪ (∪n∈Λγn) (with possibly non empty analytical
boundary) is said to be the conformal support of the spacelike immersion X, and the corresponding
reparameterization X0 : M0 → N is said to be a conformal spacelike immersion.

For instance, if M is simply connected, the conformal support M0 of X is conformally equivalent
to a planar circular domain (see [13] for details).

A Riemann surface is said to be of finite conformal type if it is biholomorphic to a compact
Riemann surface minus a finite set of interior points.

Lemma 2.1 Let X : M → N , Π and π : L3 → Π be a spacelike immersion with isolated singular-
ities, a spacelike plane and the corresponding Lorentzian orthogonal projection, respectively.

Then, h := π ◦ X̃ is a branched local homeomorphism and its branch points correspond to the
locally non embedded singularities of X̃, where X̃ : M̃ → L3 is the lifting of X.

As a consequence, if X̃ (or X) is an embedding then π ◦ X̃ is a local homeomorphism.

Proof : Since X̃ is spacelike outside the singular set F, h is local homeomorphism in M− F. Let
p0 ∈ F and take a compact connected neighbourhod W ⊂ (M − F ) ∪ {p0} of p0 with regular
boundary. Let us see that there exists a small closed disc U in Π centered at h(p0) such that the
connected component V of (h|W )−1(U ) containing p0 satisfies ∂(V )∩∂(W ) = ∅. Indeed, otherwise

7



there exists a positive sequence {sk} → 0 such that, for each k, Vk ∩ ∂(W ) 6= ∅, where Vk is the
connected component of h−1(Uk) ∩ W containing p0 and Uk is the disc of radius sk in Π centered
at h(p0). Hence, h−1({p0}) contains a curve joining p0 and ∂(W ), which contradicts that X is
spacelike.

As V is compact and h(∂(V )) = ∂(U ), then h : V − h−1(h(p0)) → U − {h(p0)} is a proper
local homeomorphism, and so a finite covering. Since U − {h(p0)} is a cylinder, we deduce that
V − h−1(h(p0)) is a cylinder too, h−1(h(p0)) = p0 and h is equivalent to some ϕn for some n ∈ N.
Basic topology says that X̃ is an embedding locally around p0 if and only if n = 1. 2

Let X : M → L3 be a spacelike immersion, and take a radial curve γ : [0, 1] → M (i.e., a curve
whose image under X projects orthogonally in a one to one way over a segment in some spacelike
plane). If γ(t) is non singular, ‖(X◦γ)′(t)‖ > 0, and thus integrating ‖(X◦γ)(t1)−(X◦γ)(t2)‖ > 0,
t1 6= t2. Therefore, if Π is a spacelike plane and V ⊂ M a regular neighborhood of h = π ◦X such
that h(V ) is starlike with center h(p), p ∈ V, we have:

X(V ) − {X(p)} ⊂ Ext(Cp) (1)

Proposition 2.1 Let X : M → L3 be a spacelike immersion, and suppose h0 := π0 ◦ X is a
branched covering, where π0 : L3 → Π0 is the orthogonal projection over a spacelike plane Π0.

Then, for any spacelike plane Π, the map h := π ◦X is a branched covering, where π : L3 → Π
is the orthogonal projection. Furthermore, the branch points, branching numbers and number of
sheets of h do not depend on Π.

Proof : Lemma 2.1 gives that h is a branched local homeomorphism. Pick p ∈ M, take V0 and V
regular neighbourhoods at p for h0 and h, respectively, and consider γ ⊂ V0 ∩ V a loop winding
once around p. The eventual multiplicity of p as branch point of h0 (resp., h) coincides with the
linking number of X ◦γ around the timelike line `0 (resp., `) passing through X̃(p) and orthogonal
to Π0 (resp., Π). By Equation (1), p is a branch point of h0 if and only if it is a branch point of
h, and with the same multiplicity.

To prove that X is a multigraph over Π it remains to check that h := π ◦ X satisfies the path
lifting property. Reasoning by contradiction, let β : [0, 1] → Π be a curve and take α : [0, ε[→ M
a divergent inextensible lift of β, where ε < 1.

Let us see that limt→ε X(α(t)) exists and is finite. Otherwise, as α does not extend continuously
to ε, we get that either 〈X(α(t)), v〉 is oscillatory or divergent, and so,

∫ ε

0
|〈(X ◦α)′(t), v〉|dt = +∞.

Since X is spacelike we infer that

∞ > L(β) ≥
∫ ε

0

|〈(X ◦ α)′(t), v〉|dt,

which is absurd (here L(·) means length of spacelike curves with respect to the Lorentzian metric
〈, 〉). In particular, limt→ε h0(α(t)) exists, which contradicts the path lifting property for h0.

Finally, assume that h has a finite number k of sheets and take x ∈ Π such that h−1(x) consists
of k distinct points, namely, p1, . . . , pk. Let Vj be a regular neighbourhood of pj for h, and without
loss of generality, assume that h(Vj) is convex, j = 1, . . . , k.

Therefore, if v′ ∈ H2
+ is close enough to v, X−1(`v′ )∩Vj consists of a unique point, j = 1, . . . , k,

where `v′ = {x + λv′ : λ ∈ R}. Let us see that that there is a neighbourhodd W ⊂ H2
+ of v

such that, for any v′ ∈ W, X−1(`v′) consists of k points. Otherwise, there is a sequence of vectors
{vn}n∈N ⊂ H2

+ coverging to v and points qn ∈ X−1(`vn) − ∪k
j=1Vj , n ∈ N. Since {h(qn)}n∈N → x

and h is proper (recall that h is finitely sheeted), we infer that there exists a subsequence of {qn}n∈N
converging to a point in h−1(x) = {p1, . . . , pk}, which leads to contradiction.

Given W as above and for any v′ ∈ W, the branched covering h′ := π′ ◦ X has also k sheets,
where Π′ is a plane orthogonal to v′ and π′ is the orthogonal projection over Π′. Thus, the map
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applying vectors of H2
+ into the number of sheets of the corresponding branched covering of M is

locally constant, and so globally constant (H2
+ is connected), which completes the proof. 2

Definition 2.3 A spacelike immersion X : M → N with isolated singularities is said to be entire
if its lifting X̃ is an entire multigraph over a (or any) spacelike plane. In this case, X(M) is called
an entire spacelike surface with isolated singularities.

An entire spacelike immersion X : M → N with isolated singularities is said to be of finite type
if M has finite topology, X has a finite number of singularities and there is a timelike geodesic
γ : R → N such that γ−1(X(M)) is finite. We also say that X(M) is an entire spacelike surface
of finite type.

The last causality condition in Definition 2.3 means that the lifting X̃ : M̃ → L3 of X is a
finitely sheeted entire multigraph over spacelike planes. In particular, if X : M → N is entire and
of finite type, Π is a spacelike plane and π : L3 → Π the orthogonal projection, the map π ◦ X̃ is
a proper map, and thus X̃ (and X) are proper.

A spacelike immersion X : M → N with isolated singularities induces a distance function
on M in the standard way: the distance between two points is defined as the infimum length of
curves joining them (note that this length is well defined even for curves passing through singular
points). It is well known that M is a complete metric space if and only if every divergent path
in M has infinite length, and in this case, X (resp., X(M)) is said to be a complete immersion
(resp., surface).

It is natural to ask for the relationship between the concepts of properness, completeness and
entireness of spacelike immersions. Contrary to the Riemannian case, it is not hard to see that
properness does not imply completeness. A first approach to the proof of the following lemma in
the embedded case in L3 can be found in [9].

Lemma 2.2 (Global behaviour of spacelike immersions with singularities) Let X : M →
N be spacelike immersion with isolated singularities. Then,

(a) If X is proper, then X is entire.

(b) If X is complete, then X is entire.

(c) If X is entire, then X is an embedding if and only if it has embedded singularities. In this
case, X̃(M̃) is a graph over any spacelike plane.

Consequently, entire embedded spacelike surfaces with finitely many singularities are of finite type.

Proof : To check (a), first note that X is proper if and only if X̃ is proper (use that Π1(M̃) =
Ker(X∗) and N ≡ L3/G, where G ∼= Π1(M)/Ker(X∗) acts freely and properly on L3). Hence it
suffices to check that X̃ is an entire multigraph, provided that X̃ is proper. Let π : L3 → Π the
orthogonal projection over a spacelike plane Π, take a smooth curve α : [0, 1] → Π, and reasoning
by contradiction, suppose there is an inextensible α̃ : [0, ε[→M̃ lift of α for h := π ◦ X̃, ε < 1. By
the properness of X̃, this simply means that X̃ ◦ α̃ is a divergent curve in R3. On the other hand,
‖(X̃ ◦ α̃)′(t)‖2 > 0 on non singular points implies that < (X̃ ◦ α̃)′, v > is bounded on [0, ε[, where
v ⊥ Π. This gives that (X̃ ◦ α̃)([0, ε[) is bounded in R3, which is absurd.

To prove (b), take into account that X is complete if and only if X̃ is complete. So, we
assume that X̃ is complete, and reasoning again by contradiction, consider an inextensible lift
α̃ : [0, ε[→ M̃ of α : [0, 1] → Π for h. If ds2

0 denotes the Riemannian metric on Π induced by the
Lorentzian one, we have π∗(ds2

0) ≥ ds2, where ds2 is the metric in M̃. Therefore, the length of α̃
is less than the Riemannian length of α|[0,ε[, and so it is finite. This obviously contradicts that α̃
is divergent.
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Finally, suppose all the singularities are embedded. By Lemma 2.1, π ◦ X̃ is a local homeomor-
phism around embedded singularities, and thus, h : M̃ → Π is a topological covering. Therefore,
h is a homeomorphism and X̃ (and X) an embedding, which proves (c). 2

The following notion will be also useful.

Definition 2.4 A continuous graph S ⊂ L3 over a spacelike plane is said to be pseudo-spacelike
if S − {x} ⊂ Ext(Cx), for any x ∈ S. In this case, obviously S is a graph over any spacelike plane.

The next lemma provides a natural way to construct pseudo-spacelike graphs in L3 :

Lemma 2.3 Let S ⊂ L3 be an entire spacelike surface with isolated singularities, and suppose S
is a multigraph with a finite number of sheets. For any v ∈ H2

+, call Πv := {z ∈ L3 : < z, v >= 0},
and for any z ∈ Πv, denote by `z the straight line {z + tv ; t ∈ R}. Define u+

v , u−
v : Πv → R by

u+
v (z) := Max{− < p, v > : p ∈ S ∩ `z}, u−

v (z) := Min{− < p, v > : p ∈ S ∩ `z}.
Then, the graphs S+

v := {z + u+
v (z)v : z ∈ Πv} and S−

v := {z + u−
v (z)v : z ∈ Πv} are

pseudo-spacelike. Moreover, S+
v = S+

w and S−
v = S−

w , for any v, w ∈ H2
+.

Proof : Let X : M → L3 be a parameterizatin of S, and as usual label πv : L3 → Πv the
orthogonal projection. Let p, q ∈ S+

v and take a curve γ ⊂ S+
v joining p and q such that πv ◦ γ is

a segment in Πv. Any lift γ̃ of πv(γ) for πv ◦ X is a radial curve in M, and so from equation (1)
X(γ) ⊂ Ext(Cp) ∪ {p}. Thus ||p− q||2 > 0, which proves the first part of the lemma.

Finally, given x ∈ S+
v and w ∈ H2

+, it is easy to check that the half line ` parallel to w, pointing
to the future and passing through x meets S+

v only at x (use that S+
v − {x} ⊂ Ext(Cx)). This

obviously implies that x ∈ S+
w and proves that S+

v = S+
w . Likewise, S−

v = S−
w .

2

Definition 2.5 Given an entire spacelike finitely sheeted multigraph S ⊂ L3, we denote by S+

(resp., S−) the pseudo-spacelike graph S+
v (resp., S−

v ), where v is any timelike vector in H2
+.

We will need some information about the asymptotic behavior of pseudo-spacelike graphs.

Lemma 2.4 Let S ⊂ L3 be an entire pseudo-spacelike graph disjoint from a lightlike line `. Then
S is disjoint from the plane containing ` and orthogonal (in the Lorentzian sense) to `.

Proof : Without loss of generality suppose that ` is above S. Let Π be a spacelike plane and call
π : L3 → Π the orthogonal projection. Given q ∈ `, denote by p(q) := S ∩ π−1(π(q)). Since
S −{p(q)} ⊂ Ext(Cp(q)), we have that S ∩ Int(Cp(q))+ = ∅, where Int(Cp(q))+ is the future pointing
convex component of L3 − Cp(q). Thus, S omit the set ∪q∈`Int(Cp(q))+, and so one of the closed
halfspaces determined by the plane containing ` and orthogonal in the Lorentzian sense to `. 2

2.2 Maximal immersions

Let M be a differential surface. A maximal immersion X : M −→ N is a spacelike immersion
with null mean curvature. In this case, S = X(M) is said to be a maximal surface in N . Using
isothermal parameters, M can be endowed with a conformal structure. In the orientable case, M
becomes a Riemann surface.

If X : M −→ N ≡ L3/G is a conformal maximal immersion and G is a (possibly trivial) group
of translations, then the Gauss map N0 is well defined, g

def= σ−1 ◦ N0 is meromorphic (here σ is
the stereographic projection), there exists a holomorphic 1-form φ3 on M such that

φ1 =
i

2
(
1
g
− g)φ3, φ2 = −1

2
(
1
g

+ g)φ3 (2)
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are holomorphic on M, Φ := (φ1, φ2, φ3) never vanishes on M, and the group generated by
the real periods of Φ, i.e., {Re

( ∫
γ

Φ
)

: γ closed curve in M}, is contained in G. Up to a
translation, the immersion is given by X = Re

∫
P0

Φ, and the induced Riemannian metric on M

by ds2 = |φ1|2 + |φ2|2 − |φ3|2 =
(
|φ3|
2 ( 1

|g| − |g|)
)2

. Since M is spacelike, then |g| 6= 1 on M, and
up to a Lorentzian isometry, we always assume |g| < 1.

Conversely, if M, g, φ3 and G are a Riemann surface, a holomorphic map on M, a holomorphic
1-form on M and a group of translations acting freely and properly on L3, respectively, satisfying
that |g| < 1 in M, Φ is holomorphic and without zeroes in M, and the period group generated by
Φ is contained in G, then X = Re

( ∫
Φ

)
: M → N ≡ L3/G is a conformal maximal immersion and

N0 = σ ◦ g its Gauss map. We call (M, Φ) (or simply (M, g, φ3)) the Weierstrass representation
of X. For more details see, for instance, [17].

Let X : D → L3 be a spacelike immersed open disc with a singular point q ∈ D, and suppose
X|D−{q} is maximal. There are two possibilities: either N0 extend continuously to q (q is a
spacelike singular point) or not (q is a lightlike singular point). If q is a spacelike singularity, X is
not a topological embedding, D − {q} is conformally D − {0}, the Weierstrass data (g, φ3) extend
analytically to q, |g(q)| < 1 and Φ(q) = 0. Moreover, q is a branch point of π ◦ X with branching
number nq > 0, where π is the orthogonal projection over a spacelike plane and nq is the zero order
of Φ at q (see for instance [24] or [9]). The following lemma deals with lightlike singular points:

Lemma 2.5 (Lightlike singularities [16], [9]) Let X : D → L3 be a spacelike immersion of an
open disc D with a singular point q ∈ D, and assume that X|D−{q} is a maximal immersion with
a lightlike singularity at q.

Then, D − {q} is conformally equivalent to {z ∈ C : 0 < r < |z| < 1}, and X extends to a
conformal map X0 : Ar → L3 with P0 := X(q) = X0({|z| = 1}), where Ar := {0 < r < |z| ≤ 1}.
Moreover, if (g, φ3) are the Weierstrass data of X0, then |g| = 1 on {|z| = 1}. In particular, X0

reflects analytically about {|z| = 1} to the mirror surface A∗
r := {z ∈ C : 1 ≤ |z| < 1/r}, and so

g(J(z)) = 1/g(z) and J∗(φ3) = −φ3, where J(z) = 1/z is the mirror involution.
Furthermore, the branching number of π ◦X at q is equal to nq

2 +mq , where π is the orthogonal
projection over a spacelike plane, nq is the number of zeroes counted with multiplicity of φ3 on
{|z| = 1} (always even) and mq is the degree of g|{|z|=1} : {|z| = 1} → {|z| = 1}.

As a consequence, X is an embedding around q if and only if g is injective on {|z| = 1} and
nq = 0. In this case and for r0 close enough to r, X0({0 < r0 < |z| ≤ 1}) is a graph over
any spacelike plane Π asymptotic to the top or bottom component of CP0 , and P0 is said to be a
downward or upward pointing conelike singularity, respectively.

Figure 4: An upward pointing conelike singularity.

Obviously, the local behavior of singularities detailed above is valid for maximal immersions
in flat Lorentzian 3-manifolds, because these manifolds are locally isometric to L3. By definition,
spacelike immersions with isolated singularities which are maximal outside the singular set are
called maximal surfaces with isolated singularities.
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¿From Definition 2.2 and Lemma 2.5, the boundary of the conformal support M0 of an ori-
entable maximal immersion X : M → N with isolated singularities has as many analytical com-
ponents (i.e., circles) as lightlike singular points in M. As in Definition 2.2, the conformal param-
eterization X0 : M0 → N of X(M) is said to be a conformal maximal immersion with isolated
singularities, and the Weierstass representation Φ of X0 are meromorphic data on M0 which reflect
analytically to the mirror surface M∗

0.

The following definition will be crucial:

Definition 2.6 A maximal immersion X : M → N with isolated singularities is said to be entire
if it is entire as spacelike immersion. We also say that X(M) is an entire maximal surface with
isolated singularities.

Entire maximal surfaces of finite type are defined like in Definition 2.3.

If X : M → N ≡ L3/G is an entire maximal surface of finite type, any lifting X̃ : M̃ → L3 is
an entire spacelike immersion with a finite number of sheets. The converse is true, provided that
M ≡ M̃/G is of finite topology and X : M → L3/G is maximal outside the singular set.

Lemma 2.2 gives that entire embedded maximal surfaces in L3/G with a finite number of
singularities are of finite type.

3 Complete flat Lorentzian 3-manifolds and maximal sur-

faces

In this section we focus attention in the geometry of entire maximal surfaces with a finite number
of singularities in complete flat Lorentzian 3-manifolds. To be more precise, we deal with maximal
surfaces with a finite number of singularities and whose lifting to L3 is a finitely sheeted multigraph.
We are going to describe the non trivial subgroups G ⊂ Iso(L3) acting freely and properly on L3,
for which N = L3/G admits entire maximal surfaces of finite type. We will show that the index
≤ 4 subgroup G↑

+ is generated by either one or two spacelike translations. This result allows to
control the topology and geometry of both the Lorentzian manifold and the maximal surface. We
start with the following:

Lemma 3.1 There are no entire spacelike surfaces S ⊂ L3 of finite type invariant under elliptic
or parabolic screw motions. As a consequence, if S is invariant under a negative isometry R ∈
Iso−(L3) whithout fixed points, then in a suitable (2, 1)-coordinate system:

(i) Orthochronous case: R((x1, x2, x3)) = (x1,−x2, x3) + (δ, 0, 0), δ 6= 0, or

(ii) Non orthochronous case: R((x1, x2, x3)) = (x1, x2,−x3) + (0, δ, 0), δ 6= 0.

Proof : Obviously, finitely sheeted entire multigraphs are not invariant under elliptic screw motions.
Assume that R is a parabolic screw motion, and up to an isometry, suppose that the axis of ~R is
` = {(0, s, s) : s ∈ R} and its translation vector is v = (0, 0, λ), λ 6= 0 (see Remark 2.1).

Since R is orthochronous, it leaves invariant the pseudo-spacelike graph S+ given in Definition
2.5. Assume that S+ ∩ ` 6= ∅. Then, for any p ∈ S+ ∩ `, R(p) and p would be points in S lying on
the same vertical line, which contradicts that S+ is a graph over {x3 = 0}.

Suppose now that S+ ∩` = ∅. By Lemma 2.4, S+ is contained in one the halfspaces determined
by {(x, y, z) ∈ L3 : x3 = x2}. Without loss of generality, we put S+ ⊂ H = {(x1, x2, x3) : x2 ≥
x3}. If for any c ∈ R we label Hc = {(x1, x2, x3) ∈ L3 : x2 ≥ x3 + c}, Then S+ = Rk(S+) ⊂
Rk(H) = H−kλ, k ∈ Z, which is impossible.
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For the final part of the lemma, note that if S is invariant under a negative isometry R, then
R2 must be an orthocronous positive isometry different from an elliptic or parabolic screw motion.
By Remark 2.1, −R is either a hyperbolic positive isometry, an elliptic positive isometry of angle
π or a translation. The last possibility can not hold because R has no fixed points. If −R is
elliptic of angle π, ~R is the Lorentzian symmetry with respect to a spacelike plane. Hence R2 is
a spacelike translation (recall that R2(S+) = S+ and S+ is pseudo-spacelike), which in a suitable
(2, 1)-coordinate system leads to (ii). Finally, if −R is hyperbolic, it must be non orthochronous
and of angle 0 (otherwise, R would have fixed points). Reasoning as above R2 is a spacelike
translation, which in a suitable (2, 1)-coordinate system corresponds to (i). 2

The following theorem deals with the conformal type problem of entire maximal surfaces of
finite type.

Theorem 3.1 Let M be an orientable surface, and let X : M → N = L3/G, G 6= {Id}, be an
entire maximal immersion of finite type, where G ⊂ Iso↑+(L3). Then the conformal support M0 of
X is of finite conformal type. Furthermore,

• If A0 ⊂ M is an annular end, the homomorphism (X|A0)∗ : Π1(A0) → G ≡ Π1(N ) is
injective,

• If (X|A0 )∗(Π1(A0)) = 〈R0〉 ⊂ G, then the naturally induced immersion Y : A0 → L3/〈R0〉 is
an embedding outside a compact subset.

Proof : First of all, we recall that X and its lifting X̃ : M̃ → L3 are proper maps (take into account

that X is of finite type). Denote by p : M̃ → M the covering projection. Since Π1(M)

Ker(X∗)

X∗∼= G

(see Remark 2.2), X(M̃) is invariant under G, and G acts freely and properly on M̃ as group of
intrinsic isometries. ¿From Lemma 3.1 we infer that G consists of either orthochronous hyperbolic
screw motions or translations, besides the identity.

Since the conformal support M0 of X has finite topology, there is an open relatively compact
domain D ⊂ M0 with analytical boundary containing ∂(M0) and such that M0 −D consists of a
finite family of annular ends. Let A0 be such an annular end, label γ0 as a loop in A0 generating
Π1(A0) and distinguish two possibilities: γ0 ∈ Ker(X∗) and γ0 /∈ Ker(X∗).

Let us see that the first possibility can not hold. Reasoning by contradiction, suppose γ0 ∈
Ker(X∗). Since G is not finite, the set p−1(A0) is the pairwise disjoint union of infinitely many
closed annular ends in M̃. Let A be any annular end in p−1(A0). Call π : L3 → {x3 = 0} the
orthogonal projection and put h := π◦X̃. As X̃ is a finitely sheeted multigraph over {x3 = 0} then
h is a proper map. Let U ⊂ {x3 = 0} be an open disc containing h(∂(A)), and define A′ as the non
compact connected component of A∩h−1({x3 = 0}−U ). Obvioulsy, h(A′)∩({x3 = 0}−U ) is open
and closed in {x3 = 0} −U and so h(A′) = {x3 = 0} −U . We infer that h|A′ : A′ → {x3 = 0} −U
is a surjective proper local homeomorphism, and so a finitely sheeted covering. Likewise, given
R ∈ G and open disc UR ⊂ {x3 = 0} containing h

(
∂(R(A))

)
, there is an annular end A′

R ⊂ R(A)
such that h|A′

R
: A′

R → {x3 = 0} − UR is a covering. This contradicts that h is finitely sheeted.

Thus, we can assume that γ0 /∈ Ker(X∗). Let Ã0 be a connected component of p−1(A0) ⊂ M̃,
obviously symply connected, and take R0 ∈ G − {Id} such that R0(Ã0) = Ã0 and

Ã0/〈R0〉 ≡ A0.

Up to a Lorentzian isometry, we will assume that R0 leaves invariant the x1-axis, that is to say,
either R0 is a translation of vector parallel to (1, 0, 0) or R0 is a hyperbolic screw motion with axis
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{(t, 0, 0) : t ∈ R}. This obviously implies that X̃(Ã0) can not be eventually (i.e., up to a compact
subset) contained in any halfspace orthogonal to the x1-axis.

Without loss of generality, suppose X|A0 and X̃|Ã0
are conformal parameterizations.

Since X̃ is spacelike, E := p(X̃−1({x1 = c}) ∩ Ã0) consists of a a family of regular analytical
curves without crossing points, c ∈ R. Let us see that E contains a divergent curve. Otherwise,
any curve in E must be compact, and by the maximum principle, it bounds a compact domain in
A0 containing a piece of ∂(A0). Furthermore, if X1 denotes the first coordinate function on Ã0, we
know that X1 ◦R0 = X1 + λ, λ 6= 0, and so E can not contain any homotopically non trivial loop.
Since ∂(A0) is analytical, we infer that E consists of finitely many compact curves meeting ∂(A0),
and so X̃(Ã0) is eventually contained in {x1 ≥ c} or {x1 ≤ c}, a contradiction.

Let γ ⊂ Ã0 be a curve such that p(γ) is divergent and X̃(γ) ⊂ {x1 = 0}. Up to removing a
tubular neighborhood of ∂(A0) and its corresponding lifting in Ã0, we can suppose that the initial
point of γ lies in ∂(Ã0). Let Ω ⊂ Ã0 be a simply connected non compact domain given by the

closure of any connected component of Ã0∩p−1
(
A0−p(γ)

)
. Obviously, p|◦

Ω
:

◦
Ω → A0−γ is injective

and p(Ω) = A0. Consider π : L3 → {x3 = 0} and h := π ◦ X̃ as above.
The set h

(
Rj

0(∂(Ω))
)

eventually bounds a half strip in {x3 = 0} parallel to the x2-axis, j ∈ Z.

Let Bj denote the convex hull of h
(
∂(Rj

0(Ω))
)
, j ∈ N, and let ∆j denote the connected component

of {x3 = 0} − h(∂(Rj
0(Ω))) containing {x3 = 0} − B̄j .

Let us see that h(Ω) is disjoint from ∆0. Indeed, as h is proper, then the set ∆0 ∩h(Ω) is open
and closed in ∆0, and thus either ∆0 ∩ h(Ω) = ∅ or ∆0 ⊂ h(Ω). The second possibility can not
hold, because otherwise we infer that ∆j ⊂ h(Rj

0(Ω)), for any j, and so {x3 = 0} − ∪k
j=0Bj ⊂

∩k
j=0h(Rj

0(Ω)), for any k > 0. This contradicts that h has a finite number of sheets.

As a consequence, h(Ω) is the union of a half strip in {x3 = 0} parallel to the x2 axis and
a compact set of this plane. In the sequel, and without loss of generality, we suppose that Ω
contains γ ∪ R0(γ) in its boundary. Consider a closed half strip W ⊂ h(Ω) whose boundary
consists of h(γ0) ∪ h(R0(γ0)) ∪ `, where γ0 ⊂ γ is a divergent curve and ` is a segment joining
the initial points of the half lines h(γ0) and h(R0(γ0)) and contained (up to its initial and final
points) in h(Ω)−∂(h(Ω)). Since the closure of h(Ω)−W is compact and h is proper, the maximum
principle gives that the closure of Ω − Ω0 is a compact simply connected domain with boundary(
∂(Ω)∪h−1(`)

)
− (γ0∪R0(γ0)), where Ω0 := (h|Ω)−1(W). Furthermore, h|Ω0 : Ω0 → W is a proper

local homeomorphism, and so a covering. Since W is simply connected, we infer that h|Ω0 is one
to one, that is to say, X̃(Ω0) is a graph over W.

Since A0 − p(Ω0) is a tubular neighborhood of ∂(A0) with compact closure, we can relabel
A0 ≡ p(Ω0) and Ω ≡ Ω0. In particular, we can assume that X̃(Ω) is a graph over W and the
induced map Y : A0 → L3/〈R0〉 is a proper embedding.

On the other hand, it is obvious that the second coordinate function X2 := x2 ◦ X̃ is bounded
above or below, proper and harmonic on Ω. This gives that Ω is relative parabolic with the
conformal structure induced by X̃ (see for instance [1], [12]). Let F : Ã0 → C be the holomorphic
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map given by F :=
∫

φ1, where φ1 is the first 1-form in the Weierstrass representation of X̃ |Ã0
.

Observe that F (p) = X1(p)+ iX∗
1 (p), where X1 = x1 ◦ X̃ and X∗

1 is the harmonic conjugate of X1.
Since X̃(Ω) is a graph over W, (h|Ω)−1({x1 = c}) is a regular divergent arc, for any c ∈ I ⊂ R,
where I is a suitable compact interval of length the width of W. As a consequence, X∗

1 is injective
on the level curves of X1, and so F |Ω is injective. We infer that F (Ω) is a relative parabolic
domain in C, which obviously implies that X∗

1 |Ω : Ω → R is a proper harmonic map bounded
above or below. Since R∗

0(φ1) = φ1, then F ◦ R0 = F + ω, where ω ∈ C − {0}, and so the map
H := e

2πiF
ω : A0 → C is well defined. Furthermore, log |H| : A0 → R is a harmonic proper function

bounded above or below, which proves that A0 is biholomorphic to D̄ − {0} and concludes the
proof. 2

Lemma 3.2 Let S ⊂ L3/G be an entire spacelike surface of finite type, where G ⊂ Iso↑
+(L3) and

contains a translation T 6= Id. Then G is a group of spacelike translations of rank at most two.

Proof : Label S̃ as a lifting of S and write T (x) = x + w, w 6= 0. Since S̃+ is a pseudo-spacelike
graph invariant under T, w = T (p) − p is spacelike, p ∈ S̃+.

Reasoning by contradiction, suppose G contains a Lorentzian screw motion R. By Lemma 3.1,
R(x) = ~R(x) + v, where ~R is a linear orthochronous hyperbolic rotation of non zero angle, and up
to a Lorentzian isometry, v lies in the axis ` of ~R.

Define T ′ = R−1 ◦ T ◦ R ∈ G and observe that T ′(x) = x + w′, where w′ = ~R−1(w).
Let us see that the vectors w and w′ are linearly independent. Otherwise, ~R(w) = λw, λ ∈ R.

We infer that w is a spacelike eigenvector of ~R, that is to say, w lies in the axis of ~R. Therefore
λ = 1, T = T ′ and w = µv, µ ∈ R. Since G′ = 〈T, R〉 acts freely and properly as a group of
translations on `, it must be cyclic. Hence there are n, m ∈ Z − {0} such that T m ◦ Rn fixes the
origin, which contradicts that G acts freely and properly on L3.

Denote by Π the spacelike plane generated by w and w′, and call G1 = 〈T, T ′〉. As S̃+ is a
graph over Π, then S̃+/G1 is a topological torus and the same holds for S̃+/G since it is covered
by S̃+/G1. This proves that G is a rank two Abelian group.

Since G1 is a finite index subgroup of G, we infer that Rn ∈ G1, for a suitable n > 0, and so
Rn is a translation. This is obviously absurd, and proves that G is a translational group.

If G contains two independent translations, we repeat the last argument to get that S̃+/G is a
topological torus again, and so G has rank two. This concludes the proof. 2

The following remarkable result by Mess will play a crucial role in the proof of Theorem 3.3:

Theorem 3.2 (Mess [21], [11]) If G ⊂ Iso(L3) acts freely and properly on L3, then G cannot
be isomorphic to the fundamental group of a closed surface of negative Euler characteristic.

The following theorem is a consequence of Lemmas 3.1, 3.2 and Theorem 3.2.

Theorem 3.3 Suppose there exists an entire maximal immersion X : M → N of finite type,
where N = L3/G, G 6= {Id}.

Then G↑
+ is a group of spacelike translations of rank one or two, and if N ↑

+ 6= N (i.e., G 6= G↑
+)

only one of the following possibilities hold:

(a) If G↑
+ = G↑ 6= G+ = G, then either G = 〈R0〉 or G = 〈R0, T0〉, where in a suitable (2, 1)-

coordinate system R0((x1, x2, x3)) := (x1 + ν,−x2,−x3), ν 6= 0 and T0(x) = x + (0, λ, 0),
λ 6= 0.

(b) If G↑
+ = G+ 6= G↑ = G, then either G = 〈R1〉 or G = 〈R1, T1〉, where in a suitable (2, 1)-

coordinate system R1((x1, x2, x3)) = (x1 + δ,−x2, x3) and T1(x) = x + (0, λ, 0), δ 6= 0, λ 6= 0.
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(c) If G↑
+ = G+ = G↑ 6= G, then either G = 〈R2〉 or G = 〈R2, T2〉, where in a suitable (2, 1)-

coordinate system R2((x1, x2, x3)) = (x1, x2 + δ,−x3) and T2(x) = (λ, µ, 0), δ 6= 0, λ 6= 0.

(d) If G↑
+ 6= G+ 6= G and G↑

+ 6= G↑ 6= G, then G = 〈R0, R2〉, where in a suitable (2, 1)-coordinate
system R0 and R2 are as above.

Moreover, X is complete and proper, and M is compact if and only if G↑
+ has rank two. If G = G↑

+

and X0 : M0 → L3 is a conformal parameterization of X, then M0 is of finite conformal type and
the Weierstrass data of X0 extend meromorphically to the ends.

Proof : As usual, call X̃ : M̃ → L3 a lifting of X. Since Π1(M)

Ker(X∗)

X∗∼= G (see Remark 2.2), the

surface S̃ := X̃(M̃) is invariant under G, G acts freely and properly on M̃ as group of isometries
and M↑

+ := M̃/G↑
+ is a finitely sheeted covering of M ≡ M̃/G. Moreover, X induces an entire

maximal immersion of finite type Y : M↑
+ → N ↑

+, where N ↑
+ is the Lorentzian manifold L3/G↑

+.

We have to show that G↑
+ is a translational group of rank at most 2.

Reasoning by contradiction suppose that G↑
+ is not translational. Lemmae 3.1 and 3.2 give

that G↑
+ consists of orthochronous hyperbolic screw motions, besides the identity.

Let us see that M↑
+ is compact. Suppose the contrary, and take an annular end A0 of M↑

+

containing no singular point. By Theorem 3.1, A0 is is conformally equivalent to a once punctured
disc, and any curve γ0 generating Π1(A0) satisfies γ0 /∈ Ker(Y∗).

Call R0 ∈ G↑
+ − {Id} the transformation such that Ã0/〈R0〉 ≡ A0, where Ã0 is a connected

component of p−1(A0) ⊂ M̃ and p : M̃ → M↑
+ is the covering projection. Let N0 : Ã0 → H2

−
denote the Gauss map of X̃ |Ã0

. Since N0 ◦ R0 = ~R0 ◦ N0, we can naturally induce a holomorphic
map B : A0 → H2

−/〈~R0〉 such that

B∗ : Π1(A0) ≡ 〈R0〉 −→ Π1(H2
−/〈~R0〉) ≡ 〈~R0〉

is a group isomorphism. On the other hand, since ~R0 is an hyperbolic transformation, the quotient
H2

−/〈~R0〉 endowed with the hyperbolic metric is conformally equivalent to an annulus A1 := {z ∈
C : 1 < |z| < r}, r > 1, and up to natural identifications, B : A0 → A1 is conformal. By
the Riemann removable singularity theorem, B extend analytically to the puncture of A0, and so,
B(γ0) is homotopically trivial. This is absurd and proves that M↑

+, and so M, must be compact.
Consider the entire pseudo-spacelike graph S̃+ given in Definition 2.5. Since G↑

+ leaves S̃+

invariant, S↑
+ := S̃+/G↑

+ ⊂ N ↑
+ is an embedded incompressible topological surface in N ↑

+. Moreover,
as S↑

+ is a closed subset of Y (M↑
+), it is compact. Therefore, G↑

+ is cocompact, that is to say, it
is isomorphic to the fundamental group of a compact surface (namely, Π1(S↑

+)), which contradicts
Mess Theorem and proves that G↑

+ is translational. Furthermore, by Lemma 3.2, G↑
+ is generated

by either one or two translations.
For the classification part of the theorem, it is important to keep in mind that an isometry of

G reverses the orientation of the spacelike graph S̃+ if and only if it is either positive and non
orthochronus or negative and orthochronous. In addition, S̃+/G is either a cylinder, a Möbius
strip, a torus or a Klein Bottle, and so G ∼= Π1(S̃+/G) is isomorphic to Z, Z×Z or F (a, b)/〈aabb〉,
where F (a, b) is the non Abelian free group of rank two.

Suppose N is orientable, i.e., G+ = G (and so, G↑
+ = G↑ 6= G).

If G↑
+ is generated by a spacelike translation, then G is generated by a non orthochronous

(hyperbolic, by Lemma 3.1 ) screw motion R0. Since R2
0 ∈ G↑

+, the angle of R0 must be zero,
and in a suitable (2, 1)-coordinate system R0 is given as in (a). When G↑

+ has rank two, G =

16



〈T ′
0, R0〉, where T ′

0 is a spacelike translation, R0 is a non orthochronous hyperbolic screw motion
and G↑

+ = 〈R2
0, T

′
0〉 (note that G↑

+ is an index two subgroup of G ∼= Π1(S̃+/G) and S̃+/G is a Klein
bottle). Reasoning as in the previous case, in a suitable (2, 1)−coordinate system R0((x1, x2, x3)) =
(x1,−x2,−x3) + (ν, 0, 0), ν 6= 0, . Label v = (γ, λ, µ) as the translation vector of T ′

0. Since
T ′′

0 := R−1
0 ◦T ′

0 ◦R0 is a translation of vector (γ,−λ,−µ) and 〈T ′′
0 ◦T ′

0, R
2
0〉 acts freely and properly

on the x1-axis, we get γ = nδ, n ∈ Z. As T ′
0 ◦ R−n

0 has no fixed points we infer that n is even.
Therefore T0 := T ′

0◦R
−n
0 is a spacelike translation of vector orthogonal to (ν, 0, 0) and G = 〈T0, R0〉.

Without loss of generality, T0(x) = (0, λ, 0), λ 6= 0, completing (a).
In the following we suppose that G+ 6= G.
If G is cyclic, Lemma 3.1 gives G = 〈R〉, where, in a suitable (2, 1)-coordinate system, either

R = R1 (orthochronous case, first case of (b)) or R = R2 (non orthochronous case, first case of
(c)).

Assume that G↑
+ = G+ and G has rank two. In this case G is generated by a spacelike

translation T ′ and a negative isometry R without fixed points, where G↑
+ = 〈R2, T ′〉. As above

and in a suitable (2, 1)-coordinate system, either R = R1 (orthochronous case) or R = R2 (non
orthochronous case). Write T ′(x) = x + (v1, v2, v3). In case R = R1, T ′′ = R1 ◦ T ′ ◦ R−1

1 is a
translation of vector (v1,−v2, v3) different from T ′ (G is the fundamental group of a Klein Bottle)
and so v2 6= 0. Since T ′′ ∈ 〈R2

1, T
′〉 and this group only contains translations of spacelike type, it

is not hard to see that v3 = 0, and so T ′ ◦ T ′′(x) = x + (2v1, 0, 0). As 〈T ′ ◦ T ′′, R2
1〉 acts freely and

properly on L3, we get v1 = kδ, k ∈ Z. Moreover, since T ′′ ◦ R−k
1 has no fixed points, k is even.

Thus, T1 := T ′′ ◦ R−k
1 is the translation of vector (0, λ, 0), where λ = v2, and G = 〈R1, T1〉, which

corresponds to the second case in (b). In case R = R2, G is commutative and so T ′ ◦R2 = R2 ◦T ′.
This implies that T2 = T ′ is a horizontal translation, leading to the second case of (c).

It remains to study the case when G has rank two and G↑
+ 6= G+. In this case G is the fun-

damental group of a Klein Bottle and G/G↑
+
∼= Z2 × Z2. Therefore, G = 〈R0, R〉, where R0 is a

positive non orthochronous isometry, R is a negative orthochronous isometry and R2
0 ◦ R2 = Id.

Since R2
0 ∈ G↑

+, in a suitable (2, 1)−coordinate system we have R0(x1, x2, x3) = (x1+ν,−x2,−x3),
ν 6= 0. As ~G := {~R : R ∈ G} ∼= Z2 × Z2, then ~R2 = Id and ~R and ~R0 commute. Thus we can
deduce that either ~R((x1, x2, x3)) = (x1,−x2, x3) or ~R((x1, x2, x3)) = (−x1, x2, x3). The last case
is impossible because R◦R0 has no fixed points. Hence R((x1, x2, x3)) = (x1,−x2, x3)+(v1, v2, v3),
and using that R2

0◦R2 = Id we get v1 = −ν and v3 = 0. Defining R2 = R0◦R, we get G = 〈R0, R2〉,
which corresponds to (d).

To finish the theorem, use Theorem 3.1 to infer that Y (and so X and X̃) is proper, and that
any annular end of M↑

+ (and so, of M) is conformally equivalent to D− {0}. Since X̃ is a finitely
sheeted multigraph and G↑

+ consists of translations, Y (M↑
+) (and so M↑

+ and M) is compact if
and only if S̃+/G↑

+ and S̃−/G↑
+ are compact. However, S̃+ and S̃− are entire graphs, and the last

only occurs when G↑
+ has rank 2.

The completeness of X is clear in the compact case. Hence, suppose that G↑
+ has rank 1, and

let us see that Y is complete. Let (g, φ3) denote the Weierstrass data of Y0, where Y0 is a conformal
parameterization of Y. By the Riemann’s removable singularity theorem, g extends holomorphically
to the puncture of any annular end A0 containing no singular point (recall that |g| < 1), and so
|g||A0 ≤ 1−ε, ε > 0. In the sequel, and up to a Lorentzian isometry, we assume that G↑

+ consists of
horizontal translations, and so isometrically L3/G↑

+ ≡ Σ × R, where Σ is a spacelike flat cylinder
and R represents its timelike orthogonal direction. If ds2

0 denotes the induced Euclidean metric
in Σ and π : L3/G↑

+ → Σ the natural projection, then (π ◦ Y )∗(ds2
0) ≤ ds2

1 ≤ |φ3
g |2, where

ds2
1 = |φ1|2 + |φ2|2 + |φ3|2 = 1

4 |φ3|2(|g| + 1/|g|)2.We infer that the flat metric |φ3
g |2 is complete,
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and so the same holds for ds2|A0 = 1
4
|φ3|2(|g| − 1/|g|)2 ≥ C|φ3

g
|2, for suitable C > 0. Moreover,

the completeness of |φ3
g
|2 implies that φ3

g
(and so φ3) extends meromorphically to the ends (see

Osserman [24]).
2

Corollary 3.1 Any entire embedded maximal surface S with a finite number of singularities in a
complete flat Lorentzian manifold N = L3/G, G 6= {Id}, is incompressible, proper, complete and
of finite type.

Moreover, up to isometries, only the following possibilities can hold:

(a) N = L3/〈T 〉, where T is a spacelike translation and S is a cylinder of finite conformal type.

(b) N = L3/〈T1, T2〉, where T1, T2 are independent spacelike translations and S is a torus.

(c) N = L3/〈R0〉, where R0((x1, x2, x3)) := (x1 + ν,−x2,−x3), ν 6= 0, and S is a Möbius strip of
finite conformal type.

(d) N = L3/〈R0, T0〉, where T0(x) = x + (0, λ, 0), λ 6= 0, R0 is as above and S is a Klein Bottle.

(e) N = L3/〈R1〉, where R1((x1, x2, x3)) = (x1 + δ,−x2, x3), δ 6= 0, and S is a Möbius strip of
finite conformal type.

(f) N = L3/〈R1, T1〉, R1 is as above and T1(x) = x + (0, λ, 0), λ 6= 0, and S is a Klein Bottle.

(g) N = L3/〈R2〉, where R2((x1, x2, x3)) = (x1, x2 + δ,−x3), δ 6= 0, and S is a cylinder of finite
conformal type.

(h) N = L3/〈R2, T2〉, where R2 is as above and T2(x) = (λ, µ, 0), λ 6= 0, and S is a torus.

(i) N = L3/〈R0, R2〉, where R0 and R2 are as above and S is a Klein Bottle.

Proof : Let X : M → L3 be a parameterization of S, and write X̃ : M̃ → L3 its corresponding
lifting.

By Theorem 3.3, X is proper, complete and any annular end of M is of finite conformal type.
Since X̃ is a complete embedding , Lemma 2.2 give that S̃ := X̃(M̃) is an entire spacelike graph
with isolated singularities over any spacelike plane. This implies that X is imcompressible and of
finite type.

The cases listed above follow Theorem 3.3 again. 2

Remark 3.1 The hypothesis in Theorem 3.3 of being maximal is crucial. As a matter of fact,
any globally hyperbolic complete Lorentzian manifold admits a smooth Cauchy hypersurface, (see
[4] for details).

3.1 Maximal surfaces of finite type in L3/〈T 〉
Throughout this subsection, X : M → L3/〈T 〉 will be an entire maximal surface of finite type,
where T is a non trivial spacelike translation. We write X̃ : M̃ → L3 its corresponding singly
periodic lifting, and denote by (g, φ3) the Weierstrass data of X0 : M0 → L3/〈T 〉, where X0 is a
conformal parameterization of X.

We start with the following lemma:

Lemma 3.3 The 1-form ω = φ3
g has simple poles at the ends of M0. In particular, X is asymptotic

at any end of M0 to a totally geodesic spacelike half cylinder in L3/〈T 〉 (possibly with multiplicity).
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Proof : By Theorem 3.3, M0 is of finite conformal type and the Weierstrass data of X0 extend
meromorphically to the ends of M0. Let (D∗ ≡ D− {0}, z) be a once punctured conformal disc in
M0 centered at an end of M0, and up to a Lorentzian isometry, suppose that the tangent plane
at this end is horizontal, that is to say, g(0) = 0. Write g(z) = zp, p ≥ 1, and put

ω =




+∞∑

j=−q

cjz
j


 dz, c−q 6= 0,

on D. Reasoning by contradiction, suppose q ≥ 2.
Consider the universal covering D̃∗ ≡ {u ∈ C : Re(u) < 0} ⊂ M̃0 of D∗, and write

π : D̃∗ −→ D∗, π(u) = eu, the covering projection.
Denote by π0 : L3 → {x3 = 0} ≡ C the orthogonal projection. Without loss of generality, we

can suppose that X̃ : D̃∗ → L3 is an embedding and (π0 ◦ X̃)(D̃∗) is a graph over {x3 = 0} (see
the proof of Theorem 3.1).

Using complex notation and following equation (2), it is not hard to check that

π0 ◦ X̃(u) =
−i c−q

2(1 − q)
e(1−q)u h(u) u ∈ D̃∗,

where h : D̃∗ → C is bounded and differentiable in D̃∗ and limu→∞ h(u) = 1 on the strips
{u ∈ D̃∗ : |Im(u)| < C}, C ∈ R+.

Let A : D̃∗ → R be a smooth branch of the argument A(u) := arg
(
π0(X̃(u))

)
, and observe

that Aθ := limr→−∞ A(r + iθ) = 3π
2
− arg (c−q) + (q − 1)θ.

In particular, the graph S̃(k) := X̃({u ∈ D̃∗ : Im(u) ∈ [ 2πk
q−1 , 2π(k+1)

q−1 ]} is projected by π0 over
a planar region in {x3 = 0} containing, up to a compact subset, the complement of a sector of
arbitrarily small angle bisected by the half line {(x1, x2, 0) : arg (x1, x2) = 3π

2 − arg (c−q)}, and
this for any k ∈ Z. As S̃(k) ⊂ X̃(D̃∗) for any k ∈ Z, we contradict that X̃(D̃∗) is a graph and
prove the first part of the lemma.

For the second one, use the same notation as above for q = 1 and obtain

X̃(u) =
(−i c−1

2
u, 0

)
+ H(u),

where H : D̃∗ → R3 ≡ C×R is a bounded differentiable function in D̃∗ and limu→∞ H(u) = (1, µ0)
on the strips {u ∈ D̃∗ : |Im(u)| < C}, C ∈ R+. Therefore, the surface X̃(D̃∗) is asymptotic,
as Re(u) → −∞, to a horizontal plane and the end X(D∗) is asymptotic to a totally geodesic
horizontal half cylinder invariant under T n, for suitable n ∈ N . 2

Suppose M0 has r ends and let M0 = M0 ∪{P1, . . . , Pr} be the conformal compactification of
M0. Let Aj ⊂ M0 be an annular end around Pj containing no singular points, and call Ãj ⊂ M̃ a
lifting of Aj . By definition, the integer wj ∈ N such that Ãj/〈T wj 〉 ≡ Aj is called the multiplicity
of Pj. When wj = 1, we say that Pj is a Sherk’s type end. If p : M̃ → M is the natural covering, it
is clear that p−1(Aj) consists of wj connected components corresponding to the different liftings of
Aj . Since the images under X̃ of two different liftings of Aj differ by a translation T m, 0 < m < wj,

we infer that X̃ (and so X) is not an embedding provided that wj > 1, j ∈ {1, . . . , r}.
Let Σ be a timelike flat cylinder in L3/〈T 〉, and label H+ and H− as the two connected

components of L3/〈T 〉 − Σ. Without loss of generality, we suppose that X(Aj )∩ Σ = ∅, for any j.
Therefore we can assign to any end Pj the signature εj = +1 or εj = −1 depending on X(Aj) ⊂ H+

or X(Aj ) ⊂ H−, respectively.
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On the other hand, Stokes formula gives
∑r

j=1 Residue(Φ, Pj) = 0, which leads to

r∑

j=1

εjwj = 0.

The geometrical interpretation of the multiplicity of an end is given in the following corollary:

Corollary 3.2 If we denote by M̄ = M ∪ {P1, . . . , Pr} the natural topological compactification
of M and consider Π ⊂ L3 a spacelike plane invariant under T, then the map π ◦ X : M →
Π/〈T 〉 extends to a finitely sheeted branched covering π ◦ X : M̄ →

(
Π/〈T 〉 ∪ {∞+,∞−}

)
, where

π : L3/〈T 〉 → Π/〈T 〉 is the orthogonal projection and Π/〈T 〉 ∪ {∞+,∞−} ≡ C̄ is the natural
compactification of the cylinder Π/〈T 〉.

Moreover, the multiplicity of the branched covering π ◦ X at an end Pj coincides with wj.
Therefore, if up to relabeling we suppose {P1, . . . , Ps}, s < r, are the ends with positive signature,
then π ◦ X is a branched covering of

∑s
j=1 wj sheets.

Corollary 3.3 The immersion X is an embedding if and only if r = 2 and w1 = w2 = 1. In this
case, the convex hull of the graph X̃(M̃) is either a wedge W (if the two Sherk ends of X are not
parallel) or a slab (if X has parallel ends).

3.2 Maximal surfaces of finite type in L3/〈T1, T2〉
Let X : M → L3/〈T1, T2〉 be an entire maximal surface of finiten type, where T1, T2 are indepen-
dent translations leaving invariant a spacelike plane Π, and write X̃ : M̃ → L3 its corresponding
doubly periodic lifting. Label π : L3/〈T1, T2〉 → Π/〈T1, T2〉 as the orthogonal projection, and call
(g, φ3) the Weierstrass data of X0 : M0 → L3/〈T1, T2〉, where X0 is a conformal parameterization
of X. The following corollary is obvious.

Corollary 3.4 The map π ◦ X : M → Π/〈T1, T2〉 is a finitely sheeted branched covering.
Moreover, X is an embedding if and only if π ◦ X is a homeomorphism.

3.3 The case G = {Id} : maximal surfaces of finite type in L3

A first version of the following theorem was proved in [9] for embedded maximal surfaces. It shows
that the notions of completeness, properness and entireness are equivalent for maximal surfaces in
L3 of finite type (i.e., with a finite number of singularities). We simply sketch the proof.

Theorem 3.4 Let X : M → L3 be a maximal immersion with a finite number of isolated singu-
larities. Then the following statements are equivalent:

(a) X is complete.

(b) X is of finite type

(c) X is proper.

(d) X is entire.

In any case, if X0 : M0 → L3 is a conformal parameterization of X, M0 is biholomorphic to
a M0 − {P1, . . . , Pr}, where M0 is a compact Riemann surface with analytical boundary and
{P1, . . . , Pr} ⊂ M0−∂(M0). Moreover, the Weierstrass data (g, φ3) of X0 extend meromorphically
to M0.
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Proof : (a) =⇒ (b) : Huber’s Theorem [14] implies that M0 has finite conformal type, that is to
say, it has finite topology and its ends are conformal once punctured disc. Osserman’s [24] classical
results imply that the Weierstrass data (g, φ3) extend meromorphically to the ends, and the pole
order of Φ := (φ1, φ2, φ3) at the ends is at least 2. Finally, one can use Jorge-Meeks [15] ideas to
control the asymptotic behavior at infinity, proving in particular that π ◦ X : M → Π is a finitely
sheeted covering, where π is the orthogonal projection over any spacelike plane.

(b) =⇒ (c) is trivial, and (c) =⇒ (d) follows from Lemma 2.2.
To check (d) =⇒ (a), let K0 ⊂ M be a compact subset containing the singularities. We can

assume without loss of generality that |g| < 1 on M−K0, becauseX|M−K0 is spacelike.On the other
hand, if ds2

0 is the induced Riemannian metric on Π, we observe that (π ◦X)∗(ds2
0) ≤ ds2

1 ≤ |φ3
g |2,

whereds2
1 = |φ1|2+ |φ2|2+ |φ3|2 = 1

4 |φ3|2(|g|+1/|g|)2.Thus, the flat metric |φ3
g |2 is complete, and so

itfollows from classicalresults of Huber [14] and Osserman [24] thatM−K0 is conformally a finitely
punctured compact Riemann surface with compact boundary, φ3/g has poles at the puncturesand
g extends holomorphically to the punctures.Consequently, |g| < 1 − ε on M− K0 for someε > 0,

and so ds2 = 1
4
|φ3|2(|g| − 1/|g|)2 ≥ ε2

4
|φ3

g
|2 is complete. 2

Corollary 3.5 Let X : M → L3 be a entire maximal immersion of finite type. With the notation
of Theorem 3.4, label M = M ∪ {P1, . . . , Pr} as the natural compactification of M. Let Π be a
spacelike plane and call π : L3 → Π the orthogonal projection.

Then the map π ◦ X : M → Π extends to a finitely sheeted branched covering π ◦ X : M →
Π ∪ {∞} ≡ C̄. Moreover, the end Pj is a branch point of π ◦ X with multiplicity

wj := OrdPj (Φ) − 1 = max{OrdPj (φk), k = 1, 2, 3}− 1 ≥ 1,

where (φ1, φ2, φ3) is the Weierstrass representation of X and OrdPj (φk) is the pole order of φk at
Pj, j = 1, . . . , r, k = 1, 2, 3. In particular, π ◦ X is a branched covering with

∑r
j=1 wj sheets.

As a consequence, X is an embedding if and only if r = 1 and w1 = 1.

Proof : Let A be any annular end in M corresponding to Pj, and put h := π ◦ X.
Let U ⊂ {x3 = 0} be an open disc containing h(∂(A)) and define A′ as the non compact

connected component of A ∩ h−1({x3 = 0} − U ). Obviously, h(A′) ∩ ({x3 = 0} − U ) is open and
closed in {x3 = 0}−U (we use here that h : M → {x3 = 0} is a finitely sheeted multigraph), and so
h(A′) = {x3 = 0} − U . We infer that h|A′ : A′ → {x3 = 0} − U is a proper local homeomorphism,
and so a finitely sheeted covering. Since φj, j = 1, 2, 3, have no real periods, it is easy to check
that wj ≥ 1. Straightforward arguments give that h|A′ has wj ≥ 1 sheets (see [15] for a similar
discussion in the case of minimal surfaces), which proves that Pj is a branch point of multiplicity
wj and concludes the proof. 2

4 Construction of entire maximal surfaces of finite type

Throughout this section, and following Theorem 3.3, we suppose that G ⊂ Iso(L3) is a discrete
group of spacelike translations of rank r(G) = 0, 1 or 2 (rank 0 means that G = {Id}), and
X̃ : M̃ → L3 is an entire maximal immersion invariant under G such that the immersion X : M =
M̃/G → L3/G has finite type, k1 lightlike singularities, k2 spacelike singularities and r ends. We
write k := k1 + k2 as the total number of singular points of X.

By Theorem 3.1, the conformal support M0 of X is biholomorphic to R −
(
(∪k1

j=1Dj) ∪
{P1, . . . , Pr}

)
, where R is a compact Riemann surface of genus ξ0 := Gen(M) = Gen(M0), {Dj :

j = 1 . . . , k1} are open conformal discs in R with pairwise disjoint clusures and {P1, . . . , Pr} ⊂
R − ∪k1

j=1D̄j .
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We denote by (g, φ3) the meromorphic data associated to the conformal parameterization X0 :
M0 → L3/G of X. Up to a Lorentzian isometry, we always assume that |g| ≤ 1 on M0.

If r(G) < 2 (non compact case), (g, φ3) extend meromorphically to the ends {P1, . . . , Pr} of
M0 and the induced metric on M0, namely ds2 = 1

4 (1 − |g|2)2|φ3
g |2, is complete (see Theorems

3.3 and 3.4). Corollary 3.5 and Lemma 3.3 imply that the 1-form ω := φ3
g has poles at the ends of

order ≥ 2 (if r(G) = 0) or equal to 1 (if r(G) = 1). This simply means that ω is meromorphic at
the compact surface R−∪k

j=1Dj . In the doubly periodic case M0 is compact and ω holomorphic.
Write ∂(M0) = ∪k1

j=1γj , γj := ∂(Dj ) ≡ S1, and let M∗
0 be the mirror of M0 with boundary

∂(M∗
0) = ∪k1

j=1γ
∗
j , γ∗

j ≡ S1 (see Lemma 2.5). Let S ≡ M0 ∪M∗
0 the double of M0, that is to

say, the Riemann surface without boundary obtained by gluing analytically M0 and M∗
0 along

γj and γ∗
j , j = 1, . . . , k1. The natural mirror involution J : S → S, J(p) := p∗, fixes pointwise

γj ≡ γ∗
j ⊂ S, j = 1, . . . , k1. We denote by S the conformal compactification of S, and keep calling

J the antiholomorphic mirror involution on S (recall that in the doubly periodic case S = S).
Since g extends meromorphically to S, it has well defined degree, namely Deg(g).

Note that S is a compact Riemann surface of genus 2ξ0+k1−1. From Lemma 2.5 the Weierstrass
data (g, φ3) of X0 extend, with the same name, to meromorphic data on S satisfying g ◦ J = 1/ḡ
and J∗(φ3) = −φ3, that is to say, J∗(φj) = −φj , j = 1, 2, 3.

For convenience, we refer to (S, J, g, φ3) as the Weierstrass representation of X0.
In the embedded case, Lemma 2.2 and Corollary 3.1 show that either M is topologically a

plane and ξ0 = 0 (r(G) = 0), a cylinder and ξ0 = 0 (r(G) = 1) or a torus and ξ0 = 1 (r(G) = 2).
Furthermore, Lemma 2.5 implies that the singularities are of conelike type.

The relationship between the topology of M, the degree of g and the geometry of X at the
ends is explained in the following theorem.

Let Q1, . . . , Qk2 ∈ M0 denote the spacelike singularities of X, and call nj as the zero order of
Φ at Qj , j = 1, . . . , k2. We also denote by n′

j the total vanishing order of Φ at γj , that is to say,
the number of zeroes counted with multiplicity of Φ on γj (which is always even), j = 1, . . .k1.
Likewise, mj will denote the degree of g|γj : γj → {|z| = 1}, j = 1, . . . , k1. Finally, call wj the
multiplicity of X at the end Pj, j = 1, . . . , r, and define

Vs :=
k2∑

j=1

nj , Vl :=
k1∑

j=1

n′
j .

Since |g|−1(1) = ∪k1
j=1γj , we get that Deg(g) =

∑k1
j=1 mj .

Write W∞ =
∑r

j=1 Ord(Φ, Pj), where Ord(Φ, Pj) is the pole order of Φ at Pj. Note that W∞

is equal to
∑r

j=1(wj + 1), r or 0 provided that r(G) = 0, 1 or 2, respectively.

Theorem 4.1 (Topological formula) With th previous notation, the following formula holds:

k1 − χ(M) = Vs +
Vl

2
+ Deg(g) − W∞,

where M := M∪{P1, . . . , Pr} is the natural compactification of M and χ(M) := 2−2ξ0 the Euler
characteristic of M.

Proof : Let Π be a spacelike plane invariant under G, and call π : L3/G → Π/G the Lorentzian
orthogonal projection. Let (Π/G)∗ be either Π∪{∞} ≡ S2 (if G = {Id}), Π/G∪{−∞, +∞} ≡ S2

(if G = 〈T 〉) or Π/G ≡ S1 × S1 (if G = 〈T1, T2〉)).
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Consider the finitely sheeted branched topological covering h := π ◦X : M → (Π/G)∗, and use
Riemann-Hurwitz formula to get:

χ(M) = χ
(
(Π/G)∗

)
Deg(h) −BBB,

where BBB is the total branching number of h. By Lemmae 2.1 and 2.5 and Corollaries 3.5 and 3.2
we get BBB = Bs + Bl + B∞, where Bs = Vs and Bl = Deg(g) + Vl

2 − k1 are the total branching
numbers at the spacelike and lightlike singularities resp., and B∞ is the total branching number
at the ends, that is, B∞ =

∑r
j=1(wj − 1) if r(G) < 2, and B∞ = 0 when r(G) = 2.

Furthermore, when r(G) < 2, Corollaries 3.5 and 3.2 give χ
(
(Π/G)∗

)
Deg(h) = B∞ +W∞. This

equation trivially holds when r(G) = 2, and so in general

χ(M) = W∞ − Vs −
Vl

2
− Deg(g) + k1

This completes the proof. 2

The following theorem summarizes all the known information about the Weierstrass represen-
tation of entire maximal surfaces of finite type, and provides an useful construction method.

Theorem 4.2 (Analytical representation of entire maximal surfaces of finite type) Let
X : M → L3/G be an entire maximal immersion of finite type with k ≥ 1 singularities, where
G is a rank ≤ 2 discrete group of spacelike translations acting freely and properly in L3. Let
X0 : M0 → L3/G be a conformal parameterization of X, and call (S := M0 ∪ M∗

0, J, g, φ3) its
Weierstrass data. Then:

(i) g ◦ J = 1/ḡ and |g| < 1 on M0 − ∂(M0).

(ii) The vectorial 1-form Φ := (φ1, φ2, φ3) given in equation (2) is holomorphic in S, have no
zeroes in ∂(M0) and satisfies J∗(Φ) = −Φ.

(iii) The translations in G are given by the vectors {Re
∫

γ
(φ1, φ2, φ3) : γ ∈ H1(M, Z)}.

(iv) r(G) < 2 if and only if S is not compact. Furthermore, if r(G) = 0 then Φ has poles of
order ≥ 2 at the ends of S, and if r(G) = 1 then Φ has simple poles at the ends of S. In the
compact case (r(G) = 2), Φ is holomorphic.

Conversely, let S and J : S → S be a Riemann surface of finite conformal type, ∂(S) = ∅,
and an antiholomorphic involution such that the fixed point set of J consists of k1 pairwise disjoint
analytical Jordan curves γj , j = 1, . . . , k1, spliting S into two connected regions, whose closures
in S will be denoted by M0 and M∗

0 := J(M0). Assume that (g, φ3) are Weierstrass data on S
satisfying (i), (ii), and defining G like in (iii), r(G) ≤ 2 and (iv) holds.

Then the map

X0 : M0 → L3/G, X0(p) := Re
∫ p

p0

Φ, (3)

where p0 ∈ M0, is well defined and induces an entire maximal immersion of finite type of the surface
M in L3/G. Here, M denotes the quotient surface of M0 identifying each boundary circle γj with
a single point qj, where qn 6= qm provided that n 6= m and F := {qj : j = 1, . . . , k} ∩M0 = ∅.
Furthermore, X has k := k1 + k2 singularities, where k2 is the number of zeroes counted with
multiplicity of Φ in M0 − ∪k1

j=1γj .

In addition, X is an embedding if and only if k2 = 0 and g : γj → S1 is injective, j = 1, . . . , k
(i.e., Deg(g) = k). In this case, M0 is conformally equivalent to either C minus k discs (if
r(G) = 0), C − {0} minus k discs (if r(G) = 1) or a torus minus k discs (if r(G) = 2).
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Proof : The first part of the theorem is just a summary of the previously stablished results.
For the construction part, note that J∗(γj) = γj and (ii) give that Re

(∫
γj

Φ
)

= 0, for any j.

Therefore, the real periods of Φ are the vectors in G = {Re
∫

γ
Φ : γ ∈ H1(M, Z)}.

Obviously, the immersion X0 : M0 → L3/G, X := Re
∫

(φ1, φ2, φ3), is well defined and leads to
an immersion of M in L3/G with k singularities. By Lemma 2.2, X is an entire spacelike immer-
sion provided that the metric ds2 induced by X on M0 is complete. This fact is an elementary
consequence of the expresion ds2 = 1

4 (1 − |g|2)2|φ3
g |2 and (iv).

It remains to check that X is of finite type. If r(G) = 0, X is an entire maximal immersion
with a finite number of singularities in L3, and so, a finite multigraph by Corollary 3.5. When
r(G) = 1, the ends of X lift to Scherk’s type ends of X̃, as explained in Lemma 3.3, and since X
has a finite number of ends, X̃ is a finite multigraph too. The compact case r(G) = 2 is obvious.

Finally, note that X is an embedding if and only if X̃ is, which prevents the existence of spacelike
singularities. By Lemmas 2.2 and 2.5, X̃ is an embedding if and only if all its singularities are of
conelike type, which concludes the proof. 2

4.1 Examples of entire embedded maximal surfaces of finite type

To finish, we present some families of entire embedded maximal surfaces of finite type in L3/G,
G 6= {Id}, sweeping all the cases in Theorem 3.3. A large family of embedded examples of fnite type
in L3 can be found in [9], and a more general family of non embedded examples can be found in [8].

Examples with one singular point and non parallel ends in L3/〈T 〉.
Consider the following data:

S = C − {b,−b, 1/b,−1/b}, J : S → S, J(z) = 1/z̄ M0 = D(0, 1) − {b,−b}, b ∈]0, 1[

g(z) = z, φ3 =
zdz

(z2 − b2)(b2z2 − 1)

Then the immersion given by Equation (3) is an embedded entire maximal surface of finite type
in L3/G, where G is the group generated by the translation T of vector v = Re(2πiRes(Φ, b)) =
( π
2b(b2+1) , 0, 0).

Moreover, the antiholomorphic transformation of M0 given by A(z) := −z̄ satisfies A∗(φ1, φ2, φ3) =
(φ̄1,−φ̄2, φ̄3). Thus, the lifted surface in L3, X̃ : M̃ → L3, is invariant by the isometry

R(x1, x2, x3) = (x1,−x2, x3) + Re
∫ A(0)

0

Φ = (x1,−x2, x3)

and so the quotient of X̃ by the group generated by the isometry R1 := T ◦ R is an embedded
entire maximal surface with a singularity corresponding to the first case described in Theorem 3.3
(b). A surface in this family has been illustrated in Figure 2.

Examples with two singular points and parallel ends in L3/〈T 〉.
Consider the data:

S = {(z, w) ∈ C2
: w2 =

(z − a)(z − b)
(az − 1)(bz − 1)

, z 6= 0,∞}, J : S → S, J(z, w) = (1/z̄, 1/w̄)

M0 = {(z, w) ∈ S : |z| ≤ 1} b < a < 1, a > 0, b 6= 0
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g(z, w) = z φ3 =
dz

w(az − 1)(bz − 1)

Then the immersion given by Equation (3) is an embedded entire maximal surface with two
singularities in L3/G, where G is generated by the translation T of vector v = Re(2πiRes(Φ, 0)) =
Re(( −π√

ab
, −iπ√

ab
, 0)). Thus, the translation vector is in the direction of the x1−axis in case b > 0 or

in the direction of the x2−axis if b < 0.
Moreover, if we choose b = −a, the transformations of M0 given by A0(z, w) = (−z̄, w̄),

A1(z, w) = (z̄, w̄) and A2(z, w) = (−z, w), lift to the following isometries in L3 :

R0(x1, x2, x3) = (−x1, x2,−x3) + Re
∫ A0(a)

a

Φ = (−x1, x2,−x3) +
v

2
,

R1(x1, x2, x3) = (−x1, x2, x3) and R2(x1, x2, x3) = (x1, x2,−x3)+Re
∫ A2(a)

a

Φ = (x1, x2,−x3)+
v

2

The quotient of the lifted surface X̃ : M̃ → L3 in L3 by the groups 〈R0〉, 〈T ◦ R1〉 and 〈R2〉
give examples of embedded entire maximal surfaces corresponding to the first cases described in
Theorem 3.3 (a), (b) and (c), respectively.

A surface in this family has been illustrated in Figure 3 (right).

Examples with two singular points in L3/〈T1, T2〉.
Consider the data:

S = {(z, w) ∈ C2
: w2 =

(z2 − a2
1)(z2 − a2

2)
(a2

1z
2 − 1)(a2

2z
2 − 1)

}, a1, a2 ∈ R∗, a1 6= a2

J : S → S, J(z, w) = (1/z̄, 1/w̄), M0 = {(z, w) ∈ S : |z| ≤ 1}

g(z, w) = z, φ3 =
zdz

w(a2
1z

2 − 1)(a2
2z

2 − 1)

Then, Equation (3) leads to an embedded entire maximal surface with two singularities in
L3/G, where G is generated by two horizontal translations T1 and T2 of vectors v1 and v2. Namely,
vi = 2Re

∫
γi

Φ, i = 1, 2, where γ1 (resp. γ2) is a simple arc in M0 joining a1 and −a1, (resp. a1

and a2). Elementary computations show that in fact v1 = (0, λ, 0), and v2 = (µ, 0, 0), for suitable
λ, µ ∈ R∗. The surface on the left in Figure 3 is an example of this family of surfaces.

As in the previous cases, the transformations of M0, A0(z, w) := (z̄,−w̄), A1(z, w) := (z̄, w̄)
and A2(z, w) := (−z,−w) induce isometries of L3, R0, R1 and R2 resp., leaving the lifted immersion
X̃ invariant. To be more precise,

R0(x1, x2, x3) = (x1,−x2,−x3), R1(x1, x2, x3) = (−x1, x2, x3) and R2(x1, x2, x3) = (x1, x2−λ/2,−x3)

Thus, the corresponding quotients of X̃ by the groups 〈T2 ◦ R0, T1〉, 〈T1 ◦ R1, T2〉, 〈R2, T2〉 and
〈T2 ◦ R0, R2〉 provide examples of embedded entire maximal surfaces of finite type corresponding
to the second cases described in Theorem 3.3 (a), (b), (c), and Theorem 3.3 (d), respectively.

A surface in this family has been illustrated in Figure 3 (left).
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