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Abstract

We construct complete nonorientable minimal surfaces whose Gauss map omits two points

of RP
2
. This result proves that Fujimoto's theorem is sharp in nonorientable case.

1 Introduction and Preliminaries

The study of the Gauss map of complete orientable minimal surfaces in R3 has achieved many im-

portant advances and also has given rise to many problems in recent decades. The most interesting

question is to determine the size of the spherical image of such a surface under its Gauss map.

R. Osserman was the person who started the systematic development of this theory, and so, in

1961 he proved that the set omitted by the image of a complete non 
at orientable minimal surface

by the Gauss map has logarithmic capacity zero. In 1981 F. Xavier [12] proved that this set covers

the sphere except six values at the most, and �nally in 1988 H. Fujimoto [3, 4] obtained the best

possible theorem, and proved that the number of exceptional values of the Gauss map is four at

the most. An interesting extension of Fujimoto's theorem was proved in 1990 by X. Mo and R.

Osserman [7]. They showed that if the Gauss map of a complete orientable minimal surface takes

on �ve distinct values only a �nite number of times, then the surface has �nite total curvature.

There are many kinds of complete orientable minimal surfaces whose Gauss map omits four

points of the sphere. Among these examples we emphasize the classical Sherk's doubly periodic

surface and those described by K. Voss in [10] (see also [8]). The �rst author of this paper in [5]

constructs orientable examples with non trivial topology.

Under the additional hypothesis of �nite total curvature, R. Osserman [9] proved that the

number of exceptional values is three at the most.
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In the nonorientable case, the Gauss map of the two sheeted orientable covering surface induces,

in a natural way, a generalized Gauss map from the nonorientable surface on the projective plane.

From Fujimoto's theorem applied to the two sheeted orientable covering, this generalized Gauss

map omits two points of RP2 at the most.

It left open the following questions:

1. Are there complete nonorientable minimal surfaces in R3 whose generalized Gauss map omits

two points of RP
2
?

2. Are there complete non 
at orientable minimal surfaces in R
3 with �nite total curvature

whose Gauss map omits three points of S2?

3. Are there complete nonorientable minimal surfaces in R
3 with �nite total curvature whose

generalized Gauss map omits one point of RP2?

Concerning the second problem, A. Weitsman and F. Xavier in [11] and Y. Fang in [1] obtained

nonexistence results, provided that the absolute value of the total curvature is less than or equal

to 16� and 20�, respectively.

In this paper we give an a�rmative answer to the �rst question, and prove:

Theorem There are complete nonorientable minimal surfaces in R
3 whose generalized

Gauss map omits two points of the projective plane.

Our method of construction is somewhat explicit and very simple, and it is based on a more

elaborate use of the Voss technique.

Finally, we brie
y summarize some of the basic facts we will need in this paper.

Let X : M �! R
3 be a minimal immersion of a surface M in three dimensional Euclidean

space. Using isothermal parameters, M has in a natural way a conformal structure. When M

is orientable, we label (g; �) as the Weierstrass data of X . Remember that the stereographic

projection g of the Gauss map of X is a meromorphic function on M , and � is a holomorphic

1-form on M .

Moreover,

X = Real

Z
(�1;�2;�3);

where �1 =
1

2
�(1� g

2);�2 =
i
2
�(1 + g

2);�3 = �g are holomorphic 1-forms on M satisfying:0@ 3X
j=1

j�j j2
1A (P ) 6= 0; 8P 2M:

In particular, �j , j = 1; 2; 3; have no real periods on M . Furthermore, the Riemannian metric ds2

induced by X on M is given by:

ds
2 =

3X
j=1

j�j j2:

For more details see [8].

Consider now X
0 : M 0 �! R

3 a conformal minimal immersion of a nonorientable surface M 0

in R
3. Let �0 : M ! M

0, I : M ! M denote the conformal oriented two sheeted covering of M 0

and the antiholomorphic order two deck transformation for this covering, respectively.

If (g; �) represents the Weierstrass data of X = X
0 � �0, then it is not hard to deduce that :

I
�(�j) = �j ; j = 1; 2; 3: (1)
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In particular, g � I = I0 � g, where I0(z) = �1=z, and so there is a unique map

G :M 0 �! RP
2 � C =hI0i

satisfying

G � �0 = g � p0;
where p0 : C ! C =hI0i is the natural projection. We call G the generalized Gauss map of X 0.

Conversely, given (M; g; �) the Weierstrass representation of a minimal immersion X of an

orientable surface M in R
3, and given I : M ! M an antiholomorphic involution without �xed

points on M satisfying (1), then X induces a minimal immersion X
0 of M 0 = M=hIi in R

3 such

that X = X
0 � �0. For more details see [6].

Finally, denote:

� D = fz 2 C : jzj < 1g,

� D
� = D � f0g,

� for each R > 1, A(R) = fz 2 C : 1=R < jzj < Rg.

Throughout the proof of Theorem 2, we will use the following result:

Theorem 1 Let M be a Riemann surface with holomorphic universal covering space D . Then

M �= D , D
�
, or A(R), provided �1(M) is commutative.

The proof of this theorem can be found in [2, Chapter IV].

2 Main Theorem

To obtain the result we have stated in the introduction, we need the following two Lemmas.

Lemma 1 There exist R > 1 and holomorphic 1-forms �j , j = 1; 2; 3, on A(R) such that:

1. �2
1 +�2

2 +�2
3 � 0:

2. j�1j2 + j�2j2 + j�3j2 6= 0:

3. The metric ds2
def
= j�1j2 + j�2j2 + j�3j2 is complete.

4. The Gauss map

g = ��1 + i�2

�3

omits four points of the Riemann sphere C .

5. I�(�j) = �j ; j = 1; 2; 3; where I : A(R)! A(R) is given by I(z) = �1=z.

Proof : Let �; � 2 C
�, � =2 f�;�1=�g, label

M = C �
�
�; �;� 1

�
;� 1

�

�
:

and consider the following Weierstrass representation on M :

bg = z; b� = idz

(z � �)(z � �)(�z + 1)(�z + 1)
: (2)
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If we de�ne bI : M ! M , bI(z) = �1=z, then bI is an antiholomorphic involution without �xed

points, verifying: bg � bI = � 1bg ; bI�(b�) = �b� bg2: (3)

Thus, if we de�ne:

b�1 =
1

2
(1� bg2)b�;

b�2 =
i

2
(1 + bg2)b�;b�3 = bg b�:

then it is obvious, from (3), that bI�(b�j) = b�j . Furthermore, these holomorphic 1-forms satisfy:

� b�2
1 +

b�2
2 +

b�2
3 � 0,

� jb�1j2 + jb�2j2 + jb�3j2 6= 0,

� The Riemannian metric dbs2 = jb�1j2 + jb�2j2 + jb�3j2 is complete in M .

On the other hand, the Uniformization Theorem says us that the holomorphic universal covering

of M is either C or the unit disc, D (see [2, xIV.4]). However, C is the conformal covering of only

two non compact Riemann surfaces: C and C
� (see [2, xIV.6]). Thus, the holomorphic universal

covering of M is D . We label � : D !M as the conformal covering map.

Let eI be a lift of bI to D , and denote e�j = �
�(b�j), j = 1; 2; 3. It is clear that eI�(e�j) = e�j ,

j = 1; 2; 3.

Since bI is an antiholomorphic involution in M without �xed points, then eI2k+1, k 2 Z, is an

antiholomorphic transformation in D without �xed points too.

Let us see that eI2k, k 2 Z
�
; has no �xed points in D . Indeed, note that eI2k, k 2 Z

�, is a lift

of the identity mapping in M . Thus, if eI2k �xes a point of D , we infer that eI2k is the identity

mapping 1D in D .

Assume that there is k > 0 such that eI2k = 1D . Let

k0 = Minimumfk 2 N
� : eI2k = 1D g;

and observe that k0 is the �nite order of eI2. It is clear that k0 > 1. Otherwise, k0 = 1 and so there

would be antiholomorphic involutions without �xed points in D , which is absurd. Furthermore,

from the de�nition of k0, it is obvious that eI2k has no �xed points, 0 < k < k0:

Therefore, the quotient D =heI2i is a Riemann surface with fundamental group isomorphic to

Zk0 . No such surface exists (see for instance Theorem 1).

This contradiction implies that eI2k, k 2 Z
�
; has no �xed points and heI2i �= Z. In other words,

the map

� : D �! D =heI2i
is a cyclic conformal covering and the fundamental group of D =heI2i is isomorphic to Z.

Using Theorem 1 we deduce that D =heI2i is conformally equivalent to either D � or A(R), for a
suitable R > 1.

The map eI induces on D =heI2i an antiholomorphic involution, I . Moreover, D =heI2i is in a

natural way a covering of M , and I is projected under this covering map on the original involutionbI on M . Since bI has no �xed points in M , the same occurs for I in D =heI2i.
However, any antiholomorphic involution in D � extends to D , and is the conjugate of a M�obius

transformation leaving D invariant and �xing 0. In particular, any such map has in�nitely many
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�xed points in D . Hence, we conclude that D =heI2i can not be conformally equivalent to D �, i.e.,

D =heI2i is conformally di�eomorphic to A(R), for a suitable R > 1.

If we look at I as an antiholomorphic involution in A(R), then elementary arguments of complex

analysis give that I(z) = �1=z, 8z 2 A(R).

On the other hand, as (eI2)�(e�j) = e�j , then e�j can be induced in the quotient D =heI2i, j = 1; 2; 3.

The corresponding holomorphic 1-forms on D =heI2i are denoted as �1, �2, and �3, and they

obviously satisfy 1, 2, 3 and 5 in the lemma statement.

Finally, the meromorphic function

g = ��1 + i�2

�3

;

clearly omits the points �, �, �1=�, and �1=�, and 4 holds. This concludes the proof.

2

Lemma 2 There exists a rational function f : C ! C satisfying:

1. The only poles of f are 0 and 1:

2. f � I = f:

3. f(z) 6= 0, provided that jzj = 1:

4. Residue

�
f(z)

z
dz; 0

�
= 0:

Proof : De�ne

f : C �! C ;

f(z) =
(z �m1)(z �m2)(m1z + 1)(m2z + 1)

z2
;

where m1;m2 2 R:

We have

Residue

�
f(z)

z
dz; 0

�
= (1�m

2
1)(1�m

2
2)� 2m1m2:

The choice m1 = 2 and m2 =
2+
p
13

3
completes the proof. 2

Now we are able to prove the main result of this paper.

Theorem 2 There exist complete nonorientable minimal surfaces in R
3
whose generalized Gauss

map omits two points of RP2.

Proof : Take A(R), �1, �2, and �3 as in Lemma 1, and f as in Lemma 2. Put

�j = 'j(z)
dz

z
;

and write

'j(z) = aj 0 +
X
n>0

�
aj n z

n + (�1)n+1 aj n z�n
�
; aj 0 2 iR;

the Laurent series expansion of 'j , j = 1; 2; 3.

Observe that

f(z) =

mX
n=1

�
bn z

n + (�1)n bn z�n
�
;
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where m 2 N
�
: Let k 2 N , k odd, k > m, and notice that:

Residue

 "X
n>0

�
aj n z

kn + (�1)n+1 aj n z�kn
�#

f(z)
dz

z
; 0

!
= 0; j = 1; 2; 3: (4)

Furthermore, it is obvious from Lemma 2

Residue

�
aj 0 f(z)

dz

z
; 0

�
= 0; j = 1; 2; 3: (5)

Consider the covering Tk : A(
k
p
R) ! A(R), Tk(z) = z

k
; and de�ne the holomorphic 1-forms

on A(
k
p
R):

	j = f(z)T �k (�j) = k f(z)'j(z
k)

dz

z
; j = 1; 2; 3:

Taking into account (4) and (5), we deduce that 	j is exact, j = 1; 2; 3:

Moreover, it is clear that:
3X

j=1

	2
j � 0;

and since k is odd,

I
�(	1;	2;	3) =

�
	1;	2;	3

�
; (6)

where I : A(
k
p
R)! A(

k
p
R) is the lift of the former involution in A(R), that keeps being the map

I(z) = �1=z:
Note that limk!1

k
p
R = 1, and remember that the zeroes of f are not in S

1. Then, taking

k large enough, we can guarantee that f never vanishes in the closure of A(
k
p
R): So, as the only

poles of f are 0 and 1, there exist c > 1 such that

1

c
< jf(z)j < c; 8z 2 A(

k
p
R):

Therefore,
P3

j=1 j	j j2 6= 0; and if we de�ne ds20 = j	1j2 + j	2j2 + j	3j2, one has:

1

c2
T
�
k (ds

2) � ds
2
0 � c

2
T
�
k (ds

2):

Since ds2 is complete, the same occurs for the metrics T �k (ds
2) and ds

2
0.

Summarizing, the minimal immersion

X : A(
k
p
R) �! R

3
;

X(z) = Real

�Z z

1

(	1;	2;	3)

�
;

is well de�ned, complete, and its Gauss map g � Tk omits four points of C .
From (6), X induces a minimal immersion of the M�obius strip A(

k
p
R)=hIi in R

3, and so the

Theorem is proved.

2
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