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Abstract

In this paper we deal with the uniqueness of the Lorentzian helicoid and Enneper’s surface
among properly embedded maximal surfaces with lightlike boundary of mirror symmetry in
the Lorentz-Minkowski space R3.

1 Introduction

The helicoid Ho := {(z,y,t) € R® : ztan(t) = y} was first discovered by Jean Baptiste Meusnier
in 1776. After the plane and the catenoid, is the third minimal surface in Euclidean space R? to
be known. The helicoid is generated by spiraling a horizontal straight line along a vertical axis,
and so, it is a ruled surface which is also foliated by helices (its name derives from this fact). As
shown in Figure 1, it is shaped like the Archimedes’ screw, but extends infinitely in all directions,
see Figure 1, (a).
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Figure 1: (a) the helicoid Hp; (b) the Lorentzian helicoid H; (¢) Enneper’s surface F;

In analogy with minimal surfaces in R3, a maximal surface in 3-dimensional Lorentz-Minkowski
space R = (R?, da? + dy? — dt?) is a surface which is spacelike (the induced metric is Riemannian)
and whose mean curvature vanishes. Maximal surfaces represent local maxima for the area func-
tional, have conformal Gauss map and admit a Weierstrass type representation (see equation (2)).
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Besides of their mathematical interest, they have a significant importance in classical Relativity
(see [20]).

The relative complement of the rigid circular cylinder C' = {(x,y,t) : 22 +y*> < 1} in Ho
is a spacelike surface when viewed in R$, and consists of two congruent (in the Riemannian and
Lorentzian sense) simply connected domains of Hy bounded by a lightlike helix. The Lorentzian
helicoid H is defined to be the closure of the connected component of Hy — C' containing (1,0, 1)
in its boundary, see Figure 1, (b).

Amazingly, Int(H) is a maximal surface. As a matter of fact, O. Kobayashi [14] proved that
the Lorentzian helicoid and spacelike planes are the only maximal surfaces which are also minimal
surfaces with respect to the Euclidean metric on the ambient 3-space.

The geometry of the Lorentzian helicoid is somehow concentrated in its boundary. If X : M =
{z € C : Im(z) > 0} — R} is a conformal embedding of H, (M) is a integral curve of the
weighted gradient WV@ o X), where AV is the Lorentzian Gauss map of X and V is computed
with respect to the intrinsic metric induced by R$ (the factor m just controls the singularities
of V(t o X) along 9(M)). Equivalently, the immersion folds back at (M), that is to say, X
extends harmonically to the double of M being invariant under the mirror involution. Maximal
surfaces with regular lightlike boundary and satisfying this symmetry property are said to have
lightlike boundary of mirror symmetry, and will be written *maximal surfaces.

Another interesting example of properly embedded *maximal surface with connected boundary
in R? is the so called Lorentzian Enneper surface Eq := {(x,y,t) : 32(y—1)3—3(y+t)+24(y—t)x =
0}, see Figure 1, (¢). Unlike the Lorentzian helicoid, the Lorentzian Enneper surface has finite
rotation number, that is to say, the change of the tangent angle along the orthogonal projection
over {t = 0} of its boundary is finite.

In this paper we will take interest in *maximal surfaces with slightly controlled asymptotic
behavior. To be more precise, a properly immersed maximal surface M in R} is said to be
asymptotically weakly spacelike, or simply a w-maximal surface, if R} — M contains an affinely
spacelike arc (i.e., a proper arc a = [0,1[ in R} lying in a closed spacelike wedge! of R$). If
in addition M is *maximal, we simply say that it is w*-maximal. In the context of *maximal
surfaces with connected boundary, this apparently mild condition let us control the geometry of
the homothetical blow-downs of M. Moreover, it is automatically satisfied by surfaces with finite
rotation number and by surfaces admitting gradient estimates (or more generally, being metrically
complete) far from the boundary, like the helicoid. See subsection 6.2 for more details.

Recently, Hy has been characterized by W. H. Meeks III and H. Rosenberg [21] as the unique
properly embedded non flat simply connected minimal surface in R3. Likewise, J. Perez [18] has
proved that half of the Enneper minimal surface is the only properly embedded non flat oriented
stable minimal surface bounded by a straight line and having quadratic area growth. Somehow,
this paper is devoted to obtain a Lorentzian compilation of both Riemannian theorems.

We have proved the following:

Theorem I: The only properly embedded * maximal surface with connected boundary of
finite rotation number in R3 is the Lorentzian Enneper surface.

Theorem I1: The only properly embedded w* -maximal surface with connected boundary
of infinite rotation number in R} is the Lorentzian helicoid.

It remains open whether Theorem II can be extended to *maximal surfaces.

The required theoretical background includes classical Calabi’s theorem [5] (see also Cheng-Yau
work [6]) about complete maximal surfaces, and some basic existence and regularity properties of
area maximizing surfaces in the Lorentz Minkowski space R}, mainly proved by Bartnik and Simon
in [2].

LA closed wedge in R? is said to be spacelike if it is foliated by spacelike half planes with the same edge.



In a first step, we obtain some regularity theorems and parabolicity criteria for maximal graphs,
and use these results to control the asymptotic behavior of maximal graphs over planar wedges.
Among other things, we study under what geometrical conditions the homothetical blow-downs
of a such graph do not converge to an angular region of the light cone. Taking advantage of this
analysis and Calabis’ theorem, we can derive an elementary Colding-Minicozzi theory [3] and prove
that any homothetical blow-down of a properly embedded w*-maximal surface S with connected
boundary is a plane viewed as a degenerated multigraph with a singular point. This means that
any leaf of the blow-down sequence converges in the C'-topology outside the singularity to a plane
Yoo (the blow-down plane) depending neither on the leaf nor the homothetical blow-down. Finally,
and using some ideas by W.H. Meeks and Rosenberg in [21], we deduce that the Gauss map of S
omits the normal direction of ¥, and that any plane parallel to ¥, intersects S into a single arc.
This reasoning strategy requires of a finiteness theorem for maximal graphs with planar boundary,
whose proof has been deeply inspired by P. Li and J. Wang work [16]. The natural dichotomy
between spacelike and lightlike blow-down plane leads to S = H and S = E1, respectively.

The paper has been laid out as follows:

In Section 2 we introduce some terminology and background material. A detailed description
of the basic examples (Helicoid, Enneper’s surface and conjugate surfaces) is given in Section 3.
Section 4 is devoted to obtaining some parabolicity criteria for maximal surfaces. In Section 5
we deal with the geometry of maximal graphs, specially those over wedge-shaped regions. We
also prove the Li-Wang type finiteness theorem for maximal graphs. The deepest results are
contained in Section 6, which has been devoted to the global geometry of properly embedded w*-
maximal surfaces with connected boundary. We construct the blow-down multigraph and prove
the transversality of the surface and the blow-down limit plane. Finally, in Section 7 we prove the
uniqueness theorems.

Acknowledgment: The authors are deeply indebted to Prof. Rabah Souam for many
useful conversations about maximal surfaces and the Lorentzian helicoid.

2 Notations and Preliminaries

Asusual, C = CU {0}, U={2€ C : Im(z) >0}, D= {z € C : |z] < 1} and [~o0, +0] =
R U {—00, +00}. We make the convention z &+ co = foo, for all € R. If I C R is an interval, we
call || as its Euclidean length.

The Euclidean metric and norm in R™ will be denoted by (, )o and || - ||o, respectively, n > 2. The
origin in R™ will be written as O. Given Wy, Wa C R™ we denote by d(Wy, W) and dg (W1, Wa) :=
sup{sup{d(w, W;) : w e Wy UWa} : j = 1,2} the Euclidean and Hausdorff distance between
W1 and Wy, respectively.

A smooth divergent arc a(u) : [0, +oo[— R™ is defined to be sublinear with direction v € S™ if
limy,— 100 &' () = v, where u is the arclength parameter of o with respect to (, )o, n > 2.

We call R} the three dimensional Lorentz-Minkowski space (R* = R? x R, (,)), where as usual
((z1,t1), (z2,t2)) = (x1,72)0 — t1t2, and write ||(z,1)[|? := ||z]|Z — 2. A vector v € R® — {(0,0,0)}
is said to be spacelike, timelike or lightlike if ||v]|? > 0, ||v[|> < 0 or ||v||* = 0, respectively. The
vector (0,0,0) is spacelike by definition. A smooth curve in R? is defined to be spacelike, timelike
or lightlike if all its tangent vectors are spacelike, timelike or lightlike, respectively. A plane in R}
is spacelike, timelike or lightlike if the induced metric is Riemannian, non degenerate indefinite
or degenerate, respectively. The spacelike plane {t = 0} will be denoted by IIy. We often use the
identification IIy = R? given by (z,0) = .

A closed wedge W of R3 is said to be spacelike if any half plane contained in W is spacelike.
Proper arcs lying in a spacelike wedge are said to be affinely spacelike. Given a spacelike plane



¥ C R}, . : R? — ¥ will denote the Lorentzian orthogonal projection. If 3 = Ily we simply write
7 instead of 7, , and in this case

7((z,t) =z, (x,t) € R

For any p = (g, t9) € R}, we denote by C, := {x € R} : ||z —p||? = 0} the light cone with vertex
at p, and label C;f := C, N {t > to} and C, :=C, N{t < to}. We also set Int(Cp) := {x € R} : ||z —
pl[? < 0} and Ext(Cp) := {x € R} : ||z — p[|* > 0}, and likewise define Int(C;") := Int(C,) N {t > to}
and Int(C, ) := Int(C,) N {t < to}.

A spacelike arc ¢ C R$ is said to be an upward (resp., downward) lightlike ray if, up to re-
moving a compact subarc, 7(c) is a closed half line and there exists p € 7~ !(7(c)) such that
limgee oo d(, ) = 0, where [, is the lightlike half line in C;f N~ (7 (c)) (resp., in C; N7~ (n(c)))
with initial point p.

As usual, open connected subsets of manifolds are called domains and their closures regions.
Throughout this paper we will deal with regions and domains of surfaces, namely ), with regular
enough boundary. In the most cases that last means that 9(f2) is piecewise smooth. If Q lies in
a Riemannian surface, it suffices to require that 9(Q) is C° and locally Lipschitzian functions in
Int(§2) extend continuously to 9(€2).

If S is a manifold and f : S — R is a function, the expression limgzeg—00 f(z) = [—00, +00]
means that lim, . f(z,) = L for any divergent sequence {2, }nen C S.

Let R* := {(z,w) € (C—{0}) x C : e" = z} denote the Riemann surface of log(z) endowed
with the Riemannian metric |dz|?. The function w : R* — C is a biholomorphism and z : R* —
C* := C — {0} is the isometric universal covering of the Euclidean once punctured plane. The
argument function is given by arg : R* — R, arg = Im(w). For convenience, we add an extra
point [0] to R*, define z([0]) = 0, and endow R := R* U {0} with the smallest topology containing
the one of R* and making z : R — C continuous.

Let W C R be a proper subset homeomorphic to D — 3, where 3 is a non empty connected
subset of (D). W is defined to be a (generalized) wedge if I(W) is smooth outside a compact
subset C C R, and for any proper Jordan arc o = [0,1] in R contained in (W) — C, either
0o = limgeq—oo arg(x) = oo or z(«) is a planar sublinear arc (hence 6, € R). If aq, ay are two
such arcs in (W) — C, we set 0 := |0, — ba,| € [0,400] the angle of W. In case O(W) = {[0]}
(i.e., W = R) or (W) consists of a divergent Jordan arc with initial point [0], W is defined to
have infinite angle. The wedge arg=!([—6, 6]) U {[0]} will be denoted by Wy, 0 € [0, +00]. When
zlw : W — z(W) is one to one, W and z(W) C C = R? will be identified. Moreover, regions in
R? defined by translating wedges of angle < 27 will be also named wedges.

In the sequel, M will denote a differentiable surface, possibly with non empty regular enough
boundary.

A continuous map X : M — R? is said to be pseudo spacelike (acrostically, PS) if for any
p € M there is an open neighbourhood U of p in M such that || X(p1) — X(p2)|| > 0, for any
p1, p2 € U. If in addition 7 o X is a local embedding?, then X is defined to be a pseudo spacelike
immersion. If X : M — R$ is pseudo spacelike immersion and 7 o X is one to one, then X (M) is
said to be a pseudo spacelike graph over m(X(M)) C IIy.

Let X be a proper PS immersion of a symply connected surface M into R$. X is said to be a
PS multigraph of angle 6 €]0, +ool if there is an open disc D centered at O such that (7o X)~!(D)
is compact, Y : Mg — R is an embedding where Mo = M — (70 X)" (D), z0Y = w0 (X|m,)
(here we have identified II and the z-plane), and W :=Y (M) is a wedge of angle 6.

Let Z be a simply connected topological space and consider a proper continuous map X :
Z — R3. Suppose that (7o X)~1(O) is either empty or consists of a single point and call Mgy =
M — (70 X)"HO). X is said to be a PS multigraph of infinite angle if X|r, is a PS immersion

2By the Domain Invariance Theorem, this simply means that 7w o X is locally injective.



and there is an embedding Y : M — R such that zoY =70 X|p and W := Y(M) is a wedge of
infinite angle (obviously, Y ((X o 7)~1(0)) = [0] provided that (X o 7)~1(0) is a point).

In any case, u =to (X oY1) : My — R is locally Lipschitzian with Lipschitz constant 1, i.e.,
Vu is well defined in the weak sense and | Vullo < 1.

Set G = {(w,u(z)) : x € Q} a PS graph over a domain 2 C R?, and call dg the inner metric
in © induced by (). The PS condition again gives |u(z) — u(y)| < da(z,y) for all z, y € Q. Thus,
if € is starshaped with center xg,

G- {(an u(xo))} C EXt(C(l‘o,u(xo)))- (1)
Lemma 2.1 Let G be a PS graph over a convex region R C R%. The following statements hold:

(a) If G contains a lightlike straight line 1, then G lies in the lightlike plane 3 containing l.

(b) If ly = |p1, pa2] and la are lightlike segments in G such that |p1, p2[Nle # O then Iy and Iy lie in
the same lightlike straight line.

Proof: To check (a), use equation (1) and observe that G C N, Ext(C,) = Xo.

To prove (b), suppose up to a translation that O €]py, p2[Niz and consider the dilated graphs
G, :=n-G, n € N. By Ascoli-Arzela Theorem, the sequence {G,}nen converges uniformly on
compact subsets to a PS graph G, over a convex region containing the lightlike straight line [y
determined by [;. From (a), G lies in a lightlike plane, hence Is lies in Iy too. a

A smooth immersion X : M — R} is said to be spacelike (and X(M) a spacelike surface in
R3) if the tangent plane at any point is spacelike, that is to say, if the induced metric ds? := X*({(,))
on M is Riemannian. In this case, the Gauss map N of X is well defined and takes values in the
Lorentzian sphere H? := {r € R} ; (x,2) = —1}. If we attach to M the conformal structure
induced by ds?, M becomes a Riemann surface and X a conformal spacelike immersion. It is easy
to see that spacelike immersions are PS immersions.

Let M be a Riemann surface, and let Sx be a closed subset with empty interior (usually,
a family of curves and points). A smooth map X : M — R? is said to be a conformal space-
like immersion with singular set Sx (and X (M) a spacelike surface with singular set X (Sx)) if
X*((,)) = Ads?, where X*({,)) is the pull back metric of {, ), ds? is a conformal Riemannian metric
on M and A is a function vanishing on Sx and being positive on M — Sx. A singular point p € Sx
is said to be a lightlike singularity of X if limye pm—sy¢ —p N'(q) = 00, where N : M — Sx — H? is
the Lorentzian Gauss map of X|py_g,. If in addition dX, # 0, p is said to be a regular lightlike
singularity. See the papers [24, 9] for a good setting about singularities.

A spacelike immersion X : M — R$ is said to be mazimal (and X (M) a maximal surface)
if its mean curvature vanishes. A conformal maximal immersion X : M — R? has harmonic
coordinate functions and admits a Weierstrass type representation (g, ¢3) :

X = Real/(¢1,¢2,i¢3), (2)

where ¢ is a meromorphic function (the meromorphic Gauss map) and ¢, = %(1 /9 — 9)b3, p2 =
1(1/g+9)¢s and ¢ are holomorphic 1-forms without common zeroes in M. Recall that g = sto,
where N : M — H? is the Gauss map of X and st : H> — C is the Lorentzian stereographic
projection given by st : H? — D, st((x1,z2,t)) = (%4, 725)- We also set stg : Co — {(0,0,0)} —
{z € C : |z| =1}, sto((v1,v2,v3)) := %(Ug,—vl), and observe that sto(v) = lim, . st(wy),
provided that {w,}nen C H? and {H—J}"fﬂ—o}neN — m

For more details about the Weierstrass representation of maximal surfaces see [15].




Definition 2.1 A map X : M — R$ is defined to be a conformal mazimal immersion with singular
set Sx if X is a conformal spacelike immersion with singular set Sx and X|m—sy is mazimal.
We also say that X (M) is a mazimal surface with singular set X (Sx).

The Weierstrass data (g, ¢3) of a conformal maximal immersion X : M — R} with singularities
are well defined on M, and since the intrinsic metric is given by ds? = 1 (1/|g| — l9)? |#3]2, then
Sx coincides with the analytical set |g|=1(1) U |¢3|~1(0). If in addition every singular point is
regular and lightlike, then ¢3 never vanishes and Sy = |g|=1(1). If My is a connected component
of M — Sx, its Gaussian image N (M) lies in either H := H? N {¢ > 0} or H? :=H? N {t < 0}.
We usually choose the orientation in such a way that N (M) C H2, and so g(Mg) C D. In this
case ¢ is said to be the holomorphic Gauss map of X|aq,.

Let M be a Riemann surface with analytical boundary. The mirror and double surface of M
with respect to (M) will be denoted by M* and M := MU M?*, respectively. Recall that, up to
natural identifications, (M) = IM*) = MNM* = {pe M : J(p) = p}, where J : M — M is
the antiholomorphic involution mapping each point p € M into its mirror image p* € M*.

Definition 2.2 Let X : M — R3$ be a conformal mazimal immersion with reqular lightlike singu-
larities. The map X := X|M is said to be a conformal mazximal immersion with lightlike boundary
of mirror symmetry (or simply, a conformal *mazimal immersion) if S¢ = (M) and XoJ=2X.
We also say that X(M) = X(M) is a *mazimal surface.

In terms of the Weierstrass data (g, ¢3) of X, X is *mazimal if and only if:

g-(god)=1, J'(¢3)=—s. 3)

If X is a proper embedding, M and X (M) are identified via X and M C R$ is said to be a properly
embedded *mazimal surface.

With the previous notation, it is not hard to check that X is a conform?d *maximal immersion if and
only if S¢ = 9(M) and 9(M) consists of integral curves of WV(X , w), where w is any timelike
vector and V is the gradient computed with respect to the intrinsic metric®. To see this, assume
that up to a Lorentzian isometry w = (0,0,1), and write ¢3 = —if(z)dz. Then, suppose that
S¢ = 0(M) and take a conformal disc (U, z = u + iv) in M centered at p € (M) and satisfying

J(U) = U, zo J = Z. A standard computation gives A2V (t o X) = Re(f)% - Im(f)%, where
A= H%H = H%H = 1(1/|g| = |g|) | f|- Therefore, (M) N U is an integral curve of A2V (t o X) if
and only if Im(f) = 0 (that is to say, X is *maximal). Taking into account that (£ o N)2)\? is well
defined and positive on U, we are done.

We will need the following basic lemma.

Lemma 2.2 Let X : M — R} be a conformal proper *mazximal immersion with Weierstrass data
(9, ¢3). Then, dg and ¢3 never vanish along (M) and mo X : M — Il is a local embedding.

Proof: From (3), g and ¢3 extend by Schwarz reflection to the double surface M. Since oM) =
lg|71(1) and d(M) consists of a family of pairwise disjoint proper regular analytical curves in M,
the harmonic function log(]g|) has no singular points on d(M) and dg(p) # 0 for all p € I(M).

On the other hand, Sx consists of regular lightlike singularities, hence dX # 0 on (M) and
equation (2) gives ¢3(p) # 0 for all p € I(M).

Let us show that 7o X is a local embedding. Since X|x(—g(r1) is spacelike then (70 X)|y—a(m)
is a local diffeomorphism, hence we have to deal only with boundary points. Fix p € 9(M), and
up to a Lorentzian isometry, suppose g(p) = 1 and X (p) = O. Then take a conformal disc (D, z)

3Despite the degeneracy of ds? at S ¢» the weighted gradient WV(X ,w) extends analytically to this set.



in M satisfying 2(D) = D, z(p) = 0, J(z) =%, 2(DNM) =Dt :=Dn{ze C : Im(z) > 0}
and ¢2(z) = dz. From equation (2) and the facts dg(p), ¢s(p) # 0, we get that ¢1(z) = zh(z) dz,
where h : D — C is holomorphic, h(p) # 0 and ho J = h. In the sequel we identify D =D and call
D.={z€C : |z| < ¢}. By the Domain Invariance Theorem, it suffices to show that (w0 X)|p, is
injective provided that e > 0 is small enough. Reason by contradiction and take sequences {z, }nen,
{wn }nen, in DT converging to 0 satisfying z, # wy, Re(z,) = Re(w,) and Re(f::" zh(z)) = 0.

Therefore we can find &, in the vertical segment ]z,,w,[ such that Im(&,h(&,)) =0,n €N,
contradicting that {z € D, : Im(zh(z)) = 0} C R provided that € is small enough. O

The main global result about maximal surfaces was proved by Calabi [5] (see also [6] for further
generalizations). It asserts the following:

Theorem 2.1 (Calabi) Let X : M — R} be a complete mazimal immersion, where (M) = ().
Then X (M) is a spacelike plane. The same result holds if we replace complete for proper.

3 Basic examples

The family of properly embedded *maximal surfaces is very vast. We are goint to present only the
most basic ones, already described by O. Kobayashi in [14].

Let X : C — R$ be the conformal maximal immersion with regular lightlike singularities
associated to the Weierstrass data g(z) = €%, ¢3(2) = —idz. If 2 = u + iv, equation (2) gives

X (u,v) = (cosh(v) cos(u), cosh(v) sin(u), u).

Since X(z) = X(z) and X = X |7 is a proper embedding, then H := X (U) is a properly embedded
*maximal surface which has been named as the Lorentzian helicoid, see Figure 1,(b). The conjugate
immersion of X is the universal converging of the Lorentzian catenoid. The Lorentzian catenoid
has Weierstrass data C — {0}, g(z) = z, ¢3(2) = 42, and it is given by

1 —m? 21
Y(m,s)=( 27:: sin(s), m2m cos(s), log(m)),
where z = me®. In this case, Sy = {|z| = 1|} consists of regular lightlike singularities, Y (Sy)

is a single point, Y (1/Z) = —Y(2) and C := Y(D — {0}) is an entire graph over R?. Elementary
characterizations of the Lorentzian catenoid can be found in [15], [4] and [8].

Consider now the data M = C, g(z) = (2—1)/(2+1i) and ¢3(2) = i(2* +1)dz. Writing z = me'®,
the corresponding maximal immersion X : C — R$ is given by:

X((m,s)) = (—m2 cos(2s), %(3m cos(s) —m?> cos(3s)), —%m(?) cos(s) +m? cos(35))> .

Since X (z) = X (2) and X = X |g is a proper embedding, then E; := X (U) is a properly embedded
*maximal surface, that we call the first Enneper’s mazimal surface, see Figure 1,(c). F; contains a
half line parallel to the x;-axis and is invariant under the reflection about this line. The conjugate
surface F7 is called the second Enneper’s mazimal surface. Tts Weierstrass data are M = C, g(z) =
(z—i)/(z+1), ¢3(2) = —(2% + 1)dz, and putting z = me®*, the immersion X : U — R¥ is given by

X(m,s) = <m2 sin(2s), %(—Bm sin(s) + m? sin(3s)), %(3m sin(s) +m3 sin(35))> .

In this case Sx is the real axis, X(Sx) is the origin and X is not proper. Indeed, Es = X(U) is

an entire graph over R2? and Ey — X (U) is the open lightlike half line 1 =22 —¢t =0, ¢ > 0.
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Figure 2: (a) The Lorentzian catenoid; (b) Enneper’s graph E5 and the line [

Remark 3.1 The mazimal graphs C and Ef satisfy the implicit equations x2 4 x3 — sinh? (t) = 0
and 3(z — )% — 2(zo — 1)* + 323 + 6(22 — t)t = 0, respectively. Therefore, any blow-up with center
O of these surfaces converges in the C°-topology to half of the lightcone.

Ecker [4] proved that the Lorentzian catenoid is the unique entire maximal graph with one
singular point. A similar result for F5 can be found in Section 5 (Proposition 5.3).

4 Parabolicity of maximal surfaces in R}

This section is devoted to proving some parabolicity criteria for properly immersed maximal sur-
faces in R$. The required background can be found in [12],[1],[7], [17] and [23].

A non compact Riemann surface M with non empty boundary is said to be parabolic if the only
bounded harmonic function f vanishing on 9(M) is the constant function f = 0, or equivalently, if
there exists a proper positive superharmonic function on M. Otherwise, M is said to be hyperbolic.
If (M) = 0, parabolicity means that positive superharmonic functions are constant.

For instance, U is parabolic, whereas D N U is hyperbolic.

Let g : U — C be continuous on U and harmonic on U. A divergent curve o« C U is defined to
be an asymptotic curve of g if the limit a := lim,cq—o0 g(2) € C exists. In this case, a is said to
be an asymptotic value of g. The following theorem summarizes some well known classical results
(see [22]).

Theorem 4.1 Set g : U — C continuous, holomorphic on U and omitting two finite complex
values. Then:

(I) g has at most one asymptotic value, and in this case gly has angular limits at co.

(IT) If the boundary segments [0, +oo| and | — 00, 0] are asymptotic curves of g, then the limit
lim, o g(2) exists.

Given a Riemann surface M with non empty boundary and p € M — 9(M), we denote by
ip the harmonic measure respect to the p. It is well known that M is parabolic if and only if
there exists pg € M — O(M) such that py, is full, i.e., pp, (O(M)) = 1. In this case p, is full for
any p € M — 9(M), and bounded harmonic (superharmonic) functions v on M satisfy the mean
property

u(p) = (2)/ u(z)dyy,, for any p € M.
r€EOM
Regions of parabolic Riemann surfaces are parabolic, and if a Riemann surface is the union of

two parabolic regions with compact intersection then it is also parabolic. The proof of the following
theorem has been inspired by some ideas in [7].



Theorem 4.2 Let X : M — R} be a conformal proper mazimal immersion with singularities,
where (M) # 0, and suppose that there exists € > 0 and a compact subset C C M such that

(X, X)>e onM-—C,
Then M is parabolic.

Proof: Since parabolicity is not affected by adding compact subsets, we can suppose that || X (p)||* >
€ on M.

For any n € Nlet M,, :={pe M : (X, X)(p) <n}. Let us see that M,, is parabolic. Indeed,
since t o X is a proper positive harmonic function on M} := (t o X)~1([0, +o0[) N M,,, M is
parabolic, and likewise M, := (t o X)~!(] — 00,0]) N M,, is parabolic. As M;F N M, is compact
and M,, = M;} UM, , then we are done.

Now define h : M — R, h(p) = log(X, X)(p). Since X is maximal, a direct computation gives

that Ah = —4 z))gj)\(/ij < 0, where A is the intrinsic Laplacian and A is the Lorentzian Gauss map
of X. Therefore h is superharmonic.

Without loss of generality, suppose there exists p € M with h(p) > 0 (otherwise M = M,
and we have finished). Up to rescaling assume that h(p) = 1. Since h is a bounded superharmonic

function on the parabolic surface M,,, we have

1=b)z [ by = [ hdpy(o) + log(n) dyip(n)
(M) o(M)NM,, h=t(log(n))

where MZ denotes the harmonic measure in M,, respect to p. Since 0 < fa( M)NM dug <1,

12 10g(e) | dy + og(n) [ i > ~[log(e)| +log(n) [ du
O(M)NM,, h=1(log(n)) h=1(log(n))
Dividing by log(n) and taking the limit as n goes to infinity, we get lim,,_, f{qu - h(q)=n} dpy, <0,

and so limy,— e fh,l(log(n)) dpl = 0.
On the other hand, the parabolicity of M,, gives

1 :/ dpiy :/ dug—i-/ dpiy
O(My) O(M)NM,, h=1(log(n))

Taking the limit as n — oo we get that 1 = [ a(M) dpp, where pi,, is the harmonic measure in M
with respect to p, concluding the proof. O

Corollary 4.1 Let X : M — R? be a conformal proper mazimal immersion with singularities,
where (M) # 0, and suppose that X (M) lies in a spacelike half plane. Then M is parabolic.

Proof: Up to scaling and Lorentzian isometry, suppose X (M) C {t > 0}.
From Theorem 4.2, M,, ;== {p € M : (to X)(p) < n} is parabolic, n € N. Defining now
h =t o X and reasoning as in the preceding proof we obtain the desired conclusion. O

5 Some results on maximal graphs

The space of continuous functions u on a domain Q C R? with weak gradient satisfying ||Vulo < 1
will be denoted by C?(€). We endow C{(9) with the C°-topology of the uniform convergence on
compact subsets of Q. Likewise, and for any k € NU{oc}, CF(€) will denote the space of functions
with continuous partial derivatives of order < k4 1, endowed with the C*-topology of the uniform
convergence of u and its partial derivatives of order < k£ + 1 on compact subsets of (2.

A sequence of PS graphs {(z,un(z)) : z € Q}, n € N, is said to be convergent in the
C*-topology to {(z,u(x) : = € Q} if {ts }nen — u in the C*-topology, k € NU {oo}.



Remark 5.1 If Q is bounded, C{(Q) lies in the Sobolev space W'2(Q) of L* functions with L?
gradient, and the convergence in CO(Q) implies the one in WY12(Q). By Ascoli-Arzela theorem,
any sequence in CY(Q) bounded at xog € Q contains a subsequence converging in both C?(Q) and

Wi2(Q).

Let u € C$°(R2). The associated graph G = {(z,u(x)) : x € Q} defines a maximal surface if
and only if:

[[Vullp < 1 and div (Vu/ 1-— |Vu|3> =0. (4)

The conjugate function v* is characterized by the identity

ou ou
/1 _ 2 gk W, - OU
1 —||Vul[§du* = . dxy 90, dxa, (5)

besides the initial condition. It is well defined if and only if %dwl - g—ﬁdh is an exact 1-form
(for instance, if € is simply connected), and satisfies the minimal surface equation

div(Vu*/4/1+ ||[Vu*|]3) = 0.

Thus, G* = {(z,u*(z)) : z € Q} is a minimal surface in R3. In terms of the Weierstrass
representation, the conformal maximal and minimal immersions associated to G and G* are given

by
X = Real/(¢1) ¢2)i¢3) and X* = Real/(¢15 ¢2) ¢3)5 (6)

respectively.
The following theorem is the Lorentzian version of classical Plateau’s problem.

Theorem 5.1 ([2]) Let v C R} be a Jordan curve bounding a PS embedded surface. Then there
exists a PS area mazimizing disc S in R3 bounded by . Furthermore, S is smooth (hence a mazimal
surface) except possibly on piecewise linear lightlike arcs connecting points of ~.

This result applies to curves v whose projection m(y) is a Jordan curve and |t(p) — t(q)] <
da(m(p),n(q)) for any p, ¢ € 7, where Q is the domain bounded by 7(y) and dg is the inner
distance in Q (see [13]). Furthermore, S is smooth provided that |t(p) — t(q)| < da(w(p), 7(q)) for
any p, q € 7.

Let Q C R? be a bounded domain and consider a sequence {un}nen C C°(9) of functions
satisfying equation (4). Assume that {u,},eny — u in the C%-topology, where u € C{(£2) (see
Remark 5.1).

Given (z,y) € 9(Q)?, the segment ]z, y[ is said to be singular if |z, y[C Q and |u(z) — u(y)| =
lz — yllo-* We write A = {(z,y) € d(Q)? :]z,y[ is singular} and set A := U, )ealz, y[C Q the
(closed) singular set of u. Next theorem summarizes some known results mainly proved by Bartnik
and Simon in [2]:

Theorem 5.2 The function u defines an area mazximizing PS graph. Moreover,
(A) ula—a satisfies (4) and {un|a—a}nen — ula—a in the C*°-topology,
(B) zo € A if and only if there exists {xy }nen — To such that {||Vun(zn)|lotneny — 1, and

4Recall that u is locally Lipschitzian, hence it extends continously to §.
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(C) for any (x,y) € A, {(z,u(z)) : z €]z, y[} is a lightlike segment.

Remark 5.2 From Lemma 2.1, (b), different points of A determine disjoint singular segments
of u, hence A is a closed subset of Q foliated by singular segments of u. If Q is unbounded and
{Q }nen is an ezhaustion of Q by bounded domains, we set A := UpenAn, where Ay, is the singular
set of ula,, n € N. Since A, C An41 for any n, A is foliated too by inextensible segments in €,
but in this case some of them could have infinite length.

Since mazimal surfaces are locally graphical, the notions of singular set and singular segment
can be straightforwardly extended to the limit of a sequence of mazimal surfaces in R3.

Remark 5.3 The singular set A of the area mazximizing PS graph associated to u and the singular
set Sx of a conformal mazimal immersion X : M — R} have different nature and should not be
confused. The set Sx lies in the conformal support of X and has vanishing measure, whereas A is
contained in the domain of u possibly with non zero Lebesgue measure.

For instance, the blow up the catenoid is the lightcone. In this case A = R? and Sx has no
sense because the limit is not a conformal mazimal surface with singularities.

Given (z,y) € A, we call ¥(, , as the unique lightlike plane containing {(z,u(2)) : z €]z, y[},
and set o(;,) € R? the unitary vector for which X, ,) = {(2,(2,0@)0) : 2z € R?}. Since
u € WH2(Q), Vu is well defined almost everywhere on € (that is to say, on a subset Qo C Q
having the same Lebesgue measure as ). Furthermore, item (A) in Theorem 5.2 implies that
Q2 — A C Qo, whereas item (C) and the PS property give that Vu(z) = 0(,,) provided that
(x,y) € A and z €]z, y[NQp.

Therefore, it is natural to define Du : Q — R? by Du|q, = Vu and Du(z) = o, if z €]z, [,
(z,y) € A. Obviously A = || Dul|y*(1).

Proposition 5.1 u € C{(2), Du = Vu and {uy, fnen — u in the Ct-topology.

Proof: Take a sequence {x,}neny C ) converging to zy € 2 and such that the limit o :=
limy, 00 Vup(2,) exists.

Claim 1: If ||o|lo < 1 then z¢ € 2 — A and o = Du(xg) = Vu(zo).

Proof: Let Dy C Q2 be a closed disc of positive radius centered at zq. Take € €]||o||o, 1[ and without
loss of generality suppose ||Vun(zn)|lo < €, for all n € N. Label u; as the conjugate function of
Un|p, satistying u’(x,) = 0 (well defined because Dy is simply connected, see equation (5)), and
denote by S, := {(z,u’(z)) : © € Dy} the associated minimal graph, n € N. Standard curvature
estimates for minimal graphs give that |K,| < Cy on Dy for any n € N, where K, is the Gaussian
curvature of S, and Cy is a constant depending only on d(Dg, d(2)) > 0. From our hypothesis,
IVuyllo(zn) < 75, and taking 6 > —, the Uniform Graph Lemma for minimal surfaces [19]
implies the existence of a smaller disc D C Dy centered at x¢ such that ||Vu|lo < § on D, for

any n € N. Thus, ||[Vug|o < \/1‘17 < 1lon D for all k¥ € N. Barnik-Simon results in [2] give that

{tn,|D}ken — u|p in the C>—topology and u|p satisfies the maximal surface equation, (that is
to say, D C Q — A). In particular, 0 = Vu(zg) = Du(xg) and we are done. O

Claim 2: If ||o|lo = 1 then z¢ € A and 0 = Du(xg).

Proof: Tt is clear that zg € A (see Theorem 5.2, (B)). Consider {p, }neny — 0, i, > 0, and define
Q, = M% (Q—xy,) and vy, : Q, — R, v, (y) := ;%w (Un(ny + xn) — un(x,)), n € N.

Let us show that up to subsequences, {v,}nen — v in the C°-topology, where v : R? — R,
v(y) = (y, {0, y)o). Since v, lie in C?(,,) and vanish at the origin, Remark 5.1 yields that, up to

subsequences, {v, }nen — vg in the CO-topology, where vy € C)(R?). We have to show that v = vg.
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Call G as the entire graph defined by vy, and for any bounded domain €’ C R? label Aq/ as the
singular set of vglg. If Ag: = @ for any €', Theorem 5.2 and Calabi’s theorem would imply that
{Un}nen — vo in the C>®-topology and vy is a linear map defining a spacelike plane, contradicting
that o = limy, 00 Vv, (0) is a unitary vector. Therefore Agz # ) and G contains a lightlike straight
line. From Lemma 2.1, G must be a lightlike plane and so R? is foliated by singular straight lines
of vg. As a consequence, Claim 1 implies that {||Vv,|lo}nen — 1 in the C°-topology over RZ.

In the sequel we will assume that € is simply connected (otherwise, replace € for a small enough
disc centered at xp). Let v} : ,, — R denote the conjugate function of v,, with initial condition
vX(0) = 0, and label S,, as its associated minimal graph. Let II,, denote the tangent plane of
S, at 0, i.e., the plane passing through 0 and orthogonal in the Euclidean sense to the vector
VIVl (=V03,1) (0) = (Vu, /T = [Viual) (wn), where Vu () = (~%, %)(,).

The limit plane ¥ = lim,, . I, is orthogonal to (¢, 0), where ot = (

o = (wy,ws).

By standard curvature estimates and the Uniform Graph Lemma for minimal graphs [19], we
can find a graph S/, C S,, n € N, such that {5/, }nen — X in the C*-topology as graphs over X.

Let 4n(s) : [-L),,Ly,] — IIp be the arc-length parameterized inextensible arc in S, N Iy
satisfying 4, (0) = 0. Write 45, = (9, 0), and note that {[L}, Ly]}neny — R and {7,(8) tnen — Y0
in the C> —topology over R, where v : R — R? is given by 7(s) = so.

For each n € N, call G,, the maximal graph determined by v, and set ay, : [-L}, L,] — Gp,
an(8) := ((s),vn(8)), where v,(s) := vp(n(s)). It is not hard to see that {a/,(s)}neny — (0,1)
in the C>*°—topology. Indeed, since al,(s) = (7,(s), (7, (3), Von(vn(s)))o), it suffices to check
that {Vv,(vn(8))nen — o. Taking into account that v’ (y,(s)) = 0 for any s, we have that
(Vuy, (1(8)), 1 (s)o = 0, and so, Vv (ya(s)) = An(s)75(5). As {[[Vunllo}nen — 1 in the C°-
topology, then |A,(s)| — 1 uniformly on compact subsets of R. But {Vv,(0)}neny — o implies
An(0) =1, hence {An(s)}neny — 1 and {Vu,(15(8)) tnen — 0.

As a consequence, {ay,}nen converges to the lightlike straight line ag : R — G, ap(s) = (s, s),
hence G is the lightlike plane containing ag and v = vy, proving our assertion.

To finish the claim, take a closed disc D C  of positive radius centered at x(, and without loss
of generality, suppose {x,, n € N} C D. Label p, := max{|u,(z) — u(z)|, z € D}, and define vy,
wy, : Oy — Rby va(y) = ,%,(“n(ﬂny"‘xn) —un(Ty)), wa(y) = ,%,(“(Mny‘i‘xn) —u(zn)), n € N. We
know that {vy, }neny — v, and by Remark 5.1 {w, }nen — w in the C°-topology, where w € C?(R?).

If |z, y|C A be the inextensible singular segment of u containing g, then the PS graph G’ :=
{(y,w(y)) : y € R} contains the straight line passing through O and parallel to the lightlike
vector (y — x, u(y) — u(z)). From Lemma 2.1, G’ is the lightlike plane parallel to this vector, and
so w(y) = (y, (y, Du(zo))o), for any y € R2.

Setting D,, := M%(D — ), the graphs G, := {(y,vn(y)) : y € Dy} and G}, := {(y, wn(y)) :
y € Dy} satisty dg(Gn, Gl) < 2, n € N, hence dy(G,G’) < 2. This implies that G and G’ must
be parallel and so o = Du(zg), which proves the claim. O

—ws, wy) provided that

Claims 1 and 2 imply that {||Vu, — Dullo}nen — 0 in the C°-topology over R?. Let us show that
Du is continuous on . From Theorem 5.2, Du is continuous on @ — A, and Lemma 2.1, (i7) and
Remark 5.2) show that o, ,) depends continuously on (z,y) € A, hence Du is continuous on A
too. Therefore, it suffices to prove that limy_,oo Du(yx) = Du(xg), provided that {yx}rey C 2 —.A
and limg— ooy = o € O(A). To see this, use Theorem 5.2, (A) to find a divergent sequence
{nk}ren in N such that ||Vun,(yx) — Du(yk)llo < 1/k, for any k£ € N. From Claims 1 and 2,
limg— oo Vtin, (yr) = Du(zg), and so limy 0o Du(yr) = Du(xo).

Finally, fix 29 € Q and define du = (Du, (dz, dy))o. For any z € Q and any smooth curve o C
connecting o and z one has u(z) = limy,— oo Un () = limy, 0o (un(x0) + fa duy) = u(xzo) + fa du.
Since du is continuous then u € C](f2), concluding the proof. O
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5.1 Asymptotic behavior of maximal multigraphs of finite angle

Set G = {(z(x),u(x)) : x € W} a PS multigraph over a wedge W C R of finite angle. Let
dw be the intrinsic distance in W induced by |dz|?, and fix zo € W. Since ||[Vulo < 1 and

. Aoy (a0, A e
limgew oo HMZ/((;)OHE) =1, then limsup, cyy_, o Hluﬁ <land 7H(r):=1- mm{@ s lz(2)]o =

z(x)l|lo
r} € [0, 2] for any r > 0. o
Define 71(G) :=limsup,_, . 77 (r), 77 (G) := 71 (—G) and 7(G) = min{7"(G), 77 (G)}.
Likewise, 74 (G) := liminf, o, 71 (r), 75 (G) := 75" (=G), and 79(G) = min{7; (G), 7y (G)}.
These numbers give different measures of the asymptotic closeness between G and the light
cone. Obviously, 77(G) > 7 (G) and 77 (G) > 75 (G).
For 6 €]0, +o0, call

E2(0) :=inf{7(G) : G is a maximal multigraph over a wedge of angle 6}

Z0(0) :=inf{r(G) : G is a maximal multigraph over a wedge of angle 6}

and notice that Z(0) > Ey(6).
The monotonicity formulae 7(G’) < 7(G) and 70(G’) < 70(G), provided that G C G, hold
straightforwardly. As a consequence, Z(#') < E(f) and Z¢(8’) < E¢(0) provided that § < 6.

Lemma 5.1 =(0) > 0 for any 6 €]0, +oo.
Proof: Since 77 (G) = 77 (—@G), we have
Z(0) = inf{7"(G) : G is a maximal multigraph over a wedge of angle §} > 0.

On the other hand, any multigraph of angle 6 contains, up to a translation, a graph over the
wedge Wy for any 6/ < min{g, 7} (see Section 2). By the above monotonicity argument, if suffices
to prove that

inf{7*(G) : Gis a graph over W} > 0

for any 6 €]0, 7[. Reason by contradiction, and assume that there exists 6 €]0, 7| and sequence of
maximal graphs {G, },en over Wy such that lim, . 77(Gy) = 0. Write G, = {(z,u,(z)) : z €
Why}, and without loss of generality suppose u,((0,0)) = 0, n € N. From equation (1) and up to
scaling depending on n, we can also assume that

1
un(z)/||zllo € [1 —7H(Gy) — e 1], for allz € Wy N {||z]jo > 1} and n € N. (7)

Define v : Wy — R, v(x) = ||z||o, and let us see that

lim sup {||Vun, — V|0 : € Wy N {]||z|o > 1}} =0,
n—oo

for any 6" €]0, 0[. Indeed, reason by contradiction and suppose there is a sequence {zj}nen in
Wor 0 {||z]|0 > 1} such that, and up to subsequences, ||Vun(z,) — Vo(z,)|lo > € > 0. Call v, (y) :=
L —un(||znlloy), for each n € N. The fact that {77 (G,)}nen — 0, equation (7) and Proposition

Tanllo
5.1 imply that {v,}nen — v in the Cl-topology on Int(Wjy), contradicting that HVUn(”l Ho) -
Vs

Let g, be the holomorphic Gauss map of of G,,. Writing Vu,, = —ﬂ + za—“ﬂ one has that g, =

—i
I+y/1=[[Vunli3
ielt| . (&,5) € [-0,0'] x [1,+oo[} = 0, for any &' €]0,0].

)|lo > € > 0 for all n € N and proving our assertion.

Vu,. Rewriting the above limit in polar coordinates we mfer that hmn_,oo sup{|gn(se¢)+
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Therefore, fixing ' €]0, 6] and € €]0, min(3, %')[, we can find ng € N large enough in such a way
that |Im(log(gn,)(se®)) —&+7/2| < € and |gn,(se®)| > 1—€ > I, for every s > 1 and ¢ € [—¢,6'].
An intermediate value argument gives that Cs := {x € Wy N{||z]lo > 1} : Im(log(gn,)(x)) = 0} is
non compact and CsNA (Wy N {||z|lo > 1}) C {||z]jo = 1}, for any ¢ €]—0"—7/2+2¢, 6 —7/2—2¢|.

Choose § in such a way that dg,, never vanishes along Cjs, and take a divergent regular arc
a5 C Cs. As log|gn,| is strictly monotone on ag, then limyea; oo gny () = 7560, 1 —€ < rs < 1.
In other words, 75 is an asymptotic value of g,, at the unique end of G,,,. This argument works
for infinitely many ¢’ €] — 0’ — /2 + 2¢,60' — /2 — 2¢[ different from 6, and so g, has infinitely
many asymptotic values. This contradicts the parabolicity of G, (see for instance Corollary 4.1)
and Theorem 4.1, and proves the lemma. O

For any & €]0, 2|, set Us the region {(z1,22,t) € R} : arg ((z1,t)) € [5, 7+ 4]}

Lemma 5.2 Consider a wedge W C R and a region Q C W satisfying that Wz — D C Q C W,
where D is an open disc centered at the origin. Let G = {(z,u(x)) : = € W} be a mazimal
multigraph over W, and call Gy = {(z,u(x)) : = € Q}. Assume that 7 (G) < 1 — tan(d) and
d(Go) — = H(D) C Us for some § €]0, Z|.

Then liminfye oo w > 1 -1 (G). In particular, 7,7 (G) = 0 implies that {(y,u((y,0))) :
y € R} is an upward lightlike ray.

Proof: Take € €]tan(8), 1 — 75 (G)], and let H. C R} denote the smallest half space with boundary
plane parallel to {(x1,x2,t) : t — ex; = 0} containing I(Gy) U Us.

Since 7 (G) < 1 — ¢, we can find a divergent sequence {rj}xrey in [1,4o0o[ such that G N
7 '{x €y : ||z|lo = rx}) C He for any k € N. As 9(Go) UUs C H, then 9(Gy) C H,, where
Gr = Gonm t({z €Iy : ||z/lo < rr}. The convex hull property gives that Gy C H,, for any k > 0,
and therefore lim infye oo W > e. Since € is an arbitrary real number in ]tan(s), 1 — 7,7 (G)[

we are done. O

Corollary 5.1 Let W be a wedge of angle > 4w and write 0(W) = a1 U ag, where a; = [0, 1],
J = 1,2. Call 0;(W) = limgeq, arg(z), j = 1,2, and (W) = w. Consider G :=
{(z,u(z)) : © € W} a properly embedded maximal multigraph over W, and assume that there is a
region 0 C W and an open disc D C C = Il such that arg ™ ([lg(W)—%,00(W)+%])—2" (D) C Q
and 9(Go) — w1 (D) C Us, where Gy = {(z,u(x)) : z € Q} and § €]0, I[.

Then there exists a positive constant = not depending on G such that 70(G) > Z.

Proof: Since d(Go) — (D) C Us then limsup, _, | min{—@ sz e, |z(x)|lo =7} < tan(d),
hence 75 (G) > 1 —tan(d). Thus, it suffices to check that 7 (G) > = for a suitable constant = > 0.

Reason by contradiction and take a sequence {(Wy, Gy, Qn, Dy)}nen of wedges, embedded
multigraphs, domains and discs satisfying the above hypothesis and such that lim,, . TO+ (Gn) =0.
Up to a rotations about the t-axis and reparameterizations we will suppose that 6o(W,,) = 0 for
any n € N. Label [,, as the proper arc {(y,0,u,(y)) : y € [1,400[} in G,,. Using Lemma 5.2 we
get thatliminfyec oo w > 1 — 74 (Gp) > 0. Therefore, up to removing from W,, a suitable
compact subset and choosing a larger D,,, we can suppose that l,, C {t > 0} for any n € N.

Up to scaling, we will also assume that D, = D for any n € N, and call W = W5, — D.
Moreover, we replace Gy, for {(x,u,(x)) : & € W = Wy, — D} keeping the same name for the new
multigraph, for any n € N.

Since G, is embedded, 9(G),) contains an unique proper arc I, lying above [,, (and so contained
in {¢t > 0}) and such that 7 (l},) = n(l,). Write W' :={p e R : |z2(p)|lo > 1 and arg(p) € [0, 27|}
and F, = {(z,un(x)) : = € W'}, and up to the reflection about the origin, suppose that 9(F,)
consists of I,, UI!, and a suitable subarc of 9(G) N 7~(d(D)).
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Take ¢, €)1y (Fy), 27 (Fn)[ and call Vi, := {(z,t) € R} : [t| > (1 — ¢,)||z[o} and V| =
Vo.Nn{t >0}, n € N. For each £ € T := [r/2,37/2] call H, () as the closed half space being tangent
to O(V,.F) at L, (&) := {(se®, (1 — ¢c,)s) : s € R} and containing V. Consider an increasing
divergent sequence {ry}ren in |1,+oc[ such that F, N7~ *({z € Uy : |zllo = rx}) C V,'. Set
F! := F,—V, and let C be an arbitrary connected component of F' N7~ 1({zx € Up : |lz|lo > r1}).
Obviously, C' is compact and 9(C) C d(V,F) U {(y,0,t) : y, t > 0} C H, (&), for any £ € I. The
convex hull property implies that C C H, (&), and by a standard application of the maximum
principle, (H,(§)) N C = § for any £ € I. Since this is valid for any connected component C of
F'nat{z €y : ||zllo > r1}) and € € I, we infer that F := F, N7 *({z € Iy : |zlo >
ri, arg(z) € I}) C Vb and 77 (F) < ¢,,. However lim,, ., 75 (Fy,) = 0 implies that {c, }nen — 0,
hence lim,, o, 77 (F/) = 0 too. We infer that Z(m) = 0, contradicting Lemma 5.1 and proving the
corollary. O

The existence of lightlike rays in a maximal surface imposes some restrictions on its geometry.
We start with the following lemma.

Lemma 5.3 Let W C R be a wedge of angle 6 €]0, +o0[, write J(W) = Ly U Lo, where Ly and Lo
are divergent arcs with the same initial point, and call 0; = limgcy,; arg(x), j = 1,2. Let co C W
be an arc such that z(co) is a half line and limgc ;(cp)— oo arg(x) = & €]601, 62].

If X : W — R} is a mazimal multigraph and ¢ := X(co) is a lightlike ray then c is sublinear
with direction ve € {%(e’g, 1), \%(e’g, -1)}.

Proof: Any blow-down of ¢ with center O is a lightlike half line in Cy (that is to say, if {fin tneny — 0,
tn > 0, then {unclneny — 1, 1 C Cp). Tt suffices to consider the blow-down sequence {1, X }nen of
maximal multigraphs and take into account Proposition 5.1. O

Proposition 5.2 Let N C R} be a properly embedded mazimal multigraph of finite angle 6 > 0,
and assume that O(N) can be split into two proper sublinear arcs ly and ly with lightlike directions
v1 and ve, respectively.

Then v1 = £v9, and limzen— 00 () = sto(w), where g is the holomorphic Gauss map of N
and w = —ﬁvl. In particular, the underlying complez structure of N is parabolic.

Proof: Up to removing a suitable compact subset suppose that O ¢ w(N), and as usual call
arg : N — R a branch of the argument of 7|x. Write 0; = lim,¢;; .o arg(z), j = 1,2, and suppose
without loss of generality that 6; < 6. Fix a compact arc Iy C 9(N). From the definition of
multigraph, it is not hard to construct a foliation F (&, u) : [01, 2] x [0, +00[— N satisfying:

(i) le := F(&,-) is a proper arc with initial point in Iy, for any £ €61, 62[, and lp;, = I; up to a
compact subset, 7 =1, 2.

(ii) For any € > 0, there is a closed disc D(e) C IIy such that 7(l¢) — D(e) is a half line, for any
13 6]91 + €,0y — 6[.

(iii) w is the Euclidean arclength parameter of w(l¢), £ € [01, 62], and

ulingomax{| arg(F(§,u)) —&| + £ € [61,02]} =0.

Let F C [01,62] be the closure of Fy := {{ € [01,62] : ¢ is alightlike ray}. Since blow-
downs of lightlike rays are lightlike half straight lines and Fj is dense in F, any blow-down of
Np = F(F x [0, +oc[) with center the origin is a closed countable collection of angular regions®

SW C Cp is said to be an angular region if either W = 71 (W) NCf or W = =1 (Wp) NCy, where 6 € [0, 27].
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in Cp (some of them could be lightlike rays). This argument and Proposition 5.1 (see also Lemma
5.3) show that ¢ is a sublinear arc with lightlike direction ve € {%(e’f, 1), %(e’f, —1)}, for every
EeF.

Let us see that F' is a compact totally disconnected set. Reason by contradiction and suppose
there exists a closed interval J C F of length |J| > 0. Then, any blow-down of N; := F(J x[0, +00[)
with center O is an angular region of Cy of positive angle, and thus 7(N;) = 0. This contradicts
Lemma 5.1 and proves our assertion.

Claim 1: If{p,}nen C N is divergent and lim,, o arg(p,) = & € F, thenlim, o g(pn) =
sto(we), where we = —ﬁvg.

Proof: Call p, := d(pn,le) and take ¢, € l¢ satisfying |pn — qullo = pn, n € N. Set G :=
arg 1([¢ = 6,£ +0]), § €]0, 7], and put G, := %(G —qn), where \,, := max{pn, 1}, for any n € N.

Since {{*}nen is divergent, {Gn}nen converges in the CY-topology to either an entire graph
over Il containing a lightlike straight line parallel to ve (if € ¢ {61, 62}) or a graph over a closed
lightlike half plane H C IIp with boundary parallel to vg;, j € {1,2} (if £ € {61,62}). Anyway,
Lemma 2.1 gives that G, is either a lightlike plane or a lightlike half plane bounded by a lightlike
line. The claim follows from Proposition 5.1. O

The closure of a connected component of [0, 6] — F' is defined to be a good component of
[01,02]. As above, if I is a good component we set Ny := F(I x [0, 4o00[).

Claim 2: IfT = [£1, &3] is a good component of [61, 02], then the limitwy := limzen, — oo 9(2)
exists. In particular, wi = wg, = We,.

Proof: Define Hy = {z € R} : |z| < 1}, and let us show that I N 'H; is compact for every £ €
1€1, &2[. It suffices to check that any divergent subarc I C I¢ satisfying that m(l¢) C {se’¢ : s >0}
intersects H; in a compact set. Assume that lé NH;y # O (otherwise we are done), and note that
I; can not lie in H; because otherwise /i would be a lightlike ray. Therefore, I; N9(H1) # (. Since
l¢ has slope < 1 and the hyperbola 7 ({se® : s> 0})NH; is timelike, then l¢ and O(H1) meet
only once, proving our assertion.

Thus we can find an smooth proper arc in ¢ C Ny — Hy, ¢ 20, 1], satisfying that arg|. is
monotone and arg(c) =|¢;, &o. Set N C Ny the simply connected region bounded by ¢ and disjoint
from O(Np), and note that N} has parabolic underlying conformal structure (use that Ny NHy = ()
and Theorem 4.2). On the other hand, splitting ¢ into two divergent arcs ¢; and ¢y with the same
initial point and using Claim 1, we have that, up to relabeling, limzec, o0 9(z) = we,, j = 1, 2.
By Theorem 4.1, we, = we, and limgen: o0 9(7) = we, -

To finish, take a compact arc ¢y C Ny connecting (Ny) and O(N7) and splitting Ny — Int(N})
into two regions N{ , 7 = 1,2. The spacelike property guarantees that N{ is contained in a
spacelike half space, hence it is parabolic by Corollary 4.1. As above lim_ . Ni—oo g(z) = we,,
7 =1,2, completing the proof. O

Claim 2 and a connection argument give that w := w; does not depend on the good component
T of [0, 62] and limgen— o0 g(2) = w. Since |g| < 1 on N, then h := —log|g —w|+log 2 is a positive
proper harmonic function on N, proving that N is parabolic and concluding the proof. O

Corollary 5.2 Let N be as in Proposition 5.2, but allowing that O(N) contains lightlike subarcs.
Then vy = v and limyen_a(N)—oo 9() = sto(w), where w = —ﬁvl.

Moreover, if in addition N is a *mazximal surface then its underlying complex structure is
parabolic.
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Proof: Consider a properly embedded maximal multigraph N’ in R? contained in N — 9(N) and
with the same angle of N. If 9(N") is close enough to d(N), (N’) can be also split into two proper
spacelike sublinear subarcs 1] and 5 with directions v; and wve, respectively, and Proposition 5.2
applies to N’. Since N’ is any arbitrary region of N satisfying these conditions, the first part of
the corollary easily holds. For the second part, take a conformal parameterization X : M — R3 of
N and note that g has well defined limit at the end of M. Reasoning like in Proposition 5.2 M is
parabolic. O

Remark 5.4 Any mazimal multigraph N satisfying the hypothesis of Proposition 5.2 or Corollary
5.2 is asymptotically weakly spacelike. Indeed, simply observe that any spacelike straight line not
orthogonal to vy intersects N into a compact set.

Now we can prove the following uniqueness result.

Proposition 5.3 Let G be an entire PS graph which is a mazimal surface except on a closed
lightlike half line | C G. Then G is congruent in the Lorentzian sense to Enneper’s graph Es.

Proof: Up to a Lorentzian isometry, put [ = {(z1,72,t) €ER} : 21 =29 —t =0, t > 0}.

Set Go = G — 1l and lp =1 — {O}. From Riemann’s uniformization theorem, Gy is conformally
equivalent to either C or U. Since g is not constant and |g| < 1 on Gg, then necessarily Gy = U.
Label X : U — R$ as the associated conformal parameterization of G.

Claim 1: If {2z, }neny C U and {X(2n)}nen — po € lo U{oo} then lim, oo g(z,) = 1.

Proof: Label A, = d(X(z,),1), and let us see that {g(zy) }nen — 1 provided that lim,, 0o X (2,)/An =
oo. Indeed, the sequence {G,, := ﬁ (G — X (21)) }nen converges in the C%-topology to an entire PS
graph G containing a lightlike straight line parallel to {21 = 22—t = 0}, hence Goo = {z2—t =0}
from Lemma 2.1. The assertion follows from Proposition 5.1.

Applying Proposition 5.2 to G — n = ({|z1]| < 8, x2 > —4} for any § > 0, the claim holds. O

Fatou’s theorem guarantees that g : U — D has well defined angular limits a. e. on 9(U) =R,
and since g is not constant, Privalov’s theorem gives that these limits are different from 1 a. e. on
d(U). By Claim 1 and a connectedness argument, we infer that any two sequences {z, }nen, {2}, }nen
satisfying lim, oo X (2,), lim, . X(2],) € lo U {c0} converge to the same point zp € R U {o0}
(up to a conformal transformation we will suppose zg = oc). Therefore, lim,_,, X(z) = O for all
r € R, and from equation (2) we get that |g] = 1 on RU {oo}. By Schwarz reflection, X and g
extend to C and C, respectively, and dg # 0 on d(U) U {oc}. The extended map X : C — R} is a
conformal maximal immersion with lightlike singular set R and X (U) = Go U {O}.

Set u := ((t — x2) 0 X) |7 and label u* as its harmonic conjugate.

Claim 2: The holomorphic map h : U — C, h := u+1iu*, is injective and h(ﬁ) ={ze€
C : Re(z) > 0}.

Proof: From equation (1), G C Ny Ext(C;) C {t — 22 > 0}. Then, the maximum principle gives
that Go C {t — x5 > 0}, that is to say, u~'(0) = R. Furthermore, as U is parabolic and u is not
constant (see Section 4), then w is non negative and unbounded.

Basic theory of harmonic functions says that u~'(a) consists of a proper family of analytical
curves meeting at equal angles at singular points of u, a > 0. Let us show that u~!(a) consists of a
unique regular analytical arc, for any a > 0. Indeed, otherwise we can found a region  C U such
that 0 < u|q < @ and u|y(q) = a, contradicting the parabolicity of €.

Since u*|,-1(4) is one to one for any a > 0, then £ is injective. Furthermore, h(ﬁ) is parabolic
simply connected open subset of {z € C : Re(z) > 0}, and so h(U) = {z € C : Re(z) > 0}, which
proves the claim. O
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Up to a conformal transformation, we have h(z) = iBz, B € R — {0}, B < 0, and since

dh = i¢3 — ¢ = —i (955)2 ¢3, then ¢3 = —B(gz—gl)de. As G has a unique topological end, then

g (1) = oco. Moreover, dg # 0 along R U {oo} gives that g|rus is one to one, and so g(z) =
(z —ir)/(z +ir), where r € R and |(1 —r)/(1 4+ )| < 1. Up to conformal reparameterizations,
Lorentzian isometries and homotheties, these are the Weierstrass data of Es. O

5.2 Finiteness of maximal graphs with planar boundary

Let Q be a region in R%. A non flat maximal graph G' = {(z,u(x)) : x € Q} is said to be supported
on € if ulo_g(q) satisfies equation (4) and v = 0 on 9() (in particular,  can not be compact).

Assume that G = {(z,u(z)) : = € Q} is supported on Q and denote by G(R) (resp., Q(R))
the intersection G N (D(R) x R) (resp., Q N D(R)), where D(R) = {x € R? : |z||o < R}, R > 0.
Let A(G(R)) denote the area of G(R) computed with the Riemannian metric induced by (,) on
G. The spacelike condition |Vu||g < 1 gives the following trivial estimate:

Ay = [ o V1 IVl da < (@) < 7 ®)

where da is the Euclidean area element in R? and Ag(€2(R)) is the Euclidean area of Q(R) in R2.
The following theorem has been inspired by Li-Wang work [16].

Theorem 5.3 Let {G;}F_, be a set of k maximal simply connected graphs in R} defined by the
functions {u;}¥_, with disjoint supports {;}F_; in R2. Let us assume that |Vu;llo < 1 — ¢, for
any i =1,...,k, where € €]0, 1].

8

IN

Proof: Without loss of generality, suppose O ¢ U¥_, Q. Since O ¢ Q;, uilo,) = 0 and ||[Vu;l|o
1 —¢, we get from (1) that |u;(z)| < (1 —¢)||z|lo on @i, i =1,..., k.

Fix Ry > 0 such that G;(Rg) # 0 fori=1,...,k. As Ju;| < (1 —¢)R on G;(R) and A(G;(R)) <
7R? for any R > R and i € {1,...,k}, then for any m > 1 we obtain

m k . k .
11 a2 myy [wilda Ja,(ro wildx > a((1— £)23m+D g3y

j=0i=1 qu,(2f+1Ro) |“"|dx i=1 fcq,(zmHRo) |“i|d$ -

where dx is the intrinsic area element and « = Hle I (Ro) |ug|d.
ildx
Hence, there exists 0 <t < m such that Hf_l ffﬁM > 273k 1/ (mH1) (1 —g) g RY)~H/(m+1),
=1 [, @t+1ry) |wi|da
and by the arithmetic means we infer that

k .
> k:(H S, 2t ry) il

i1 Jau @i py) lwilde

= Jo oy uilde

. s d )k > 273 haTrE (1 - e)nRY) T/ D (9)
i=1 JGi(2t+1Ro) I

On the other hand, labeling M; = max{% : 2 € Gi(2'Ry)}, i =1,...,k, we have
fcq,(2‘+1 Rg) |ui|dx
k o Jwildz k
Jo i I <max{M; : i=1,....k} A(Gi(2'Ro))).
i=1 qu,(2‘+1Ro) [usldz i=1

Using that u;’s are disjointly supported and equation (8), we have Zle A(Gi(2'Ry)) < Zle Ao(24(2°Ry)) =
Ao(UF_1Q4(2'Ry)) < m(2'Ro)?, and so

k
fc7,(2tR0) |us|dz |uiy (o)

= Jou@rrg 1147 T Jo @iy [l de

7(2' Ro)?, (10)
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for some 1 < iy < k and (o, ui,(70)) € Gi, (28 Ry).

As Q, is simply connected, then the conjugate minimal graph G} = {(z,u} (7)), : = € Q;,}
of G, is well defined (see equation (5)). Since u;, is harmonic on G and vanishes on 9(G7, ), the
mean value property for subharmonic functions on minimal surfaces gives

1

[ugo (20)] < ~(2Ro)? [ui, (y)d"y,

\/G:OFTB(])(),Q‘RQ)

where po = (0, u;, (o)), B(po, 2" Ro) is the Euclidean ball of radius 2° Ry centered at po, and d*y
is the Euclidean area element on G7 .

da < —z—dx. Since G},NB(poy, 2! Ry) C

From equation (5), d*y = /1 + || Vu; [|*da = = e(2—¢)

D(2'"'Ry) x R, we deduce that

1
\/I_HVU%OHS

1 1
. < . d
|uiy(20)] < £(2 — &) m(2'R)? /Gm(Q”“RO) |uiy (y)|de,

[uildz 1

and from (10), Zk Jo, ety

i=1 fc7(2‘+1R0) Jluilde — e(2—e)"

Equation (9) gives

1 1
2 3 fqm+Dk ((1 — R3 -/ (m+1) < ,
@ (( E)Tr O) — 5(2 . E)

and taking the limit as m — oo, we obtain k£ < ﬁ, concluding the proof. O

6 Maximal surfaces with connected lightlike boundary of
mirror symmetry

Let us go over some basic definitions and properties, thereby fixing some notations and conventions.

Throughout this section, M be a Riemann surface whose boundary consists of a non compact
analytical arc T, and X : M — R} a conformal proper *maximal embedding. As usual we identify
M=X(M)CR}and ' = X(T') C R3.

From Lemma 2.2, 7|y : M — Ilp is a local embedding. Moreover, since I' is a regular
lightlike arc then its orthogonal projection over the t-axis is one to one and we can write I' =
{T(s) := (y(s),s) € R} : s € R}, where s := t|r is the Euclidean arclength of v C R? = Ilj.
Up to a translation, we assume that T' passes through ¢ := (1,0,0) (and so I'(0) = (1,0,0) and
~(0) = (1,0)). Since any spacelike plane and T" meet transversally at a unique point, then

I' —{q} C Int(Cy), foranyqel. (11)

Let g : M — D denote the holomorphic Gauss map of M, and recall that |g|(p) = 1 if and only if
p € I'. Thus the argument function Im(log(g)) has a well defined one to one branch, namely 6, along
. Labeling 0~ := inf(0(T")) and 6* := sup(A(T)), the function 0(s) : R —]0~, 07 [, 0(s) := 0(I'(s))
is a diffeomorphism and provides a global parameter along I'. Up to a ambient isometry, we will
assume that 6'(s) > 0 and 6(0) = 0.

From equation (2), 7'(s) = ig(s) = ie?®®), and so in complex notation y(s) = 1 +1 [; @ dz.
Up to a symmetry with respect to a timelike plane, we can assume that €' (s) > 0, hence lim;_, 1o, 0(s) =
6" and lims_, o, 0(s) = 0~. By definition, the rotation number 0,4 of M is the change of the tan-
gent angle along v. Obviously, Oy = 67 — 0~ € [0, +-00].

As a consequence of Lemma 2.2, m : M — Il satisfies the following path-lifting property:
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Given an interval I, ag € I, a curve B(a) : I — Iy and po € 7~ *(B(ag)) N M, there exists a
unique inextendible curve B : J — M in M such that ag € J C I, B(ag) = po and wo = [|;.

The curve B is said to be the lifting of B to M with initial condition B(ao) = po. Note that
either J = I or at least one of the endpoints of B lies in T'.

For each s € R, take an open simply connected neighbourhood V; of I'(s) in M such that TNV,
is connected and 7|y, : Vs — m(V;) is one to one. Then label n(s) € Iy as the unit normal to v at
~(s) interior to 7w(Vs). Obviously, n(s) does not depend on the chosen neighbourhood V5.

Set as : [0, +oo[— Iy, as(a) = v(s) + an(s), and consider the lifting & : J — M of o, to M
with initial condition a(0) = I'(s). The property I' — {I'(s)} C Int(Cr(s)) and equation (1) give
as NT =T(s), hence from the properness of &g we have J = [0, +o00].

On the other hand, 7/(s) = ig(s) := ig(y(s)) implies that n(s) = £g(s) (this ambiguity will
be solved in the next Lemma). Taking into account that g'(s) # 0 for all s € R, we deduce that
7 is locally convez, and so v N w(Vy) lies at one side of the tangent line 74 of v at y(s). Let P
and P, denote the two closed half planes in IIy bounded by 74, and up to relabeling suppose
vyNx(Vy) C Py .

Figure 3: T', v, 7/(s), g(s) and n(s).

Lemma 6.1 The normal vector n(s) points to P} and n(s) = g(s) = —i/(s).

As a consequence, Fy : R x [0, +00[— M, Fy(s,a) := as(a) is a diffeomorphism.

Proof: Reason by contradiction and suppose there exists so € R such that n(sg) points to P .
By a connection argument, n(s) points to P, for any s € R. Take Vj, as above, and observe that
without loss of generality we can suppose that 7w(V;,) is convex and contained in P, for every s
such that T'(s) € V;,. Take a segment ¢ C w(V;,) connecting two points p, ¢ € m(T'). Call (cC Vo
its corresponding lifting, and observe that E connects two points p, ¢ € I' N V;,. The spacelike
property gives |t(q) —t(p)| < ||p — ql|o, which contradicts equation (11) and proves that n(s) points
to IIT for any s. As a consequence of the convexity of v, n’(s) = x(s)7/(s), x(s) > 0. Taking into
account that n(s) = +g(s), ¢'(s) = 6'(s)v'(s) and §'(s) > 0, we get that n(s) = g(s).

To finish, note that Fy is a local diffeomorphism (take into account Lemma 2.2). Hence, it
suffices to check that Fy is proper. Take a divergent sequence {(sn,an)}neny C R X [0, +00], and
write p, := Fo(sp,an), n € N.

If {5 }nen is bounded and {a, }nen is divergent, the properness of M implies that {m(p,)}nen
and {pn }nen diverge.

Assume that {s, }nen diverges and, reasoning by contradiction, suppose that {p,}neny — po €
R3$. The properness of M gives that py € M. Furthermore, since I' is a lightlike curve (see also
equation (11)) it is not hard to check that pg ¢ T'. Let V. C M — T be a neighbourhood of pg
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whose projection II(V') is a closed disc, and without loss of generality suppose p, € V for any
n € N (recall that M is properly embedded). For any ¢ € n(V) and n € S' set 3, : R — I,
Bgn(a) = g+ an, and let qu denote the lifting of [, , with initial condition qu(O) = ¢. Since
no spacelike arc projecting onto a segment can connect two points of I, we deduce that qu Nnr

consists of at most one point. The first part of the lemma gives that A :=T'N (U(qm)eﬂv)xsl qu)

is a connected closed subset of I" and 6(A) is a relatively closed interval in ]6~, 1 of finite length.

On the other hand, by the unique lifting property there are ¢, € (V) and 1, € S! such that
qunn = a,, for any n € N, and therefore {I'(s,)}nen C A. Since {I'(sp) bnen is divergent, A can
not be compact and either {I'(s;,)}neny — 07 < +o00 or {I'(s,)}neny — 0~ > —oo. Suppose that
{T(sp)}nen — 0% < +00 (the other case is similar) and note that lim, .. I"(s,) = (¢", 1) and
limy, .00 n(sn) = €' . Hence, the sequence of curves {d&,, : n € N} is uniformly divergent (i.e.,
for any compact C' C R3 there is ng € N such that a,, NC = ) for any n > ng), which contradicts
that {pn}nen — po and concludes the proof. O

Definition 6.1 The submersion ©g : M —]0~,07[, ©g(Fo(s,a)) := 0(s), is said to be the ar-
gument function of M. For any subset I C ©g(M) =]0—,0T[, we call M! := 0, 1(I) ¢ M,
M= MINT =0"1(1) and o := =(T').

Note that d(MT) = T'TUa,, Uds,, [TUds, or TTUas, , provided that I =]0(s1), 0(s2)[, I =)0, 0(s2)[
or I =]0(s1), 07, respectively, where s1, s2 € R.

An open interval I C ©¢(M) is said to be good if |I| < 7. A good interval I is said to be a tail
interval if one of its endpoints lies in {67,671}

Let I =]0(s1),0(s2)[C ©g(M) be a good interval, where s1, s2 € R. Since the change of the
tangent angle along v/ is < =, then 4! is an embedded arc. From Lemma 6.1, the arcs as,,
7! and a,, are laid end to end and form an embedded divergent arc. Furthermore, the family
{a5(]0, +00]), s €]s1,s2[} foliates the domain Q! C Il bounded by 7(9(M')) and with interior
normal n along 77 Thus Q7 is a wedge of angle 6(ss) —6(s;) and M~ is a maximal graph over Q1.

The case when I is a tail interval admits a similar discussion. First define

Y (—00) i= lim 7/(s) = —ie" and 4/(+o0) := lim ~/(s) =ie'?"

s——00 s§—+00

provided that = > —oco and 6% < +oo, respectively. If I =]0~,0(sq2)] (resp., I =]0(s1),07]),

then ~! is a sublinear arc with direction —1/(—oc) (resp., 7/(+0o0)), and Q! is the wedge of angle
0(s2) — 6~ + Z (resp., 07 — 0(s1) + Z) bounded by 7/ U as, (resp., as, U~T). If I = Og(M) is a
good interval, M! = M and Q! = 7(M) is a wedge of angle 0+ — 0~ + .

These facts have been summarized in the following lemma:

Lemma 6.2 If I C ©g(M) is a good interval then Q! := 7(M! —T1) is a planar domain bounded
by the Jordan arc w(d(M')). Moreover, QI is a wedge of angle 0(s2) — 0(s1), 0(s2) — 6~ + %
07 —0(s1) + 5 or 67 — 6~ + w, provided that I =]0(s1),0(s2)[, I =]0,0(s2)[, I =]0(s1),0T[ or
I = ©¢(M), respectively, and 7 : ML= QI s bijective.

In the sequel we write M = {(z,u!(z)) : z € QT U~!}, for any good interval I C Oy(M).

6.1 The blow-down multigraph of *maximal surfaces with connected
boundary

Fix a sequence of positive real numbers {\;},en satisfying lim; .1 A; = 0, and consider the
associated blow-down sequence of shrunk surfaces {M; := \; - M, j € N}.
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From the conformal point of view, M; = M and both Riemann surfaces have the same holo-
morphic Gauss map g. Therefore, we can choose the same branch 6 of Im(log(g)) along I'; := A;-T.
We also denote by v; := m o I'; and observe that v; = A; - v. Lemma 6.1 applies to M; and the
corresponding diffeomorphism F; : R x [0, +00[— M is now given by

Fi(Aj(s,a)) = \jFo(s,a), (s,a) € R x 0,400l

Likewise we define the argument function ©; : M; —]0%, %[ and the objects M§, I’§ and fyf , for
any I C ©;(M;) = 6¢(M). It is obvious that ©;(\;p) = Oy(p) for any p € M, and M} = X;- M,

=);- Il and 'yJI A;-~L If I is a good interval, Lemma 6.2 gives that M§ is a maximal graph
over the wedge Qf := (M) = X; - Q as well.

Lemma 6.3 If I C ©g(M) is a good interval, then {QL},en converges in the Hausdorff distance
to the domain QL. C Tl given by:

(i) If I =]0(s1),0(s2)[, 51, s2 € R then I = I* and QL is the interior of the wedge of angle
O(s2) — 6(s1) with boundary a2 Ual, , where agj (a) = an(s;) for any a € [0, +o0[, j =1,2.

EDR

(ii) If I =]07,0(s2)], then I* =]9_ -3 9( o) and QL is the interior of the wedge of angle
0(s2) — 0~ + Z with boundary o U al , where a® __(a) = —a~y'(—00) for any a € [0, +o0].

897
(1i1) If I =]0(s1),0%[, then I* =]9( 1), 9+ + Z[ and QL is the interior of the wedge of angle
07 —0(s1) + 5 with boundary o U oY, where oz+oo( a) = a7y (+00) for any a € [0,400[.

(iv) If I = ©9(M), then I* =]0~ — Z,0F + Z[ and QL is the interior of the wedge of angle
0" — 0~ + 7 with boundary o®  Uaf .

Moreover, up to subsequences {M§ —I’§}jeN — Méo in the CO-topology, where Méo is a PS graph
over QL. with boundary given by:
(i)" If I =0(s1), 0(s2)[ then O(ML)) =al ua?l

O and projecting in a one to one way onto ozsj, ji=12.

2 where &Sj s a divergent arc with initial point

(it)” If I =]6—,0(s2)[ then O(ML)) = a® ual,, where a°  := {—al’(—o0) : a € [0,400[} and
I(—o00) = limg—, oo IV(s) = \/Li( ’9 ,1) and &2, is given as above.

(ii)" If I =]0(s1), 0% [ then d(ML) = oz+oo Uad , where &%, := {al’(+00) : a € [0, +o0[} and
IV (400) = limg o0 IV () T( ;1) and a2, is given as above.

()’ If I = ©g(M) then OML) =a’  ual..

Proof: For any s € R write o ; 1= Ajas.

If T =]0(s1),6(s2)[, we have 8(95) =ag,,; U 'yJI» U as,.j, hence lim;_o dH(a(Q§), 2(QL)) = o.
This obviously implies that dH(Q§,Q£O) — 0 as j — oo and proves (i). When I =]0~,0(s2)],
8(95 ) = 'yJI» U a,, ;. Taking into account that the divergent arc 'yJI» is sublinear with direction
—(—00), {du (2, QL) }jen — 0 as well, proving (ii). The cases (iii) and (iv) are similar.

From Remark 5.1, and up to taking a subsequence, {Mé —I’§ }nen converges in the CO-topology

to a PS graph ML over Q!_ which can be extended continuously to QL.

Item (i)' is straightforward. If I =]0~,6(s2)[ then I'! is a sublinear arc with direction I''(—o0),
hence lim; 4o ' =a%  anda®  C d(MUL), proving (ii)’. The cases (i)’ and (iv)’ are similar.
a
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Let Z denote the family of good intervals in ©¢(M), and set Zg = {]c,d[€ T : [¢,d] C Opg(M)}.
Note that I € Ty if and only if 7 = I'* (i.e., I is not a tail interval).

Take a covering G := {I;; : k € N} of ©g(M) by good intervals containing a tail interval
16—, b] provided 6~ € R, and likewise if 1+ € R. For each k € N and from Lemma 6.3, we can find
a subsequence of {Mj’“ — I’§’“ }jen, which depends on k, converging on compact subsets of Qi’g to
a PS graph. A standard diagonal process leads to a subsequence, namely {M,)}ren, such that

{Mj?k) ﬁ'k)}keN converges in the C%-topology to a PS graph Méé on Qég for all h € N. Up

to replacing { M}, j € N} for {M;), k € N}, we can suppose that {Mjh - I’?’}jeN — Még for
any h € N. Moreover, since any I € Z can be covered by finitely many intervals in G, we also have
{ME-T T} jen — MU in the CO-topology over QL . In the sequel we write ML = {(z,ul (z)), = €
Qéo} for any I € 7, and observe that uéé = ué% on Q n N Q ) ,forany I, I, € T.

Let QL denote the marked domain {(z, 1) : zeQl}, I €Z.Set O := UIEIQQ the direct
sum of the topological spaces {Q , I € T}, and likewise define Oy := U[eIOQI = U[ezofléo
Consider on both spaces the equivalence relation: (x1,I;) ~ (z2, I2) if and only if J =11 N I # ()
and x1 = 29 € ng

Definition 6.2 We set W := O/ ~ and Wy := Oy/ ~ endowed with the quotient topology.

It is natural to define an argument function O : Wy — O¢(M) as the "limit” of {0; : M; —
©9(M)} en. Indeed, take p = [(x,I)] € Wy and an arbitrary sequence {p;};jen such that p; €
ME—TF and limj oo p; = (z,ul (x)) € ML, Writing p; = X;jFo(s;,a;), we have ©;(p;) =
©o(Fo(sj,aj)) = 0(sj) € I, j € N. Taking into account that I € Ty, we infer that the limit
s = lim; .4 s; exists and depends only on p. Furthermore, lim; .1 ©,(p;) = 0(s) € I and
%) = /||x||o. Thus, it suffices to set Ou([(, I)]) := ().

Since W is simply connected, log : W — C, log([(x, I)]) := log(z) has a well defined branch
and the map h: W — R*, h([(z,I)]) = (x,log([(z,I)])) is a homeomorphism. Choose the branch
of log : W — C in such a way that Im(log)|yy, = ©, that is to say, Im(log) ((z,log([(x,I)]))) =
O ([(z,1)]) for any [(z,I)] € Wy. Finally, identify W with h(W) via h and consider W C R.
Up to this identification, z(p) = x provided that p = h([(x, I)]) and arg|yy, = Os. Observe that
W = arg 1|0~ — Z,0" + Z[) and Wy = arg”'(00(M)), and its closures W and W, in R are
wedges of angles 6 M + m and 64, respectively.

If0~ € R, wewrite W_ :=arg~! ([0~ — %, 67])U{[0]}, and likewise W, := arg~! ([T, 6 + Z])U
{[0]} provided that 6+ € R. Obviously, W = Wy UW_ U W, (here we are assuming Wy = () pro-
vided that 6% = +00).

Define o, : W — R, uso(p) := ul_(2(p)), where I € T is any interval satisfying arg(p) € I*,
and call with the same name its continuous extension to W. It is clear that us([0])) = 0. Notice
that us is C* on W — {[0]} having || Vus|lo < 1 (see Proposition 5.1), and so the map

X W= RY, X((p,usc(p)) = (2(p), uoo(p))
is a PS multigraph of angle 6, + 7.

Definition 6.3 X is defined to be the blow-down multigraph of M associated to the sequence
{A\j}jen. We also say that Mo, := X (W) is the blow-down surface of M associated to {\;};en.

Since X (][0]) = O, equation (1) gives
Moo == 1{(2(p), use(p)) : p €W} C Ext(Co). (12)

Taking into account that M, is the limit set of a sequence of embedded surfaces and that 6(s) is
increasing, the sheets of the multigraph X : W — M, C R} are ordered by height, i.e.,

Uoo(P) > Uso(q) provided that arg(p) = arg(q) + 2km, k > 0. (13)
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If % = +o0, (resp., 0~ = —o0) we label ut(x) := sup{us(p) : p € z71(x)}, (resp.,
u™(z) := inf{us(p) : p € z71()}), for any 2 € C — {0}. We make the continuous extension
ut(0) =0 (resp., u~(0) = 0) and call

ML = {(z,uT(x)) : z€C} (resp., M, :={(z,u (x)) : z€C})

the associated graph. From Remark 5.1 and equation (12), M1 and M, are entire PS graphs
containing the origin, and so lying in Ext(Cy).

Notice that X|ag-1(r+) : arg” (I*) — ML is a homeomorphism for any good interval I € Z,
and so ML can be identified with arg~'(I*) via X. Then, it is natural to set W! := arg='(I) c W
and put ML = X(W!), for any subset I C arg(W — {[0]}). When I is connected, the closure of
W is a wedge and Xlgpr w - R$ is a PS multigraph of angle |I|.

Label Ax = |Vus| 1(1) € W — {[0]} as the set of singular points of u,, (see Theorem 5.2
and Remark 5.2). A point & € arg(W — {[0]}) is said to be a singular angle if arg=*(¢) C Ax. We
denote by Iy C arg(W — {[0]}) the subset of singular angles. A singular angle ¢ € Iy is said to
be conical if X(arg=1(€)) is a lightlike half line (that is to say, if arg=!(€) is a singular segment
of us). The set of conical singular angles will be denoted by I5. Note that Ix and I5 are closed
subsets of arg(W — {[0]}).

Proposition 6.1 If Ax # 0 then I # () and Ax = W!x. Moreover:
(i) If Ix — IS # 0 then iﬁf_lg‘ C X, where 3 is the lightlike plane passing through O, and M,
s a half plane in 3 bounded by L := 3 N Cy, for any connected component J of Ix — I%.

(ii) If I =), &[C arg(W —{0}) — Iy is a bounded component then &1, & € IS and & — & = km,
k €N, k > 2. Moreover, Méo is an embedded maximal multigraph, the limit tangent plane
Y of ML at infinity is lightlike, and %' does not depend on I. If in addition I — IS # 0,
then ¥ =% and (ML) C L.

(i13) If Jo is the closure of a connected component of Int(I5) then arg(W — [0]) — Jo is connected.

Proof: Assume that Ay # 0, and let us see that £ € Iy if and only if arg=1(£) N Ax # 0. Indeed,
suppose arg ' (§) N Ax # 0 and take p € arg™*(£) N Ax. From Remark 5.2 there is a divergent arc
I, C W —{[0]} passing through p such that L, := X(l,) is either a lightlike half line starting from
O or a complete lightlike straight line (in particular, I, C Ax).

If O € L, then ¢ € I C Iy and we are done. If O ¢ L, then p € Ay — W/ and L, is
a lightlike straight line. Then, consider the open half plane H C Il satisfying n(L,) C H and
O € 9(H), and label V¢ as the connected component of (7o X)~(H) containing L,. From Lemma
2.1, V¢ lies in the lightlike plane containing L,, and so Ve C Ay. As arg=!(£) C Ve C Ax then
¢ € Iy, proving our assertion. Furthermore, note that d(Vg) is a lightlike straight line passing
through O. As a consequence, Ay = W!* and I§, # 0.

Assume that Iy —I5 # () and consider £ € Iy —I5. Let J C Ix—1I§ be the connected component
containing £. With the previous notation, we have shown that |J| =, Ly := 9(Ve) C M isa
lightlike straight line and the lightlike half plane V¢ = M is a connected component of Méﬁf_lgf.
Therefore, to finish item (i) it suffices to check that the plane ¥ ; containing M7, (hence L) does
not depend on J. Indeed, take two components Jy, Jo C Ix — IS, and simply observe that the
lightlike planes ¥ 7, and X, can not meet transversally because M, is the limit set of a sequence
of embedded surfaces. In the sequel we will call ¥ := X and L := Ly, provided that Iy — I # 0
and J C Ix — I5 is any connected component.

Let us check (i7). to do this, consider I =]&,&[C arg(W — {0}) — Ix a bounded connected
component. From item (), &1, & € I$. Thus, [; := X(arg=1(§;)) is a lightlike half line with initial
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point at the origin, j = 1, 2. Since M, is the limit of a sequence of embedded maximal surfaces,
it is not hard to check that M is embedded too. From Corollary 5.2, the half lines [; and Iy must
be parallel, hence & = & + km, k € N. Furthermore, the limit tangent plane of Méo at infinite,
namely X/, is the lightlike plane containing l; U l5.

If k = 1, Lemma 2.1 implies that M. lies in a lightlike plane, contradicting that &1, &[Ny = ()
and proving that k& > 2.

Finally, let I1, I» C arg(W—{0})—Ix be two components as in the statement of the claim. Rea-
soning as in the proof of item (i), the embedded multigraphs M1, MZ2 can not meet transversally,
and so ¥’ := %} = %7 . Likewise ¥ and M, can not meet transversally, provided that Ix —I # 0
and the plane ¥ makes sense, and in this case ¥/ = X.

Let Jy be closure of a component of Int(I5). By a connectedness argument, either M7 C Cf
or M£ C C; - Suppose that Mg C Cg’ (the other case is similar), and let us show that a :=
sup(Jo) = 67 + Z.

Reason by contradiction and assume that a < 67 + Z. Set b := max{a — 2,inf(Jy)} < a,
label J; = [b,a] C Jy and write Jy (k) = (J1 4+ 2kn) Narg(W — [0]) for any k € N. From equation
(13) we get that MZ® Ties above M1 and using equation (12) we infer that ME® c,
for any k € N. So, J1(k) C I% for any k € N. As a consequence b > a — 27, because otherwise
l[a — 27, 0% 4 Z[C IS, contradicting that Jy is the closure of a connected component of I. Thus
I :=]a,b+ 27 is a connected component of arg(W — [0]) — I%, and items (i) and (ii) give that
b=a—m I CIy— I and ML is an open lightlike half plane bounded by a lightlike straight
line. In particular, Méo can not lie above Mg, contradicting equation (13) and proving (éi7). O

6.2 w*-maximal surfaces and the blow-down plane

Recall that M is asymptotically weakly spacelike, or simply w*-maximal, if there is an affinely
spacelike arc in R} disjoint from M. Although the w*-condition is a little involved, it is connected
with quite natural geometrical properties, as shown in Proposition 6.2 below. Moreover it provides
us a good control about the geometry of M at infinity. Let start with some previous notions and
comments.

Given a complete maximal surface S in R$ and a divergent curve « : [0, 1[— S, Theorem 2.1
shows that lim,_.; #‘ijy) > C > 0, where o¥ = a|[07y], L and Ly are the intrinsic length in .S
and Ily, respectively, and C is a constant not depending on «. With this inspiration in mind, M
is said to be complete far from the boundary if for any « : [0, 1[— M whose projection 7o « is a
divergent arc in Iy, the limit lim, | % is positive.

On the other hand, we know that M behaves like a "multigraph” in a generalized sense. It is
then natural to say that M is asymptotically strongly spacelike if it admits gradient estimates far
from the boundary, or being more precise, if for any good interval I there is €(I) €]0, 1[ such that
[Vul||o < 1 —¢(I) in the complement of a neighborhood of 7/, where u! : Qf — R is the function
defining the graph M.

Proposition 6.2 Suppose that M satisfies any of the following conditions:
(a) There is an affinely spacelike arc contained in the surface.

(b) There are a good interval I and a real number € €]0,1[ such that |Vulllp < 1 — € in the
complement of a neighbourhood of v .

(c) There is an arc o : [0,1[— M such that w(c) is half line and liminf, ., #ﬁ?y) > 0.

Then M is w*-mazimal. As a consequence, if M is complete far from the boundary or asymptoti-
cally weakly spacelike then it is w*-maximal.
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Proof: If M contains an affinely spacelike arc (3, it is easy to take an affinely spacelike o C R — M
in a small neighborhood of 3 (recall that M is properly embedded), proving (a). As a consequence,
if &, is affinely spacelike for some s € R then M is w*-maximal. This automatically holds if u’
satisfies that |[Vul|lg < 1 — € in the complement of a neighbourhood of v/ in Q! for some € €]0, 1],
where I is a good interval and s € t(y!), proving (b).

To see (c¢), it suffices to check that « is affinely spacelike. Let a be the Euclidean arclength
parameter of 7 o a. Reason by contradiction, and take a divergent sequence {ay}neny C [0, 00|
such that lim,, . % € Cp. Put lim,, . % = (€%, 41) and without loss of generality suppose
that £ =lim,—, 4 @On(oz(a)). Let I be a good interval containing &, and up to removing a compact

subarc assume that o C M?. Choose \,, = ai, n € N, and consider the blow down surface M

associated to {\, }nen. For every n € N,y € \,,-Qf and a € [0, +-o00[ write ul (y) = Au! (y/\,) and
an(a) = Apala/N,). It is clear that X (arg=1(¢)) € ML is a lightlike half line starting at the origin
and lim, . ap, = X(arg™1(€)) in the C' topology over ]0, +oo[ (see Proposition 5.1). Since a is
the arclength parameter of 7 o a, too, we infer that lim, o {(7 o ay,)’, Vqu o ap)o = 1 uniformly
on [, 1] and lim, oo L(an|is1)) = 0, for any 0 €]0, 1[. However, the inequality L(anlj,s) < 0,
n € N, implies that lim, . L(a,) = lim, e %:W) < § for any ¢ €]0,1[. We deduce that

L(a®n)

o = 0, which is absurd and proves (c). |

limn_,_,_oo
Next theorem is the main result of this section.

Theorem 6.1 The following statements hold:
(i) If Op < 00 then M is w*-mazimal, Moo is a lightlike plane and Opq = 2km, k € N.
(i) If Og(M) =R and M is w*-mazimal then Moo is a non timelike plane.

(111) If Og(M) # R, g = +00 and M is w*-mazimal then Iy — IS contains a non compact
connected component Jx and MI% is a lightlike plane.

Proof: Assume that 6,y < 4o00. Since M is a multigraph of angle 6, + 7w, Corollary 5.2 gives
that M has sublinear growth over a lightlike plane and 6x¢ = mm, m € N. Therefore M, is the
lightlike plane containing the lightlike straight line L = a° . U &3_00. Furthermore, Lemma 6.3
gives that a® . C C; and &goo - Cg’ , hence m is even. Finally, observe that any straight line in
{t = 0} not contained in M, meet M into a compact set, hence M is w*-maximal and (¢) holds.

In the sequel, and up to a Lorentzian isometry preserving our normalizations, we will suppose
that 07 = +oo.

Let a = [0,1[C R} — M be an affinely spacelike arc. Since () is a proper curve contained
in a half space of Iy, any non compact lifting to M of 7(a) lies in M for a suitable finite
interval J C ©g(M). In particular, w(«) has infinitely many non compact liftings to M, namely
{Br : k € F C Z}. We are assuming that this family of curves has been ordered by heights, that
is to say, F = ZN]r~,+oo| where r~ € [—o0,40o0[, and [, lies above (i, outside a compact
set provided that k1 > ko. For any k € F, let s, = max{s € R : B, C M[e(s)""‘”[} and define
I = [0(sk), +oo[. Obviously, ko > ki implies that sg, > sg,, Bk, € M1 and B, N Mk is
compact. Furthermore, limy_, 4 s = +00.

Claim 1: There is ko € F such that B lies above a N7~ (w(Bk)) for any k > ko.

Proof: Up to relabeling assume that N C F. Reason by contradiction and suppose that 0y lies
below a N7~ (m(Bg)) for any k € F. For any k € F, the initial point py of By lies in either
I'nr—1(a) or 7=1(n(p)), where p is the initial point of . However, the properness of M gives that
{pr : k € N} N7~ (n(p)) contains finitely many points below p, hence we can suppose without
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loss of generality that py € I' for any k € N. Therefore p;, € I''*, and so I'’* contains points below
a for any k € N. By equation (11) we have that T''* C Int(Cl'f(Sk)), hence o N Int(C;(Sk)) # O for
any k € N, contradicting that « is affinely spacelike. O

For the remainder and up to relabeling we will suppose that kg = 0.

Let W be an spacelike wedge containing «, and call Z as its axis (i.e., the intersection of its
boundary faces). Up to a Lorentzian isometry preserving our previous normalizations, we will
suppose that Z C Ilp, and label Zy C Iy as the straight line orthogonal to Z passing through the
origin. Furthermore, write Zy = {se®® : s € R}, & € [0, 2n[ and suppose that Z5 = {se’0 : s >
0} and W meet at a compact set. A compact interval I C ©g(M), I is said to be centered if its
middle point lies in {{p +2mm : m € Z} and I C I = [0(s1), +o0].

Claim 2: If I = [ — p, &+ p] is a centered and p > 27 then To(MT) > = > 0, where =
is the constant given in Corollary 5.1.

Proof: Observe that S U B4+1 C M for some k € N, and take a maximal graph Go C M! with
boundary £ UBk+1 UG, where Bk C Bk, Bk+1 C Br41 are non compact proper subarcs and 3 ¢ M7’
is a compact arc. Since W C Us for suitable § €]0, %[, 9(Go) C Us up to a compact subset. The
claim follows from Corollary 5.1. a

Claim 3: MZ is a non timelike plane.

Proof: Any domain in M% —{O} is the limit in the C!-topology of a sequence of maximal graphs.
Therefore, the singular segments of vt in Iy — {O} are either complete lines or half lines starting
from the origin (see Theorem 5.2 and Remark 5.2). We will call AT as the singular set of ™ in
I, — {O}.

Taking into account Remark 5.2, we only have four possibilities: (a) AT =0, (b) A" contains
a complete straight line as singular segment, (¢) any half line in Iy — {O} with endpoint the origin
is a singular segment of u™, or (d) there is a wedge W C Iy — {O} bounded by two singular half
lines of ut with endpoint O and such that u¥ lw—a(w) is smooth and defines a maximal graph G.

In case (a), it is well known that MZ is either a spacelike plane or a half of the Lorentzian
catenoid, see [4]. In case (b), Lemma 2.1 implies that MZ is a lightlike plane.

Let us see that (c) is impossible. Indeed, in this case MI = UpeM;—{o}LPa where L, is a
lightlike half line containing p and O, hence M1 C Cy. Furthermore, by a connectedness argument
either ME C Cf or MZ C Cy. Let I be a centered interval of length > 47 and take a real
number € €]0,Z[, where Z is the constant of Corollary 5.1. From the definition of MZ, there
exists large enough kg € N such that M2k 0 {(2.¢) : 1 < |lz]o < 2} lies in the Euclidean
neighborhood of radius €/2 of Co N {(z,t) : 1 < |z|lo < 2}. On the other hand, and from the
definition of M2k™+! e can find jo € N such that M?k‘”‘ﬂ N{(z,t) : 1 <|zlo < 2} lies
in the Euclidean neighborhood of radius €/2 of M2fo™ 1 0 {(z.t) : 1 < |jz]p < 2}, for any
j > jo. Thus M?k”'” N{(xz,t) : 1 < |z|o < 2} lies in the Euclidean neighborhood of radius
eof Con{(z,t) : 1< |z]lo < 2}, for any j > jo, and proves that 7o(M?kom™+1) < ¢ < =. This
contradicts Claim 2 and proves that (¢) is impossible.

Suppose (d) holds and label as I; as the two lightlike half lines in 9(G). From Corollary 5.2,
1 and lo must lie in the same lightlike straight line [, and since I3 U ly # [ (otherwise from (b)
MZ would be a lightlike plane, impossible), we infer that [; = l; and M is congruent in the
Lorentzian sense to the Enneper graph Fs (see Proposition 5.3).

Summarizing, in order to prove the claim it suffices to check that MZ can not be neither a
half of the Lorentzian catenoid nor an Enneper’s graph Es. Reason by contradiction, and observe
that in both cases MX is asymptotic at the origin to either Cg or C; (see Remark 3.1).
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As above take a centered interval I of length > 47 and a real number e €]0, Z[. Up to a dilation
assume that ME N {(x,t) : 1 < |z|lo < 2} lies in the Euclidean neighborhood of radius €/3 of
Con{(z,t) : 1 <|z[lo < 2}. Reasoning as above there are kq, jo € N such that MZko™H N {(z ¢) :
1 <||zllo <2} and M?k”'” N{(x,t) : 1 <|z|o < 2} lie in the Euclidean neighborhood of radius
/3 of ML N{(z,t) : 1< ||lz]lo <2} and MZo™H N {(z,¢) : 1 < ||z]o < 2}, respectively, for
any j > jo. As above, this shows that 7,7 (M?*o™1) < ¢ < = contradicting Claim 2. a

Now we can prove (ii). From Claim 3 M7 is a timelike plane, and by a symmetric argument
the same holds for M . If the planes MT and M were different they would meet transversally
(both planes contain the origin!), which would contradict that M} and M lie in the limit set
of a sequence of embedded surfaces.

Finally let us see (ii7). We have to deal with the case §~ € R, 67 = +o0.

Let us show first that M7 is a lightlike plane. Reason by contradiction and assume that it is
spacelike. In particular, M} intersects transversally any lightlike plane or maximal multigraph of
finite angle with lightlike limit tangent plane at infinity. By Lemma 6.1, we deduce that arg(WW —
{[0]}) — Ix contains a non compact component J =|a, +oc[, where a € I§.

Take an arc ¢ C M, U{O} projecting onto a divergent arc m(c) in Iy with initial point O and
satisfying limgece—ood(z, ML) = 0. Let us see that limgc. o0 g(z) = st(v), where v € H? is the
Lorentzian normal to M7, . Indeed, take a divergent sequence {p,, n € N} C ¢, call J,, = [arg(p,)—
T, arg(p,) + 5] and consider the sequence of translated multigraphs {G,, := —p, + M2 ne N}
By Proposition 5.1, {G, }nen converges in the C!-topology to an entire PS graph G, over Il lying
in a closed half space bounded by the spacelike plane M} . Taking into account Theorem 2.1, we
deduce that G is a spacelike plane, i.e., Goo = ML, proving our assertion.

On the other hand, set [ the lightlike half line d(MZ ) = X (arg=!(a) U {[0]}) and denote by
No € WY the proper region bounded by ¢ U l. Consider a new proper region N} C Ny having
OMN) = cU ', where I’ C Int(Ny) is a divergent arc close enough to [ in such a way that
limgep o0 g(x) = sto(w), where w is the lightlike direction of I and g is the holomorphic Gauss
map of Nj. Since N{ lies in a half space bounded by ML it is parabolic (see Corollary 4.1), and
Theorem 4.1 implies that st(v) = limgec—oo 9(2) = limgei— oo g(x) = sto(w). This is obviously
absurd (note that st(v) € D and sto(w) € (D)) and shows that the plane M7 must be lightlike.

As a consequence, Jy = Int(I%) is either empty or a finite interval with endpoint 6~ . Indeed,
otherwise Proposition 6.1, (i7i) yields that J =]b, +oc[, and so M C Cy, contradicting that MZ
is a lightlike plane.

Let L denote the lightlike straight line in MZ, passing through O, and call L= = LNC; . From
equation (13), L™ lies above any arc in 7! (7(L ™)) N M4, and taking into account equation (12),
we deduce that L™ C Méo for any closed interval I C arg(W — [0]) of length 27, that is to say,
I NIy # 0 for any compact interval of length 27. Define B = {¢ € I; : X(arg~1(¢)) = L™} and
take 0y € B such that JNInt(I%) = 0, where J = [fy, +o0].

Claim 4: J — Iy is either empty or bounded.

Proof: Reason by contradiction, let us see that any connected component of J — Iy determines
an Enneper’s graph with limit tangent plane at infinity parallel to M7, . Consider a component I
of J — Iy (hence of arg(W — [0]) — Ix), and observe that J N Int(I5) = 0. Our previous analysis
implies that |I| = 2, the endpoints of I lie in B and MZ_ is a maximal graph. By Proposition
5.3, M!_ is an Enneper graph with an upward conelike singularity at the origin (i.e., asymptotic at
the origin to C; ). Furthermore, since MZ lies below M7 then its limit tangent plane at infinity
is parallel to M1, proving our assertion.

Let T' C J be a compact centered interval of length > 47 and take a real number € €]0, Z[, where
E is the constant of Corollary 5.1. Up to a dilation, assume that ML N {(x,t) : 1 < ||z[jo < 2}
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lies in a neighborhood of C; of radius €/2. Then take jo € N large enough such that MJT N{(x,t) :
1 < ||lz|lo < 2} lies in the Euclidean neighborhood of radius €/2 of ML N {(z,t) : 1 < ||z|o < 2},
for any j > jo. We infer that MT N {(z,t) : 1 < |z(jo < 2} lies in the Euclidean neighborhood
of radius € of Cg N {(x,t) : 1 <||z|lo <2} for any j > jo, proving that 7o(M?T) < e < =. This is
contrary to Claim 2, proving the claim. O

Claim 4 shows that Iy — Int(I5) contains an interval Jx of the form [b, +oo[, b € R. Item (ii7)
is an elementary consequence of Proposition 6.1, (4). O

Definition 6.4 In the context of Theorem 6.1, if ©g(M) = R or Oy < 400 then Yoo := Moo
is defined to be the blow-down plane of M associated to {Ap}nen. Likewise, if ©g(M) # R and
Opm = +0o we set Yoy := Mgg‘ and call it the blow-down plane of M associated to {\,}nen as
well.

6.3 The transversality of M and the blow-down plane ¥,

This subsection is devoted to prove that the Lorentzian Gauss map of M omits the normal direction
to the blow-down plane. We need some notations and preliminary results.

Let ¢ be a lightlike ray in M, call I. the lightlike half line to which ¢ is asymptotic and write
L. :=7(c) = n(l.). Putting L. = {zo + ae® : a > 0}, there is a unique real number £. congruent
to ¢ modulo 27 such that ¢ C MY, where J = [{, — Z,& + Z|N)6T, 607 [.

As a consequence, the limit 0, := limgc.—o0 Oo(r) € [0, 07] exists and is a finite real number.
The arguments 6. and &. coincide provided that 6. €)0%,0~[. If . € {67,607}, then J is a tail
interval and either & € [07,07 + Z] or & € [0~ — 5,607] (see Lemma 6.2).

Lemma 6.4 If M admits an upward (resp., downward) lightlike ray c, then 0T = 0, + 37” (resp.,
0= =0.—3) and O = +o0.

Proof: We only deal with the case when ¢ C M is an upward lightlike ray.
Claim 1: 6. + 37” > 0t.

Proof: Reason by contradiction, and assume that 6. + 37” < 0%. Let s, € R denote the unique
real number such that 6(s.) = 0., and let us show that as, = Fop(sc,-) is an upward light-
like ray too. Indeed, since o, and L. are parallel half lines, the spacelike condition gives that
dg(@s,,c) < v2d(as,, Le). Taking into account that &, has slope < 1 we deduce that the limit
limgea,, oo d(z, C;(sc)) exists and is finite, proving the assertion.

Write I, := [, 0% and let H C R} be an open half space containing d(M?¢) = &, UT and
such that 9(H) is a lightlike plane parallel to I. (here we have taken into account equation (11)).

Let us see that M’e C H. To do this, label Ly as the complete straight line in Il containing
s, and call Iy = O(H) N7~ *(Lg). First, we observe that MZe is disjoint from ly. Indeed, if ¢’
a connected component of 771(Lg) N MZc, then either ¢’ has en endpoint in d(MZ) C H or
7(c’) Nas, # 0, and in the second case ¢’ N7~ (ay,) lies above as, N7~ 1(c¢'). By property (1) we
deduce that ¢/ ¢ H, hence M!cniy = 0.

Reason by contradiction and assume that M’ — H # (). Then take a connected component S of
MIe — H. By the spacelike condition, there are no compact arcs in S with endpoints in 9(S)NO(H)
projecting onto a segment parallel to Lg. Since S N d(ML¢) = () then we deduce that S is simply
connected. On the other hand, w|s : S — Iy is a proper local embedding, hence S is a graph over
Iy. Taking into account that SNly = 0 and d(S) C (H), G := SU(O(H) — w1 (n(S))) is a PS
entire graph over Iy containing ly. Lemma 2.1 gives that G = 9(H), which is absurd and proves
that M'e C H.
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Let so be the unique real number satisfying ©o(I'(so)) = 6. + I, and call Ti(,,)M as the
tangent plane to M at T'(sp) (that is to say, the lightlike plane parallel to the vector IV(sp)).
Observe that Tp(,,)M and O(H) are parallel, and call H' as the open half space containing 0(H)
and with boundary Tt (s,) M. Let y : M — R denote the harmonic coordinate function vanishing on
d(H") N M. From equation (2), the holomorphic 1-form dy (that can be reflected holomorphically
to the mirror surface M*), has a zero or order > 2 at I'(sg). Therefore, M — 9(H') has at least
a connected component S lying in the slab H' N H and with boundary 9(S) C 9(H’). As before,
S is a graph over Iy and Sy := S U (7|gnr)) " (Ilp — 7(S)) is an entire PS graph over Ily. Take
po € S — 9(S) and a neighborhood Dy C S — 9(S) of py projecting via m onto a closed disc.
From equation (1), Dy — {po} C Ext(Cp,) and ¢ := d(9(Dy),Cp,) is positive. As a consequence,
the PS graph Sy — Dy lies in Ext(Cp,) and d(So — Do, Cp,) > ¢ > 0. This shows that Sy lies in
{x € R} : ||x|| > 6} up to a compact subset, and the same holds for S. From Theorem 4.2, S is a
parabolic. But 9(S) C d(H’) gives S C O(H'), which is absurd and proves the claim. O

Claim 1 gives that 8 € R, and so M!c is a multigraph of finite angle bounded by two sublinear
arcs, namely I'lc and &,_, with lightlike direction. By Corollary 5.2, these arcs have the same
direction, that is to say, 0 = 6. + 37’7, concluding the first part of the lemma.

It remains to check that #~ = —oo. Reason by contradiction and assume 6~ &€ R. As above,
Corollary 5.2 gives that M is parabolic, hence M is biholomorphic to U = {z € C : Im(z) > 0}.
Let X : U — R} be a conformal maximal embedding satisfying X (U) = M. Set (¢3,9) the
Weierstrass representation of X, see equation (2). The holomorphic map g extends by Schwarz

reflection to a meromorphic map on C of finite degree n, and so we can put g(z) = ggi;, where

P(z) = Z?:o ajzl, Q(z) = Z?:o @;27 and a, # 0. Since the 1-forms ¢1, ¢2 and ¢3 have no
common zeroes in U, we get ¢3 = —iBP(2)Q(z)dz, B €]0,+oc0]. Up to a Lorentzian isometry, we
can suppose that g(co) = 1, a, = 1 and 07 = lim,_, 1 g(r) (note that X~1(I') = R). Therefore
we also have ﬂ cZ and 0= =0t —2nm.

Observe that fg = fo Py = Bfo +Q( )2)dw, fi1(z) = fo ¢ = %fOZ(PQ(w) —
Q?*(w))dw and f(z) := fo dy — ig3) = B fo Q(2))? are polynomlal functions of de-
grees 2n + 1, n + no + 1 and 2ng + 1, respectively, Where 0 < ng = Deg(P(z) — Q(2)) < n.
Since @, is a lightlike ray with direction (0,1,1), then the limits lim.cx-1(a,, )—o0o Re(f1(2))
and lim ¢ x-1(a,,)—o0 Re(f(2)) are finite, and so there are positive odd integers m; and m such

that 1imZeX71(&SC)_,OO arg(z) = 2(nT;L:+1) = 2(2n0+1) Takmg into account that X~ ( (MIC)) -
[, +00[Ud,, where 7 = X~ }(T(s.)), and that M!e C {(x,y,t) : t —y > R} for a suitable R € R,
we infer that m = 1, hence n — ng = (2ng + 1)(my — 1) > 2(2n0 +1) and n > 5ng + 2.

On the other hand, note that for any k € R, the set {z € U : X(2) € M!c andRe(fa(2)) = k}
consists of either a proper arc 20, 1] or two proper arcs homeomorphic to [0, 1[. Indeed, just take
into account that MZc is (up to removing a compact set) a multigraph of angle 27 with sublinear
boundary arcs I'’e and @&, of direction (0, 1,1). As any divergent nodal arc in U of the harmonic

function Re(f2) — k is asymptotic to {5@20”11) , s > 0} for a suitable odd integer j < n, and MZ
contains only two such arcs for any k € R, then % > lim_ex-13a,,)—o00 Im(log(z)) = m,
or equivalently n < 5ng -+ 2, which is absurd and concludes the proof. O

Set ta := 7 1(0) N M the intersection of M and the t-axis, and for any ¢ = Fy(s,a) € tpm
write 7, = Fo({s} x [0, a]). Consider the simply connected surface S := M — Ugeq,, ¢ and fix a
branch f of logor along S. It is clear that x : S — M x C, x(q) = (q,f(q)) is an embedding,
and that M := k(S) € M x C is a surface with piecewise analytical boundary homeomorphic to
D—{1}. Set Y : M M the projection map Y(q,f(q)) = ¢, and note that for any ¢ € ty we

have Y~ (rg) = rf Ury, where rf Nrg =Y (q) = (q,00) and Y|+ i rf —1g, Y[, — i1y — g
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are homeomorphisms. Furthermore, the restriction of ¥ to M — Uges,,Y ~'(ry — {q}) is one to
one, and (M) =Y 1T U (Ugetp7q)) -

M M
q YD) .+ Y Yo

T
Tq

0 |r
Y
M

I, .

Figure 4: The surface M and the projection Y.

As M — Y ~Y(tp,) is simply connected and flxct—y—1(¢,,) Dever vanishes, Arg := Im(f) is well
defined on M — Y~ (tpq).

Remark 6.1 Up to a suitable choice of the branch, limge s _ o0 Arg(Y ~1(z)) — Og(z) = 0, pro-
vided that J C ©¢(M) is compact.

Therefore, 6~ — Z < liminfyepm—oc Arg(Y (), imsup,e py_oo Arg(Y ~'(2)) < 0% + %, and
if {Zn}nen C M is a divergent sequence satisfying that liminf, . Arg(Y ~'(zy)) C [0F,07 + ]
(resp., limsup,, . Arg(Y ~!(zy,)) C [0~ — £,07]), then lim, o O¢(2y) = 0 (resp., 6~ ).

Moreover, standard monodromy arguments also show that:

(i) 16 — .07 + Z[C Arg(d(M)) and Arg~*(J) N (M) is compact, for any compact interval
JCR= {0~ — % 0%+ I},

(i1) ?f {qn}nen C é)?(M) and {©0 (Y (qn))tnen — 07 (resp., 07), then {Arg(gn)}nen — 07 + 5
resp., 07 — 3 ).

Denote by V, := Int(C('B7O7T)) and T, := T'NV,. Since (1,0,0) € T, equation (11) gives that
I, # () provided that 7 < —1. In this case, ' N 9(V,.) consists of a unique point I'(s,.) and ', = "7,
where I, = [0(s,.), 01[. In the sequel we will suppose 7 < —1.

We label M(r) as the connected component of V. N M containing T, and write M’(r) =
(Vr N M) — M(r). Likewise we put M(r) := Y =1 (M(r)).

It is interesting to observe that M = UpenM(ry,), provided that {r,}neny C] — 00, —1] is
divergent. Indeed, fix an arbitrary point ¢ = Fy(s,a) € M and take n € N large enough in such
a way that I'(s) = Fu(s,0) and g lie in V,,,. By equation (1), Fo({s} x [0, a]) is contained in V), _,
and so q € Fy({s} x [0,a]) C M(ry,). Therefore ¢ € UpenM(ry,) and we are done.

Lemma 6.5 If ¢ C 9(V,) —{(0,0,7)} is a spacelike arc and p is a branch of Im(logon) |., then p
is monotone and ||q2 — q1]| > 0 provided that g1, g2 € ¢ and 0 < |p(q2) — p(q1)] < 2.

Proof: The spacelike property gives that p has neither local maxima nor minima, hence it is
monotone. For any ¢ € 9(V,) — {(0,0,r)}, label I, as the closed lightlike half line in (V)
containing ¢. It is obvious that (V) —l; C Ext(C,), which simply means that ||¢' — ¢|| > 0 for any
q¢ € 0(V,) — ;. If g € ¢, the monotonicity of p yield that {¢’ € ¢ — {q} : |p(¢') — plq)| < 27} C
¢ — 1y C Ext(Cy). This concludes the proof. O
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Corollary 6.1 Assume that M contains no upward lightlike rays, and fiz r < —1, (0,0,7) ¢ M.
Then the following statements hold:

(a) If é is an arc in Y ~1(O(V,) N M) then Arglz is monotone. Furthermore, ||Y (q2) — Y (q1)|| > 0
for any qu, q2 € é satisfying that 0 < |Arg(q2) — Arg(q1)| < 2.

(b) O(M(r)) =T, U G,, where B, = [0,1] is a proper divergent arc in M with initial point T'(s,)
and meeting I' only at this point.

(¢) If D C M'(r) is a connected component, then D is a closed disc, (D) C O(V,) and tpy N D
consists of a single point.

Proof: Since M is spacelike and 9(V;) is lightlike, they meet transversally and (M Nao(V,)) —
{(0,0,7)} consists of a family of pairwise disjoint properly embedded analytical regular curves.
Item (a) is an elementary consequence of Lemma 6.5.

From our hypothesis and Lemma 6.4 we get 6t = +o0, hence from Remark 6.1 we have
Arg(T,) C [a, 400, a € R, where I, is the smallest arc in (M) containing ¥ ~1(T',.) (obvioulsy
contained in (M (r))).

Let us show that Arg (Y ~'(V, N M —tp)) = [b,+oc[, b € R. Reason by contradiction, and
suppose there exists a divergent arc ¢ € Y ~1(9(V,,)N.M) homeomorphic to [0, 1[ such that Arg(¢) =
] —o0,d,d €R,d< a—mn. Foranyq € ¢ let L, C Il denote the straight line passing through
7(Y (g)) and the origin, and label [, as the connected component of 7=1(L,) N M containing Y (q).
The choice of ¢ yields that Arg(Y ~1(l, —tam)) N [a, +oo[= 0, and so I, NV, is disjoint from T. Since
M has no upward lightlike rays, we infer that ¢, := I, NV, is a compact arc with endpoints in
o(Vr) — {(0,0,7)} and passing through a point of tx(. However, tprq is a closed discrete set, and
therefore the point c; Nt does not depend on ¢ € ¢. This obviously contradicts that the family
of compact curves {c,, q € ¢} diverge in R} as ¢ diverges in é.

Now we can prove (b).

Indeed, first note that A(M(r)) contains no (closed) Jordan curves. To see this, recall that M
is simply connected, and so any such curve must bound a compact disc V' C M. By the convex
hull property, Y (V) C V,, and since M(r) is a connected component of Y ~(V,.), then we get that
V = M(r), which is absurd.

Suppose there are two different divergent arcs ¢, é in d(M(r)) homeomorphic to [0, 1] and
disjoint from I',. From the previous arguments, Arg(é;) = [aj,+oo[, j = 1,2, hence there are
points ¢1 € é; and g2 € é; satisfying Arg(g1) = Arg(g2). As above, set L; C Iy and [; the straight
line passing through O and 7(Y (¢;)) and its lifting to M with initial condition Y (g;), respectively,
7 =1,2. Let us check that I;Nls = (). Indeed, the fact Ly = Lo and the uniqueness of the lifting give
that either Iy = Iy or [1 Nls = (), and the first option leads to Y (q1), Y(q2) € Iy = I, contradicting
that Y(¢2) — Y(q1) is a lightlike vector. As a consequence, limgej, o0 Oo(2) # limzer, oo O ().
On the other hand, Remark 6.1 gives that Arg(q;) = lim,cy-1(;,)—o00 Arg(z) = limges; —o0 Oo (),
j = 1,2, which contradicts that Arg(gz) = Arg(q1) and proves (b).

To finish, consider a connected component D C M’(r). If 9(D) contains a proper divergent arc
a 20, 1], we can split « into two divergent arcs homeomorphic to [0, 1], getting a contradiction
as above. Therefore, any connected component of 9(D) is a Jordan curve. Since D is simply
connected, D is a closed disc. Furthermore, Arg is monotone along Y =1 (9(D) — Uget,,74), hence
Y (D) is a closed disc meeting ¢ at a unique point, proving (c). O

Lemma 6.6 Assume that M contains no upward lightlike rays, and fiz r < —1, (0,0,r) ¢ M.
Then, there exists a smooth foliation D(r) := {Ds(r) : s € [r,+o0[} of V- satisfying:

(a) For any s > r, Ds(r) is a mazimal disc, O(Ds(r)) C I(V,) and (0,0, s) € Ds(r). Moreover,
D.(r) ={(0,0,7)}.
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(b) Ds(r) N M'(r) # 0 if and only if Ds(r) is a connected component of M'(r).

(c) Ds(r) N M(r) # O if and only if Ds(r) N O(M(r)) # 0, and in this case Ds(r) N M is an
embedded compact arc lying in M(r) with initial point ot T, and final point at (3.

Proof: Consider a spacelike smooth divergent embedded arc 6, C 9(V,) containing 5, and with
initial point (0,0, r).

Claim: There exists a smooth foliation F, : [0, +oo[xS' — d(V,) of (V) satisfying

(i) ¢y == Fr(y,-) : St = O(V,) is a Jordan curve for any y > 0, and co is the constant
curve co(€) = (0,0,7), £ € St

(ii) ¢y and 6, meet at a unique point in a transversal way, y > 0.
(iii) ey (€) = ¢, (&) > 0 for any €, & € S', € # €, and any y > 0.

(iv) For any connected component D of M'(r), there is an unique y €]0,+o00| such
that ¢, = (D).

Proof: From Lemma 6.5, any branch of Im (logor) |5, is monotone. Since 7[g(y,) is injective, we
deduce that 7(4,) is an embedded divergent arc of spiral type with initial point at O. Hence, we can
take a smooth foliation F; : [0, +oo[xS! — IIj of IIy by Jordan curves d, := F;(y,-) : S* — Il
(where F(0,-) is constant and equal to O) in such a way that d, bounds a starshaped domain
centered at the origin (i.e., dy—{O} can be parameterized by the principal argument) and d,, N7 ()
consists of an unique point where both curves meet transversally for any y > 0. Furthermore,
constructing F;* with a little care, we can ensure that for every connected component D of M'(r),
there exists an unique yp €]0, +oo[ such that 9(n(D)) = F(yp, -).

It suffices to define F, := (m|p(v,)) ' o F;. Items (i), (i) and (iv) are clear, and item (iii)
follows from Lemma 6.5. O

From Theorem 5.1 and item (4i7), there is a unique maximal disc K, C V, with boundary
¢y, ¥y > 0 (we have made the convention Ko = {(0,0,7)}). Furthermore, since 7|g, is a local
homeomorphism, K is a graph over the planar domain bounded by d,, y > 0.

The convex hull property for maximal surfaces gives K, C V, (even more, Ky—c, C V,,—9(V;)).

If y1 > yo > 0, then ¢, > ¢y, (that is to say, t(cy, (€)) > t(cy,(€)) for any £ € S). A standard
application of the maximum principle gives that K,, lies above K,,, and so K,, N K,, = 0. The
smooth dependence of Plateau’s problem solutions with respect to the boundary data implies that
there is a unique Dy(r) € {K, : y € [0,4o0[} such that (0,0,s) € Ds(r), s > r. Furthermore,
D(r) ={Ds(r) : s € [r,+oc[} defines a smooth foliation of V, satisfying (a) and (b).

In order to prove (c), let us see that Dy(r) N (M(r)) # 0 if and only if D(r) N M(r) # 0.
Suppose D (r)NM(r) # 0, and reasoning by contradiction, assume that Ds(r)NI(M(r)) = 0. As
A(Ds(r))NM(r) =0, then Dy(r) N M(r) is a family of piecewise analytical Jordan curves lying in
the interior of both simply connected surfaces.® Hence we can find compact discs S1 C Int(Ds(r))
and Sz € Int(M(r)) with common boundary in D,(r) N M(r) and common projection on the plane
IIy. Since both discs are graphs over Iy, the maximum principle gives S; = So, and by an analytic
continuation argument Dg(r) C M(r). This is absurd and shows that Dg(r) N d(M(r)) # 0.

Finally, assume that D, (r)NM(r) # 0. From equations (1) and (11), ¢1 := Ds(r)NT = Ds(r)N
', consists of at most one point where D(r) and I' meet transversally (in case Dy(r) N T = ) we
make the convention ¢; = @)). Likewise, from (i4) in the preceding claim, g2 := d(Ds(r)) N M(r) =

6If M7 and M> are maximal surfaces and 9(M;) N M; = 0, {i,5} = {1,2}, then M1 N M2 consists of a family of
analytical proper analytical arcs in M; — (8(M7) Ud(M2)), j = 1,2, meeting equiangularly at points with the same
normal.
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¢s(r) N By is a point. If « is an inextendible arc in Ds(r) N M(r) C V. then « is compact and with
endpoints lying in (9(Ds(r)) N M(r)) U (O(M(r)) N Dy(r)) = {q1, q2}. Taking into account that
D(r) N M(r) contains no Jordan curves (reason as above), we get that ¢ is a point and « joins
q1 with gz, concluding (¢) and the lemma. O

The following theorem has been inspired by Meeks and Rosenberg ideas in [21].

Theorem 6.2 If M is w*-mazimal then any plane parallel to ¥ is transverse to M.
As a consequence, either Yoo is spacelike and Og(M) =R or Yo, is lightlike and Opq = 2.

Proof: Up to a Lorentzian isometry, we assume that either 6t = 400 or 6o < +oo. In any case,
Lemma 6.4 guarantees that M contains no upward lightlike rays, and consequently, the foliation
D(r) in Lemma 6.6 makes sense, for any r €] — oo, —1], (0,0,7) ¢ M.

From Theorem 6.1, Oy = 2kw, k € N, provided that 0,y < 400, and in this case M, is
a lightlike plane. Furthermore, by Corollary 5.2 lims_, 40 [V(s) and lims_,_ I''(s) are lightlike
vectors parallel to Moo, hence the theorem holds provided that £ = 1.

Therefore, it suffices to deal with the case Oy € [4m, +00].

Take 0y € O¢(M) such that Iy =]0y — 27, 0y + 27[C Og(M). In case 6 = +o00 and 67 > —oo,
and with the notation of Theorem 6.1, we also impose that Iy C Jx. Let sg € R be the unique real
number such that ©¢(T'(sg)) = 6o.

In the sequel we only consider r €] — 0o, —1] such that (0,0,7) ¢ M and I''o C Int(c?(o,o,r)})'

For any s € R, set Yo (s) the plane parallel to ¥, and passing through (0, 0, s).

Claim 1: There exists a divergent sequence { Ri }ren C]—00, —1] such that {D(Rk) }ken
converges in the Cl-topology to the foliation of R$ by planes parallel to Yo..”

Proof: For r < —1 and n € N, label r(n) := 5o Since M has no upward lightlike rays, then
Fo(s0,-) and O(Vy(n)) meet at a unique point ¢,(n) € Byn). Call E(r(n)) as the unique maximal
disc in D(r(n)) containing g,(,), and let us show that {A\,, E(r(n))},en converges in the C-topology
to Yoo NV, as graphs over Ij.

Since {Mff}neN converges uniformly on compact subsets to the twice-covered once punctured
plane X, —{O} (see Theorem 6.1) and M NV, (,,) C M(r(n)), then c,(») 1= Ay (M NIV, () C
AnBr(n) converge as n — oo to the twice-covered Lorentzian circle ¢ := X5, NI(V;) (a parabola when
Yoo is lightlike). Furthermore, A\, 0(E(r(n))) and ¢, (,) meet only at A\,g,(,) in a transversal way,
and any of the two components of ¢, () —Anqr(n) converges uniformly as n — oo to c. Taking into ac-
count that A,,0(E(r(n))) lies in between these components, we deduce that {\,0(E(r(n))) }neny — ¢
too. If X is spacelike, c¢ is a closed curve and the continuous dependence of Plateau’s problem
solutions with respect to the boundary data gives that {\,E(r(n))}nen — Yoo NV, in the CO-
topology.

Assume now that X is lightlike (and c is a parabola), and call E, () := lim, .o A E(r(n)).
Note that A\, E(r(n)) C V, for every n € N, hence E, (o) C V,. Since E, (o) is a PS graph and
O(Ey(x)) = ¢, equation (1) yields that E, () C (ﬂpecExt(Cp)) NV,. This proves that E, () lies in
the slab bounded by ¥ and ¥ (), and as a consequence, E, () must contain lightlike segments
(otherwise, E, () would be a parabolic maximal graph, hence a planar domain in ¥, by Corollary
4.1, which is absurd). From Remark 5.2, E, (o) N Yo must contain a lightlike half line L with
initial point in ¢, and therefore S := E, (o) — (Zoo NIl — W(Er(oo)))) is an entire PS graph
over Iy containing the complete straight line determined by L. Lemma 2.1 shows that S = X
and E, () = Yoo NVy, proving that {A, E(r(n))}nen — Xoo N Vy too.

"This means that for any compact interval I C R, {Ds(Ry)}ren — Zoo(s) in the C'-topology uniformly on s € I.
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Take a divergent sequence {ry}ren in ] — 0o, —1] and observe that {Yo N Vy, then — Boo in
the C%-topology. By a standard diagonal process, we can find a divergent sequence {ny}ren C N
such that {\n, E(76(nk))}ken — oo in the CO-topology as graphs over Ilg. Define Ry := ri(ny),
k € N, and let us show that {Ry}ken solves the claim.

To do this, let I C R be a compact interval, and take a sequence {si, k € N} C I converging
to s € I. Tt suffices to check that { Dy, (Rx)}ren — Soo(s) in the C'-topology as graphs over Ilo.

Let us see first that {\,, Ds, (Rx)}xen — Yoo in the Cl-topology. Indeed, note that A, (0,0, si) €
Ay Ds, (Ri) and { A, (0,0, sg) fken — O. Thus, {\,, Ds, (Ri)}xen converges in the C%-topology to
an entire PS graph ¥/ passing through O. As either Ds, (Ry) = E(Ry) or Ds, (R;) N E(Rg) =0
for any k, then X/ lies in one of the closed half spaces bounded by ¥.,. Using Calabi’s theorem,
Remark 5.2 and Lemma 2.1 we infer that ¥/_ is a non timelike plane passing through O, hence
¥/ = Yuo. From Proposition 5.1, {\,, Ds, (Rk)}ken — oo in the C! topology and we are done.

Finally, let uy : 7(Ds, (Rg)) — R and vg : Ap,7(Ds, (Rx)) — R be the functions determining
the graphs D;, (Ry) and A\, Ds, (Ry) respectively, k € N. Proposition 5.1 gives that {Vug treny — o
in the C° topology, where o is the gradient of the linear function defining ¥.. Since vg(\n, z) =
An,uk (), we infer that Vg (A, z) = Vug(x) for any « € 7(Ds, (Ry)). This gives {Vugtreny — o
in the C%-topology, and so limy_, y oo Dy, (Ri) = Yoo (s) in the C'-topology. O

To finish the theorem, reason by contradiction and suppose there is ¢ € R} such that TyiM =
Yoo. Recall that the conformal parameterization of M extends to the conformal mirror M* of M
by folding back at I'. In particular, the holomorphic Gauss map g extends by Schwarz reflection

to M* as well. Take a closed disc U € M U M?* such that ¢ E[} and U N g~ Y(g(q)) = q. Let
m > 1 denote the multiplicity of g at ¢, that is to say, the winding number of ¢(9(U)) around
g(q). For any k € N such that U N M C Vg, and for any p € U N M, let s,(p) € R denote the
unique real number such that p € Dsk(p)(Rk) and call Uy = UpeunmDs,,(p) (Rk). From equation
(1), Ux C UpcunmExt(Cp), and so I := {sk(p) : p € U N M} lies in the compact interval
I'={seR : (0,0,s) € UpeunmExt(Cp)}. In other words, Uy C UserDs(Ry) for any k € N
satisfying U N M C Vg, .

For any k € N such that UNM C Vg, and p € UNM, let grp @ Dy, p)(Rx) — D be
the holomorphic Gauss map of D, ,)(Rk), and set hy : U — C, (hx|luvnm)(®) := 9(p) — gr.p(p)
and (hx|luvam=)(p) == g(p) — grp~(p*). Labeling s(p) € I as the unique real number such that
P € Yso(s(p)), p € UNM, Claim 1 gives that limy .o sx(p) = s(p) and limy_—. 1 Ds, () (Rr) =
Yo (8(p)) in the Cl-topology uniformly on p € UNM. Therefore, limy,_ o hx = g —g(g) uniformly
on U, hence for large enough & the winding number of hy(9(U)) around the origin is equal to m.
However hy|yna+ never vanishes, and so we can find for k large enough a point g, € (UNM)—0(U)
such that hy(qx) = 0 (that is to say, Tg, Ds,(q.)(Rx) = T, M), contradicting that D(Ry) is
transverse to M for any k and proving that M is transverse to X(s), s € R.

If ¥ is lightlike, we can find ¢ € T such that T, M is parallel to o (recall that O, > 47), a
contradiction. Thus ¥ is spacelike, and by Theorem 6.1, ]¢*, 0~ [= R. This concludes the proof.
O

Corollary 6.2 If M is w*-maximal then the blow-down plane Yo does not depend on the blow-
down sequence.

Proof: If Oy = 27, ¥ is the limit plane of M at infinity and the corollary holds.
Assume that ¢ = 400, take a new blow-down sequence {], } ,en and construct the correspond-
ing blow-down PS multigraph X’ : M’ — R} and blow-down spacelike plane ¥/ := X'(M~).
Reason by contradiction and suppose ¥/ # ¥. Consider an interval I C ©¢(M) = R of length
2, fix p € Il — O and take p, € 7~ 1(p) N (A - M), pl, € 771 (p)N (N, - MT), n € N (well defined
provided that n is large enough). We know that lim,, o N( ﬁpn) = ¢ and lim,, ./\/'(ip%) =,
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where N is the Lorentzian Gauss map of M and ¢ and ¢’ C H? are the unitary normal vectors
to Yo and Y/ _, respectively. By a connectedness argument, we can find ¢y € H? — {¢, ¢’} and

divergent sequence {gn}nen C M such that lim, .. N(g.) = Co. As above, (p is the unitary
normal to the blow-down plane X/ associated to blow-down sequence {m}neN.

On the other hand, let (g, ¢3) denote the Weierstrass data of M (see equation (2)) and ex-
tend (g, ¢3) by Schwarz reflection to the double M of M. Then, consider the conjugate minimal
immersion X* : M — R3 associated to the same Weierstrass data (9, ¢3), see equation (6), and
recall that the metrics on M induced by the maximal and minimal immersions are given by

ds? — %|¢3|2(ﬁ —|g])? and ds2 = %|¢3|2(ﬁ + |g])?, respectively.

Let us show that ds? is complete. Since the mirror involution is an isometry of (M, ds?), it
suffices to check that divergent curves in M have infinite length with respect to ds?. Indeed, set
a C M a divergent curve. Since the first and second coordinate functions of a maximal surface
and its conjugate minimal one are the same, then the Euclidean length Lo(«) of « is greater than
or equal to the one Lo(m(a)) of m(c). The spacelike property of M and the divergence of a give
that Lo(m(a)) = 400, and so Ly(a) = +o0.

By Theorem 6.2, N : M — HZ omits the values ¢, ¢/ and ¢y € H2, hence the Gauss map of X*
omits six complex values. This contradicts Fujimoto’s theorem [10, 11] and proves the corollary.
O

7 The Uniqueness Theorems

In this section we prove the main results of this paper. We start with the following:

Theorem 7.1 (Uniqueness of the Enneper surface) The only properly embedded *mazimal
surface with connected boundary and finite rotation number is, up to Lorentzian congruence, the
Enneper surface E.

Proof: Let M be a properly embedded *maximal surface with connected boundary and 6, < +o0.

Since M is a multigraph of finite angle, Corollary 5.2 gives that M is conformally equivalent to
D — {1}. Let (g, #3) denote the Weierstrass data of M. From Theorem 6.2, the holomorphic map
g:D— {1} — D is one to one on (D) — {1}, and so, up to a Lorentzian isometry, we can suppose
that g(z) = z. On the other hand, equation (2.2) leads to ¢3 = h(z) z=gyzdz (note that the mirror

involution is given by J(z) = 1/Z), where h : C — C is a meromorphic function satisfying ho.J = h.
Since the 1-forms ¢; given in (2) have no common zeroes, h never vanishes on . Furthermore, as
the unique end of M corresponds to z = 1, h has no poles in D as well. The symmetry condition
hoJ = h gives that the zeroes and poles of h, if they occur, lie in 9. However, Lemma 2.2 implies
that ¢3 never vanishes on 0D — {1}, and so h must be a real number different from zero. Up to
scaling and a conformal reparameterization, (g, ¢3) are the Weierstrass data of E; (see Section 3).
O

In the sequel we will deal with the uniqueness of properly embedded w*-maximal surfaces with
connected boundary and infinite rotation number. This part of the paper has been mainly inspired
by Mecks-Rosenberg work [21].

Let M denote a properly embedded w*-maximal surface with connected boundary and 0,y =
+00. From Theorem 6.2, ©¢(M) = R, X, is a spacelike plane, any plane parallel to Yo, meets M
transversally into a family of pairwise disjoint proper analytical arcs.

Let ¥ be a plane parallel to ¥, and label ¥+ and ¥~ as the two closed half spaces in R$
bounded by ¥. As ¥ is spacelike then ¢ := X NT is a single point. We set M(q) = M N Int(C,),
M*t(q) := M(q) N ET and M~ (q) := M(q) N X~. Note that equation (11) gives ' C M(q).
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Since the arcs Fy(s,-) have slope < 1 and M has no lightlike asymptotic rays (see Lemma 6.4),
Fo(s,-) N M(q) is compact and connected for any s € R. We deduce that M™(q) and M~ (q) are
simply connected regions in M with connected boundary. Moreover, M™*(q) N M~ (q) = {q}, and
so M(q) is connected too.

Consider a region S C M (in most cases we will deal with S = M). The closure of a connected
component of Int(S) — ¥ is defined to be a X-region of S.

A Y-region of M is said to be a finite (vesp., infinite) if its boundary has finitely (resp., infinitely)
many pairwise disjoint proper arcs. A finite 3-region of M is said to be simple if it has connected
boundary. Any Y-region W of M is parabolic (see Corollary 4.1) and simply connected, hence
conformally equivalent to D — E, where E C d(D) is a totally disconnected compact zero measure
subset. For convenience, we will identify W and D — E and call E as the set of ends of W.

Lemma 7.1 If W =D — E is an infinite S-region of M then either M+ (q) C W or M~(q) C W.
Moreover, the endpoint of T NW 1is the unique limit end * of E.

Proof: Up to a Lorentzian isometry, we will suppose that > = X =1Ily, g =T NX = O and
Yt = {t >0} (hence ¥~ = {t <0}). For simplicity we write Iy instead of I' N W.

First of all recall that M™*(O) and M~ (O) are connected, hence they lie in the -regions of
M containing T' N {t > 0} and T' N {¢ < 0}, respectively.

Take a limit end * of E and an auxiliary point go € (D) — {*}. Label ¢; and ¢; as the two open
arcs in O(D) — {*, g0}, and consider sequences {e,, : n € N} CegNFand {e], : neN}C&aNE
converging to x. Without loss of generality, suppose that {e,, : n € N} is not a finite set of ends.

Reason by contradiction, and assume that either I'g = @ or 'y # @ and 'y does not diverge
to . Thus there exists a compact arc ¢ C W —T' connecting two points of (W), and such that
W — ¢ has a connected component W’ with infinitely many boundary components, disjoint from
I" and containing * among its limit ends. Without loss of generality, we can also suppose that
{en : neN}U{el, : n €N} are ends of W'.

Since W' N M(O) is compact (just observe that d(W’') N M(O) = ¢ N M(O) is compact and
W'NT = 0), then 7|y : W' — Il is proper. Take R > 0 such that ¢ C {(z,t) € R} : [|z]jo < R}
and consider the connected component Wx of W/ N {(z,t) € R} : |z|o > R} with infinitely
many boundary arcs. It is clear that Wpg is biholomorphic to Dr — Fr, where D C Dis a
closed topological disc and Er = 9(Dg) N E. Furthermore and as above we can suppose that
{en, : neN}U{el, : neN}U{x} C Eg.

Put ag := 0(Wgr)N{(z,t) € R} : ||z||o = R}, and set o the connected component of d(Wg)
containing ap. Let Wr denote the region in M bounded by o and disjoint from T' (obviously
Wgr C WR)

Let us see that 7T|WR :Wr — W(WR) is a diffeomorphism. Let us see that 7|g(w,) is injective.
Indeed, since 7|p(wp)—ap is the identity map, it suffices to prove that 7|, is injective. Assume
without loss that Wi C {t > 0} and note that Wx separates the region {(x,t) € R} : |[|z[o >
R, t > 0}. Therefore, for an arc « C ag = WgrN{(x,t) € R} : |lz||o = R} there can not be another
arc 0 C ar immediately above of below «. Otherwise, the Euclidean normal vectors to Wx along
« and 8 would lie in different hemispheres, which contradicts that the projection 7 orients Wg.
Therefore, 7T|WR : Wg — W(WR) is a proper local diffeomorphism, hence a global diffeomorphism

from the simply connectedness of W(WR).

Set {Q, : n € N} the countable family of connected components in 7(Wg — W), and let
G, = {(z,un(x)) : € Q,} denote the maximal graph in Wg — Int(Wg) satisfying 7(G,,) = Qn,
n € N. It is clear that Q, NQ,, =0, m # n, and un|3(gn) = 0. The desired contradiction will comes
from Theorem 5.3, provided that |Vu,| < 1 — e for any n for a suitable € > 0.

To check the last inequality, reason by contradiction and suppose there exists a sequence
{Pn}nen, where p, € Gy, such that {Vu,(pn)}neny — 1 (or in other words, {|g(pn)|}neny — 1,
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where ¢ is the holomorphic Gauss map of M). Since G,, is parabolic (see Corollary 4.1) and
|g| subharmonic, then |g|(p,) < fa(G )|g| dpip: , where dpy is the harmonic measure respect to

a given point p), € G,. As dpu, is a probabilistic measure (i.e., fa(G )dﬂp'n = 1), then we can

find g, € 0(G,) C I satistying |g(gn)| > |g9(pn)|- Taking into account that M is proper and the

G, ’s are pairwise disjoint, we deduce that {\], := m}neN — 0. Like in Section 6, consider the

sequence { M/, := X M}, en, and the corresponding blow-down PS multigraph X’ : M. — R3.
Assume that {p, := qu—"”[)}neN — p € I, take an open disc D C Il centered at p of radius < %

and call N,, as the closure of the connected component of M/ N7~1(D) containing p,, n € N. From

equation (1), N,, C Ext(C,,)N7 (D), and therefore N,,NInt(Cy) = 0, for any n € N. On the other
hand, equation (11) and the fact O € T give that A/,T" C Int(Cy) and prove that N, N (A, -T') =0,
for any n € N. As a consequence 7(N,,) = D and 7|y, : N, — D is a diffeomorphism, n € N.

The hypothesis {|g(pn)|}neny — 1 implies that Ny :=lim,, . N,, contains a lightlike half line
passing through p (see Theorem 5.2). Therefore N, and the plane X’(MZ ) =TIy (see Corollary
6.2) meet transversally at p. This contradicts that I1g U Ny lies in the limit set of the sequence of

embedded surfaces { M} },en and concludes the proof. O

Proposition 7.1 If ¥ si a plane parallel to Yoo then M N'X consists of a proper regular arc.

Proof: Like in the preceeding lemma, assume that ¥ = 3, =1Ilp and 'NX = O.

Let ¢y denote the unique proper divergent arc in M N Iy meeting T’ (that is to say, the one
with initial point O), and set M™ (resp., M ™) the region in M bounded by co U (I' N {t > 0})
(resp., co U (T'N{t < 0})). It is clear that W+ Cc M* and W~ C M~, where W+t and W~ are
the Y-regions of M containing M™*(0O) and M~ (O), respectively.

Lemma 7.1 implies that any region U C M disjoint from I' with d(U) C Il contains finitely
many Y-regions of M. Thus, we can find a divergent arc 7 C M disjoint from I', meeting cg
just at the initial point of 37, and meeting twice any connected component of (M NTly) — co. In
a similar way we define 3~, and without loss of generality suppose cg N 3T = c¢o N 3~. The proper
arc 3 = T U B~ is disjoint from I' and splits M into two connected components. We set Mg the
closure of the connected component of M — § disjoint from T'.

Let V' be a X-region of Mg, obviously non compact. V is said to be a middle X-region of Mg
it (V) N B is compact. Otherwise, V is said to be a tail E-region of Mg. Two different X-regions
of Mg are said to be contiguous if they share a non compact boundary arc in Ily. Obviously
MpNM™T (resp., MgNM™) contains at most one tail X-region, and it contains a tail X-region if
an only if (W) (resp., (W ™)) contains finitely many components. Moreover, Mg contains no
middle ¥-regions if and only if Mg NIy = co.

Let t* : M — R denote the harmonic conjugate of the third coordinate function ¢ : M — R,
and consider the holomorphic function h :=¢ + it* : M — C.

Claim 1: If Vj is a middle X-region of Mg then t|y, is unbounded.

Proof: Suppose that t|y, is bounded, and without loss of generality assume that ¢(Vy) C| — oo, 0].
Since Vj is parabolic (see Corollary 4.1), there is a biholomorphism 7 : Vo — A = {z € D — {0} :
|arg(z)| < %} such that T'(0(Vp) N1lp) = {z € A : Re(z) = 0}. Up to the identification Vp = A
viaT, f: A — C, f := e/, extends by Schwarz reflection to a bounded function, that we keep
calling f, on D — {0}. by Riemann’s removable singularity theorem, f extends holomorphically to
D. Furthermore, f has no zeroes in D because ¢ = log(|f|) < 0 is bounded, and thus h = log(f)
has well defined limit at 0. Thus, Aly, is bounded and has well defined limit at its unique end.
Let V4 be a middle X-region of Mg contiguous to Vp. Since h(V1) C {z € C : Re(z) > 0}
and h(Vp) is bounded, h(Vo U V}) omits infinitely many complex values, and consequently it is a
normal function. From the conformal point of view, Dy := Vi UV} is biholomorphic to the D — {1}.
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Identifying Dy = D—{1}, h has a well defined finite limit wq along arcs o C Vp € D—{1} diverging
to 1. Basic sectorial theorems for normal functions imply that h|p, has well defined finite angular
limit wg at the end 1. In particular, ¢|y, can not have asymptotic curves with asymptotic value oo,
which proves that t|y, is bounded. Reasoning as at the beginning of the claim, h|y, is bounded
and has well defined finite limit wy at its unique end. Repeating this argument for successive
contiguous middle ¥-regions, we conclude that h has limit wy at the end of any middle X-region.

Now we can finish the claim. As we are assuming that Mg contains middle »-regions, then
there is a Y-region U of M with d(U) C IIy. The parabolicity of U and Claim 1 show that
U is biholomorphic to D — {w1, ..., wx}, where {w,...,w;} C (D). Since t| is bounded and
tloy =0, we get t|y = 0, which is absurd. O

From Theorem 6.2 (see also the comments below Definition 2.2), J := WVIS* is well defined
and never vanishes on M. Thus, any integral curve of )} is a proper arc in M contained in a
horizontal plane®. Furthermore, since ) is a spacelike field and T is lightlike, the integral curves
of Y are transverse to I'. Consider the flow F : T' x [0, 4+o00[ of Y and define D C M as the open
subdomain that is the image F(T" x [0, +o00[). For the sake of simplicity, we denote by ¢, integral
curve F(T'(s),[0,400[), s € R. In other words, ¢, is the connected component of M N {t = s}
meeting I'.

To finish the theorem, it suffices to check that D = M. Reason by contradiction, and assume
that M — D # (). Therefore, (D) = I' U C, where C # () is a collection of pairwise disjoint proper
integral curves of ) disjoint from T'.

Since arcs in C lie in horizontal planes, we can suppose up to a translations that C' NIy # ().
Let ¢ be a proper arc in CNIly. Fix pg € ¢ and let § : [—¢, ] — M be the integral curve of Vt with
initial condition §(0) = po. Since py € C' C 9(D), we infer that §(]0,€]) C D, provided that € is
small enough. Write t(d(e)) = a > 0 and note that ¢(6(]0, €])) =]0, a]. For any s €]0, a], let é; C ¢,
denote the compact arc joining I'(s) = F(I'(s),0) = I'N¢s and (¢ o §)~*(s). From the choice of c,
the curves {¢; : s €]0,a]} converge as s — 0 uniformly on compact subsets of M to ¢o U &, where
¢ C C NIy is a collection of proper subarcs in C' and pg € ¢. By Lemma 7.1, ¢ has finitely many
connected components, one of then being a divergent subarc of ¢ with initial point pg.

Set V = (USE]O,a] ¢és) U co U é, and note that V is a region in M homeomorphic to a closed disc
minus a finite set of boundary points and with boundary 9(V) = T'([0, a]) U §(]0, €]) U &, U co U é.
Since T'([0, a]) U 6(]0, €]) U &, is compact and ¢o U é C 3, V' contains, up to a compact set, at least
one Y-region of Mg. However, t|y is bounded, contradicting Claim 1 and concluding the proof. O

Theorem 7.2 (Uniqueness of the Lorentzian Helicoid) The unique properly embedded w*-
maximal surface with connected boundary and infinite rotation number is, up to Lorentzian con-
gruence, the Lorentzian helicoid.

Proof: Let M be a properly embedded *maximal surface with connected boundary and 6,4 = +oo.
Up to isometries, suppose Yo, = Ily. From Proposition 7.1, h :=t + it* : M — C is a injective
holomorphic map. Furthermore, since T' is a lightlike arc of mirror symmetry, t*|r is constant (
without loss of generality suppose t*|r = 0).

Let us see that limgec, oo t* () = 00 for any s € R, where as in the proof of Proposition 7.1
¢s is the integral curve of )V with initial condition I'(s). Indeed, as t*|., is monotone then the limit
rs = liMgec, oo t*(x) exists, and without loss of generality, belongs to ]0, 400, for any s € R. In
particular

lim h(z)=s+ir,, seR.

xrECs—00

8Thw symbol V means gradient with respect to the metric ds? induced by {,).
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Let V5 denote the parabolic region in M bounded by T'(]0, s]) U ¢g U ¢s. The holomorphic function
h|y, omits infinitely many complex values, hence from Theorem 4.1 the limits along ¢y and ¢; must
coincide for any s € R. Therefore, s = +00 for any s € R, proving our assertion.

As a consequence, h(M) =TU and h : M — U is a biholomorphism. Furthermore, identifying
M and U via h, we get ¢3 = —iBdz, B > 0.

On the other hand, Theorem 6.2 gives that g(U) € D — {0}, and so log(g) : U — C is well
defined. As |g|7*(1) = O(U), then Re(log(g)) only vanish on the real axis and log(g)|s(u) is one to

one. Therefore, g(z) = e+ where a, b € R. Up to Lorentzian congruence, M is the Lorentzian
helicoid, which concludes the proof. O
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