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Abstract

We construct complete bounded minimal surfaces in R3 with arbitrary topological
genus.

1 Introduction

The so called Calabi-Yau problem, which deals with the existence of complete non flat
minimal surfaces with bounded coordinate functions, has been the instigator of many
interesting articles on the theory of minimal surfaces in R

3 over the last few decades.
Two articles, in particular, have made very important, if not fundamental, contribu-

tions. The first one was by L. P. Jorge and F. Xavier [2], who constructed examples in
a slab. The second one was by N. Nadirashvili [5], who recently produced examples con-
tained in a ball. In both cases, the key step was the ingenious use of Runge’s classical
theorem.

In respect to complete bounded minimal surfaces, an open question still remains as
to whether information about their geometry can be obtained [8]. One approach to this
problem consists of deciding whether Nadirashvili’s surfaces with non trivial topology exist
or not. The first such surface, with the topology of a cylinder, was obtained in [4].

However, in general, constructing examples with nontrivial topology is a difficult mat-
ter because of the period conditions. This problem has been dealt with in depth over the
last few years for several families of minimal surfaces, including the parabolic case [7] and
the hyperbolic one [3].

In this paper, we have proved the following theorem:

Theorem For any genus σ ≥ 1, there exists a complete bounded minimal
surface in R

3 with genus σ and one end.

Our procedure works as follows:
Firstly, we deform the Weierstrass data of a given minimal surface of genus σ and non

empty boundary, σ ≥ 1. In order to do this, we use the Implicit Function Theorem and
∗Research partialy supported by MCYT Grant No. BFM2001-3489.
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Runge‘s theorem, in such a way that the resulting surface has no periods. The second step
consists of adapting Nadirashvili’s techniques to this more general setting of non trivial
topology. Hence, our deformation increases the intrinsic diameter, but it controls the
Euclidean diameter in R

3. In this way we construct a sequence of genus σ minimal sufaces
contained in a fixed ball, which converges to a complete genus σ minimal surface lying in
the same ball.

The paper is structured as follows. In Section 2 we introduce all the notation and
concepts that we have used throughout the paper. Section 3 sets out the principal results
in this paper: two lemmas and the main theorem. In this section, the main theorem has
been proved by using Lemma 2. The proof of this lemma is quite technical and has been
given in Section 5. Lemma 1 is a tool for getting Lemma 2 and has been proved in Section
4.

2 Background and Notation

Let N and dŝ2 be a Riemann surface and a Riemannian conformal metric on N , respec-
tively. Given a curve α in N , by length(α, dŝ) we mean the length of α with the metric
dŝ2. Given a subset W ⊂ N , we define:

• dist(dŝ,W )(p, q) = inf{length(α, dŝ) | α : [0, 1] → W, α(0) = p, α(1) = q}, for any
p, q ∈W ,

• dist(dŝ,W )(T1, T2) = inf{dist(dŝ,W )(p, q) : p ∈ T1 : q ∈ T2}, for any T1, T2 ⊂W ,

• diamdŝ(W ) = sup{dist(dŝ,W )(p, q) : p, q ∈W}.
The concepts of (multiplicative) divisor on N , integral divisor on N , and the natural

partial ordering, ≥, on divisors can be found in [1]. Let ω be a meromorphic function or
1-form on N . Let W ⊂ N and suppose that ω has a finite number of zeroes, z1, . . . , zn,
and a finite number of poles, p1, . . . , pn, in W . We denote by (ω|W )0 = z1 · · · zn, (ω|W )∞ =
p1 · · · pn, and (ω|W ) = (ω|W )0/(ω|W )∞, the zero divisor, the polar divisor, and the divisor
of ω on W , respectively. When W = N , we simply write (ω), (ω)0, and (ω)∞, respectively.

Throughout this paper, β1, . . . , β2σ+1 will denote a sequence of pairwise distinct com-
plex numbers, and M will be the algebraic hyperelliptic curve of genus σ given by:

M =

{
(z,w) ∈ C

2 : w2 =
2σ+1∏
i=1

(z − βi)

}
.

Let A(z,w) = (z,−w) be the hyperelliptic involution on M , and label ∞ = (∞,∞) and
M = M − {∞}. If h : Ω ⊂ C → C is a meromorphic function, we do not distinguish
between h and h ◦ z : z−1(Ω) ⊂M → C.

Given D ⊂ M a domain, we will say that a function, or a 1-form, is harmonic, holo-
morphic, meromophic, ... on D, if it is harmonic, holomorphic, meromorphic, ... on a
domain containing D.
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Let Φ = (Φ1,Φ2,Φ3) be the Weierstrass representation of a minimal immersion

X : D → R
3

where D ⊂ M is a domain invariant under A. If A∗Φ = −Φ, then we can write Φj =
ϕj(z)dz

w , where ϕj is a holomorphic funtion on z(D) ⊂ C, j = 1, 2, 3. We will denote

ϕ
def= (ϕ1, ϕ2, ϕ3).
With this notation, if we write the Riemannian metric induced by X as ds2X =

λ2
X‖dz

w ‖2, then

λX = 1√
2
‖ϕ‖ = 1√

2

√
|ϕ1|2 + |ϕ2|2 + |ϕ3|2. (1)

For the sake of simplicity, given W ⊂M, p, q ∈W and T ⊂W, we write dist(X,W )(p, q)
and dist(X,W )(p, T ) instead of dist(dsX ,W )(p, q) and dist(dsX ,W )(p, T ), respectively.

Let P be a simple closed polygonal curve in C. We denote Int(P ) as the bounded
connected component of C \ P. Given ξ > 0, small enough, we define P ξ as the parallel
polygonal curve in Int(P ), satisfying that the distance between parallel sides is equal to
ξ. Whenever we write P ξ in the paper we are assuming that ξ is small enough to define
the polygon properly. If D = z−1(Int(P )) ⊂M , then we write Dξ = z−1(Int(P ξ)).

3 The main theorem

In order to get the main theorem, we need the following two lemmas. These lemmas has
been proved in Sections 1 and 2.

Lemma 1 Consider Ω ⊂ C a simply connected domain with {β1, . . . , β2σ+1} ⊂ Ω, D =
z−1(Ω) and F : D → R

3 a minimal immersion whose Weierstrass representation Φ satis-
fies A∗(Φ) = −Φ, i.e., Φ3 = ϕ3(z)dz

w and g = G(z). Then for any K1, K2 disjoint compact

1-connected sets of C with β1, . . . , β2σ+1 ∈
◦
K2, and any α > 0, there exists h : Ω → C, a

holomorphic function without zeroes, such that:

1. |h− α| < 1/α in K1;

2. |h− 1| < 1/α in K2;

3. The minimal immersion F̃ : D → R
3 with Weierstrass representation Φ̃ given by

g̃ = g/h and Φ̃3 = Φ3 is well defined.

Lemma 2 Let P be a polygon on C satisfying {β1, . . . , β2σ+1} ⊂ Int(P ) and let r > 0.
Consider D = z−1(Int(P )) and X : D → R

3 a minimal immersion verifying:

1. X = Re
(∫

p0

Φ
)

, where p0 = (β1, 0) and A∗Φ = −Φ;
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2. ‖X‖ < r in D.

Then, for any ε, s > 0 such that {β1, . . . , β2σ+1} ⊂ Int(P ε), there exist a polygon P̃ and a
conformal minimal immersion Y : D̃ → R

3, D̃ = z−1(Int(P̃ )) such that:

1. Int(P ε) ⊂ Int P̃ ⊂ Int P̃ ⊂ Int(P ).

2. Y = Re
(∫

p0

Φ̃
)
, where Φ̃ satisfies A∗(Φ̃) = −Φ̃,

3. dist
(Y,D)

(∂(D̃), ∂(Dε)) > s,

4. Y (D̃) ⊂ BR, R =
√
r2 + (2s)2 + ε,

5. ‖Y −X‖ < ε in Dε.

At this point, we state and prove our main result.

Theorem 1 There exist a simply connected domain Σ ⊂ C containing {β1, . . . , β2σ+1}
and a complete bounded minimal immersion X : S = z−1(Σ) → R

3.

Proof . Let r1 > 1 and ρ1 > 0 to be specified later, and define rn =
√
r2n−1 + (2/n)2+1/n2,

and ρn = ρ1 +
∑n

i=2 1/i, n ≥ 2. Our strategy consists of using Lemma 2 to define a
sequence:

χn = (Xn : Dn → R
3, Pn, εn, ξn),

where Xn is a conformal minimal immersion, Dn = z−1(Int(Pn)), Pn is a polygon enclosing
{β1, . . . , β2σ+1}, {εn}, {ξn} are decreasing sequences of non vanishing terms satisfying
εn, ξn < 1/n2, and:

(An) ρn < dist
(Xn,Dξn

n )
(p0, ∂(Dξn

n )),

(Bn) Xn(Dn) ⊂ Brn ,

(Cn) Xn(p) = Re
(∫ p

p0

Φn

)
, where A∗(Φn) = −Φn,

(Dn) ‖Xn −Xn−1‖ < εn in Dξn−1

n−1 ,

(En) λXn ≥ αnλXn−1 in D
ξn−1

n−1 , where {αi}i∈N is a sequence of real numbers such that
0 < αi < 1 and {∏n

i=1 αi}n converges to 1/2,

(Fn) Int(P ξn−1

n−1 ) ⊂ Int(P ξn
n ) ⊂ Int(Pn) ⊂ Int(Pn−1).
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The choice of the first element of the sequence is not difficult. For instance, and just for
completeness, we suggest the following. Take M =

{
(z,w) ∈ C

2
/ w2 = (z − 2)2σ+1 + 1

}
,

g1 = (z − 2)2σ+1, Φ1
3 = (z − 2)4σ+1 dz

w . Let P1 be a polygon enclosing the zeroes
{β1, . . . , β2σ+1} of (z − 2)2σ+1 + 1, but leaving 2 in the exterior domain. Note that
Φ1 is exact. So, if D1

def= z−1(Int(P1)) then X1(p) = Re
(∫ p

p0
Φ1
)
, p ∈ D1, is well defined.

Finally, we choose ρ1 < dist(X1,D1)
(p0, ∂(D1)) and r1 > 1 such that X1(D1) ⊂ Br1 . We

also choose ξ1 < 1 small enough satisfying (A1). The choice of ε1 < 1 is irrelevant.
Suppose that we have χ1, . . . , χn. Now, we construct the (n+ 1)-th term.
Take a sequence {ε̂m} ↘ 0, with ε̂m < 1

(n+1)2
, ∀m. For each m, we consider Ym :

D̃m → R
3 and P̃m given by Lemma 2, for the data:

X = Xn, P = Pn, r = rn, s = 1/(n + 1), ε = ε̂m.

If m is large enough, Assertions 1 and 5 in Lemma 2 tell us that Dξn
n ⊂ D̃m and the se-

quence {Ym} converges to Xn uniformly in Dξn
n . In particular, {λYm} converges uniformly

to λXn in Dξn
n . Therefore there is a m0 ∈ N such that:

Dξn
n ⊂ D

ε̂m0
n ⊂ D̃m0 , (2)

ρn < dist
(Ym0 ,Dξn

n )
(p0, ∂(Dξn

n )), (3)

λYm0
≥ αn+1λXn in Dξn

n . (4)

We define Xn+1 = Ym0 , Pn+1 = P̃m0 , and εn+1 = ε̂m0 . From (2), (3) and statement 3
in Lemma 2, it is not hard to see that ρn+1 < dist(Xn+1,Dn+1)

(p0, ∂(Dn+1)). Finally, take
ξn+1 small enough such that (An+1) and (Fn+1) hold. The remaining properties directly
follow from (2), (4) and the aforementioned lemma. This concludes the construction of
the sequence {χn}n∈N.

Now, we define

Σ =
∞⋃

n=1

Int(P ξn
n ).

Σ is a simply connected domain in C containing {β1, . . . , β2σ+1}. Label S = z−1(Σ).
Properties (Dn) and the fact that εn < 1/n2 give us that the sequence of minimal

immersion {Xn} is a Cauchy sequence, uniformly on compact sets of S, and so {Xn}
converges.

Let X : S → R
3 be the limit of {Xn}. X has the following properties:

• X is an immersion. Indeed, for any p ∈ S there exists n ∈ N such that p ∈ Dξn
n .

From Properties (Ei), i = k, . . . , n+ 1 we get:

λXk
(p) ≥ αkλXk−1

(p) ≥ . . . ≥ αk . . . αn+1λXn(p) ≥ αk . . . α1λXn(p), ∀k > n.
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Taking limit as k → ∞, we deduce:

λX(p) ≥ 1
2
λXn(p) > 0, (5)

and so X is an immersion.

• X is minimal and conformal.

• X(S) is bounded in R
3. Let p ∈ S and n ∈ N such that p ∈ Dξn

n , then

‖X(p)‖ ≤ ‖X(p) −Xn(p)‖ + ‖Xn(p)‖ ≤ 1
2

+ rn,

for an n large enough. From the definition, the sequence {rn} is bounded in R.

• The surface S is complete with the metric induced byX. Indeed, if n is large enough,
and taking (5) and (An) into account, one has:

dist
(X,Dξn

n )
(p0, ∂D

ξn
n ) >

1
2

dist
(Xn,Dξn

n )
(p0, ∂D

ξn
n ) >

1
2
ρn.

The completeness is due to the fact that {ρn}n∈N diverges.

This concludes the proof. Q.E.D.

4 Proof of Lemma 1

Lemma 1 tells us that the set of funtions given by Runge’s theorem on M is large enough
to provide us with a solution to our period problem.

The proof of this lemma requires of several claims about meromorphic one forms on
the surface M .

Along this section, B = {γ1, γ2, . . . , γ2σ} will represent a basis of the homology of M
contained in z−1(K2). In Figure 1 you can see the z-projection of γi, that we have called
δi, i = 1, . . . , 2σ. Note that B is also an homology basis of M .

Let us define H∞ as the complex vector space of the meromorphic 1-forms τ on M
with poles only at ∞, and satisfying τ = −A∗τ . Notice that a non exact element of H∞
has the form P (z)dz

w , where P (z) is a non null polynomial.

Claim 1 Consider (a1, . . . , a2σ) ∈ C
2σ − {(0, . . . , 0)} and c =

∑2σ
j=1 ajγj . Then there

exists τ ∈ H∞ verifying
∫
c τ �= 0.

Proof . As a consequence of Riemann-Roch theorem, the first holomorphic De Rham co-
homology group, H1

hol(M), is generated by

V =
{[
zj−1dz

w

]
, j = 1, . . . , 2σ

}
.
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Figure 1: Curves δ1, δ2, . . . , δ2σ .

See [1] for the details. Therefore, the map I : H1
hol(M) −→ C

2σ, given by I([ψ]) =(∫
γj
ψ
)

j=1,... ,2σ
is a linear isomorphism. Thus, there is [ψ] ∈ H1

hol(M) such that I([ψ]) �∈
{(z1, . . . z2σ) :

∑2σ
j=1 ajzj = 0}. As V is a basis of H1

hol(M), there is τ ∈ H∞ ∩ [ψ], and
so,

∫
c τ �= 0. This proves the claim.

Q.E.D.

Furthermore, we are interested in controling the zeroes of the one-form τ given in the
above claim. This is possible thanks to the next result.

Claim 2 Let τ be a meromorphic 1-form in H∞ and p ∈M . Then there is a meromorphic
function H : M → C satisfying:

(i) H ◦ A = −H;

(ii) (H)∞ = ∞k, k ∈ N;

(iii) (τ + dH)0 ≥ (τ)0 · p ·A(p).

Proof . We know that τ = P (z)dz
w , where P (z) is a polynomial. Write (τ)0 = pn(p) ·

A(p)n(p) ·D, where D is an integral divisor not containing either p or A(p). Define

J =


P (z)2

(z−z(p))n(p)−1w, p �= A(p)

P (z)2

(z−z(p))n(p)w, p = A(p).
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Notice that J satisfies (i) and (ii). Moreover (J)0 ≥ pn(p)+1 ·A(p)n(p)+1 ·D2. As the order
of p (and A(p)) as zero of d(J) and τ is the same, then there exists λ ∈ C such that
(τ + λdJ)0 ≥ pn(p)+1 ·A(p)n(p)+1 ·D. This concludes the claim.

Q.E.D.

Claim 3 Let H
(
Ω
)

be the real vector space of the holomorphic functions on Ω. Then the
linear map F : H

(
Ω
) → R

4σ, given by:

F (t) =

Re

[∫
γj

t Φ3

(
1
g

+ g

)]
j=1,... ,2σ

, Im

[∫
γj

t Φ3

(
1
g
− g

)]
j=1,... ,2σ


is surjective.

Proof . We proceed by contradiction. Assume F is not onto. Then, there is (µ1, . . . , µ4σ) ∈
R

4σ − {(0, . . . , 0)}, such that F (H
(
Ω
)
) ⊆ {(x1, . . . , x4σ) /

∑4σ
j=1 µjxj = 0}. This is

equivalent to say that

2σ∑
j=1

[
uj

∫
γj

t

g
Φ3 + uj

∫
γj

tgΦ3

]
= 0 ∀t ∈ H

(
Ω
)
, (6)

where uj = µj − iµ2σ+j , j = 1, . . . , 2σ.
Claims 1 and 2 guarantee the existence of a differential τ ∈ H∞ satisfying

(i) (τ)0 ≥
(
(1

gΦ3)|Ω
)

0

2 (
(g dg)|Ω

)
0
,

(ii)
∑2σ

j=1 uj

∫
γj
τ �= 0.

If we define f def= τ
2 g dg , then t = g d(f)

Φ3
belongs to H

(
Ω
)
. In this case, and integrating by

parts, (6) becomes
2σ∑
j=1

uj

∫
γj

tgΦ3 = −
2σ∑

j=1

uj

∫
γj

τ = 0,

which is absurd. This contradiction proves the claim. Q.E.D.

Using the above claim we have the existence of {t1, . . . , t4σ} ⊂ H
(
Ω
)

such that
det(F (t1), . . . , F (t4σ)) �= 0. Up to changing ti ↔ ti/x, x > 0 large enough, we can
assume that ∣∣∣∣∣exp

(
4σ∑
i=1

xiti(z)

)
− 1

∣∣∣∣∣ < 1/(2α), (7)

∀(x1, . . . , x4σ) ∈ R
4σ, |xi| < 1, i = 1, . . . , 4σ, ∀z ∈ Ω.

Given n ∈ N, we apply Runge’s theorem and obtain a holomorphic function tn0 : Ω → C

verifying
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• |tn0 − n| < 1/n in K1,

• |tn0 | < 1/n in K2.

For Θ = (λ0, . . . , λ4σ) ∈ R
4σ+1, we define

hΘ,n(z) def= exp

λ0 t
n
0 (z) +

4σ∑
j=1

λj tj(z)

 , ∀z ∈ Ω.

Label gΘ,n = g/hΘ,n and ΦΘ,n
3 = Φ3. As

{
tn0 |K2

}
n∈N

is uniformly bounded, then, up to

a subsequence, we have
{
tn0 |K2

}
→ t∞0 ≡ 0, uniformly on K2. We also define on K2 the

following Weierstrass data gΘ,∞ = g/hΘ,∞, ΦΘ,∞
3 = Φ3, where

hΘ,∞(z) def= exp

 4σ∑
j=1

λj tj(z)

 , ∀z ∈ K2.

The period problems of all these Weierstrass representations are not solved, except for the
third coordinates.

Therefore, we have to deal with the periods of ΦΘ,n
j , j = 1, 2. To do this, we define

the map Pn : R
4σ+1 → R

4σ, n ∈ N ∪ {∞};

Pn(Θ) =

Re

[∫
γj

ΦΘ,n
1

]
j=1,... ,2σ

,Re

[∫
γj

ΦΘ,n
2

]
j=1,... ,2σ

 .

Since the immersion X is well defined, then one has Pn(0, (4σ + 1). . . , 0) = 0,, ∀n ∈ N ∪ {∞}.
Moreover, it is not hard to check that

Jacλ1,... ,λ4σ(Pn)(0, (4σ + 1). . . , 0) = det(F (t1), . . . , F (t2σ)) �= 0, ∀n ∈ N ∪ {∞}.
So, we can find ε > 0 and 1 > r > 0 such that

• (Jacλ1,... ,λ4σ(P∞))|[−ε,ε ]×B(0,r) �= 0;

• the map P∞(0, ·)|B(0,r) is injective,

where B(0, r) = {Λ ∈ R
4σ / ‖Λ‖ ≤ r}.

As {tn0}n∈N uniformly converges to t∞0 ≡ 0 on K2 and δi = z(γi) is contained in
K2, i = 1, . . . , 2σ, then it is not hard to see that {Jacλ1,... ,λ4σ(Pn)}n∈N uniformly con-
verges to Jacλ1,... ,λ4σ(P∞) on [−ε, ε ] × B(0, r). Therefore, there exists n0 ∈ N such that
Jacλ1,... ,λ4σ(Pn)(λ0,Λ) �= 0, ∀(λ0,Λ) ∈ [−ε, ε ] ×B(0, r), n ≥ n0.

At this point we can apply the Implicit Function Theorem to the map Pn at (0, (4σ + 1). . .
, 0) ∈ [−ε, ε ] × B(0, r), in order to get a smooth function Ln : In → R

4σ, satisfying
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Pn(λ0, Ln(λ0)) = 0, ∀λ0 ∈ In, where In is an open interval containing 0. We can also
assume that In is maximal, in the sense that Ln can not be regularly extended beyond In.

Label εn as the supremum of the connected component of L−1
n (B(0, r)) ∩ [0, ε] that

constains λ0 = 0. Our next step consists of seeing that εn ∈ In. Take a sequence {λk
0}k∈N ↗

εn. As {Ln(λk
0)} ⊂ B(0, r), then we can assume, up to a subsequence, that {Ln(λk

0)}k∈N
converges to an element Λn ∈ B(0, r). Taking into account that Jacλ1,... ,λ4σ(Pn)(εn,Λn) �=
0, the local unicity of the curve (λ0, Ln(λ0)) around the point (εn,Λn), and that In is
maximal, we deduce that εn ∈ In. Therefore, either εn = ε, or Ln(εn) = Λn ∈ ∂(B(0, r)).

We are going to see that ε0
def= lim inf{εn} > 0. Otherwise, there is a subsequence

{εn} → 0. Without loss of generality, εn < ε, ∀n ∈ N, and so Λn ∈ ∂(B(0, r)), ∀n ∈ N.
Up to a subsequence, {Λn} → Λ∞ ∈ ∂(B(0, r)). The fact P∞(0, 0) = P∞(0,Λ∞) = 0
contradicts the injectivity of P∞(0, ·) in B(0, r).

We have proved the following assertion:

Claim 4 There exist ε0 > 0 and n0 ∈ N such that the function Ln : [0, ε0] → B(0, r) is
well defined, ∀n ≥ n0.

Label (λn
1 , . . . , λ

n
4σ) = Ln(ε0). From (7) we have | exp[

∑4σ
j=1 λ

n
j tj] − 1| < 1/(2α) on Ω.

Hence, if n ≥ n0 is large enough, the function:

h(z) def= exp

ε0 tn0 (z) +
4σ∑
j=1

λn
j tj(z)


satisfies Statements 1 and 2 in Lemma 1. As the period function Pn vanishes at Θn =
(ε0, λn

1 , . . . , λ
n
4σ), then the minimal immersion F̃ associated to the Weierstrass data gΘn,n,

ΦΘn,n
3 = Φ3 is well defined. This proves Statement 3 in the lemma.

5 Proof of Lemma 2

Consider P , the polygon given in the statement of Lemma 2. In a first step, we are going
to follow [4] to describe a labyrinth on Int(P ) depending on P and a positive integer N .
Later, we use Lemma 1 following Nadirashvili’s ideas [5].

Let � be the number of sides of P . Throughout this section, N will be a positive
multiple of �.

Remark 1 Along the proof of the lemma, a set of real positive constants {ci, i = 1, . . . , 12}
depending on X,P , r, ε, and s will appear. It is important to note that the choice of these
constants does not depend on the integer N .

Let ζ0 > 0 small enough so that P ζ0 is well defined and Int(P ε) ⊂ Int(P ζ0). From now
on, we will only consider N ∈ N such that 2/N < ζ0. Let c1 be a lower bound for the
length of the sides of polygon P ζ for all ζ ≤ ζ0. Let v1, . . . , v2N be a set of points in the
polygon P (containing the vertices of P ) that divide each side of P into 2N

	 equal parts.
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We can transfer this partition to the polygon P 2/N : v′1, . . . , v
′
2N (see Figure 2). We define

the following sets:

• Li = the segment that joins vi and v′i, i = 1, . . . 2N ;

• Pi = P i/N3
, i = 0, . . . 2N2;

• A =
⋃N2−1

i=0 Int(P2i) \ Int(P2i+1) and Ã =
⋃N2

i=1 Int(P2i−1) \ Int(P2i);

• R =
⋃2N2

i=0 Pi;

• B =
⋃N

i=1 L2i and B̃ =
⋃N−1

i=0 L2i+1;

• L = B ∩A, L̃ = B̃ ∩ Ã, and H = R∪ L ∪ L̃;

• ΩN = {z ∈ Int(P0) \ Int(P2N2) : distds0,C(z,H) ≥ 1
4N3 }, where ds0 is the Euclidean

metric on C.

We define ωi as the union of the segment Li and those connected components of ΩN that
have nonempty intersection with Li for i = 1, . . . , 2N . Finally, we label �i = {z ∈ C :
distds0,C(z, ωi) < δ(N)}, where i = 1, . . . , 2N , and δ(N) > 0 is chosen in such a way that
the sets �i (i = 1, . . . , N) are pairwise disjoint (see Figure 3). We denote �1

i and �2
i as

the two connected component of z−1(�i).
The aim of all this construction is to guarantee the following claims for an N large

enough.

Claim A. There is a constant c2 such that diamds(�
j
i ) ≤ c2/N , where ds2 is the Rie-

mannian metric ‖dz/w‖2 on M .

To see this, observe that diamds0(�i) ≤ const
N . As we can find a positive constant c3

such that

1
c3

∥∥∥∥dzw
∥∥∥∥ ≤ ‖dz‖ ≤ c3

∥∥∥∥dzw
∥∥∥∥ in D \Dε (8)

and we have z−1(�i) ⊂ D \Dε for all i = 1, . . . , 2N , the claim holds.

Claim B. If λ2(z)ds2 is a conformal metric in D and Υ ∈ R
+, verifying

λ(z) ≥
{

Υ in IntP,
Υ N4 in ΩN ,

and if α is a curve in D connecting ∂(Dε) and ∂(D), then the length of α with this
metric is greater than c4 ΥN , where c4 is a positive constant not depending on Υ.

In order to prove Claim B, if we denote (z ◦ α)i as the piece of z ◦ α connecting
P2i with P2i+2, for i = 0, . . . , N2 − 1, then either the Euclidean length of (z ◦ α)i is
greater than c1	

2N or the Euclidean length of (z ◦ α)i ∩ΩN is greater than 1
2N3 . These

facts and inequalities (8) give us the existence of constant c4.
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Figure 2: The polygons P and P 2/N .

Figure 3: Distribution of the sets �j
i
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Now, our purpose is to construct (for N large enough) a sequence of conformal minimal
immersions Fi, i = 0, 1, . . . , 2N, in D, F0 = X, such that:

(P1i) Fi(p) = Re
(∫ p

p0
Φi
)
, where A∗(Φi) = −Φi, i.e., Φi = (ϕi

1(z), ϕ
i
2(z), ϕ

i
3(z))

dz
w ;

(P2i) ‖ϕi(z) − ϕi−1(z)‖ ≤ 1/N2 for all z ∈ Int(P ) \�i;

(P3i) ‖ϕi(z)‖ ≥ N7/2 for all z ∈ ωi;

(P4i) ‖ϕi(z)‖ ≥ 1/
√
N for all z ∈ �i;

(P5i) dist(ds1,S2)(Gi(z),Gi−1(z)) < 1
N
√

N
for all z ∈ Int(P ) \ �i, where ds1 is the usual

Riemannian metric in S
2 and Gi represents the Gauss map of the immersion Fi;

(P6i) there exists a orthogonal frame Si = {e1, e2, e3} in R
3 and a real constant c5 > 0

such that:

(P6.1i) if p ∈ z−1(�i) and ‖Fi−1(p)‖ ≥ 1/
√
N then

‖((Fi−1(p))1, (Fi−1(p))2)‖ < c5√
N

‖Fi−1(p)‖,

(P6.2i) (Fi(p))3 = (Fi−1(p))3 for all p ∈ D,

where (·)k is the kth coordinate function with respect to {e1, e2, e3}.
Suppose that we have F0, . . . , Fj−1 verifying the claims (P1i), . . . , (P6i), i = 1, . . . , j−1.
Then, for an N large enough, there are positive constants c6, . . . , c9 such that the following
statments hold.

(L1) ‖ϕj−1‖ ≤ c6 in Int(P ) \⋃j−1
k=1�k.

This follows easily from (P2l) for l = 1, . . . , j − 1.

(L2) ‖ϕj−1‖ ≥ c7 in Int(P ) \⋃j−1
k=1�k.

To obtain this property, it suffices to apply (P2l) for l = 1, . . . , j − 1 once again.

(L3) The diameter in R
3 of Fj−1(�l

j) is less than c8/N , l = 1, 2.
This is a consequence of (L1), the bound of diamds(�l

j) in Claim A, and equality
(1).

(L4) The diameter in S
2 of Gj−1(z−1(�j)) is less than c9/

√
N .

Indeed, since diamds0(�j) ≤ const
N , we have a bound of diameter of G0(z−1(�j)).

From successive applications of (P5l) we have that (L4) holds.

We shall now construct Fj . We look for a set of orthogonal coordinates Sj = {e1, e2, e3}
in R

3 and a constant c10 > 0 such that:
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(D1) if p ∈ z−1(�j) and ‖Fj−1(p)‖ ≥ 1√
N

, then min {∠(e3, Fj−1(p)), ∠(−e3, Fj−1(p))} ≤
c10√

N
;

(D2) ∠(±e3,Gj−1(z)) ≥ ν/
√
N for all z ∈ �j ,

where ∠(a, b) ∈ [0, π[ is the angle formed by a and b in R
3 and ν is a constant satisfying

ν > 1/c7. Given q ∈ S
2, we denote

Con(q, r) = {x ∈ S
2 : ∠(x, q) ≤ r}.

Let g0 ∈ Gj−1(�j). Taking (L4) into account, the condition (D2) holds if e3 is chosen in
S

2 \ C, where

C = Con
(
g0,

c9 + ν√
N

)
∪ Con

(
−g0, c9 + ν√

N

)
.

The next step is to find e3 ∈ S
2 \ C satisfying (D1) for a suitable c10 > 0.

To do this, we define

F =
{
p/‖p‖ : p ∈ Fj−1(�1

j ) and ‖p‖ ≥ 1√
N

}
.

Let q a point in F . Taking into account (L3), we have that F ⊂ Con
(
q, 2c8√

N

)
. Choose

c10 such that 2(c9 + ν + 1 + c8) < c10, and consider e3 ∈ (S2 \ C) ∩ Con(q, c9+ν+1√
N

). To

check property (D1), we take p ∈ �1
j verifying ‖Fj−1(p)‖ ≥ 1/

√
N , then a straightforward

computation leads to

∠(e3, p) ≤ ∠(e3, q) + ∠(q, p) ≤ 2(c9 + ν + 1)√
N

+
2c8√
N

<
c10√
N
.

Thank to Fj−1 ◦ A = −Fj−1, we have ∠(−e3, p) < c10√
N

for all p ∈ �2
j , (�2

j = A(�1
j )).

Finally, we take e1, e2 such that Sj = {e1, e2, e3} is a set of orthogonal coordinates in
R

3.
Let (Φj−1

3 , gj−1) be the Weierstrass data of the immersion Fj−1 in the coordinate
system Sj. Let hα be the function given by Lemma 1, for K1 = ωj, K2 = Int(P ) \�j and
α large enough in terms of N . We define Φj

3 = Φj−1
3 and gj = gj−1/hα. Lemma 1 also tell

us that the Weierstrass data Φj has no real periods. Therefore, the minimal immersion
Fj is well-defined and its expression in the set of coordinates Sj is

Fj(p) = Re
(∫ p

p0

ϕj(z)
dz

w

)
.

We shall now see that Fj verifies the properties (P1j),. . . ,(P6j). (Note that claims
(P1j),. . . ,(P6j) do not depend on changes of coordinates in R

3). Claim (P1j) easily holds.
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Note that hα → 1 (resp. hα → ∞) uniformly on K2 (resp. on K1), as α → ∞. Then
(P2j), (P3j), and (P5j) easily hold for α large enough.

To verify (P4j), one uses (D2) and obtains:

sin(ν/
√
N)

1 + cos(ν/
√
N)

≤ |gj−1| ≤ sin(ν/
√
N)

1 − cos(ν/
√
N)

in �j ,

and so, taking (L2) into account one has:

‖ϕj‖ ≥ |ϕj
3| = |ϕj−1

3 | ≥
√

2‖ϕj−1‖ |gj−1|
1 + |gj−1|2 ≥ c7 sin

(
ν√
N

)
≥ 1√

N
in �j

for N large enough, which proves (P4j).
Using (D1), we get (P6.1j) for c5 = c10. To obtain (P6.2j), use that Φj−1

3 = Φj
3 in the

frame Sj.
Hence, we have constructed the immersions F0, F1, . . . , F2N verifying claims (P1j),. . . ,(P6j)

for j = 1, . . . , 2N .
Lemma 2 is a consequence of the following proposition.

Proposition 1 If N is large enough, then F2N verifies that:

(i) 2 s < dist(F2N ,D)(∂(D), ∂(Dε));

(ii) there is a constant c11 > 0 such that ‖Fj(p) − Fj−1(p)‖ ≤ c11
N2 in D \ z−1(�j);

(iii) ‖F2N −X‖ ≤ 2c11
N in D \⋃2N

j=1

(
z−1(�j)

)
;

(iv) there is a polygon P̃ satisfying:

(iv).1 Int(P ε) ⊂ Int(P̃ ) ⊂ Int(P̃ ) ⊂ Int(P );

(iv).2 s < dist
(F2N ,D)

(p, ∂(Dε)) < 2 s, ∀p ∈ ∂(D̃), where D̃ = z−1
(
Int(P̃ )

)
;

(iv).3 F2N (D̃) ⊂ BR, where R =
√
r2 + (2s)2 + ε.

Proof . If λ2
F2N

(z)‖dz
w ‖2 is the conformal metric induced on D by the immersion F2N , then

Property (L2) implies

λF2N
(z) =

‖ϕ2N (z)‖√
2

≥ c7√
2
>

1
2
√
N

in Int(P ) \
2N⋃
k=1

�k, (9)

for N large enough. Taking into account (P4j) and (P2i) for i = j + 1, . . . , 2N , we have

λF2N
(z) ≥ ‖ϕj(z)‖ − ‖ϕ2N (z) − ϕj(z)‖√

2
≥ 1√

2

(
1√
N

− 2
N

)
≥ 1

2
√
N

in each �j .

(10)
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From (P3j) and (P2i) for i = j + 1, . . . , 2N , we obtain

λF2N
(z) ≥ ‖ϕj(z)‖ − ‖ϕ2N (z) − ϕj(z)‖√

2
≥ 1√

2

(
N7/2 − 2

N

)
≥ 1

2
√
N
N4 in each ωj.

(11)

Using inequalities (9), (10), and (11) joint with Claim B, for Υ = 1/(2
√
N), we conclude

the proof of the first assertion in this proposition.
Now we shall prove (ii). Note that the set �j depends on N , and label Ξj

N = D −
z−1(�j). It is not hard to see that there exists c11 depending only on D such that
sup{dist

(ds,Ξj
N )

(p0, p) : N ∈ N, j ∈ {1, . . . , 2N}, p ∈ Ξj
N} ≤ c11.

Therefore, for all p ∈ Ξj
N , there exists a curve αp in Ξj

N , from p0 to p satisfying
length(αp, ds) < c11. Using the former, we obtain

‖Fj(p) − Fj−1(p)‖ =

∥∥∥∥∥Re
∫

αp

(ϕj(z) − ϕj−1(z))
dz

w

∥∥∥∥∥ ≤ c11
1
N2

,

which proves assertion (ii). From (ii), it is not hard to deduce (iii).
We will construct the polygon P̃ . Let S = {p ∈ D \Dε : s < dist(F2N ,D)(p, ∂(Dε)) <

2 s}. Note that S is a nonempty open subset of D \Dε. As a consequence of (i), we deduce
that z(S) contains a Jordan curve, Γ verifying Int(P ε) ⊂ Int(Γ). Then we can aproximate
Γ by a polygon P̃ ⊂ z(S) satisfying statments (iv).1 and (iv).2.

Finally, we prove assertion (iv).3. Thanks to the Maximum Principle, we only need to
check that F2N (∂(D̃)) ⊂ BR. Take p ∈ ∂(D̃). If p ∈ D \⋃2N

j=1 z
−1(�j), we have

‖F2N (p)‖ ≤ ‖F2N (p) −X(p)‖ + ‖X(p)‖ ≤ 2c11
N

+ r ≤ R.

Suppose now p ∈ z−1(�j), j ∈ {1, . . . , 2N}. From (iv).2, it is possible to find a curve
γ : [0, 1] → D such that γ(0) ∈ ∂(Dε), γ(1) = p, and length(γ, dsF2N

) ≤ 2 s. We define:

t = sup{t ∈ [0, 1] : γ(t) ∈ ∂(z−1(�j))}, p = γ(t).

Let γ1 be the piece of γ from p to p.
To continue, we need to demonstrate:

‖Fj(p) − Fj(p)‖ ≤ 4
c11
N

+ 2s. (12)

Indeed,

‖Fj(p) − Fj(p)‖ ≤ ‖Fj(p) − F2N (p)‖ + ‖F2N (p) − F2N (p)‖ + ‖F2N (p) − Fj(p)‖ ≤
using (ii), we have

≤ 2
2 c11
N

+ ‖F2N (p) − F2N (p)‖ ≤ 4
c11
N

+ length(γ1, dsF2N
) ≤ 4

c11
N

+ 2 s.

At this point, we distinguish two cases.
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• Case 1: ‖Fj−1(p)‖ < 1/
√
N . Then

‖F2N (p)‖ ≤ ‖F2N (p)− Fj(p)‖+ ‖Fj(p) + Fj(p)‖+ ‖Fj(p)− Fj−1(p)‖+ ‖Fj−1(p)‖ ≤

≤ 2c11
N

+ 4
c11
N

+ 2s+
c11
N2

+
1√
N

≤ R

for an N large enough.

• Case 2: ‖Fj−1(p)‖ > 1/
√
N . In this case, from (P6.2j) we have, in the frame Sj,

|(Fj(p))3| = |(Fj−1(p))3| ≤ |(Fj−1(p))3 − (X(p))3| + |(X(p))3| ≤ 2c11
N

+ r.

Using inequality (12), the fact that p ∈ D \ z−1(�j), assertion (ii), and property
(P6.1j), one has

‖((Fj(p))1, (Fj(p))2)‖ ≤ ‖((Fj(p))1, (Fj(p))2) − ((Fj(p))1, (Fj(p))2)‖+

+‖((Fj(p))1, (Fj(p))2) − ((Fj−1(p))1, (Fj−1(p))2)‖ + ‖((Fj−1(p))1, (Fj−1(p))2)‖ ≤

≤ 4
c11
N

+2s+
c11
N2

+
c5√
N

‖Fj−1(p)‖ ≤ 4
c11
N

+2s+
c11
N2

+
c5√
N

(
2c11
N

+ r

)
≤ 2s+

c12√
N
,

where c12 = 5 c11 + c5(2c11 + r). By Pythagoras’ theorem,

‖F2N (p)‖ ≤ ‖F2N (p) − Fj(p)‖ + ‖Fj(p)‖ ≤

≤ 2c11
N

+
√
|(Fj(p))3|2 + ‖((Fj(p))1, (Fj(p))2)‖2 <

√
r2 + (2s)2 + ε = R

for an N large enough.

Q.E.D.

In order to finish the proof of the lemma, we define Y as Y = F2N . It is straightforward
to check that Y verifies all the claims in Lemma 2.
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