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Abstract

We prove the convex hull property for properly immersed minimal hypersurfaces in a cone
of Rn. We deal with the existence of new barriers for the maximum principle applications
in non compact truncated tetrahedral domains of R3. As a consequence of our analysis, we
describe the space of such domains admitting barriers of this kind. Non existence results
for non flat minimal surfaces with planar boundary are obtained. Finally, new simple closed
subsets of R3 which have the property of intersecting any properly immersed minimal surface
are shown.

1 Introduction and Notation

For a thorough explanation and subsequent development of the main results in this paper, the
following notation is required.

1.1 Notation

As usual, C = C ∪ {∞} is the Riemann sphere, D = {z ∈ C : |z| < 1} is the unit disk and
U = {z ∈ C : Im(z) ≥ 0}∪{∞} is the upper half plane. We label st : S

2 → C as the stereographic
projection. By definition, a circle or straight line γ ∈ C is a great circle if and only if it is the
stereographic projection of a spherical geodesic, i.e., γ = st(S2 ∩ Π), where Π is a plane in R3

passing through the origin.
Given that A ⊂ Rn, the convex hull of A will be denoted as E(A). Given that v = (v1, . . . , vn) ∈

Rn and λ ∈ R, the hyperplane {P ∈ Rn : 〈P, v〉 = λ} will be denoted by {∑n
i=1 vixi = λ}.

Likewise, we define the sets {∑n
i=1 vixi ≥ λ (≤ λ, > λ, < λ)}, and if λ ≥ 0, {|∑n

i=1 vixi| ≥ λ (≤
λ, > λ, < λ)}. The symbol ⊥ means orthogonal, and ‖ means parallel.

By a wedge W ⊂ R
3 we mean the intersection of two closed half spaces HW , H

′
W with distinct

boundary planes ∂(HW ), ∂(H ′
W ). If v (resp., v′) is the normal vector of ∂(HW ) (resp., ∂(H ′

W ))
pointing to W, the angle of W is the number a(W ) = π − arccos(〈v, v′〉) ∈ [0, π]. Then, slabs are
wedges of angle zero, and half spaces are wedges of angle π. If a(W ) ∈]0, π[, the axis of W is the
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straight line l(W ) = ∂(HW ) ∩ ∂(H ′
W ). In case a(W ) = 0 (resp., a(W ) = π) an axis l(W ) of W

is any straight line in the only plane which is parallel to ∂(HW ) bisects W (resp., any straight
line in ∂(W )). The associated bisector plane Π(W ) of W is the plane containing l(W ) and which
splits the wedge into two symmetric pieces. We call the wedges W such that Π(W ) = {x2 = 0}
and l(W )⊥{x3 = 0} vertical. Likewise, the wedges W which satisfy Π(W ) = {x3 = 0} and
l(W )⊥{x2 = 0} will be called horizontal. We call the family of horizontal (resp., vertical) wedges
containing the positive x1-axis W (resp., W ′). The wedge in W (resp., W ′) of angle θ ∈]0, π] (resp.
ρ ∈]0, π]) whose axis is the x2-axis (resp., the x3-axis) will be denoted by Wθ (resp., W ′

ρ.)

Figure 1: A domain C ∈ C0
0 and two domains C1, C2 ∈ C such that C1 ≤ C2

Let C′ denote the set of triads (W,W ′, H), where W and W ′ are wedges and H is a closed half
space, which satisfy that: l(W )⊥l(W ′), Π(W )⊥Π(W ′), ∂(H)‖l(W ), ∂(H)‖l(W ′), and (H ∩W ∩
W ′) ∩ (Π(W ) ∩ Π(W ′)) consists of a half line. For technical reasons, the triads in which either
a(W ) = π, a(W ′) = 0 or W ∩W ′ ∩H is a wedge of R3 are excluded. The triads (W,W ′, H) and
(R(W ), R(W ′), R(H)), where R is a rigid motion, will be identified. Hence, and in the following,
we will assume that

W ∈ W , W ′ ∈ W ′ and H = {x1 ≥ 0}.
Then, we define

T = {W ∩W ′ ∩H : (W,W ′, H) ∈ C′, a(W ′) < π}.

Any C ∈ T has five faces, labeled as F0(C), F1(C), F2(C), F+(C) and F−(C). We always suppose
that F1(C), F2(C) ⊂ ∂(W ), F+(C), F−(C) ⊂ ∂(W ′) and F0(C) ⊂ H. The face F0(C), the only
compact one, is a rectangle (that eventually degenerates into a segment or a point). We write
the planes containing Fj(C), j = 1, 2, F+(C) and F−(C), as Πj(C), j = 1, 2, Π+(C) and Π−(C),

respectively. By definition, Π0(C) = {x1 = 0}. We label the following edges of C as: �+i (C) def=

Fi(C)∩F+(C), �−i (C) def= Fi(C)∩F−(C), i = 0, 1, 2. If v+i ∈ {x1 ≥ 0} and v−i ∈ {x1 ≥ 0} are unit
vectors parallel to �+i (C) and �−i (C), respectively, i = 1, 2, we label

µ(C) = arccos(〈v+1 , v−1 〉), and ν(C) = arccos(〈v+1 , v+2 〉)
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the angles made by �+1 (C), �−1 (C), and �+1 (C), �+2 (C), respectively. Finally, we define

Υ(C) = ∪2
i=0(�

+
i (C) ∪ �−i (C)),

and observe that E(Υ(C)) = C.We denote by h(C) def= ||�+0 (C)|| = ||�−0 (C)|| and o(C) def= ||F1(C)∩
F0(C)|| = ||F2(C) ∩ F0(C)|| the width and the height of the base of C, respectively. We also call
ϑ(C) def= a(W ) and �(C) def= a(W ′) the angles of C. The numbers h(C), o(C), ϑ(C) and �(C)
determine C, and so, we refer to Ch,o

θ,ρ as the only C ∈ T such that ϑ(C) = θ, �(C) = ρ, o(C) = o
and h(C) = h.

Concerning the case a(W ′) = π, we denote

W0 = {W ∩W ′ ∩ {x1 ≥ 0} : W ∈ W , W ′ ∈ W ′, a(W ′) = π} ⊂ C′.

For every C = W ∩ W ′ ∩ {x1 ≥ 0} ∈ W0, it is clear that W ′ contains {x1 ≥ 0}, and thus,
C = W ∩ {x1 ≥ 0}. Hence, the height of the base h(C) > 0 and the angle of ϑ(C) = a(W ) are
well defined and determine C. For this reason, given θ ∈ [0, π[ and h ∈]0,+∞[, we write Wh

θ as
the only C ∈ W0 such that ϑ(C) = θ and h(C) = h. The planes Πi(C), i = 0, 1, 2, and the faces
Fi(C), i = 1, 2, are well defined on W0 too. However, this is not the case for the width of the base
o(C), the faces F+(C), F−(C), F0(C) and the edges �+i (C), �−i (C), i = 0, 1, 2. To get a consistent
definition of these objects, we have to slightly modify the nature of W0. Indeed, we define

W = {(C′, o) : C′ ∈ W0, o ∈ [0,+∞[}.
For every C = (C′, o) ∈ W, where C′ = W ∩ {x1 ≥ 0}, we denote by F0(C), F+(C) and F−(C)
the planar domains W ∩ {x1 = 0, |x2| ≤ o}, W ∩ {x1 = 0, x2 ≥ o} and W ∩ {x1 = 0, x2 ≤ −o},
respectively. Of course, Fi(C) def= Fi(C′), i = 1, 2, and then, the planes Πj(C), j = 0, 1, 2, Π+(C),
Π−(C), the edges �+j (C), �−j (C), j = 0, 1, 2, and the configuration of straight lines Υ(C) are defined

as above. Moreover, h(C) def= h(C′) and o(C) def= o. Likewise, Ch,o
θ,π is the only C ∈ W such that

ϑ(C) = θ, o(C) = o and h(C) = h.When considered as a subset of R
3, we look at Ch,o

θ,π and Wh
θ as

being the same.
Finally, define

C = T ∪ W,

and consider the natural analytical (and so, topological) structure in C induced by the one to one
map

F : C → [0,+∞[×[0,+∞[×[0, π[×]0, π] − ({h = θ = 0} ∪ {h = 0, ρ = π})
F (C) = (h(C), o(C), ϑ(C), �(C)) .

Define
C0

def= {C ∈ C : o(C) = 0}, C1 def= {C ∈ C : h(C) = 1}
C0

0
def= {C ∈ C0 : h(C) = 0}, C1

0
def= C0 ∩ C1.

Up to rigid motions, C0
0 is the family of tetrahedral symmetrical half cones, and so, the map

(ϑ, �) : C0
0 →]0, π[×]0, π[ is one to one. If C ∈ C, we denote q(C) as the only domain in C0

such that (h(q(C)), ϑ(q(C)), �(q(C))) = (h(C), ϑ(C), �(C)) . For C ∈ C0, we simply write �0(C) =
�+0 (C) = �−0 (C).

Given C1, C2 ∈ C, we say that C1 ≤ C2 if and only if h(C1) ≤ h(C2), ϑ(C1) ≤ ϑ(C2),
o(C1) ≥ o(C2), and �(C1) ≥ �(C2). In other words, C1 ≤ C2 if and only if C2 is higher and
narrower than C1. For every C ∈ T such that ϑ(C) > 0, tC denote the only domain in T such that
h(tC) = o(C2), o(tC) = h(C), ϑ(tC) = �(C), and �(tC) = ϑ(C). Up to scaling, any domain C ∈ C
such that h(C) �= 0 can be considered in C1. In order to simplify the statements of some results,
this normalization will be often used.
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Figure 2: A domain C ∈ C0
0 and two domains C1, C2 ∈ C such that C1 ≤ C2

1.2 Introduction

Schwarz, Weierstrass and Riemann studied minimal surfaces in R
3 bounded by straight lines,

obtaining existence results for surfaces with boundary a given polygon (where the sides of the
polygon could be of finite or infinite length). See the Darboux treatise [3] for a good reference.
This problem is closely related to the classical conformal mapping theory, and so, the Weierstrass
representation plays a fundamental role here (see [2].) Jenkins and Serrin [7] and H. Karcher
[8], among others, have used different methods to construct a large family of examples bounded
by straight lines or planar geodesics, generating by successive Schwarz reflections new interesting
complete minimal surfaces.

In this paper, we use these classical ideas to produce a new family of properly immersed minimal
surfaces in non compact truncated tetrahedral domains C ∈ C, that can be used as new barriers
for the maximum principle application. In the previous paper [9], and following a Rosenberg’s
suggestion, the authors carried out a similar analysis for surfaces in a wedge of a slab. The
procedure works as follows.

Figure 3: A barrier for a domain C ∈ T.

The first step deals with the existence of minimal surfaces B satisfying that: (i) B = X(N),
where X : N → R

3 is a proper minimal immersion of a surface N homeomorphic to D − {E1, E2}
and {E1, E2} ∈ ∂(D); (ii) B ⊂ C ∈ C and ∂(B) = Υ(C); (iii) there exists a compact subset K ∈ R3

such that B −K = A1 ∪A2, where Aj is a graph over Πj(C) asymptotic at infinity to this plane,
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j = 1, 2; (iv) if o(C) > 0, then B is embedded, and in the case o(C) = 0, the only self intersections
of B occur on �0(C) where two sheets of B meet transversally.

We should point out that the aforementioned Plateau’s problem can be solved only for particular
domains C ∈ C. In this case, we say that C admits a barrier and that solution B is a barrier for
C. Any barrier B = X(N) has finite total curvature. Furthermore, N is conformally equivalent to
a closed disk with piecewise analytic boundary minus two boundary points, and the Gauss map of
X extends continuously to the two ends. An thorough analysis of these facts can be found in, for
instance, [10].

Figure 4: Up to rescaling, a discrete view of a continuous family of barriers for a domain C ∈ C1
0.

A more elaborate concept of barrier it is also useful. A domain C ∈ C, h(C) > 0 (up to scaling,
we always suppose C ∈ C1) admits a continuous family of barriers if there is a curve of pairs F =
{(Ct,Bt), : t ∈]0, 1]}, where (Ct,Bt) consists of a domain Ct ∈ C1 and a barrier Bt for Ct, t ∈]0, 1],
satisfying that: (i) there exists a surface N homeomorphic to D − {E1, E2}, {E1, E2} ∈ ∂(D), and
a continuous map Ψ :]0, 1] × N → R3 such that Ψt(P ) def= Ψ(t, P ), P ∈ N, is a proper minimal
immersion, Ψt(N) = Bt, t ∈]0, 1]; (ii) C1 = C, ϑ(Ct) = ϑ(C) and �(Ct) = �(C), t ∈]0, 1]; (iii) the
map o(t) def= o(Ct) is continuous and limt→0 o(t) = 0; (iv) {Bt} converges uniformly on compact
subsets, as t → 0, to F1(C0) ∪ F2(C0) ∪ �0(C0), where C0

def= limt→0 Ct = q(C) ∈ C1
0; (v) for all

open subset U ⊂ R3 containing �0(C0), there exists t(U) ∈]0, 1] such that, for every t ∈]0, t(U)],
Bt − U = A1(t) ∪ A2(t), where A1(t) and A2(t) are disjoint graphs over the planes Π1(C0) and
Π2(C0), respectively.

We label oF
def= Maximum{o(t) : t ∈]0, 1]}, and CF

def= Ct0 , where t0 ∈]0, 1] satisfies o(t0) = oF .
If C ∈ C1

0 admits a continuous family of barriers, we define

oC
def= Maximum{o(C′) : q(C′) = C, C′ admits a barrier}.(1)

As we will see later, oC = oF < +∞, for every continuous family of barriers F of C.
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A natural question is to decide whether or not a domain C ∈ C admits a barrier (or a continuous
family of barriers). This matter is specially interesting for domains in C0, and comprises the most
technical part of the paper.

The main theorems we have proved are the following:

Figure 5: A barrier for a domain C ∈ c.

Theorem A

(i) The space of cones in C0
0 admitting barriers consists of a properly embedded curve

c ⊂ C0
0 with the following properties:

ϑ|c : c →]0, π[, �|c : c →]0, π[

are analytical diffeomorphisms, and the function

(�|c) ◦ (ϑ|c)−1 :]0, π[→]0, π[

increases. Moreover, limk→∞ ν(Ck) = 0, for every divergent sequence {Ck} ⊂ c.

(ii) Labeling c1 = {C ∈ C1
0 : (ϑ(C), �(C)) ∈ (ϑ, �)(c)}, the space s of domains in C1

0

admitting a continuous family of barriers is given by:

s =
⋃
C∈c1

{C′ ∈ C1
0 : C′ ≤ C, C′ �= C}.

Moreover, the function o is positive and continuous in s, and the following monotonic-
ity formula holds

C1, C2 ∈ s, C1 ≤ C2 ⇒ oC1 ≤ oC2 .

(iii) Label s1 = {C ∈ C : q(C) ∈ s, o(C) = oq(C)}.
(1) If C′ ∈ C admits a barrier and there exists C ∈ c such that either C′ ≤ C or

C ≤ C′, then C′ = C.
(2) If C′ ∈ C and admits a barrier, and there exists C ∈ s1 such that C′ ≤ C,

then C = C′.
(3) Let C ∈ C such that q(C) ∈ s. Then, C admits a barrier if and only if

o(C) ≤ oq(C).
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Figure 6: The projection on the (θ, ρ, h)-space of c and s.

The main goal of this paper is to use these surfaces as new barriers for the maximum principle
application. Therefore, we can obtain some nonexistence results for non flat minimal surfaces with
planar boundary. To be more precise, we have proved the following result:

Theorem B Let S be a connected properly immersed minimal surface lying in C ∈ C,
and suppose that one of the following conditions holds:

(i) C ∈ c, S is compact and ∂(S) ⊂ ((F1(C) ∪ F2(C) − Υ(C)) .
(ii) There exists C′ ∈ c such that C ≤ C′ and ∂(S) ⊂ ((F+(C) ∪ F−(C)) − Υ(C)) .
(iii) There exists C′ ∈ s1 such that C ≤ C′ and

(
∂(S) − (�+0 (C) ∪ �−0 (C)

) ⊂ (F+(C) ∪
F−(C)) − Υ(C).

Then, S is a planar domain contained in a face of C.

This paper is laid out as follows. In Section 3, we prove that properly immersed minimal
surfaces in a half cone satisfy the convex hull property. Moreover, we use the maximum principle
to obtain some theoretical results about properly immersed minimal surfaces with planar boundary
in a cone of R3. From the existence of barriers, we infer non existence results of minimal surfaces
whose boundary lies in ∂(C), C ∈ C. In Section 4, we deal with the general existence of barriers
for domains C ∈ C, and in Section 5, we study the space of domains in C admitting a barrier and
a continuous family of barriers. As a consequence of the preceding analysis, in Section 2 we prove
Theorems A and B.

2 Proof of the Main Theorems

Proof of Theorems A: To see (i), we use the notation of Theorem 5.3 and define c = {C0,0
θ,ρ

θ
:

θ ∈]0, π[} ⊂ C0
0. From Theorem 5.3, any C ∈ c admits a barrier, the map θ → ρ

θ
is an increasing

analytical diffeomorphism and limθ→0 ν(C
0,0
θ,ρ

θ
) = limθ→π ν(C

0,0
θ,ρ

θ
) = 0.

Observe that (iii)(1) is a consequence of Lemma 3.4. So, the only domains in C0
0 admitting a

barrier are the ones of c, which completes the proof of (i).
To prove (ii), let c1 and s as in the statement of Theorem A. Using the notation of Theorems

5.3 an 5.4, we observe that s = {C1,0
θ,ρ : (θ, ρ) ∈ A}. From Theorem 5.3, any C ∈ s admits a
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continuous family of barriers. Moreover, if C′ ∈ C1
0 − s admits a barrier, from (i) in Theorem A

we can find C ∈ c such that �(C) = �(C′) and ϑ(C) < ϑ(C′), i.e., C ≤ C′, and so by (iii)(1) in
this theorem, we infer that C = C′, which is absurd. Therefore, the only domains in C1

0 admitting
a barrier (and a continuous family of barriers) are the ones of s. From Corolary 3.2 (see Remark
3.2), oC is well defined and is equal to oF , for every continuous family of barriers F for C ∈ s.
The continuity and monotonicity of o in (ii) of Theorem A are a consequence of Theorem 5.4 and
Corollary 3.3. Moreover, Theorem 5.4 gives oC > 0, C ∈ s.

To complete the proof of Theorem A, it remains to prove (iii)(2) and (iii)(3). Note that (iii)(2)
follows from Corollary 3.2. To see (iii)(3), let C ∈ C1 such that q(C) ∈ s and o(C) ≤ oq(C). Then,
take a continuous family of barriers F = {Bt : t ∈]0, 1]} for q(C), where Bt is a barrier for a
domain Ct ∈ C1 and {o(Ct) : t ∈]0, 1]} = [0, oq(C)]. By an intermediate value argument, there is
t′ ∈]0, 1] such that Ct′ = C, and so Bt′ is a barrier for C. Conversely, if C ∈ C1, q(C) ∈ s and C
admits a barrier, (iii)(2) gives that o(C) ≤ oq(C). This completes the proof. ✷

Proof of Theorem B: Let C ∈ c. From Theorem A, C admits a barrier, and so, (i) and (ii)
in Theorem B follow from Lemma 3.3. The general version of (ii) in Theorem B holds trivially if
�(C′) = �(C). Let us assume that �(C′) < �(C). In this case, any connected component of S ∩C′

must be a planar domain in F+(C′) or F−(C′) ((ii) in Theorem B has been proved for domains
in C′ ∈ c), and so S must be a planar domain in Π+(C′) or Π−(C′), which is absurd. Therefore,
S ∩C′ = ∅, and then, a connection argument and Theorem 3.1 get that S is a planar domain in a
face of C. To prove (iii) in Theorem B, use Theorem A to get the existence of a continuous family
of barriers for C, and then, take into account Lemma 3.5. ✷

Remark 2.1 For every C ∈ s, Theorem A gives that oC ≥ o
C1,0

0,�(C) ≥ oC
1,0
0,π > 0, i.e., there exists a

positive lower bound for the set {oC : C ∈ s}. In [9] is dealt with thoroughly the particular version
of Theorems A and B for wedges of a slab (i.e., domains such that ϑ(C) = 0.)

Some closed subsets of R3 are natural obstacles in the sense that they meet any properly
immersed minimal surface. For instance, by using a suitable compact piece of the catenoid as a
barrier, we can find a cone in R3 satisfying this property. Hoffman and Meeks [6] have proved that
two non flat properly immersed minimal surfaces must intersect, and so, every surface of this kind
is an obstacle in the above sense. We are going to show a new family of simple obstacles which do
not disconnect R3. First, we need to introduce some notation.

Define
Cλ def= {(x1, x2, x3) : |x3| < tan(

λ

2
)|
√
x2

1 + x2
2|}, λ ∈]0, π[,

Ct
λ

def= {(x1, x2, x3) : |x3| < 1
2

+ tan(
λ

2
)(
√
x2

1 + x2
2 − t),

√
x2

1 + x2
2 > t}, λ ∈ [0, π[, t > 0,

and denote by D1 = {Cλ : λ ∈]0, π[}, D2 = {Ct
λ : λ ∈ [0, π[, t > 0}.

Let P = {W 1, . . . ,W 2k}, k ≥ 2, be a finite partition of R3 by wedges satisfying: (1) l(W j)
is the x3-axis, j = 1, . . . , 2k; (2) the interior of the W j , j = 1, . . . , 2k, are pairwise disjoint; (3)
∪2k
j=1W

j = R3; (iv) they are laid end to end, i.e., two consecutive wedges W j , W j+1 meet in a
common face, and the same hold for W 1 and W 2k. Denote ρj as the angle a(W j), and label Rj as
the rotation around l such that Rj(W j) ∈ W ′ (that is to say, such that Rj(Π(W j)) = {x2 = 0}),
j = 1, . . . , 2k. Given Ω ∈ D1 ∪ D2, and for j = 1, . . . , 2k, call:

Cj
def= (τj ◦Rj)

(
E(W j ∩ Ω)

)
,(2)

where τj is the only translation such that Cj ∈ C (if Ω ∈ D1, τj is the identity map).
We say that Ω ∈ D1 (resp., Ω ∈ D2) is special, and that P is a good partition for Ω if
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(a) For odd j ∈ {1, . . . , 2k − 1}, there is C′
j ∈ c (resp., C′

j ∈ s1) such that Cj ≤ C′
j .

(b) For even j ∈ {2, . . . , 2k}, there is C′
j ∈ c (resp., C′

j ∈ s1) such that tCj ≤ C′
j (resp., tCj ≤

o(Cj) · C′
j).

In this case, we label
∂(Ω)P

def=
(
∂(Ω) − ∪k

j=1(F1(C2j) ∪ F2(C2j)
)
.

Figure 7: ∂(Ω)P for Ω ∈ D1 and Ω ∈ D2.

Theorem 2.1 There exist special domains in D1 and D2.
Moreover, if M is a connected properly immersed minimal surface in R3 without boundary,

Ω ∈ D1 ∪ D2 is a special domain, and P is a good partition for Ω, then M ∩ ∂(Ω)P �= ∅.

Proof : Let us prove the first part of the theorem. Since limk→∞ ν(C′
k) = 0, where {C′

k}{k∈N} ⊂ c
is any divergent sequence, then the number

ν0 = Maximum{ν(C) : C ∈ c}

is well defined and positive. We want to prove that Cλ is special, for all λ ∈]0, ν0]. Indeed, take
λ ∈]0, ν0], and let Cλ ∈ c be a domain such that ν(Cλ) ≥ λ. Then, consider a sequence of wedges
P = {W 1, . . . ,W 2k} satisfying the above conditions (1), (2), (3) and (4), and the corresponding
sequence of domains {C1, . . . , C2k} given in (2). Label ρj = a(W j). We can make the choice of
wedges in such a way that: ρj ≥ �(Cλ), j odd, and ρj was as small as we want, j even. Hence,
Cj ≤ Cλ, j odd, and we can suppose that there exists C′

j ∈ c such that tCj ≤ C′
j , j even. By

definition, Cλ is a special domain and P is a good partition for Cλ.
Let us prove that D2 contains special domains. It is clear that ν(C) ≤ ν(C′), provided that

C ≤ C′, C, C′ ∈ C. Since the function C → ν(C) is continuous in C, it is not hard to see that
sλ

def= {C ∈ s : ν(C) ≥ λ} is non empty, λ ∈]0, ν0[. Moreover, we know that oC ≥ oC
1,0
0,π > 0,

C ∈ s, and so

rλ
def= Infimum{ oC

2 sin(�(C)
2 )

: C ∈ sλ} ≥ oC
1,0
0,π

2
> 0.

We want to prove that Ctλ is special, for λ ∈ [0, ν0[ and t > rλ.
Let Ct

λ ∈ sλ be a domain such that oC
t
λ ≤ 2t sin(�(C

t
λ)

2 ). Reasoning as above, consider a
sequence of wedges P = {W 1, . . . ,W 2k} satisfying (1), (2), (3), (4), and the corresponding domains
{C1, . . . , C2k} given in (2). Label ρj as the angle ofW j .We can make the choice of wedges in such
a way that: ρj ≥ �(Ct

λ), j odd, and ρj was as small as we want, j even. Therefore, o(Cj) ≥ o(Ct
λ),
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and so, Cj ≤ Ct
λ, j odd, and if j is even, we can assume that there exists C′

j ∈ s1 such that
tCj ≤ o(Cj) · C′

j . By definition, Ct
λ is a special domain and P is a good partition for Ct

λ.

To prove the second part of the theorem, let P = {W 1, . . . ,W 2k} be a good partition for Ω,
and consider {C1, . . . , C2k} ⊂ C like in (2). Reasoning by contradiction, we assume that M is a
properly immersed minimal surface without boundary and disjoint from ∂(Ω)P . Let us see that
M ∩ Ω = ∅, i.e., M ∩ Cj = ∅, j = 1, . . . , 2k. Suppose j is odd, and assume that M ∩ Cj �= ∅.
Since M ∩ ∂(Ω)P = ∅, M ∩ ∂(Cj) ⊂ ((F+(Cj) ∪ F−(Cj)) − Υ(Cj)) . Since P is a good partition,
Theorem B implies that M ∩ Cj is a planar domain in a face of Cj , and so M is a plane. But no
plane is disjoint from ∂(Ω)P , which gets a contradiction.

Therefore, M ∩ Cj = ∅, j odd. If j is even and M ∩ Cj �= ∅, we get that M ∩ ∂(Cj) ⊂
((F+(tCj) ∪ F−(tCj)) − Υ(tCj)) , and in a similar way Theorem B leads to a contradiction.

Hence, M ⊂ R3 − Ω. Write M = M+ ∪M−, where M+ =M ∩ {x3 ≥ 0} and M− ∩ {x3 ≤ 0}.
Since M is properly immersed, ∂(M+) and ∂(M−) are compact and consist of a finite number of
compact properly immersed curves. Moreover,M+ andM− lie in a half cone, and so, by Theorem
3.1, M+ and M− are compact. Therefore, M is compact, which is absurd. ✷

As an elementary corollary, given a special domain Ω ∈ D1∪D2, there are no properly immersed
minimal surfaces contained in Ω.

3 The convex hull property for minimal surfaces. Minimal
surfaces with planar boundary in a cone.

In this section we use the maximum principle to establish some theoretical results about properly
immersed minimal hypersurfaces in a cone of R

n, n ≥ 3. First, we prove that any such hypersurface
satisfies the convex hull property, i.e., it lies in the covex hull of its boundary. On the other hand,
assuming that C ∈ C admits a barrier or a continuous family of barriers, we derive some non
existence results for properly immersed non flat minimal surfaces in R3 whose boundary lies in
∂(C).

In accordance with the maximum principle, no interior point of a non flat minimal hypersurface
in a polyhedral domain of Rn lies in the boundary of the domain.

We need the following notation. Let Π be a hyperplane in Rn, n ≥ 3, D ⊆ Π, and P0 a point
in Rn − Π. Then, we write CP0(D) def= {P0 + tP : P ∈ D, t ≥ 0}. If D is a convex compact
domain in Π, then we say that CP0(D) is a half cone of Rn. By an open half cone we mean the
interior of a half cone. If D is a polyhedral domain, CP0(D) is a polyhedral half cone. Consider
D = E({P1, . . . , Pn}), where P1, . . . , Pn ∈ Π are in a general position (i.e., they do not lie in any
linear subspace of dimension n − 2). Then, the set CP0 (D) is a simple polyhedral half cone. The
sets Fi = CP0(E({P1, . . . , Pn} − {Pi})) and Ei = CP0({Pi}) are the i-th face and the i-th edge of
D, respectively, i = 1, . . . , n.

By using the ideas of Hoffman-Meeks in [6], we can prove the following lemma:

Lemma 3.1 Let M be a proper connected minimal surface in R
n with (maybe empty) boundary

∂(M). Assume that M lies in a simple polyhedral half cone C, and suppose that ∂(M) lies in a
face of C. Then, M is a planar domain in a face of C.

Proof : Since the proof is a straightforward generalization of the case when n = 3, we only consider
this special case. First, put C ≡ CP0 (T ), where T = E({Q1, Q2, Q3}), and write Fi ≡ CP0(E(T −
{Qi})), Ei ≡ CP0({Qi}), i = 1, 2, 3. Up to a suitable rigid motion, we will suppose that the cone
C lies in the half space x3 ≥ 0, the vertex P0 is the origin of R3, and the face F1 lies in the plane
x3 = 0.
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First, note (M −∂(M))∩ (F2 ∪F3) = ∅. Otherwise, the maximum principle implies that M lies
in F2 or F3, which contradicts that ∂(M) ⊂ F1.

Let ε > 0, and let Pε denote the point E1 ∩ {x3 = ε}. Since Pε /∈ M and M is closed, there is a
s > 0 small enough such that the Euclidean ball Bs = {P ∈ R3 : ||P − Pε − s(0, 0, 1)|| ≤ s} does
not meet M. It is clear that Bs lies in the half space {x3 ≥ ε}.

Consider the curve Λs = ∂(Bs) ∩ ∂(C) = ∂(Bs) ∩ (F2 ∪ F3), and consider a compact minimal
disk ∆ bounding Λs. It is clear that there is a plane Π0 containing E1 and disjoint from C − E1,
such that Λs has a bijective projection on a convex curve in Π0. Therefore, we can suppose that
∆ is a graph over a convex planar domain in Π0.

In accordance with the convex hull property, ∆ ⊂ Bs ∩ C, and so ∆ ∩M = ∅. Label ∆t =
{Pε + t(P − Pε) : P ∈ ∆}, t ≥ 1, and observe that ∂(∆t) = {Pε + t(P − Pε) : P ∈ Λs} ⊂
(F1 ∪ F2) ∩ {x3 ≥ ε}. So, ∂(∆t) ∩M = ∅. Furthermore, since x3(P ) ≥ ε > 0, for every P ∈ ∆t,
then ∆t ∩F1 = ∅. Hence, ∆t ∩ ∂(M) = ∅. Therefore, ∆t ∩M = (∆t − ∂(∆t))∩ (M − ∂(M)), t ≥ 1.
Since ∆ = ∆1 is disjoint from M, an application of the maximum principle gives that none of the
surfaces ∆t can contact M, t ≥ 1.

On the other hand, it is not hard to see that {P ∈ C : x3(P ) > ε} ⊂ ∪t>1∆t. Thus, M lies in
the slab {0 ≤ x3 ≤ ε}. Since ε > 0 is arbitrary, M lies in the plane x3 = 0, which concludes the
proof. ✷

Now, we can state the following theorem.

Theorem 3.1 Let M be a proper, connected, minimal hypersurface of Rn lying in a half cone C.
Then, M ⊂ E(∂(M)). As a consequence, ∂(M) �= ∅.

Proof : As above, we only consider the case n = 3.
Let H be a closed halfspace disjoint from ∂(M), and suppose that H ∩M �= ∅. In accordance

with the maximum principle,M does not lie in R3− ◦
H (otherwise,M would be a planar domain in

∂(H), which contradicts that ∂(M)∩H = ∅). Moreover, the boundary of any connected component
M0 of H ∩M lies in ∂(H) ∩ C, and so, it is not hard to find a simple polyhedral half cone C′

containing M0 such that ∂(M0) lies in one of its faces. In accordance with Lemma 3.1, M0 is a
planar domain contained in ∂(H), and so M ⊂ ∂(H), which is absurd. Therefore, H ∩M = ∅.
Since H is an arbitrary closed half space disjoint from ∂(M), we deduce that M ⊂ E(∂(M)). ✷

Corollary 3.1 Let M be a proper minimal hypersurface in Rn whose boundary ∂(M) (which may
be empty) lies in a half cone. Then, E(M) is one of the following sets: (1) Rn, (2) a closed halfspace,
(3) a closed slab between two parallel hyperplanes, (4) a hyperplane or (5) a closed convex domain
contained in a half cone ( in this case, M ⊂ E(∂(M)).)

Proof : For the sake of simplicity, we suppose n = 3.
Suppose that the cases (1), (4) and (5) listed in the proposition do not occur. Let H1 and H2

be distinct smallest closed half spaces containing M, and suppose that ∂(H1) and ∂(H2) are not
parallel planes. We shall obtain a contradiction. Since ∂(M) lies in a half cone, it is not hard to
find a closed halfspace H3 such that:

• ∂(M) ∩ ∂(H3) = ∅,
• ∂(M) ⊂ H1 ∩H2 ∩H3,

• if ni is the normal vector of Hi, i = 1, 2, 3, then {n1, n2, n3} are linearly independent.

Since (4) and (5) do not hold, the maximum principle implies that the interior of M cannot
have common points with ∂(H1)∪ ∂(H2). Moreover, since (5) does not hold, M does not lie in the
half cone H1 ∩H2 ∩H3.
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Therefore, M ∩ ∂(H3) �= ∅. Furthermore, as M ∩ ∂(H3) only contains interior points of M and
(4) does not hold, then the maximum principle implies that M ∩ (R3 −H3) �= ∅.

Let M0 be any connected component of (R3 −H3) ∩M. Observe that M0 is contained in the
simple polyhedral half cone H1 ∩H2 ∩ (R3 −H3). By Lemma 3.1, M0 is a planar domain of ∂(H3),
which contradicts that M ∩ (R3 −H3) �= ∅. ✷

In the following, we will suppose n = 3. As a consequence of Theorem 3.1, any properly
immersed minimal surface in a domain C ∈ T satisfies the convex hull property.

We will need the following version of the maximum principle at infinity for minimal surfaces in
R

3.

Lemma 3.2 Let n be a nonzero vector, and define Π = {P ∈ R3 : 〈P, n〉 = 0}. Let p : R3 → Π
denote the orthogonal projection over Π. Let G and S be two properly immersed minimal surfaces
satisfying that: (i) p|G : G→ p(G) is one to one and 〈P, n〉 ≥ 0, for every P ∈ G; (ii) there exists
a compact subset K ⊂ R3 such that (∂(G) −K) ⊂ Π; (iii) limm→∞ distance(Pm,Π) = 0, for every
divergent sequence {Pm} ⊂ G (as a consequence, p(G) is closed); (iv) p(S) ⊂ (p(G) − ∂(p(G))) ,
∂(S) ⊂ G and S lies between G and Π, i.e., if P1 ∈ G, P2 ∈ S and p(P1) = p(P2), then 〈P1, n〉 ≥
〈P2, n〉 ≥ 0.

Then, S ⊂ G.
Proof : Define Gλ = G− λn, λ ≥ 0, and let λ1 be large enough such that Gλ ∩ S = ∅, for λ > λ1.

Reasoning by contradiction, suppose that S �⊂ G and take λ0 > 0 small enough such that
Gλ ∩ S �= ∅, for λ ∈ [0, λ0]. Hence, the number λ′ = Supremum{λ > 0 : Gλ ∩ S �= ∅} > 0 is well
defined. Since S and Gλ are properly immersed and S does not touch Gλ at infinity, λ > 0, we
deduce that S ∩Gλ′ �= ∅. As λ′ > 0, then Gλ′ ∩G = ∅, and so Gλ′ ∩ ∂(S) = ∅. Furthermore, since

p(S) ⊂
◦

p(G) and p(∂(Gλ′)) = p(∂(G)) = ∂(p(G)), we infer that ∂(Gλ′
) ∩ S = ∅. Therefore, Gλ′

touches S only at interior points.
In accordance with the maximum principle, S and Gλ′

must coincide in a neighborhood of any
point of S ∩Gλ′

. As ∂(S) ∩Gλ′
= ∅, then Gλ′ ⊂ S, which is absurd. This proves the lemma. ✷

The domains C ∈ T admitting a barrier are quite especial. For instance, we have:

Lemma 3.3 Let C ∈ T ∩ C0, ϑ(C) > 0, admitting a barrier, and let C′ be a domain in T such
that h(C′) = 0 and C′ ≤ C.

Let S be a connected properly immersed minimal surface in W ′
�(C′), and assume that either

(i) h(C) = 0, S is compact and ∂(S) ⊂ ((F1(C) ∪ F2(C)) − Υ(C)) , or

(ii) ∂(S) ⊂ ((F+(C′) ∪ F−(C′)) − Υ(C′)) .

Then, in case (i), S is planar domain contained in F1(C) or F2(C), and in case (ii), S is a planar
domain lying in F+(C′) or F−(C′).

Proof : From Corollary 3.1, we get S ⊂ E(∂(S)), and so S ⊂ C (case (i)) or S ⊂ C′ (case (ii)).
Let X : N → R3 be a barrier for C, and label B = X(N).
Since o(C) = 0, then the only self intersection points of B occur in the segment �0(C). Observe

also that the tangent plane of B at any of the two points of X−1({(0, 0, 0)})) contains �0(C) and
splits C into two connected components (if h(C) = 0, one of these regions is empty). Let W ′

ρ′ be
the wedge of R3 contained in W ′

�(C) and bounded by the tangent planes of B at the two points of
X−1((0, 0, 0)).

Moreover, for every t > 0, define Bt = {tP : P ∈ B} and Ct = {tP : P ∈ C}.
From the definition of barrier, it is clear that
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• Bt splits Ct into two connected components, t > 0.

• If h(C) = 0, then: (a) Ct = C, t > 0, and ∪t>0Bt =
◦
C∪Υ(C); (b) {Bt} converges uniformly on

compact subsets of R3, as t → +∞, to the set F+(C)∪F−(C); (c) {Bt} converges uniformly
on compact subsets of R3, as t → 0, to the set F1(C) ∪ F2(C).

• If h(C) > 0, then: (a) {Bt} converges uniformly on compact subsets of R
3, as t → +∞, to

the set F+(W ′
ρ′)∪F−(W ′

ρ′ ), where F+(W ′
ρ′ ) and F−(W ′

ρ′ ) are the two faces of W ′
ρ′ ; (b) {Bt}

converges uniformly on compact subsets of R3, as t → 0, to the set F1(C0) ∪ F2(C0), where
C0 is the only domain in C0

0 such that ϑ(C0) = ϑ(C) and �(C0) = �(C).

First, suppose that (i) holds, and assume that S is not a planar domain lying in either F1(C) or
F2(C). Since h(C) = 0 and S ⊂ E(∂(S)), it is straightforward to check that there exists t1 > 1
large enough such that Bt ∩ S = ∅, for t ≥ t1.

Moreover, there exists t0 ∈]0, t1[ small enough such that Bt ∩ S �= ∅, for t ≤ t0.
Note that Bt ∩ S is disjoint from ∂(S) ∪ ∂(Bt), for t > 0, and label

t2 = Supremum{t > 0 : Bt ∩ S �= ∅}.
Taking into account that S and Bt2 are properly immersed and that S does not touch Bt2 at
infinity, we deduce that Bt2 ∩ S �= ∅. An application of the maximum principle gives that S and
Bt2 must coincide in a neighborhood of any point of Bt2 ∩ S �= ∅. This implies S = Bt2 , which is
absurd.

Assume that S satisfies (ii), and suppose that S is not a planar domain contained either in
F+(C′) or F−(C′).

Let us see that there is t1 > 1 large enough such that Bt∩S �= ∅, for t ≥ t1. If not, reasoning by

contradiction, S would lie in one of the (at most two) connected components of C′−
◦
W ′

ρ′ . Since S
is connected, ∂(S) would lie in one face of C′, and by Theorem 3.1, S would be a planar domain,
which contradicts our assumption.

We assert that there exists t0 > 0 small enough such that Bt ∩ S = ∅, for every t ∈]0, t0[.
Indeed, let ε ∈]0, distance({x1 = x2 = 0}, S)[. Since B is a barrier, we can take t0 > 0 small
enough such that Bt ∩ {||(x1, x2)|| ≥ ε} consists of the disjoint union of two simply connected
components, G1(t) and G2(t), t ∈]0, t0]. Furthermore, we can assume that G1(t) ⊂ {x3 > 0} (resp.
G2(t) ⊂ {x3 < 0}) and G1(t) (resp. G2(t)) is a graph over the domain F1(Ct) ∩ {||(x1, x2)|| ≥ ε}
(resp., F2(Ct)∩{||(x1, x2)|| ≥ ε}), t ≤ t0. Hence, S∩Bt = Bt∩(G1(t) ∪G2(t)) , t ≤ t0. Reasoning by
contradiction, assume that Bt∩S �= ∅, where t ∈]0, t0]. Then, either G1(t)∩S �= ∅ or G2(t)∩S �= ∅.
Moreover, observe that ∂(G1(t)∪G2(t))−Υ(Ct) ⊂ {||(x1, x2)|| ≥ ε}, and so ∂(G1(t)∪G2(t))∩S = ∅.

Assume that G1(t) ∩ S �= ∅, t ∈]0, t0].
As G1(t) splits Ct ∩ {||(x1, x2)|| ≥ ε} into two connected components or regions, then the set

S−G1(t) meets the top one, that is to say, the region of (Ct ∩{||(x1, x2)|| ≥ ε})−G1(t) containing
F1(Ct) ∩ {||(x1, x2)|| ≥ ε} in its boundary. Otherwise, S would lie below G1(t) and would touch
this set at interior points. Hence, an application of the maximum principle would imply that
G1(t) ⊆ S, and so S = Bt, which is a contradiction. Let S1(t) be a connected component of
S −G1(t) between G1(t) and F1(Ct) ∩ {||(x1, x2)|| ≥ ε}, and note that ∂(S1(t)) ⊂ G1(t) − Υ(Ct).
We can use Lemma 3.2 for the graph G1(t) over the plane Π1(Ct) and the surface S1(t), getting a
contradiction. Analogously, G2(t) ∩ S = ∅, for t ∈]0, t0], which proves our assertion.

To finish the proof, let t′ = Supremum{t > 0 : S ∩ Bt = ∅} > 0. If S ∩ Bt′ �= ∅, then, as above,
S would touch Bt′ at interior points, and so the maximum principle would imply that S ⊂ Bt′ ,
which is absurd. Therefore, we can suppose that S ∩ Bt′ = ∅. This means that S touches Bt′ at
infinity (this case only could occur when ϑ(C) = ϑ(C′) and h(C) = 0). In other words, we can
find a decreasing sequence {tm} → t,′ tm > t′, such that S ∩ Btm �= ∅, m ∈ N, and the sequence
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of non empty subsets {S ∩ Btm} diverges to infinity (i.e., for every compact subset K ⊂ R3, there
exists m(K) ∈ N such that (S ∩ Btm) ∩K = ∅, m ≥ m(K)).

In accordance with the definition of barrier, it is not hard to see that there is an ε′ > 0 large
enough such that, for m ∈ N, Btm ∩{x1 ≥ ε′} consists of the disjoint union of two simply connected
components, G1(tm) and G2(tm). Moreover, we can also assume that G1(tm) ⊂ {x3 > 0} (resp.
G2(tm) ⊂ {x3 < 0}) and G1(tm) (resp. G2(tm)) is a graph over the domain F1(Ctm) ∩ {x1 ≥ ε′}
(resp., F2(Ctm) ∩ {x1 ≥ ε′}), m ∈ N.

Since S touches Bt′ at infinity, there exists m(ε′) large enough such that (S∩ Btm) ⊂ {x1 ≥ ε′},
m ≥ m(ε′). As in the proof of the above claim, Lemma 3.2 leads to a contradiction, which proves
(ii). This concludes the proof. ✷

The following lemma shows that only particular domains C ∈ T can admit a barrier.

Lemma 3.4 Let C, C′ ∈ T, satisfying ϑ(C), ϑ(C′) > 0, o(C) = h(C′) = 0 and C′ ≤ C. Suppose
that both C and C′ admit a barrier.

Then C = C′.

Proof : Let B and B′ denote two barriers for C and C′, respectively.

Claim 1: �(C′) = �(C) and o(C′) = 0.

Suppose that either �(C′) > �(C) or o(C′) > 0. Observe that the planes Π+(C) and Π−(C) meet
�+0 (C′) ∪ �−0 (C′) if and only if o(C′) = 0. In this case, �(C′) > �(C), and so these planes meet
transversally B′ at the point {(0, 0, 0)} = �0(C′). Hence, in both cases: �(C′) > �(C) and o(C′) > 0,
there exists a connected component S of C ∩ B′ which does not contain the origin. Since S ⊂ C
and ∂(S) ⊂ ((F+(C′′) ∪ F−(C′′)) − Υ(C′′)) , where C′′ = C ∩ C′, we can apply Lemma 3.3 (case
(ii)) and infer that S is a planar domain in a face of C′′. This is obviously absurd and proves the
claim.

Claim 2: h(C) = 0 and ϑ(C) = ϑ(C′).

As above, we reason by contradiction, and suppose that either h(C) > 0 or ϑ(C) > ϑ(C′). Recall
that Claim 1 gives �(C′) = �(C) and o(C′) = 0.

As in the proof of Lemma 3.3, define Ct = {tP : P ∈ C} and Bt = {tP : P ∈ B}. We also
denote W ′

ρ′ ⊂ W ′
�(C) as the wedge of R3 determined by the tangent planes of B at the two points of

X−1((0, 0, 0)), where X : N → R3 is a proper minimal immersion such that X(N) = B. Moreover,
we have: (a) limt→0{Bt} = F1(C′′) ∪ F2(C′′), where C′′ ∈ T is the only cone such that h(C′′) =
o(C′′) = 0, ϑ(C′′) = ϑ(C), �(C′′) = �(C); (b) if h(C) > 0, limt→∞{Bt} = F+(W ′

ρ′ ) ∪ F−(W ′
ρ′),

where F+(W ′
ρ′ ) and F−(W ′

ρ′) are the two faces of Wρ′ ; (c) if h(C) = 0 (and thus ϑ(C) > ϑ(C′)),
then Ct = C and limt→∞{Bt} = F+(C) ∪ F−(C).

For taking limits we consider the uniform convergence on compact subsets of R3.
Let us prove that there exists t1 > 0 small enough such that Bt ∩ B′ = {(0, 0, 0)}, t ∈]0, t1[.
If we put B′ = Y (N ′), where Y : N ′ → R3 is a proper conformal minimal immersion, then the

tangent planes at the two points lying in Y −1((0, 0, 0)) are Π+(C′) and Π−(C′). Therefore, there
exists ε > 0 small enough such that B′ ∩ {x1 ≤ ε} is the union of two disjoint simply connected
graphs A′

+ and A′
− over F+(C′) and F−(C′), respectively. Moreover, note that the limit tangent

planes of B′ at the two points of Y −1((0, 0, 0)) are Π+(C′) and Π−(C′). In Section 1 we commented
that Bt has finite total curvature and the limit tangent planes of Bt at the two ends are well defined.
In this case, these planes are Π1(Ct) and Π2(Ct). Since the first two planes meet transversally the
second ones, we can choose ε > 0 and t1 > 0 small enough such that, for t < t1 : (a) Bt ∩ {x1 ≥ ε}
is the union of two disjoint graphs A1(t) and A2(t) over the planes F1(Ct) and F2(Ct), respectively;
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(b) the two curves in B′ ∩ {x1 = ε} lie in the compact planar domain of {x1 = ε} bounded by the
two curves of Bt ∩ {x1 = ε}, and the curves F+(Ct) ∩ {x1 = ε}, F−(Ct) ∩ {x1 = ε}.

Let us prove that there are no points of B′ between A1(t) and Π1(C). Observe that A1(t) is
a graph over F1(Ct) ∩ {x1 ≥ ε} asymptotic at infinity to Π1(Ct), B′ lies below Π1(Ct), and from
(b), B′ ∩ {x1 = ε} lies below A1(t) ∩ {x1 = ε.} If the set B′ − A1(t) has a connected component
S between A1(t) and Π1(Ct), we can apply Lemma 3.2 to the graph A1(t) over Π1(Ct) and the
surface S to get a contradiction. Analogously, there are no points of B′ between A2(t) and Π2(C).

To see that the only point of Bt between A′
+ and Π+(Ct) ∩ {x1 ≤ ε}, and between A′

− and
Π−(Ct) ∩ {x1 ≤ ε}, is the origin, use (b) above and Lemma 3.2 once again. Therefore, Bt ∩ B′ =
{(0, 0, 0)}, for t ∈]0, t1[.

On the other hand, {Bt} converges, as t → +∞, to either F+(W ′
ρ′ )∪F−(W ′

ρ′ ) (if h(C) > 0) or
F+(C) ∪ F−(C) (if h(C) = 0). Since B′ is connected, it is not hard to find t2 large enough such
that (Bt ∩ B′) − {(0, 0, 0)} �= ∅, for t ≥ t2.

Therefore the number t0
def= Supremum{t > 0 : Bt ∩ B′ = (0, 0, 0)} is well defined. If

(Bt0 ∩ B′) − {(0, 0, 0)} �= ∅, the maximum principle gives that Bt0 = B′, which is absurd. Hence,
(Bt0 ∩ B′) − {(0, 0, 0)} = ∅, and since Bt0 meets B′ transversally at the origin, Bt0 touches B′

at infinity. This means that given a sequence {tm} → t0, tm > t0, for every m ∈ N, the sets
{(Btm ∩ B′) − {(0, 0, 0)} : m ∈ N} are non empty and diverge, as m → ∞, to infinity. Let ε′ > 0
large enough such that Btm ∩ {x1 ≥ ε′} = A1(tm) ∪A2(tm), where A1(tm) and A2(tm) are disjoint
graphs over the planes Π1(Ctm) and Π2(Ctm), m ∈ N. Then, we can find m ∈ N large enough
such that (Btm ∩ B′) − {(0, 0, 0)} lies in {x1 ≥ ε′}. Reasoning as above (use Lemma 3.2), the set
(Btm ∩ B′) − {(0, 0, 0)} must be empty, which is a contradiction too. This proves Claim 2.

By using Claims 1 and 2, ϑ(C) = ϑ(C′), �(C) = �(C′), and h(C) = h(C′) = o(C) = o(C′) = 0.
Thus, C = C′, which concludes the lemma. ✷

Remark 3.1 The ideas in the proof of Lemmas 3.3 and 3.4 can be used to obtain a uniqueness
theorem for barriers. Suppose C ∈ T, h(C) = 0, admits two barriers B and B′, and define Bt = t ·B,
B′
t = t · B′, t > 0. As above, (Bt ∩ B′) − Υ(C) = ∅, t < 1 small enough, and so by the maximum

principle (Bt ∩ B′) − Υ(C) = ∅, for t ∈]0, 1[. Analogously, (B′
t ∩ B) − Υ(C) = ∅, for t ∈]0, 1[, and

so we infer that B = B′.

We can also obtain information about properly immersed minimal surfaces whose boundary
lies in opposite faces of a domain C ∈ C which admits a continuous family of barriers.

Lemma 3.5 Let C ∈ C1
0, and assume that C admits a continuous family F = {(Ct,Bt) : t ∈]0, 1]}

of barriers.
Let S be a connected properly immersed minimal surface satisfying:

(i) S ⊂ CF .

(ii) ∂(S) − (�+0 (CF ) ∪ �−0 (CF )) ⊂ (F+(CF ) ∪ F−(CF )) − Υ(CF ).

Then, S is a planar domain contained in F+(CF ) or F−(CF ).

Proof : Assume that Bt is a barrier for Ct ∈ C, t ∈]0, 1]. If Ct �= CF , the maximum principle gives
that S ∩ ∂(Ct) = ∅. Thus, Bt ∩ S lies in interior of both surfaces.

Let U ⊂ R3 be an open subset containing �0(C) and disjoint from S. From the definition of
continuous family of barriers, we can find t(U) > 0 such that, for t ∈]0, t(U)[, Bt−U = A1(t)∪A2(t),
where A1(t) and A2(t) are disjoint graphs over the planes Π1(C) and Π2(C), respectively. Thus,
S ∩ Bt ⊂ (A1(t) ∪A2(t)), and so, from Lemma 3.2, S ∩ Bt = ∅, t ∈]0, t(U)[.

An application of the maximum principle and Lemma 3.2 give that in fact S∩Bt = ∅, o(t) < oF ,
and S ∩ Bt ⊆ (�+0 (CF ) ∪ �−0 (CF )), o(t) = oF . Indeed, if t′ = Supremum{t ∈]0, 1] : S0 ∩ Bt ⊆
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(�+0 (CF ) ∪ �−0 (CF ))} < 1, then Bt′ must touch S either at an interior point of both surfaces, or at
infinity. In the first case, the maximum principle get a contradiction, and in the second one, Lemma
3.2 leads to a contradiction. A similar argument gives that B1 does not touches S neither at an
interior point nor at infinity. As a consequence, B1 ∩S = ∅. Let W ′

ρ′ be the wedge of R3 contained
in W ′

�(C) and bounded by the tangent planes of B1 at the two points of this surface meeting at the
origin. Let F+(W ′

ρ′ ) and F−(W ′
ρ′ ) denote the two faces ofW ′

ρ′ . The surfaces sB1 = {sP : P ∈ B1},
s > 0, converge on compact subsets of R3, as s → ∞, to F+(W ′

ρ′ ) ∪ F−(W ′
ρ′). In accordance with

the maximum principle, sB1 does not touch S, s > 0, and so S ∩ (F+(W ′
ρ′) ∪ F−(W ′

ρ′ )) = ∅.
Therefore, S lies in one of the two regions of W ′

ρ′ ∩ CF . Since these two regions lie in a half cone,
Theorem 3.1 implies that S is a planar domain in F+(C) or F−(C). ✷

Corollary 3.2 Let C ∈ C1
0 be a domain admitting a continuous family of barriers F and C′ ∈ C

a domain such that C′ ≤ CF . Assume also that C′ admits a barrier.
Then C′ = CF .

Proof : Suppose that B′ is a barrier for C′ and C′ �= CF . Suppose that o(C′) > oF . Up to a suitable
homothetical shrinking of C′, we can assume that h(C′) < 1, and o(C′) > oF . Hence, any connected
component of CF ∩B′ satisfies the hypothesis of Lemma 3.5, which leads to a contradiction. Hence,
o(C′) = oF . The same argument implies that h(C′) = 1, ϑ(C) = ϑ(C′) and �(C) = �(C′), because
otherwise B′ ∩ CF satisfies the hypothesis of Lemma 3.5). ✷

Remark 3.2 From Corollary 3.2, if F is any continuous family of barriers for C ∈ C1
0, then

oC = oF ,

and so oC is finite (see equation (1)). Therefore, the number oF and the cone CF do not depend
on the continuous family of barriers F for C.

Corollary 3.3 Let C1, C2 ∈ C1
0 such that C2 ≤ C1. Suppose that C1 and C2 admit a continuous

family of barriers. Then,
oC2 ≤ oC1 ,

and the equality holds if and only if C1 = C2.

Proof : Suppose that oC2 > oC1 , and let F2 a continuous family of barriers for C2. Consider C′ ∈ F2

such that o(C′) > oC1 . Applying Corollary 3.2 to the pair C ≡ C1, C
′ we get a contradiction. ✷

4 General Existence of barriers.

The main goal of this section is to construct a family of minimal surfaces bounded by straight
lines and planar geodesics by classical methods. We will observe that these new surfaces provide
barriers and continuous families of barriers for domains in C. See [8] and [5] for two interesting
references about the general study of Schwarzian chain problems.

Let X : M → R3 be a conformal minimal immersion. We label g : M → S2 as the Gauss map
of X. The Weierstrass representation of X is denoted by (g, η), where g = st ◦ g is a meromorphic
function and η is a holomorphic 1-form on M. These meromorphic data determine the minimal
immersion X, up to translations, as follows:

X(P ) ≡ (X1(P ), X2(P ), X3(P )) = Re

(∫ P

P0

(φ1, φ2, φ3)

)
(3)
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where P0 ∈ M and

φ1 =
1
2
(1 − g2)η, φ2 =

i

2
(1 + g2)η, φ3 = gη.(4)

The three 1-forms φj are holomorphic on M and have no common zeroes.
Suppose that M, Ω ⊂ C are simply connected compact planar domains bounded, respectively,

by pieces of great circles and pieces of straight lines parallel to {x = ±y}, {x = 0} or {y = 0}. Let
q :M → Ω be a conformal transformation.

By definition, a point V ∈ ∂(M) is a vertex of (M,Ω, q) if and only if either V = γ1 ∩ γ2,
where γ1 and γ2 are pieces of distinct great circles in ∂(M), or q(V ) = l1 ∩ l2, where l1 and l2 are
pieces of distinct straight lines in ∂(Ω). We label παV ∈]0, 2π[ as the angle of M at the vertex V.
Likewise, we define πβV ∈ {π

4 ,
π
2 , π,

3π
4 } as the angle of Ω at the point q(V ). We say that V is a

finite vertex if and only if 2βV > αV . Otherwise, we say that V is an infinite vertex or a boundary
end. We label {F1, . . . , Fm} and {E1, . . . , En} as the sets of finite vertices and boundary ends in
∂(M), respectively.

Then, we define

M =M − {E1, . . . , En}, g(z) = z, η(z) = −(
dq

dz
)2,(5)

and consider the Weierstrass data (M, g, η). Observe that ∂(M) = ∂(M) − {E1, . . . , En}.
The following Lemma studies the basic geometrical properties of the surfaces associated to

these Weierstrass data.

Lemma 4.1 Consider (M, g, η) as in (5) and φ1, φ2 and φ3 as in (4). Following (3), and for
P ∈ M − {E1, . . . , En}, define

X(P ) = Re

(∫ P

P0

(φ1, φ2, φ3)

)
,

where P0 ∈M − {E1, . . . , En}, Then, the minimal immersion X satisfies:

(i) X is proper.

(ii) The boundary ends Ei are flat. In fact, there exists a neighborhood W (Ei) of Ei in M such
that X(W (Ei) − {Ei})) is a graph over the limit tangent plane Σ(Ei) of X at Ei. Moreover,
this graph is asymptotic to an infinite planar sector in Σ(Ei) of angle (αEi − 2βEi)π (if
αEi = 2βEi , this means that X(W (Ei) − {Ei}) is asymptotic to a half strip in Σ(Ei)).

(iii) Let γ ∈ ∂(M), and put γ = st(S2 ∩ Π), where Π is a plane in R3 containing the origin. If
the segment l def= q(γ) ⊂ ∂(Ω) lies in a straight line which is parallel to either {x = y} or
{x = −y} (respectively, which is parallel to either {x = 0} or {y = 0}), then X(γ) is a
straight line orthogonal to Π (respectively, a planar geodesic contained in a plane parallel to
Π.)

Proof : Since ∂(M) − {F1, . . . , Fm} is analytical and the Weierstrass data extend analytically be-
yond ∂(M) − {F1, . . . , Fm}, it is obvious that X is well defined at any point of M which is not a
finite vertex. Let us prove that X extends continuously to the finite vertices. Indeed, let F be a
finite vertex.

Up to composing with a Möbius transformation induced by a rigid motion of R3, we can suppose,
without loss of generality, that V = 0 ∈ C and two straight line segments γ1, γ2 contained in ∂(M)
meet at 0 at an angle of παF . Furthermore, we can suppose that γ1 ∈ R. The q-images q(γ1) and
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g(γ2) are segments in ∂(Ω) which meet at q(0) at an angle of πβF . Hence, there is a small enough
neighborhood W of the origin such that

q(z) = q(0) + z
βF
αF

(
h(z1/αF )

)βF

, z ∈W ∩M,
where h is holomorphic on W, h(0) �= 0. So,

η = −(
dq

dz
)2dz = (q(z) − q(0))2h1(z1/αF )

dz

z2
,

where h1 is holomorphic on W and h1(0) �= 0. Looking at (4) and (5), we get that z2−2
βF
αF φj is

bounded on W ∩M, and taking into account that 2βF > αF and (3), we deduce that X is well
defined at F.

Suppose now that E is a boundary end of M. As above, we can suppose that E = 0 and that
two segments γ1 ⊂ R, and γ2 in ∂(M) meet at 0 at an angle παE . Label πβE as the angle that
q(γ1) and q(γ2) make at q(E). If we write Φ = (φ1, φ2, φ3), then it is not hard to see that

t(z) = z2−2
βF
αF Φ is analytical and bounded on W ′(E) ∩M,(6)

where W ′(E) is a small enough neighborhood of E = 0. Moreover, t extends continuously to 0 and
t(0) = (λ, iλ, 0), where λ �= 0. Since E is a boundary end, 2βE ≤ αE , and so from (6) and (3) we
get limz→0X(z) = ∞ (i.e., X is proper at E = 0) and that

lim
z→0

∫
P0

φ3

is finite (i.e. E is a flat end). Let Σ(E) ≡ {x3 = 0} denote the limit tangent plane of X at the end
E, and label p as the orthogonal projection on Σ(E). From (6), it is straightforward to check the
existence of a small enough compact neighborhood W (E) ⊂ W ′(E) of 0 such that:

• p(X(W (E) ∩M)) lies in a planar sector of angle (αE − 2βE)π,

• W (E) ⊂ {z ∈ C : |z| < 1}.
Therefore, X |

(
◦

W (E)∩(M−∂(M))
is a local homeomorphism, and so it is not hard to deduce that

∂ (p(X(W (E) ∩M))) ⊂ p (X(∂(W (E) ∩M))) . On the other hand, p(X(W (E) ∩ ∂(M))) lies in
the boundary of a planar sector S contained in the above one and of the same angle, and so, up to
reducing W (E) if necessary, we can suppose that p(X(W (E)∩M)) is a convex subset of S. Hence,
the orthogonal projection p|X(W (E))∩M) is a proper local homeomorphism, and so, it is one to one.

Finally, assume that γ ∈ ∂(M) is a piece of the great circle st(S2 ∩Π), where Π is a plane in R3

containing 0, and label l = q(γ) ⊂ ∂(Ω). Up to a rigid motion, we can suppose Π = {x2 = 0}, and
so γ lies in the real axis {y = 0}. If l‖{x = y} or l‖{x = −y} (respectively, l‖{x = 0} or l‖{y = 0}),
then Re

(
( dqdz )

2
)

= 0 (respectively, Im
(
( dqdz )

2
)

= 0). Since g(z) = z and η(z) = −( dqdz )
2dz, from

(4) and (3) we easily deduce that X(γ) lies in a line parallel to x1 = x3 = 0 (respectively, is a
planar geodesic in a plane parallel to x2 = 0). This concludes the proof. ✷

4.1 Construction of the fundamental piece

In this subsection we use Lemma 4.1 to solve some Plateau’s problems. This is the key step for
establishing the general existence result of barriers for truncated tetrahedral domains in C. The
idea is to construct the fundamental piece of the barrier, which will be generated later by successive
Schwarz reflections about straight lines or planar geodesics.

To proceed, we have to describe the domainsM, Ω, and the conformal transformation q :M →
Ω mentioned above.
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4.1.1 The domain M

Let r ∈ [0, 1[ and α ∈ [1/2, 1], and consider the following pieces γj , j = 1, 2, 3, of great circles
in C :

• γ1 = [r, 1],

• To define γ2, let γ ⊂ C denote the only great circle which meets the real axis at r, making
an angle of πα :

γ = { r + eπαit
1 − eπαirt : t ∈ R ∪ {∞}}.

Label ζ as the only point in γ∩{z ∈ C : |z| = 1, Im(ζ) > 0}, and define γ2 as the connected
arc in γ ∩ U joining r and ζ.

• The curve γ3 is the connected arc in {z ∈ C : |z| = 1, Im(z) ≥ 0} joining ζ and 1.

Label M ≡ M(α, r) as the compact domain bounded by γ1 ∪ γ2 ∪ γ3, and denote by πβ the
angle that γ2 and γ3 make at ζ.

Obviously β and ζ depend on α and r :

β ≡ β(α, r), ζ ≡ ζ(α, r).
As a matter of fact, a long but straightforward computation gives:

(r2 + 1) cos (πβ) = 2r sin (πα), ζ =
(1 + r2) cos (πα) + i(1 − r2) sin (πα)√

1 + r4 + 2r2 cos (2πα)
.(7)

Hence, α < 1 gives 1
2 ≤ α < β + 1

2 ≤ 1, and α = 1 implies β = 1
2 .

4.1.2 The polygonal domain Ω

Next step is to define the polygonal domain Ω. Let s ∈]0, 1], and consider the holomorphic map on
U :

ω : U → C

w(u) = A
∫ u

0

t−1/2(t− s)−1/4(t− 1)−1/2dt,

where

A−1 = −
(∫ −∞

0

t−1/2(t− s)−1/4(t− 1)−1/2dt

)
.

We have used the holomorphic branches of z1/2, z1/4 in C − {t ∈ R : t ≤ 0} satisfying 11/2 =
11/4 = 1. So, integrating along the interval ] − ∞, 0], we get arg(A) = 5π

4 .
It is not hard see that ω : U → C is injective. Moreover,

Ω def= ω(U),

is a compact convex domain bounded by a polygonal curve with four vertices

W1 = ω(0) = 0, W2 = ω(s) ∈ iR+, W3 = ω(1) ∈ U , W4 = ω(∞) = −1.

Moreover, Im(W3) > 0 and Re(W3) ≤ 0, Note that s = 1 implies W2 = W3, and W2 �= W3

otherwise.
By an analytic continuation argument, we infer that the angles πβWi of Ω at Wi, i = 1, 2, 3, 4

are:
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• If s �= 1, βW1 = 1/2, βW2 = 3/4, βW3 = 1/2, βW4 = 1/4.

• If s = 1, βW1 = 1/2, βW2 = 1/4, βW4 = 1/4.

Thus, Ω is bounded by either four (s �= 1) or three (s = 1) pieces of straight lines which are parallel
to {x = ±y}, {x = 0} or {y = 0}.

Note that the domain Ω depends on the parameter s : Ω ≡ Ω(s).

4.1.3 The map q, the Weierstrass data and the associated Plateau’s problem

Let ξ : U → M denote the only conformal map satisfying ξ(0) = 1, ξ(1) = ζ and ξ(∞) = r, and
label q : M → Ω as the conformal map q = ω ◦ ξ−1. The points r, 1, ζ0 = ξ(s) and ζ, are the
vertices of (M,Ω, q), and the angles of M at these vertices are πα, π/2, π and πβ, respectively.

If α �= 1 and r �= 0, it is straightforward to check that r is a boundary end, and 1, ζ0 = ξ(s)
and ζ are finite vertices, for s ∈]0, 1]. The same holds if s �= 1 and either α = 1 or r = 0. If s = 1
( i.e., ζ0 = ζ,) and either α = 1 or r = 0, then r and ζ = ζ0 are boundary ends, and 1 is a finite
vertex.

Remark 4.1 In the following, we assume that |s− 1| + |r|, |s− 1| + |a− 1| �= 0. Therefore, r is
the only boundary end of (M,Ω, q), and the parameters (α, r, s) take values in the domain

D = [1/2, 1] × [0, 1[×]0, 1] − {(α, r, s) : α− 1 = s− 1 = 0 or r = s− 1 = 0}.

Define the Weierstrass data M = M − {r}, g(z) = z, and η = −
(
dq
dz

)2

dz, and following (see (3)
and (4)), consider the associated minimal immersion

X(z) = (X1, X2, X3)(z) = (0,
o

2
, 0) + Re

(∫ z

ζ0

(φ1, φ2, φ3)
)
,(8)

where

o
def= 2Re

(∫ ζ0

1

φ2

)
.(9)

The geometrical meaning of parameter o will be studied in Subsection 4.2. Note that X depends
on α, r, s. From Lemma 4.1, X(M) is a solution for certain Plateau’s problem. Next proposition
is devoted to study it.

Label γ′3 (resp. γ′′3 ) as the arc in γ3 joining ζ and ζ0 (resp. ζ0 and 1).

Proposition 4.1 The minimal immersion X defined in (8) verifies:

(1) X is proper.

(2) X3|γ′
3
is injective and

X(γ′3) = {(0, o
2
, 0) + t(0, 0, 1) : t ∈ [0, X3(ζ)]}.

Moreover, X3(ζ) ≥ 0 (= 0 if and only if s = 1) and X(ζ) = (0, o2 , X3(ζ)).

(3) X |γ2 is injective and X(γ2) is the half line

{X(ζ) + t((1 − r2) sin(πα),−(1 + r2) cos(πα), 2r sin(πα)) : t ≥ 0}.
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(4) X(γ′′3 ) is a planar geodesic contained in the plane {x3 = 0} and joining the points (0, o2 , 0) and
X(1). Furthermore, X1|γ′′

3
is injective and positive.

(5) X(γ1) is a divergent planar geodesic in {x2 = 0} and starting at X(1). Furthermore, X1|γ1

and X3|γ1 are injective and positive.

(6) There exists a neighborhood W ⊂ C of r such that X(W ∩M) is a graph over Σ1
def= {2rx1 +

(r2 − 1)x3 + (1 − r2)X3(ζ) = 0}, and it is asymptotic to the infinite planar sector of angle
(α− 1

2 )π in Σ1 ∩ {x1 ≥ 0} determined by the lines X(γ2) and Σ1 ∩ {x2 = 0}.
Proof : The proof is a consequence of Lemma 4.1. To complete the details, we are going to study
carefully the behavior of X on ∂(M).

First, consider the curve γ′3 ⊂ ∂(M). Introduce the new parameter t given by it = log(z).
Suppose s �= 1. Up to a suitable choice of the branch of log(z), and taking into account the
definition of q, we can suppose: t(γ′3) = [arg(ζ0), arg(ζ)] ⊂]0,+∞[, g(t) = eit and dq

dt = (−1+i)h(t),
where h(t) is holomorphic and h(t) > 0, t ∈] arg(ζ0), arg(ζ)[. Therefore, η = 2h(t)2e−itdt, and
so φ3(t) = 2h(t)2dt. Moreover, φ1(t)/dt, φ2(t)/dt ∈ iR, for t ∈] arg(ζ0), arg(ζ)[. This gives that
X1(t) = X2(t) − o

2 = 0 and the third coordinate function X3(t) is increasing in [arg(ζ0), arg(ζ)],
which proves (2). If s = 1, it is clear that ζ = ζ0. Since α − 1 and r �= 0, ζ = ζ0 is a finite vertex
and so X(γ′3) = (0, o2 , 0).

To study X |γ′′
3
, introduce as above the change it = log(z). Here, t(γ′′3 ) = [0, arg(ζ0)] ⊂ [0,+∞[,

g(t) = eit and dq
dt = ih(t), where h(t) is holomorphic and h(t) > 0, t ∈]0, arg(ζ0)[. Thus, η =

−ih(t)2e−itdt, and so

φ3(t)/dt ∈ iR, φ1(t) = −h(t)2 sin(t)dt, φ2(t) = h(t)2 cos(t)dt.

Therefore, X(γ′′3 ) is a planar geodesic lying in x3 = 0, and X1(t) is a decreasing function of t,
t ∈ [0, arg(ζ0)]. Hence, X1(t) > 0, which proves (4).

Consider now X |γ1. In this case dq
dz > 0, and since γ1 = [r, 1], then

φ1(z)/dz < 0, φ2(z)/dz ∈ iR, φ3(z)/dz < 0,

for z ∈]r, 1[. Hence, X(γ1) lies in the plane x2 = X2(1) = 0, and X3(z), X1(z) are decreasing,
z ∈ [r, 1]. This proves (5).

Finally, we study X |γ2 . Introduce the change t = e−iα z−r
rz+1 , and observe that in the t-plane:

(a) t(r) = 0, t(ζ) > 0, and t(γ2) = [0, t(ζ)]; (b) dh
dt = (−1 − i)h(t), where h(t) is holomorphic and

h(t) > 0, t ∈]0, t(ζ)[; (c) g(t) = r+eiαt
1−reiαt , η = −2ih(t)2e−iα(eiαrt−1)2

1+r2 dt.
Therefore,

Re (φ1(t)/dt, φ2(t)/dt, φ3(t)/dt) = (1 + t2)h(t)2
(

(r2 − 1) sin(πα)
1 + r2

, cos(πα),−2r sin(πα)
1 + r2

)
,

for t ∈ [0, t(ζ)], and so φj(t)/dt ≤ 0, t ∈ [0, t(ζ]. This implies that X |γ2 is injective and X(γ2) is
the half line

{X(ζ) + λ((1 − r2) sin(πα),−(1 + r2) cos(πα), 2r sin(πα)) : λ ≥ 0}.
Hence (3) holds.

Lemma 4.1 gives that X is proper and that r is a flat end of M. Since g(r) = r, then X(M)
is asymptotic at infinity to a plane Σ1 whose normal vector is (2r/(1 + r2), 0, (r2 − 1)/(1 + r2)).
Moreover, Σ1 contains the half line X(γ2), which is equivalent to say that X(ζ) = (0, o2 , X3(ζ)) ∈
Σ1. Therefore,

Σ1 = {2rx1 + (r2 − 1)x3 + (1 − r2)X3(ζ) = 0}.
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Moreover, from Lemma 4.1 there exists a large enough compact subsetK ⊂ R3 such thatX(M−K)
is a graph over the planar sector determined by the orthogonal projection of X(∂(M) −K) over
Σ1(i.e., by the straight lines X(γ2) and Σ1 ∩ {x2 = 0}.) This proves (1) and (6), and concludes the
proof. ✷

4.2 Construction of the barriers.

Let R and R′ : R3 → R3 denote the reflections about the planes x3 = 0 and x2 = 0, respectively.
From Schwarz’s reflection principle, the set X(M) ∪R(X(M)) is a minimal surface, that is to say,
there is a minimal immersion X ′ : M0 → R

3, M ⊂ M0, which extends X : M → R
3 and verifies

X ′(M0) = X(M)∪R(X(M)). Likewise, there exists a minimal immersion X ′′ :M1 → R3 such that
M ⊂ M1 and X ′′(M1) = X(M) ∪ R′(X(M)). In a similar way, the set X ′(M0) ∪ R′(X ′(M0)) =
X ′′(M1) ∪R(X ′′(M1)) is a minimal surface and there is a minimal immersion

X ′′′ : N → R
3

such that M, M0, M1 ∈ N, X ′′′(N) = X ′(M0) ∪ R′(X ′(M0)) and extends the immersions X, X ′

and X ′′.
In the following we write X : N → R3 instead of X ′′′ : N → R3, for the sake of simplicity.
We label R,R′ : N → N as the antiholomorphic involutions induced by the rigid motions

R, R′, respectively. The surface N is conformally diffeomorphic to a closed disc with piecewise
analytic boundary punctured at two boundary points, and

X(∂(N)) = ∪3
j=0(l

+
j ∪ l−j ),

where

l+0 = X(γ′3) ∪R(X(γ′3)), l
−
0 = R′(l+0 ), l+1 = X(γ2), l−1 = R′(l+1 ), l+2 = R(l+1 ), l−2 = R′(l+2 ).

The parameter r is the stereographic projection of the limit normal vector at the end of M.
In accordance with Proposition 4.1, Σ1 = {2rx1 + (r2 − 1)x3 + (1 − r2)X3(ζ) = 0} and Σ2 =
{2rx1 + (1 − r2)x3 + (1 − r2)X3(ζ) = 0} are the limit tangent planes at the two ends of N. Note
that l+j ∪ l−j lies in Σj , j = 1, 2.Write Σ+ = (1+ r2) cos(πα)x1 +(1− r2) sin(πα)(x2 − o

2 ) = 0} and
Σ− = R′(Σ+

1 ) the only planes containing l+0 ∪ l+1 ∪ l+2 and l−0 ∪ l−1 ∪ l−2 , respectively. Observe that
the straight lines of R3 containing the half lines l+1 and l−1 meet at an angle of (2α− 1)π.

A straightforward computation gives:

• l+i and l−i meet at an angle of α′π, where

α′π = arccos
(

(r2 − 1)2 + 4r2 cos(2απ)
(r2 + 1)2

)
, i = 1, 2.(10)

• Σ1 and Σ2 (resp. Σ+ and Σ−) meet at an angle of θ ≡ θ(r), θ ∈ [0, π[ (resp. ρ ≡ ρ(α, r),
ρ ∈ [0, π]), where:

θ = 2 arccos
(

1 − r2
1 + r2

)
, ρ = arccos

(
−2r2 + (1 + r4) cos(2απ)

1 + r4 + 2r2 cos(2απ)

)
.(11)

In the following, θ and ρ will be refered to as the angles of X(N).
The map

(θ, ρ)(α, r) : [
1
2
, 1] × [0, 1[→ [0, π[×[0, π]
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is an analytical diffeomorphism. Hence, we can substitute the parameters α and r for the new
ones θ and ρ. Note also that the limit r → 1 corresponds to the degenerate case θ → π. Moreover,
α = 1 if and only if ρ = π.

On the other hand, define:

h = 2X3(ζ)(12)

The number o defined in (9) gives the oriented distance between the vertical segments l+0 and l−0 .
This means that: (a) |o| = distance(l+0 , l

−
0 ); (b) o ≤ 0 if and only if l+i ∩ l−i �= 0, i = 1, 2; (c) o = 0

if and only if l+0 = l−0 . If o = 0, we label l0 = l+0 = l−0 .
The number h is always greater than or equal to zero (see Proposition 4.1), and it measures

the length of l+0 and l−0 . For these reasons, we call h and o the height and the opening of X(N),
and refer to

h(α, r, s), o(α, r, s) : D → R

as the height and opening functions of the arising family of surfaces, respectively.
The numbers θ, ρ, o and h determine the boundary X(∂(N)) of X(N). If o ≥ 0, and we label

C as the only domain in C such that h(C) = h, o(C) = o, ϑ(C) = θ and �(C) = ρ, (i.e., C = Ch,o
θ,ρ ),

then Proposition 4.1 and equations (9) and (12) give:

X(∂(N)) = Υ(C),

Σj ≡ Πj(C), j = 1, 2 Σ+ ≡ Π+(C), Σ− ≡ Π−(C),

l+j ≡ �+i (C), l−j ≡ �−j (C), j = 0, 1, 2.

Moreover, if α < 1 (i.e., ρ < π), we have E(X(∂(N))) = C. Hence, the height, opening and the
angles of X(N) are the same as the ones of C.

If we fix the angles θ and ρ, the parameter s controls the behavior of the opening and height
functions. However, the parameters θ, ρ, o, and h do not determine the surface X(N). In fact, as
we will see later, the Plateau problem associated to Υ(Ch,o

θ,ρ ) has not, in general, a unique solution.
The following two lemmas study geometrical properties of X(M) and X(N), and let us prove

that X(N) is a barrier for Ch,o
θ,ρ , provided that o ≥ 0 and ρ > 0.

We need the following notation:
Let W0 be the closed wedge in R

3 determined by the planes {x2 = Minimum{0, o2}} and Σ+,
containing X(∂(M)) (see Proposition 4.1.) Since the only end of X(M) is asymptotic to the plane
Σ1, there exists a closed slab in R3 containing X(M) parallel to Σ1. Let S denote the smallest one
satisfying these properties.

Lemma 4.2 The following assertions hold:

(i) The set X(M) lies in S ∩W0 and X(M) ⊂ E (∂(X(M))) .

(ii) If ρ < π, X(N) ⊂ E(X(∂(N))). So, if o ≥ 0 then X(N) ⊂ Ch,o
θ,ρ .

(iii) If ρ = π, X(N) ⊂Wθ(h).

Proof : From Proposition 4.1, X(M) lies in a wedge of a slab parallel to Σ1 of angle less than or
equal to π

2 . Hence, by Theorem 3.1 (or [9]), X(M) ⊂ E (∂(X(M))) .We deduce that the set X(M0)
lies in a half cone of R3, and so, from Theorem 3.1, it lies in the convex hull of its boundary. Hence,
taking into account Proposition 4.1, X(M0) lies in the wedge W0, and so E (∂(X(M))) lies in the
set W0 ∩ S. Thus, X(M) ⊂ W0 ∩ S, which proves (i).
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By using (i), we deduce that X(N) ⊂ R′ ((W0 ∩ S) ∪R((W0 ∩ S))) . If ρ < π (i.e., α < 1) the
angle of W0 is less than π

2 , and so X(N) lies in a half cone. In accordance with Theorem 3.1,
X(N) ⊂ E(X(∂(N))) = Ch,0

θ,ρ , which proves (ii).
Suppose ρ = π. In this case, (X(M) ∪R(X(M))) ⊂ W0, and it is clear that α = 1 implies that

W0 ∪R′(W0) = {x1 ≥ 0}. Therefore, X(N) ⊂ {x1 ≥ 0}.
Let us see that Σ1 ⊂ ∂(S). Otherwise, there would be a non void connected component S0

of X(M1) − Σ1 in a slab parallel to Σ1 whose boundary lies in Σ1. The circle of ideas around
the strong half space theorem imply that a such surface does not exists (see [11], [4]), getting a
contradiction.

Since X(M1) is contained in the slab S, then X(N) lies in S ∪ R(S), and thus, X(N) ⊂
(S ∪R(S)) ∩ {x1 ≥ 0}. Taking into account that Σ1 ⊂ ∂(S), we get X(N) ⊂ Wθ(h), which proves
(iii) and the lemma. ✷

Lemma 4.3 (i) If ρ < π then X(M0) is a graph over the plane x2 = 0.

(ii) X(M) − l+0 is a graph over the plane x3 = 0. So, X(M0) is embedded.

(iii) If o ≥ 0, then the surface X(M1) − (l+0 ∪ l−0 ) is a graph over the plane x3 = 0.

(iv) The immersion X : N → R3 is an embedding if and only if o > 0. Furthermore, if o = 0, the
only self-intersections of X(N) occur on the vertical segment l+0 = l−0 , where two sheets of
X(N) meet transversally.

Proof : To prove (i), denote as p2 : X(M0) → {x2 = 0} ≡ R2 the orthogonal projection. From
Proposition 4.1 and Lemma 4.2, we deduce that p2|X(∂(M0)) is injective and δ = p2(X(∂(M0))) is
the union of two properly embedded disjoint curves of R2 which are homeomorphic to R and split
the plane into two open connected components W1 and W2. Without loss of generality, suppose
that W1 ∩ p2(X(M0)) �= ∅.

Since X is proper and ρ < π, Lemma 4.2 implies that p2 is proper. Moreover, from the
definition of M, the image under the Gauss map of M0 − ∂(M0) is disjoint from S2 ∩ {x2 = 0},
and so p2 : X(M0 − ∂(M0)) → R2 is a local diffeomorphism. Then, ∆ = p2(X(M0 − ∂(M0))) is a
planar open domain.

Let us observe that p2(X(M)) ∩W2 = ∅ and W1 = ∆. Indeed, let i ∈ {1, 2}. It is clear that
∆∩Wi is an open subset inWi.Moreover, since p2 is proper, ∆∩Wi is a closed subset inWi. AsWi

is connected, eitherWi ⊂ ∆ orWi∩∆ = ∅. However, Lemma 4.2 gives thatX(M) ⊂ E (∂(X(M0))) ,
and so ∆ ⊂ E(δ). Hence, ∆ is not the whole plane, and since p2(X(M)) ∩W1 �= ∅, we get easily
∆ ∩W2 = ∅ and ∆ =W1. In other words, p2(X(M0)) ∩W2 = ∅ and p2(X(M0)) =W1 ∪ δ.

Since X(γ1) is a properly embedded planar geodesic in the plane x2 = 0, and the image under
the Gauss map of ∂(M0) − γ1 does not contain any vector of {x2 = 0} (recall that ρ < π), then it
is not hard to deduce that p2 : X(M0) → (∆ ∪ δ) ≡ W 1 is a proper local homeomorphism.

Elementary topological arguments give that p2 : X(M0) → W 1 is a covering, and since W 1 is
simply connected, it is a homeomorphism.

Let us prove that X(M) − l+0 is a graph on the plane {x3 = 0} (which corresponds to (ii).)
Indeed, label p3 : X(M) → {x3 = 0} ≡ R2 as the orthogonal projection. From Proposition 4.1
and Lemma 4.2, we deduce that p3|X(∂(M)−γ′

3) is injective and δ = p3(X(∂(M))) is a properly
embedded curve homeomorphic to R splitting the plane into two open connected components U1

and U2. Without loss of generality, suppose that U1 ∩ p3(X(M)) �= ∅.
As X is proper and the limit normal vector at the only end of M is not horizontal, then the

projection p3 is proper. Moreover, the Gaussian image ofM−∂(M)) is disjoint from S2 ∩{x3 = 0},
and so p3 : X(M − ∂(M)) → {x3 = 0} is a local diffeomorphism. Thus, ∆ = p3(X(M − ∂(M))) is
a planar open domain.
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Reasoning as in the preceding case, p3(X(M))∩U2 = ∅ and U1 = ∆. In other words, p3(X(M))∩
U2 = ∅ and p3(X(M)) = U1 ∪ δ.

Since X(γ′′3 ) is a properly embedded planar geodesic in the plane x3 = 0, we deduce that
p3 : X(M) − X(γ′3) → ((∆ ∪ δ) − {0}) ≡ U1 − {0} is a proper local homeomorphism. Hence,
p3 : X(M) − X(γ′3) → U1 − {0} is a covering, and since U1 − {0} is simply connected, it is a
homeomorphism. Now, it is easy to deduce (ii).

From Proposition 4.1 and the factX(M) ⊂ E (∂(X(M))) (Lemma 4.2), we infer that
(
X(M) − l+0

)∩(
R′(X(M)) − l−0

)
= ∅ if and only if o ≥ 0. From (ii) we get (iii).

To prove (iv), define A = X(M0) ∩ R′(X(M0)). From (ii), X(M0) is embedded, and since
X(γ1) ∪ R(X(γ1)) is a planar geodesic in {x2 = 0}, the only self intersections of X(N) occur
in A − (X(γ1) ∪ R(X(γ1))). If o > 0, Proposition 4.1 and (i) in Lemma 4.2 imply that A =
X(γ1) ∪ R(X(γ1)), and so X(N) is embedded. Let us study the case o = 0. Remember that
l+0 = X(γ′3) ∪R(X(γ′3)) and l−0 = R′(l+0 ). If o = 0, we have l+0 = l−0 = l0, and so, by the maximum
principle, Proposition 4.1 and (i) in Lemma 4.2, we get A = X(γ1) ∪ R(X(γ1)) ∪ l0. So, only two
sheets of X(N) meet transversally at l+0 = l−0 .

Finally, if o < 0, a connection argument yields that the surfaces X(M0) and R′(X(M0)) must
intersect. ✷

As a consequence of Proposition 4.1 and Lemmas 4.2, 4.3, we can state the general existence
of barriers result.

Theorem 4.1 Assume that o ≥ 0. Then:

• If ρ < π (i.e., α < 1), the minimal surface X(N) is a barrier for E(X(∂(N))) = Ch,o
θ,ρ ∈ T.

• If ρ = π (i.e., α = 1), the minimal surface X(N) is a barrier for (Wθ(h), o) ∈ W.

5 Determining the domains admitting barriers.

In the preceding section we have constructed a large family of barriers for domains in C. The aim
of this section is to study, in depth, the space of domains in C admitting a barrier or a continuous
family of barriers.

To do this, we have to get some information about the behaviour of the height and opening
functions, defined in (9) and (12).

First, we are going to obtain a new formula for the Weierstrass data of the barriers in terms of
classical hypergeometric functions.

The following notation is required. We denote Γ(z) : C − {n ∈ Z : n ≤ 0} → C as the classical
gamma function, defined by

Γ(z) = lim
n→+∞

n!nz

z(z + 1)(z + 2) · · · (z + n)
.

Given a, b and c ∈ C − {n ∈ Z : n ≤ 0}, F (a, b, c, z) is the only solution of the hypergeometric
differential equation

z(z − 1)
d2u

dz2
+ (c− (a+ b+ 1))

du

dz
− abu = 0

which is regular at 0 and satisfies F (a, b, c, 0) = 1. If S denotes the algebraic curve {(z, w) ∈ C
2

:
w2 = (z − 1)} and N = z−1(C − [1,+∞]), where [1,+∞] = {r ∈ R : r ≥ 1} ∪ {∞}, then the
Riemann surface N of the analytic function (of z) F (a, b, c, z) contains in a natural way N. Then,
the function F (a, b, c, z) can be extended holomorphically to the interior of N, and continously to
N. A complete reference for these topics is, for instance, [1].
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Let M ≡ M(α, r) and Ω ≡ Ω(s) be the domains described in Paragraphs 4.1.1 and 4.1.2, and
consider the maps

ω : U → Ω, ξ : U → M and q = ω ◦ ξ−1 :M → Ω

given in Paragraph 4.1.3. Define X : M → R3 as in this paragraph, and remember that the

Weierstrass representation of X(M) is (M =M − {r}, g(z) = z, η = −
(
dq
dz

)2

dz).

After the change of variables u = ξ−1(z), the Weierstrass representation of X(M) becomes:

M0 = U − {∞}, g(u) = ξ(u), η = −
(
dω

du

)2 (
dξ

du

)−1

du.

Basic conformal mapping theory (see, for intance, [1, p. 163]) gives:

g =
i− g0
i+ g0

,(13)

where

g0
def= B

√
uF (3+2α−2β

4 , 3−2α−2 β
4 , 3

2 , u)

F (1+2α−2β
4 , 1−2α−2 β

4 , 1
2 , u)

.

The constant B is determined by the equation g0(1) = i 1−ζ
1+ζ . Indeed, from equation (7), we deduce

that
ζ = cos(απ) csc(β π) + i cot(β π)

√
−1 + sec(β π)2 sin(απ)2.

Thus, taking into account that F (a, b, c, 1) = Γ(c)Γ(a−b)
Γ(c−a)Γ(c−b) , it is straightforward to check that

B =

√
2
√− cos(2απ) − cos(2 β π) Γ(3−2α+2β

4 ) Γ(3+2α+2β
4 )

Γ(1−2α+2 β
4 ) Γ(1+2α+2 β

4 ) (cos(απ) + sin(β π))
.(14)

On the other hand, [1, p. 165] gives

dg0
du

=
B

2
√
u(1 − u)1−βF (1+2α−2 β

4 , 1−2α−2β
4 , 1

2 , u)
2 ,

and taking into account that dω
du = A

u1/2(u−1)1/2(u−s)1/4 , we get

η =
iA2

(
i F (1+2α−2β

4 , 1−2α−2 β
4 , 1

2 , u) +B
√
uF (3+2α−2 β

4 , 3−2α−2β
4 , 3

2 , u)
)2

B (1 − u)β √
u− s√

u
du.

Up to scaling, we can suppose A2 = i, and so

φ1 =
−2i F (1+2α−2 β

4 , 1−2α−2β
4 , 1

2 , u)F (3+2α−2β
4 , 3−2α−2 β

4 , 3
2 , u)

(1 − u)β √
u− s

du,(15)

φ2 = −i−F (1+2α−2 β
4 , 1−2α−2 β

4 , 1
2 , u)

2
+B2 uF (3+2α−2 β

4 , 3−2α−2 β
4 , 3

2 , u)
2

B (1 − u)β √
u− s√

u
du,(16)
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φ3 =

(
F (1+2α−2β

4 , 1−2α−2 β
4 , 1

2 , u)
2
+B2 uF (3+2α−2β

4 , 3−2α−2 β
4 , 3

2 , u)
2
)

B (1 − u)β √
u− s√

u
}du(17)

Therefore,

X(u) ≡ (X1(u), X2(u), X3(u)) = (0,Re
(∫ s

0

φ2

)
, 0) + Re

∫ u

s

(φ1, φ2, φ3),

u ∈ U − {∞}.

5.1 Behaviour of the height and opening functions.

We want to study the analytical properties of the functions h and o. Looking at the equations (15),
(16) and (17), it would be better to substitute the parameter r for another one, for the sake of
simplicity. Normally, the first attempt would be to use the parameters (α, β, s) instead of (α, r, s).
However, this choice does not work because it excludes the case α = 1, r ∈ [0, 1[ (which corresponds
to α = 1 and β = 1

2 ).
A good choice is the function κ(α, r) : D → R defined by

2κ(1 − α) = 1 − 2β.

From (7), r2+1
2r = sin(π(1−α))

sin(π(β+1/2)) , and so r2+1
2r = sin(π(1−α))

sin(πκ(1−α)) . Thus,

κ(α, r) =
1

π(1 − α) arcsin
(

2r sin(π(1 − α))
r2 + 1

)
.(18)

This formula makes sense for α ∈ [1/2, 1[ and r ∈ [0, 1[, and it is clear that κ ∈ [0, 1[. Furthermore,
if we fix α ∈ [1/2, 1[, then κ(α, ·) : [0, 1[→ [0, 1[ is a diffeomorphism. If we take the limit α→ 1,

κ(1, r) def= lim
α→1

κ(α, r) =
2r

r2 + 1
,

and so κ(1, ·) : [0, 1[→ [0, 1[ is a diffeomorphism too. This means that we can substitute the
parameter r for κ. As a matter of fact, this change will simplify the subsequent analysis. Note that

r → 0 (resp. 1) ⇐⇒ κ → 0 (resp. 1)

We start with the following lemma:

Lemma 5.1 The constant B ≡ B(α, r) is positive on D. Moreover,
• lim(α,r)→(α0,1)B(α, r) = 0,

• B(α, 0) = α,

• B(1, r) def= lim(α,)→(1,r0)B(α, r) =
√

1−κ(1,r0)
1+κ(1,r0)

= 1−r0
1+r0

.

• B(1
2 , r) = 1−κ( 1

2 ,r)

2 .

Proof : If α �= 1, the equation (14) and the definition of κ give:

B =
2
√

1 − 2 cos(απ)
cos(απ)+cos((−1+α)κπ) Γ(2+α (−1+κ)−κ

2 ) Γ(2+α+(−1+α) κ
2 )

Γ( (−1+α) (−1+κ)
2 ) Γ(1+α+(−1+α)κ

2 )
.
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Observe that α ∈ [1/2, 1[ and κ ∈ [0, 1[, imply that
√

1 − 2 cos(απ)
cos(απ)+cos((−1+α)κ π) is positive. More-

over, Γ(x) > 0, provided that x > 0, and so Γ(2+α (−1+κ)−κ
2 ), Γ(2+α+(−1+α) κ

2 ), Γ( (−1+α) (−1+κ)
2 )

and Γ(1+α+(−1+α) κ
2 ) are positive.

Taking into account that limz→0 z Γ(z) = 1, it is not hard to prove that:

B(1, r) def= lim
(α,r)→(1,r0)

B(α, r) =

√
1 − κ(1, r0)
1 + κ(1, r0)

=
1 − r0
1 + r0

> 0.

To prove lim(α,r)→(α0,1)B(α, r) = 0, it suffices to show that limκ→1B(α, κ) = 0. To do this,
just use that limz→0 z Γ(z) = 1.

Finally, observe that

B(α, 0) =
2Γ(1 − α

2 ) Γ(1 + α
2 ) tan(απ

2 )
Γ(1

2 − α
2 ) Γ(1+α

2 )
.

The classical simplification rules of the Gamma function give that this limit is equal to α, which

proves the lemma. A similar argument lead to lim(α,r)→( 1
2 ,r0)

B(α, r) = 2 Γ( 5
4−

κ( 1
2 ,r0)
4 )

Γ( 1
4−

κ( 1
2 ,r0)
4 )

= 1−κ( 1
2 ,r0)

2 .

✷

Proposition 5.1 The opening function o(α, r, s) : D → R is continuous in D and analytic in
◦
D .

Moreover, taking limits from D :

(i) lim(α,r,s)→(α0,r0,0) o(α, r, s) > 0, for (α0, r0) ∈ [1/2, 1] × [0, 1[.

(ii) lim(α,r,s)→(α0,0,1) o(α, r, s) = −∞, for α0 ∈]1/2, 1].

(iii) lims→1 o(1
2 , 0, s) > 0.

(iv) lim(r,s)→(r0,1) o(1, r, s) = −∞, for r0 ∈ [0, 1[.

(v) lim(α,r)→(1,r0) o(α, r, 1) = −∞, for r0 ∈]0, 1[.

(vi) lim(α,r)→( 1
2 ,r0)

o(α, r, 1) > 0, for r0 ∈ [0, 1[.

(vii) lim(α,r,s)→(α0,1,1) o(α, r, s) = +∞, for α0 ∈]12 , 1[.

Proof : Let (α, r, s) ∈ D. Following (9) and (16), and writing κ ≡ κ(α, r), we have

o(α, r, s) = 2
∫ s

0

−i (1 − u)− 1
2+κ−ακ

B
√
u

√−s+ u (−F (
α+ κ− ακ

2
,
κ− α (1 + κ)

2
,
1
2
, u)2 +

+B2 uF (
1 + α+ κ− ακ

2
,

− ((−1 + α) (1 + κ))
2

,
3
2
, u)2)du.

From Lemma 5.1, the constant B is a positive real number, and so this integral converges if and
only if (r, s) ≡ (κ, s) �= (0, 1) and (α, s) �= (1, 1), that is to say, o(α, r, s) is well defined and
continuous at any point of D, and analytic in the interior of this domain.

It is clear that

o(α, r, s) = 2
∫ 1

0

f(α, r, s, t) dt,

where
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f(α, r, s, t) =
−i (1 − s t)− 1

2+κ−ακ

B
√−1 + t

√
t

(−F (
α+ κ− ακ

2
,
κ− α (1 + κ)

2
,
1
2
, s t)2 +

+B2 s t F (
1 + α+ κ− ακ

2
,
− ((−1 + α) (1 + κ))

2
,
3
2
, s t)2).

Since B(α, r) > 0 (see Lemma 5.1),

lim
(α,r,s)→(α0,r0,0)

o(α, r, s) = 2
∫ 1

0

i

B
√−1 + t

√
t
dt > 0,

for every (α0, r0) ∈ [1/2, 1] × [0, 1[, which proves (i).
In the following, we deal with the case s → 1.

Let α0 ∈]12 , 1], and observe that f(α, r, s, t) = (1−st)−
1
2+κ−ακ√

t(1−t)
H(α, r, s, t), where H(α, r, s, t) is

bounded on a neighbourhood of {(α0, 0, 1, t) : t ∈ [0, 1]}, α0 ∈]12 , 1].Moreover, taking into account
that B(α0, 0) = α0 and elementary simplification rules for hypergeometric functions, it is not hard
to check that H(α0, 0, 1, 1) = cos(α0π)

α0
< 0. Therefore,

lim
(α,r,s)→(α0,0,1)

o(α, r, s) = 2
∫ 1

0

1√
t(1 − t)H(α0, 0, 1, t) dt = −∞.

This proves (ii).
Now, suppose that α0 ∈]12 , 1[, and as above, note that B(α, r)H(α, r, s, t) is bounded on a

neighbourhood of {(α0, 1, 1, t) : t ∈ [0, 1]}, α0 ∈]12 , 1]. Taking into account that B(α0, 1) = 0, it is
not hard to check that

lim
(α,r,s)→(α0,1,1)

B(α, r) H(α, r, s, t) =
(1 − t)α0−1

√
t

,

and so
lim

(α,r,s)→(α0,1,1)
o(α, r, s) = +∞,

α0 ∈]12 , 1[, which proves (vii).
To prove (iii), suppose that r = 0 (i.e., κ = 0). Hence, B(α, 0) = α, and by elementary

simplification rules of hypergeometric funtions we get

f(α, 0, s, t) =
cos(2α arcsin(

√
s t))

α
√

1 − t√t√1 − s t .

Therefore, if α0 = 1/2,

lim
s→1

o(
1
2
, 0, s) =

∫ 1

0

4√
1 − t√t > 0.

Assume now that α = 1. In this case, the classical simplification rules of hypergeometric
functions give:

f(1, r, s, t) =
−i (−1 +

(
1 +B(1, r)2

)
s t
)

B(1, r)
√−1 + t

√
t
√

1 − s t ,

and so

lim
(r,s)→(r0,1)

o(1, r, s) = 2
∫ 1

0

−−1 + t+B(1, r0)2 t
B(1, r0) (1 − t) √

t
= −∞,
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for r0 ∈ [0, 1[, which corresponds to (iv).
Finally, note that the function of α and r defined by∫ 1

0

(
f(α, r, 1, t) +

B

(1 − t)1+κ(α−1)

)

is well defined and uniformly bounded on D ∩ (U × {1}), where U is a neighbourhood of (1, r0),
r0 > 0. Hence, since

lim
(α,r)→(1,r0)

f(α, r, 1, t) = −−1 + t+B(1, r0)2 t
B(1, r0) (1 − t) √

t
,

for r0 ∈]0, 1[ and t ∈]0, 1[, we get lim(r,α)→(r0,1) o(α, r, 1) = −∞, for r0 ∈]0, 1[. This proves (v).
From Lemma 5.1, B(1

2 , r) = 1−κ
2 , and so it is not hard to check that lim(α,r)→( 1

2 ,r0)
f(α, r, 1, t) =

2

(1−κ( 1
2 ,r0))

√
t(1−t)

. Thus,

lim
(α,r)→( 1

2 ,r0)
o(α, r, 1) =

∫ 1

0

4
(1 − κ(1

2 , r0))
√
t(1 − t) > 0,

for every r0 ∈ [0, 1[, which proves (vi) and concludes the proof. ✷

Proposition 5.2 The height function h(α, r, s) : D → R is continuos in D and analytic in
◦
D .

Moreover h(α, r, s) > 0, for every (α, s) lying in D, s �= 1.

(i) lim(α,r,s)→(α0,r0,0) h(α, r, s) = +∞, for (α0, r0) ∈ [1/2, 1] × [0, 1[.

(ii) lim(α,r,s)→(α0,r0,1) h(α, r, s) = 0, for (α0, r0) ∈ [1/2, 1[×]0, 1[.

(iii) lim(r,s)→(r0,1) h(1, r, s) > 0, for r0 ∈ [0, 1[.

(iv) lim(α,s)→(α0,1) h(α, 0, s) > 0, for α0 ∈ [12 , 1].

Proof : From (2) in Proposition 4.1, h(α, r, s) > 0, for every point (α, r, s) ∈ D, s �= 1. We write
κ ≡ κ(α, r).

In accordance with (17), we have

φ3 =
(1 − u)− 1

2+κ−ακ
(
F (α+κ−ακ

2 , κ−α (1+κ)
2 , 1

2 , u)
2
+B2 uF (1+α+κ−ακ

2 , −((−1+α) (1+κ))
2 , 3

2 , u)
2)

B
√
u

√−s+ u du.

Therefore, from the definition of h (see equation (12)):

h(α, r, s) = 2
∫ 1

s

φ3 = 2
∫ 1

0

j(α, r, s, t)dt,

where

j(α, r, s, t) =
(1 − s)κ−ακ (1 − t)− 1

2+κ−ακ

B
√
t
√
s+ t− s t (F (

α + κ− ακ
2

,
κ− α (1 + κ)

2
,
1
2
, s+ t− s t)

2

+

+B2 (s+ t− s t) F (
1 + α+ κ− ακ

2
,

− ((−1 + α) (1 + κ))
2

,
3
2
, s+ t− s t)

2

).

This integral converges for every (α, r, s) ∈ D. Therefore, h is continuos in this domain and analytic
in its interior.
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Moreover, it is clear that

j(α, r, 0, t) =

=
(1 − t)− 1

2+κ−ακ
(
F (α+κ−ακ

2 , κ−α (1+κ)
2 , 1

2 , t)
2
+B2 t F (1+α+κ−ακ

2 , −((−1+α) (1+κ))
2 , 3

2 , t)
2)

B t
,

and so, using thatB > 0 (see Lemma 5.1), it is not hard to deduce that lim(α,r,s)→(α0,r0,0) h(α, r, s) =
+∞, for every (α0, r0) ∈ [1/2, 1] × [0, 1[. This proves (i).

On the other hand, we have

lim
s→1

j(α, r, s, t)
(1 − s)κ−ακ

=
(1 − t)− 1

2+κ−ακ

√
t

K(α, r),

where K(α, r) does not depend on t and is positive, for every (α, r) ∈ [12 , 1[×]0, 1[. Hence, we get

lim
(α,r,s)→(α0,r0,1−)

h(α, r, s) = 0+,

for every (α0, r0) ∈ [1/2, 1[×]0, 1[, which proves (ii).

If α0 = 1, j(1, r, s, t) =
1−(−1+B2) s (−1+t)+(−1+B2) t

B
√
s+t−s t

√
t−t2

, and so

lim
(r,s)→(r0,1)

h(1, r, s) =
∫ 1

0

2B√
t− t2 > 0,

for r0 ∈ [0, 1[. This corresponds to (iii).
Analogously, r = 0 gives

j(α, 0, s, t) =
α2 +B2 +

(
α2 −B2

)
cos(2α arcsin(

√
s+ t− s t))

2α2B
√
s+ t− s t√t− t2 ,

and so, taking into account that B(α, 0) = α,

lim
(α,s)→(α0,1)

h(α, 0, s) =
∫ 1

0

2
α0

√
t− t2 > 0,

for every α0 ∈ [12 , 1]. This proves (iv) and concludes the proof. ✷

5.2 Existence of continuous families of barriers.

Throughout this section, we have fixed α and r, α �= 1
2 . For a more thorough and systematic

explanation, we label Xs : Ns → R3 as the minimal immersion arising from the values α, r and
s ∈]0, 1]. Denote

Y s : Ns → R
3

as the minimal immersion defined by:

Y s(P ) =
1

h(α, r, s)
Xs(P ),

s ∈]0, 1[. Since s < 1, then h(α, r, s) > 0 and so Y s(Ns) is well defined. In the following, and for
the sake of simplicity, we write o(s) ≡ o(α, r, s), h(s) ≡ h(α, r, s). As in (11), θ and ρ will denote
the angles of Xs(Ns) (which do not depend on s), and we write C = C1,0

θ,ρ .

We are going to prove that the domain C
1, o(s)

h(s)

θ,ρ admits a continuous family of barriers, s ∈]0, 1[,
provided that o(s) ≥ 0.
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Theorem 5.1 The following assertions hold:

(i) The family of surfaces {Y s(Ns)} converges uniformly on compact subsets of R3, as s → 0, to
F1(C) ∪ F2(C) ∪ �0(C).

(ii) Given an open subset U ⊂ R3 containing �0(C), there exists s(U) ∈]0, 1[ small enough such
that, for s ∈]0, s(U)], Y s(Ns)∩ (R3 −U) = A1(s)∪A2(s), where A1(s) and A2(s) are disjoint
graphs over the planes Pi1(C) and Pi2(C), respectively.

Proof : Let φ1, φ2, and φ3 be the meromorphic 1-forms on U − {∞} given in the equations (15),
(16) and (17), and write Φ = (φ1, φ2, φ3). During the proof, and for every s ∈]0, 1[, we label
ψsj (u) = 1

h(s)φj(u), j = 1, 2, 3, Ψs = (ψs1, ψ
s
2, ψ

s
3), and

Y s(u) = (0,
o(s)
2h(s)

, 0) + Real
(∫ u

s

Ψs(w)dw
)
, u ∈ U − {∞}.

To prove (i), and taking the symmetry into account, it suffices to check that the family of
surfaces Y s(U − {∞}) = {Y s(Ns) ∩ {x2, x3 ≥ 0}} converges, as s → 0, to (F1(C) ∪ �0(C)) ∩
{x2, x3 ≥ 0}).

The classical theory of hypergeometric functons gives

(19) F (a, b, c, z) =
Γ(c)Γ(b− a)
Γ(b)Γ(c− a) (−z)

−aF (a, 1 − c+ a, 1 − b+ a, 1/z) +

+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b) (−z)

−bF (b, 1 − c+ b, 1 − a+ b, 1/z),

z ∈ U , and so, it is not hard to check that

φj(u) =
(−u)α+β−1

√
s− u(1 − u)β (cj +Hj(u))du,

where: (a) c3 ∈ R − {0}, c1 = 1
2 (1/r − r)c3 and c2 = i

2 (1/r + r)c3; (b) for every j ∈ {1, 2, 3}, the
function Hj(z) : U − {0} → C, is continuous, does not depend on s, and is analytic in U − ∂(U);
(c) there exists ε ≡ ε(α, β) > 0 such that limu→∞ u

1
2+εHj(u) = 0, and so, limu→∞Hj(u) = 0,

j = 1, 2, 3; (d) if V ⊂ U is a bounded open subset such that 0 ∈ V , then the function uα+β− 1
2Hj(u)

is bounded in V, j = 1, 2, 3.
For every s ∈]0, 1[, we introduce the change u = h(s)

2
2α−1 v, and write

ψsj (v) =
(−v)α+β−1

(h(s)
2

1−2α − v)β
!

(v−sh(s)
2

1−2α )

(cj +H ′
j,s(v))dv,

where H ′
j,s(v) = Hj(h(s)

2
2α−1 v), j = 1, 2, 3. Obviously, the new parameter v takes values in U too.

To avoid any ambiguity, we will distinguish between the the upper half v-plane V and the upper
half u-plane U . We also define Zs(v) = Y s(h(s)

2
2α−1 v), v ∈ V − {∞}.

As lims→0 h(s) = ∞ (see Proposition 5.2) and Hj(∞) = 0, the function H ′
j,s(v) uniformly

converges on compact subsets of V − {0}, as s → 0, to 0. Then, the 1-form ψsj (v) uniformly
converges on compact subsets of V − {0}, as s → 0, to cj (−v)α− 3

2 dv, j = 1, 2, 3.

Claim 1: Let {uk} ⊂ U , {sk} ⊂]0, 1[ sequences satisfying: limk→∞{uk} = u0 ∈ U ,
limk→∞ vk = 0 and limk→∞ sk = 0, where vk = h(sk)

2
1−2α uk.

Then, the sequence {Zsk(vk)} ≡ {Y sk(uk)} is bounded in R3, and so, up to taking a
subsequence, it converges. Moreover,
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(1) If u0 �= 0, limk→∞ Y sk(uk) = (0, 0, 1
2 ).

(2) If u0 = 0, limk→∞ Y sk(uk) ∈ (0, 0) × [0, 1
2 ].

Note that Y s(1) = (0, o(s)
2h(s) ,

1
2 ), s ∈]0, 1[, and remember (see Proposition 5.1) that lims→0 o(s) ∈

]0,+∞[. Hence, lims→0 Y
s(1) = (0, 0, 1

2 ).
Observe that φj(u) = 1√

u(u−s)(1−u)β
Gj(u)du, whereGj(u) does not depend on s and is bounded

on any compact subset of U − {∞}, j = 1, 2, 3. Thus, if u0 �= 0,∞, the sequence {Xs
j (1) −

Xs
j (uk)} = {Re

(∫ 1

uk
φj

)
} is bounded, j = 1, 2, 3. Hence, limk→∞(Y sk(1) − Y sk(uk)) = 0, i.e.,

limk→∞ Y sk(uk) = (0, 0, 1
2 ).

Suppose now that u0 = ∞. Take u′ ∈ U − {0}, and use that

lim
k→∞

{ 1
(Xs

j (uk) −Xs
j (u′))

∫ uk

u′

cj(−u)α+β− 1
2√

u(sk − u)(1 − u)β du} = 1

to deduce that { u
α− 1

2
k

(Xs
j (uk)−Xs

j (u′))} coverges to a nonzero complex number, j = 1, 2, 3. Since {vk} → 0,

that is to say, {ukh(sk) 2
1−2α } → 0, we deduce that {u

α− 1
2

k

h(sk) } → 0. Therefore, {Y sk(uk) − Y sk(u′)}
converges to 0, and since Y sk(u′) → (0, 0, 1

2 ), we conclude the proof of (1).
To prove (2), assume first that {uk

sk
} is bounded. Then, write φj(u) = 1√

u(u−s)
Aj(u)du,

where Aj does not depend on s and is bounded in a neighbourhood of 0 in U , j = 1, 2, 3. Since

{Re
(∫ uk

sk
0

1√
t(t−1)

Aj(skt)
)
dt} is bounded, the same holds for {Xs(uk)}. Therefore, {Y sk(uk)}

converges to (0, 0, 0).
Assume that {uk

sk
} diverges to infinity. From (15),(16) and (17), we deduce that

Φ =
1√

u(u− s)

(
−2i

√
u(1 + uK1(u)),

i

B
(1 + uK2(u)),

1
B

(1 + uK3(u))
)
du,(20)

where Kj(u) is well defined in U − {1}, does not depend on s, is holomorphic at 0 and Kj(u)(1 −
u)β is bounded around 1, j = 1, 2, 3. Since {uk} → 0 and {o(sk)/h(sk)} → 0, {Y sk(uk)} is

bounded (resp. converges) if and only if the sequence {Re
(∫ uk

0
1

h(sk)
√
u(u−s)

(−2i
√
u, i

B ,
1
B

)
du}

)
is bounded (resp. converges). Moreover, if they converge, they do to the same limit. It is clear

that
∫ uk

0
1√

u(u−sk)
du =

∫ uk
sk

0
1√

t(t−1)
dt. Since limx→∞ 1

log x

∫ x
0

1√
t(t−1)

dt ∈ R − {0}, we deduce that

{ 1
log (

uk
sk

)

∫ uk

0
Φ} converges to a point (0, ix, x), x ∈ R, and so { 1

log
uk
sk

Xsk(uk)} converges to (0, 0, x).

On the other hand, taking into account that h(s) = 2Re
(∫ 1

0 φ3

)
, it is not hard to see from

(20) that lims→0
1

h(s)

∫ 1

s
1√

u(u−s)
∈ R − {0}, and so lims→0

log(s)
h(s) ∈ R − {0}.

Since 0 < log uk

log sk
< 1, then, up to taking a subsequence, { log uk

log sk
} converges to a real number,

and so
log (

uk
sk

)

log sk
do. Now, it is clear that Y sk(uk) is bounded, and up to taking a subsequence,

it converges to a point (0, 0, y) ∈ R3. Since {E(Y s(Ns)) ∩ {x2, x3 ≥ 0}} converges uniformly on
compact subsets, as s → 0, to C ∩ {x2, x3 ≥ 0}, we deduce that y ∈ [0, 1

2 ], which concludes (2) and
the claim.

Claim 2: If v0 ∈ V − {0,∞}, then the limit lims→0 Z
s(v0) exists.
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Indeed, take U ⊂ U an open subset such that 0, 1 ∈ U, U − U is connected and it is non
void. Consider u0 /∈ U. Let s(U) ∈]0, 1[ be a point such that [0, s(U)] ⊂ U, and observe that

{Φ(u)u−α+ 3
2

du }s∈]0,s(U)[ is uniformly bounded on U − U. Write Fs(u) = Φ(u) u−α+3
2

du .
From Claim 1, if {Zs(v0)−Y s(u0)} converges as s → 0, then {Zs(v0)} converges as s → 0.We

have

Zs(v0) − Y s(u0) = Re


∫ v0h(s)

2
2α−1

u0

1
h(s)

Φ(u)


 =

= Re


∫ v0h(s)

2
2α−1

u0

1
h(s)

uα−
3
2Fs(u)du


 = Re

(∫ v0

u0h(s)
2

1−2α

1
2
vα−

3
2F ′

s(v)dv

)
,

where F ′
s(v) = Fs(h(s)

2
2α−1 v).

To compute the last integral, we can choose a path (which depends on s) lying in V −
(h(s)

2
1−2αU). However, as there exists K > 0 such that |Fs(u)| ≤ K, for u ∈ U − U, and any

s ∈]0, s(U)[, we infer that |F ′
s(v)| ≤ K, for s ∈]0, s(U)[ and v ∈ V − (h(s)

2
1−2αU). Therefore, it is

not hard to see that {Zs(v0) − Y s(u0), : s ∈]0, s(U)[} is bounded and converges, as s → 0, to a
point of R3. So, {Zs(v0)} converges, as s → 0, to a point of R3, which proves the claim.

In the following, we label P (v0) = lims→0 Z
s(v0), for every v0 ∈ V − {0,∞}.

Claim 3: Let Ps ≡ Zs(vs), vs ∈ V − {∞}, and suppose that {Ps} converges in R3 as
s → 0. Then the set {vs} is bounded in V − {∞}.

Let v0 ∈ V − {0,∞}. From Claim 2, the family of points {Ps} converges as s → 0 if and only if
{Ps −Zs(v0)} converges as s → 0. This means that {Re

(∫ vs

v0
Ψs(v)dv

)
} converges as s → 0. Since

ψj(v) converges on compact subsets of V −{0} to cj(−v)α− 3
2 dv, j = 1, 2, 3, the claim follows easily.

Claim 4: Let Ps ≡ Zs(vs), vs ∈ V − {∞}, and suppose that {Ps} → P ∈ R3 as
s → 0. Assume that we can find a sequence {sk} → 0 such that {vsk

} → 0. Then,
P ∈ (0, 0) × [0, 1

2 ]. Furthermore, any point of (0, 0) × [0, 1
2 ] is the limit of a sequence

Zsk(vsk
), where sk → 0 and vsk

→ 0.

Label usk
= h(sk)

2
2α−1 vsk

, k ∈ N. Without loss of generality, we suppose that uk → u′ ∈ U , as
k → ∞. Claim 1 gives that {Zs(vsk

) = Y sk(usk
)} converges, as k → ∞, to a point of (0, 0)× [0, 1

2 ].
To conclude the claim, take sk → 0 and label tk the only point in [sk, 1] ⊂ U such that

Y sk(tk) = (0, o(sk)
2h(sk) , t), t ∈ [0, 1

2 ]. Defining {vsk

def= h(sk)
2

1−2α tk}, then {vsk
} → 0, as k → ∞, and

the sequence {Zsk(vsk
) = Y sk(tk) = (0, 0, t)} converges to (0, 0, t).

Claim 5: Let Ps ≡ Zs(vs), vs ∈ V − {∞} and suppose that {Ps} → P ∈ R3. Assume
that we can find a sequence sk → 0 such that vsk

→ v′ ∈ V − {0,∞}. Then, P ∈
(F1(C) ∩ {x2 ≥ 0}). Furthermore, any point of F1(C) ∩ {x2 ≥ 0} is the limit of a
sequence Zsk(vsk

), where vsk
→ v′ ∈ V − {0,∞} and sk → 0.

From Claim 2, if v0 ∈ V − {0,∞} then {Zs(v0)} converges, as s → 0, to P (v0) ∈ R3. Since
ψsj (v) converges on compact subsets of V − {0,∞} to cj

2 (−v)α− 3
2 dv, then

{P (v) : v ∈ V − {0,∞}} = (F1(C) ∩ {x2 ≥ 0}) +Q0,
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where Q0 ∈ R3.
Moreover, since {E(Y s(Ns)∩{x2, x3 ≥ 0})} converges uniformly on compact subsets, as s → 0,

to C∩{x2, x3 ≥ 0}, we conclude that F1(C)+Q0 ⊆ C. But it is clear that P (v0) ∈ �+1 (C), provided
that v0 ∈]0,+∞[⊂ V (note that Zs(v0) ∈ 1

h(s) l
+
1 ≡ 1

h(s) l
+
1 (α, r, s), s > 0, and 1

h(s) l
+
1 (α, r, s)

converges, as s → 0, to �+1 (C)). Therefore, (F1(C) ∩ {x2 ≥ 0}) +Q0 = F1(C) ∩ {x2 ≥ 0}, which
proves the claim.

Now we can conclude the proof of (i). Indeed, let Pk ∈ Y sk(Nsk
) ∩ {x2, x3 ≥ 0} = Y sk(U −

{∞}) = Zsk(V − {∞}), k ∈ N, and assume that {sk} → 0 and {Pk} converges to P ∈ R3. Write
Pk = Zsk(vk), and use Claim 3 to get that {vk} is bounded in V−{∞}. Up to taking a subsequence,
we can suppose that {vk} converges. Claims 4 and 5 give that P ∈ (F1(C) ∪ �0(C)) ∩ {x2, x3 ≥ 0}
and that any point of this set is the limit of a sequence of points {Pk} as above. By using the
symmetry of Y s(Ns), (i) holds.

Let us prove (ii). Taking into account the symmetry of Y s(Ns), it suffices to find U and s(U)
such that �0(C) ⊂ U and Y s(U − {∞}) ∩ (R3 − U) is a graph over Π1(C), s ∈]0, s(U)].

Reasoning by contradiction, suppose there exist a sequence sk → 0 such that the set Y sk(U −
{∞})∩(R3−U) is not a graph over Pi1(C). Hence, we can find a point Pk ∈ Y sk(U−{∞})∩(R3−U)
whose normal vector lies, up to translation, in Π1(C). Write Pk = Y sk(uk).

Since g(u), u ∈ U − {∞}, does not depend on s and the limit tangent plane of Y s(Ns) at
infinity is Pi1(C), then there exists a neighbourhood W of ∞ in U such that the normal vector of
no point in Y s(W − {∞}) lies, up to translation, in Π1(C), for every s ∈]0, 1[. Thus, the sequence
uk is bounded in U −{∞}.Without loss of generality, suppose that uk → u0, u0 ∈ U −{∞}. Claim
1 above gives that Pk converges to a point in (0, 0) × [0, 1

2 ], which contradicts that �0(C) ⊂ U and
{Pk} ⊂ R

3 − U.
From the symmetry of Y s(Ns) and taking into account that these surfaces are embedded, we

infer that Y s(Ns) − U consists of two disjoint graphs, s small enough. ✷

As a consequence, we have proved the following theorem:

Theorem 5.2 Let s ∈]0, 1[ such that o(s) ≥ 0. Then, the family F def= {Y s·t : Ns·t → R3 : t ∈]0, 1]}
is a continuous family of barriers for the cone C

1, o(s)
h(s)

θ,ρ .

5.3 The family of cones admiting barriers.

In the preceding section, we have obtained general existence of barriers for some truncated tetra-
hedral domains in C. However, as we have shown in Section 3, these results are specially interesting
for domains with a vanishing width of base. In this subsection we study the space of such domains
which admit barriers and continuous families of barriers.

For a more thorough and systematic explanation, we label Xs
α,r : Nα,r → R3 as the minimal

surface arising from the values α, r and s in Section 4. If h(α, r, s) > 0 (i.e., s ∈]0, 1[), we denote
Y s
α,r = 1

h(α,r,s)X
s
α,r.

We can prove the following theorem

Theorem 5.3 There is an increasing analytical diffeomorphism [0, π[→ [0, π[, θ → ρθ, such that:

(1) For every ρ ∈]ρ
θ
, π] the cone C1,0

θ,ρ admits a continuous family of barriers.

(2) If θ > 0 (and so, ρ
θ
> 0), then the cone C0,0

θ,ρ
θ
admits a barrier, and no cone C0,0

θ,ρ admits a
barrier, ρ �= ρ

θ
.

(3) limθ→0 ν(C
0,0
θ,ρ

θ
) = limθ→π ν(C

0,0
θ,ρ

θ
) = 0.
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Proof : Suppose that θ = 0, and let us prove that, for ρ ∈]0, π], the domain C1,0
0,ρ admits a a

continuous family of barriers. From (11), it is easy to see that θ(r) = 0 if and only if r = 0,
and ρ(α, 0) = (2α − 1)π. Fix α ∈]12 , 1]. From (i), (ii) in Proposition 5.1 and an intermediate
value argument we get that the function o(α, 0, ·) vanishes at a point sα ∈]0, 1[. Assume that sα
is the first zero of o(α, 0, ·) in ]0, 1[. Then, o(α, 0, s) > 0 for s ∈]0, sα[, and from Proposition 5.2,
h(α, 0, s) > 0 for s ∈]0, sα[. Hence, by Theorem 5.1, the family {Y t·sα

α,0 : t ∈]0, 1]} is a continuos
family of barriers for C1,0

0,ρ(α,0). Since {ρ(α, 0) : α ∈] 12 , 1]} =]0, π], we are done.
Hence, it is natural to define ρ0 = 0.
Let us prove that, for every θ ∈]0, π[, there exists an only ρ

θ
∈]0, π[ such that the cone C0,0

θ,ρ
θ

admits a barrier. Following equation (11), let rθ ∈]0, 1[ be the only real number such that cos(θ2 ) =
1−r2θ
1+r2θ

. In accordance with (v), (vi) in Proposition 5.1 and an intermediate value argument, the

function o(·, rθ, 1) vanishes at a point of αθ ∈]12 , 1[. Since h(αθ, rθ, 1) = 0, the immersion X1
αθ,rθ

is
a barrier for the cone C0,0

θ,ρ(αθ,rθ), where ρ(αθ, rθ) is given in (11). Taking into account that ρ(·, rθ)
is strictly increasing, C0,0

θ,ρ(α′,rθ) ≤ C0,0
θ,ρ(α′′,rθ), provided that α′′ ≤ α′.

Thus, by Lemma 3.4 we infer: (a) o(·, rθ , 1) vanishes at an only point αθ ∈]12 , 1[, and o(α, rθ, 1) >
0 (resp., < 0) if and only if α ∈]12 , αθ[ (resp., α ∈]αθ, 1[); (b) if we label ρ

θ
= ρ(αθ, rθ), then C

0,0
θ,ρ

does not admit a barrier, for every ρ �= ρ
θ
; (c) for every ρ < ρ

θ
and h > 0, C0,0

θ,ρ
θ

≤ Ch,0
θ,ρ , and so

Ch,0
θ,ρ does not admit any barrier and o(α, rθ , s) > 0, for all α < αθ and s ∈]0, 1].

Let us see that C1,0
θ,ρ admits a continuous family of barriers, for every ρ ∈]ρ

θ
, π]. For every α ∈

]αθ, 1], (i) in Proposition 5.1 gives that lims→0 o(α, rθ , s) > 0. Moreover, if α ∈]αθ, 1[, we have seen
that o(α, rθ , 1) < 0, and in case α = 1, from (iv) in Proposition 5.1, we get lims→1 o(1, rθ, s) = −∞.
Therefore, and for every α ∈]αθ, 1], there exists sθ,α ∈]0, 1[ such that o(α, rθ , sθ,α) = 0. Without
loss of generality, we suppose that sθ,α is the first zero of o(α, rθ , ·) in ]0, 1[. Thus, o(α, rθ , s) > 0
and h(α, rθ , s) > 0 for s ∈]0, sθ,α[. So, from Theorem 5.1, the family {Y t·sθ,α

α,rθ : t ∈]0, 1]} is a
continuos family of barriers for C1,0

θ,ρ(α,rθ), where ρ(α, rθ) is given like in (11). Moreover, from (1),

observe that o
C1,0

θ,ρ(α,rθ) > 0. Since {ρ(α, rθ) : α ∈]αθ, 1]} =]ρ
θ
, π], we deduce that C1,0

θ,ρ admits a
continuous family of barriers, for ρ ∈]ρ

θ
, π].

Obviously, Lemma 3.4 implies that the function θ → ρ
θ
, θ ∈ [0, π[, is increasing.

Since {(θ, ρ
θ
) : θ ∈]0, π[} is the set of zeroes of the analytic function (α, r) → o(α, r, 1), it is

easy to check that θ → ρ
θ

is analitic too.
Let us see that limθ→0 ρθ

= 0, limθ→π ρθ
= π, and limθ→π ν(Cθ,ρ

θ
) = 0.

To check the first limit, we reason by contradiction. Suppose there exists a sequence {θk} → 0
such that {ρk def= ρ

θk
} → ρ′ ∈]0, π[. Label rk

def= rθk
, αk

def= αθk
. Since {θk} → 0, {rk} → 0, and

from (11) we deduce that {αk} → α′ = 1
2 (

ρ′

π + 1) ∈]12 , 1[. However, o(αk, rk, 1) = 0, k ≥ 0, which
contradicts that lim(α,r,s)→(α′,0,1) o(α, r, s) = −∞, (see (ii) in Proposition 5.1).

Obseve that limθ→0 ρθ
= 0 implies that limθ→0 ν

(
C0,0
θ,ρ

θ

)
= 0.

To check the second limit, note that (ii) and (vii) in Proposition 5.1 imply that limr→0 o(α, r, 1) =
−∞ and limr→1 o(α, r, 1) = +∞, for α ∈] 12 , 1[. Therefore, we can find rα ∈]0, 1[ such that
o(α, rα, 1) = 0, α ∈]12 , 1[. Following (11), denote by θα ∈ [0, π] the only real number satisfying

cos( θα

2 ) = 1−r2α
1+r2α

, and observe that ρ
θα

= ρ(α, rα). But from (11) once again, limα→1 ρ(α, rα) → π,

and so we deduce that Supremum{ρ
θ
, : θ ∈ [0, π[} = π.} Taking into account that ρ

θ
is con-

tinuous and increasing, we infer that limθ→π ρθ
= π, limα→1 ρθα

→ π, and limα→1 θα → π, (i.e.,
limα→1 rα = 1).

To check the third limit, use (10) to get limα→1 α
′(α, rα) = 0, and since α′(α, rα) = ν(Cθα,ρθα

),
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then limθ→π ν(Cθ,ρ
θ
) = 0.

Now it is clear that the analytical map θ → ρ
θ
extends continuously to [0, π], taking the values

0 and π at the points 0 and π, respectively. This concludes the proof. ✷

In the following, we denote by ρ → θρ the inverse map of θ → ρ
θ
.

Theorem 5.4 Call A = {(θ, ρ) : θ ∈ [0, π[, ρ ∈]ρ
θ
, π]}, and for every (θ, ρ) ∈ A, define

o
θ,ρ

= oC
1,0
θ,ρ .

Then, the map (θ, ρ) → o
θ,ρ

is well defined, positive and continuous in A.
Moreover, if (θ, ρ), (θ′, ρ′) ∈ A, and θ ≥ θ′, ρ ≤ ρ′, then oθ,ρ ≥ oθ′,ρ′ .

Proof : If (θ, ρ) ∈ A then C1,0
θ,ρ admits a continuos family of barriers (see Theorem 5.3), and so

the number oC
1,0
θ,ρ is well defined. Moreover, as we have seen during the proof of Theorem 5.3,

oC
1,0
θ,ρ > 0.
If α ∈] 12 , 1], r ∈ [0, 1[ are the only real numbers such that θ = θ(r), ρ = ρ(θ, r) (see (11)), then

Corollary 3.2, equation (1) and Remark 3.2 imply that

oC
1,0
θ,ρ = Maximum{ o(α, r, s)

h(α, r, s)
: s ∈]0, 1[}.

Therefore, the map (θ, ρ) → o
θ,ρ

is continuous.
The monotonicity is consequence of Corollary 3.3. ✷
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[3] G. Darboux. Téorie générale des surfaces, Chelsea Publishing Co.. New York, 1972.

[4] Y. Fang, W. H. Meeks III, Some global properties of complete minimal surfaces of finite
topology in R3. Topology, 30, No. 1, (1991), 9-20.

[5] U. Dierkes et al., Minimal surfaces, Vol. I and II, Grudl. der mathem. Wiss. 295-6, Springer-
Verlag, Berlin Heidelberg, 1992.

[6] D. Hoffman, W.H. Meeks III, The strong halfspace theorem for minimal surfaces. Inventiones
math., Vol. 101 (1990), 373-377.

[7] H. Jenkins, J. Serrin. Variational problems of minimal surface type. II. Boundary value
problems for the minimal surface equation. Arch. Rat. Mech. Anal., 21, (1966), 321-342.

[8] H. Karcher, Construction of minimal surfaces. Surveys in Geometry, 1-96, University of
Tokyo (1989). See also: Lecture Notes No. 12, SFB256 (1989), Bonn .

[9] F. J. Lopez, F. Martin, Minimal surfaces in a wedge of a slab. To appear in Comm. in Annal.
and Geom..

37



[10] F. J. Lopez, F. Martin, Uniqueness of properly embedded minimal surfaces bounded by straight
lines. To appear in J. of the Australian Math. Soc., (Series A)

[11] W.H. Meeks III, H. Rosenberg, The geometry and conformal structure of properly embedded
minimal surfaces of finite topology. Inventiones Mathematicae, Vol. 114 (1993), 625-639.

38


