
Elliptic equations

with measure data

Luigi Orsina





Contents

Chapter 1. Existence with regular data in the linear case 5
1. Minimization in Banach spaces 5
2. Hilbert spaces 6
3. Sobolev spaces 10
4. Weak solutions for elliptic equations 14

Chapter 2. Regularity results 19
1. Examples 19
2. Stampacchia’s theorems 22

Chapter 3. Existence via duality for measure data 27
1. Measures 27
2. Duality solutions for L1 data 29
3. Duality solutions for measure data 31
4. Regularity of duality solutions 32

Chapter 4. Existence via approximation for measure data 33

Chapter 5. Nonuniqueness for distributional solutions 39

Chapter 6. Entropy solutions 45

Chapter 7. Decomposition of measures using capacity 57
1. Capacity 57

Chapter 8. Renormalized solutions 61
1. Renormalized solutions 62

Bibliography 77

3





CHAPTER 1

Existence with regular data in the linear case

Before stating and proving the existence theorem for linear elliptic
equations, we need some tools.

1. Minimization in Banach spaces

Let E be a Banach space, and let J : E → R be a functional.

Definition 1.1. A functional J : E → R is said to be weakly lower
semicontinuous if

un ⇀ u ⇒ J(u) ≤ lim inf
n→+∞

J(un).

Definition 1.2. A functional J : E → R is said to be coercive if

lim
‖u‖E→+∞

J(u) = +∞.

Example 1.3. If E = R, the function J(x) = x2 is an example
of a (weakly) lower semicontinuous and coercive functional. Another
example is J(u) = ‖u‖E.

Theorem 1.4. Let E be a reflexive Banach space, and let J :
E → R be a coercive and weakly lower semicontinuous functional (not
identically equal to +∞). Then J has a minimum on E.

Proof. Let

m = inf
v∈E

J(v) < +∞,

and let {vn} in E be a minimizing sequence, i.e., vn is such that

lim
n→+∞

J(vn) = m.

We begin by proving that {vn} is bounded. Indeed, if it were not, there
would be a subsequence {vnk} such that

lim
k→+∞

‖vnk‖ = +∞.

Since J is coercive, we will have

m = lim
n→+∞

J(vn) = lim
k→+∞

J(vnk) = +∞,

5



6 1. EXISTENCE WITH REGULAR DATA IN THE LINEAR CASE

which is false. Therefore, {vn} is bounded in E and so, being E re-
flexive, there exists a subsequence {vnk} and an element v of E such
that vnk weakly converges to v as k diverges. Since J is weakly lower
semicontinuous, we have

m ≤ J(v) ≤ lim inf
k→+∞

J(vnk) = lim
n→+∞

J(vn) = m,

so that v is a minimum of J . �

2. Hilbert spaces

2.1. Linear forms and dual space. We recall that a Hilbert space
H is a vector space where a scalar product (·|·) is defined, which is
complete with respect to the distance induced by the scalar product
by the formula

d(x, y) =
√

(x− y|x− y).

Examples of Hilbert spaces are R (with (x|y) = x y), RN (with the
“standard” scalar product), `2, and L2(Ω) with

(f |g) =

∫
Ω

f g.

Theorem 1.5 (Riesz). Let H be a separable Hilbert space, and let
T be an element of its dual H ′, i.e., a linear application T : H → R
such that there exists C ≥ 0 such that

(1.1) |〈T, x〉| ≤ C‖x‖, ∀x ∈ H.

Then there exists a unique y in H such that

〈T, x〉 = (y|x), ∀x ∈ H.

Proof. Denote by {eh} a complete orthonormal system in H, i.e. a
sequence of vectors of H such that (eh|ek) = δhk, and such that, for
every x in H, one has

x =
+∞∑
h=1

(x|eh)eh.

It is then well known that there exists a bijective isometry F from H
to `2, defined by F(x) = {(x|eh)}. We claim that {〈T, eh〉} belongs to
`2. Indeed, if

yn =
n∑
h=1

〈T, eh〉eh,
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we have, by linearity and by (1.1),

n∑
h=1

(〈T, eh〉)2 = 〈T, yn〉 ≤ C‖yn‖ = C

(
n∑
h=1

(〈T, eh〉)2

) 1
2

,

so that
n∑
h=1

(〈T, eh〉)2 ≤ C2,

which yields (letting n tend to infinity) that {〈T, eh〉〉} belongs to `2.
Therefore, one has, again by linearity and by (1.1),

〈T, x〉 =
+∞∑
h=1

(x|eh)〈T, eh〉, ∀x ∈ H.

Let now y be the vector of H defined by

y =
+∞∑
h=1

〈T, eh〉eh.

Then, since 〈T, eh〉 = (y|eh), one has

〈T, x〉 =
+∞∑
h=1

(x|eh)(y|eh), ∀x ∈ H,

and the right hand side is nothing but the scalar product in `2 of F(x)
and F(y). Since F is an isometry, we then have

〈T, x〉 = (y|x), ∀x ∈ H,
as desired. Uniqueness follows from the fact that (y|x) = (z|x) for
every x in H implies y = z (just take x = y − z). �

Corollary 1.6. The map T 7→ y is a bijective linear isometry
between H ′ and H.

Proof. Since 〈T + S, x〉 = 〈T, x〉 + 〈S, x〉, and 〈λT, x〉 = λ〈T, x〉, it
is clear that the map T 7→ y is linear. In order to prove that it is an
isometry, we have

|〈T, x〉| = |(y|x)| ≤ ‖y‖‖x‖,
which implies ‖T‖ ≤ ‖y‖. Furthermore

‖y‖2 = (y|y) = 〈T, y〉 ≤ ‖T‖‖y‖,
so that ‖y‖ ≤ ‖T‖. The map is clearly injective, and it is surjective
since the application x 7→ (y|x) is linear and continuous on H (by
Cauchy-Schwartz inequality). �
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2.2. Bilinear forms. An application a : H ×H → R such that

a(λx+ µy, z) = λa(x, z) + µa(y, z),

and

a(z, λx+ µy) = λa(z, x) + µa(z, x),

for every x and y in H, and for every λ and µ in R, is called bilinear
form. A bilinear form is said to be continuous if there exists β ≥ 0
such that

|a(x, y)| ≤ β‖x‖‖y‖, ∀x, y ∈ H,
and is said to be coercive if there exists α > 0 such that

a(x, x) ≥ α‖x‖2, ∀x ∈ H.

An example of bilinear form on H is the scalar product, which is both
continuous (with β = 1, thanks to the Cauchy-Schwartz inequality),
and coercive (with α = 1, by definition of the norm in H).

Theorem 1.7. Let a : H ×H → R be a continuous bilinear form.
Then there exists a linear and continuous map A : H → H such that

a(x, y) = (A(x)|y), ∀x, y ∈ H.

Proof. Since a is linear in the second argument and continuous, for
every fixed x in H the map y 7→ a(x, y) is linear and continuous, so
that it belongs to H ′. By Riesz theorem, there exists a unique vector
A(x) in H such that

a(x, y) = (A(x)|y), ∀x, y ∈ H.

Since a is linear in the first argument, the map x 7→ A(x) is linear.
Furthermore, by the continuity of a,

‖A(x)‖2 = (A(x)|A(x)) = a(x,A(x)) ≤ β‖x‖‖A(x)‖,

so that ‖A(x)‖ ≤ β‖x‖, and the map is continuous. �

2.3. Banach-Caccioppoli and Lax-Milgram theorems.

Theorem 1.8 (Banach-Caccioppoli). Let (X, d) be a complete me-
tric space, and let S : X → X be a contraction mapping, i.e., a con-
tinuous application such that there exists θ in [0, 1) such that

d(S(x), S(y)) ≤ θ d(x, y), ∀x, y ∈ X.

Then there exists a unique x in X such that S(x) = x.
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Proof. Let x0 in X be fixed, and define x1 = S(x0), x2 = S(x1),
and, in general, xn = S(xn−1). We then have, since S is a contraction
mapping,

d(xn+1, xn) = d(S(xn), S(xn−1)) ≤ θ d(xn, xn−1),

and iterating we obtain

d(xn+1, xn) ≤ θn d(x1, x0).

Therefore, by the triangular inequality,

d(xn, xm) ≤
n−1∑
h=m

d(xh+1, xh) ≤
n−1∑
h=m

θh d(x1, x0) =
θm − θn

1− θ
.

Since {θh} is a Cauchy sequence in R (being convergent to zero), it then
follows that {xn} is a Cauchy sequence in (X, d), which is complete.
Therefore, there exists x in X such that xn converges to x. Since S
is continuous, on one hand S(xn) converges to S(x), and on the other
hand S(xn) = xn+1 converges to x so that x is a fixed point for S. If
there exist x and y such that S(x) = x and S(y) = y, then, since S is
a contraction mapping,

d(x, y) = d(S(x), S(y)) ≤ θ d(x, y),

which implies (since θ < 1) d(x, y) = 0 and so x = y. �

Theorem 1.9 (Lax-Milgram). Let a : H×H → R be a continuous
and coercive bilinear form, and let T be an element of H ′. Then there
exists a unique x in H such that

(1.2) a(x, z) = 〈T, z〉, ∀z ∈ H.

Proof. Using the Riesz theorem and Theorem 1.7, solving the equa-
tion (1.2) is equivalent to find x such that

a(x, z) = (A(x)|z) = (y|z) = 〈T, z〉, ∀z ∈ H,
i.e., to solve the equation A(x) = y. Given λ > 0, this equation is
equivalent to x = x − λA(x) + λy, which is a fixed point problem for
the function S(x) = x− λA(x)− λy. Since, being A linear, one has

S(x1)− S(x2) = x1 − x2 − λA(x1) + λA(x2) = x1 − x2 − λA(x1 − x2),

in order to prove that S is a contraction mapping, it is enough to prove
that there exists λ > 0 such that

‖x− λA(x)‖ ≤ θ‖x‖,
for some θ < 1 and for every x in H. We have

‖x− λA(x)‖2 = ‖x‖2 + λ2‖A(x)‖2 − 2λ(A(x)|x).
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Recalling Theorem 1.7 and the definition of A, we have

‖A(x)‖2 ≤ β2‖x‖2, (A(x)|x) = a(x, x) ≥ α‖x‖2,

so that

‖x− λA(x)‖2 ≤ (1 + λ2β2 − 2λα)‖x‖2.

If 0 < λ < 2α
β2 , we have θ2 = 1 + λ2β2 − 2λα < 1, so that S is a

contraction mapping. �

3. Sobolev spaces

The Banach spaces where we will look for solutions are space of
functions in Lebesgue spaces “with derivatives in Lebesgue spaces”
(whatever this means).

3.1. Definition of Sobolev spaces. Let Ω be a bounded, open subset
of RN , N ≥ 1, and let u be a function in L1(Ω). We say that u has a
weak (or distributional) derivative in the direction xi if there exists a
function v in L1(Ω) such that∫

Ω

u
∂ϕ

∂xi
= −

∫
Ω

v ϕ, ∀ϕ ∈ C1
0(Ω).

In this case we define the weak derivative ∂u
∂xi

as the function v. If u

has weak derivatives in every direction, we define its (weak, or distri-
butional) gradient as the vector

∇u =

(
∂u

∂x1

, . . . ,
∂u

∂xN

)
.

If p ≥ 1, we define the Sobolev space W 1,p(Ω) as

W 1,p(Ω) =
{
u ∈ Lp(Ω) : ∇u ∈ (Lp(Ω))N

}
.

The Sobolev space W 1,p(Ω) becomes a Banach space under the norm

‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) + ‖∇u‖(Lp(Ω))N ,

and W 1,2(Ω) is a Hilbert space under the scalar product

(u|v)W 1,2(Ω) =

∫
Ω

u v +

∫
Ω

∇u · ∇v.

For historical reasons the space W 1,2(Ω) is usually denoted by H1(Ω):
we will use this notation from now on.

Since we will be dealing with elliptic problems with zero boundary
conditions, we need to define functions which somehow are “zero” on
the boundary of Ω. Since ∂Ω has zero Lebesgue measure, and functions
in W 1,p(Ω) are only defined up to almost everywhere equivalence, there
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is no “direct” way of defining the boundary value a function u in some
Sobolev space. We then give the following definition.

Definition 1.10. We define W 1,p
0 (Ω) as the closure of C1

0(Ω) in the
norm of W 1,p(Ω). If p = 2, we will denote W 1,2

0 (Ω) by H1
0 (Ω), which is

a Hilbert space.

From now on we will mainly deal with W 1,p
0 (Ω).

3.2. Properties of Sobolev spaces. Since a function in W 1,p
0 (Ω) is

“zero at the boundary” it is possible to control the norm of u in Lp(Ω)
with the norm of its gradient in the same space. This is known as
Poincaré inequality.

Theorem 1.11 (Poincaré inequality). Let p ≥ 1; then there exists
a constant C, only depending on Ω, N and p, such that

(1.3) ‖u‖Lp(Ω) ≤ C ‖∇u‖(Lp(Ω))N , ∀u ∈ W 1,p
0 (Ω).

Proof. We only give an idea of the proof in dimension 1. Let u
belong to C1

0((0, 1)). Then

u(x) = u(0) +

∫ x

0

u′(t) dt =

∫ x

0

u′(t) dt, ∀x ∈ (0, 1).

Thus, by Hölder inequality

|u(x)|p =

∣∣∣∣∫ x

0

u′(t) dt

∣∣∣∣p ≤ x
p
p′

∫ x

0

|u′(t)|p ≤
∫ 1

0

|u′(t)|p.

Integrating this inequality yields the result for C1
0((0, 1)) functions. The

result for functions in W 1,p
0 (Ω) then follows by a density argument. �

As a consequence of Poincaré inequality, we can define on W 1,p
0 (Ω)

the equivalent norm built after the norm of ∇u in (Lp(Ω))N . From now
on, we will have

‖u‖W 1,p
0 (Ω) = ‖∇u‖(Lp(Ω))N .

Even though functions in W 1,p
0 (Ω) should only belong to Lp(Ω), the

assumptions made on the gradient allow to improve the summability
of functions belonging to Sobolev spaces. This is what is stated in the
following “embedding” theorem.

Theorem 1.12. Let 1 ≤ p < N , and let p∗ = Np
N−p (p∗ is called

the Sobolev embedding exponent). Then there exists a constant Sp
(depending only on N and p) such that

(1.4) ‖u‖Lp∗ (Ω) ≤ Sp ‖u‖W 1,p
0 (Ω) , ∀u ∈ W 1,p

0 (Ω).
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Remark 1.13. The fact that p∗ is the correct exponent can be easily
recovered by a scaling argument. Indeed, if u belongs to W 1,p

0 (RN),
then u(λx) belongs to the same space. But then∫

RN
|u(λx)|q dx =

1

λN

∫
RN
|u(y)|q dy,

and ∫
RN
|∇u(λx)|p dx =

1

λN−p

∫
RN
|∇u(y)|p dy.

Therefore, if (1.4) holds for some constant C (independent on λ) and
some exponent q, one should have

N

q
=
N − p
p

,

which implies q = Np
N−p = p∗.

By (1.4), the embedding of W 1,p
0 (Ω) in Lp

∗
(Ω) is continuous. To

obtain compactness, we cannot consider exponents up to p∗.

Theorem 1.14. Let 1 ≤ p < N , and let 1 ≤ q < p∗. Then the
embedding of W 1,p

0 (Ω) into Lq(Ω) is compact.

Remark 1.15. The fact that the embedding of W 1,p
0 (Ω) into Lp

∗
(Ω)

is not compact is at the basis for several nonexistence results for equa-
tions like −∆u = uq if q is “too large”. But this is another story. . .

An important role will be played by the dual of a Sobolev space.
We have the following representation theorem.

Theorem 1.16. Let p > 1, and let T be an element of (W 1,p
0 (Ω))

′
.

Then there exists F in (Lp
′
(Ω))N such that

〈T, u〉 =

∫
Ω

F · ∇u, ∀u ∈ W 1,p
0 (Ω).

The dual of W 1,p
0 (Ω) will be denoted by W−1,p′(Ω), while the dual

of H1
0 (Ω) is H−1(Ω).

Remark 1.17. The space H1
0 (Ω) is a Hilbert space. Therefore, by

Theorem 1.5, it is isometrically equivalent to its dual H−1(Ω). Further-
more, by Poincaré inequality, H1

0 (Ω) is embedded into L2(Ω), which is
itself a Hilbert space. Since the embedding is continuous and dense,
we also have that the the dual of L2(Ω) (which is L2(Ω)) is embedded
into H−1(Ω). We therefore have

H1
0 (Ω) ⊂ L2(Ω) ≡ (L2(Ω))′ ⊂ (H1

0 (Ω))′ = H−1(Ω).
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If we identify both L2(Ω) and its dual, and H1
0 (Ω) and its dual, we

obtain a contradiction (since H1
0 (Ω) and L2(Ω) are different spaces).

Therefore, we have to choose which identification to make: which will
be that L2(Ω) is equivalent to its dual.

Remark 1.18. Since, by Sobolev embedding, W 1,p
0 (Ω) is continu-

ously embedded in Lp
∗
(Ω), we have by duality that (Lp

∗
(Ω))′ is contin-

uously embedded in W−1,p′(Ω). If we define

p∗ = (p∗)′ =
Np

Np−N + p
,

we then have
Lp∗(Ω) ⊂ W−1,p′(Ω).

If p = 2, we have 2∗ = 2N
N+2

, and the embedding of L2∗(Ω) into H−1(Ω).

The final result on Sobolev spaces will be about composition with
regular functions.

Theorem 1.19. Let G : R→ R be a lipschitz continuous functions
such that G(0) = 0. If u belongs to W 1,p

0 (Ω), then G(u) belongs to
W 1,p

0 (Ω) as well, and

(1.5) ∇G(u) = G′(u)∇u, almost everywhere in Ω.

Remark 1.20. Recall that a lipschitz continuous function is only
almost everywhere differentiable, so that the right-hand side of (1.5)
may not be defined. We have however two possible cases: if k is a value
such that G′(k) does not exist, either the set {u = k} has zero measure
(and so, since identity (1.5) only holds almost everywhere, this value
does not give any problems), or the set {u = k} has positive measure.
In this latter case, however, we have both ∇u = 0 and ∇G(u) = 0
almost everywhere, so that (1.5) still holds.

Let k > 0; in what follows, we will often use composition of func-
tions in Sobolev spaces with

(1.6) Tk(s) = max(−k,min(s, k)),

k

k

−k

−k

and

(1.7) Gk(s) = s− Tk(s) = (|s| − k)+sgn(s).
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k

−k

By Theorem 1.19, we have

∇Tk(u) = ∇uχ{|u|≤k}, ∇Gk(u) = ∇uχ{|u|≥k},
almost everywhere in Ω.

4. Weak solutions for elliptic equations

We have now all the tools needed to deal with elliptic equations.

4.1. Definition of weak solutions. Let A : Ω → RN2
be a matrix-

valued measurable function such that there exist 0 < α ≤ β such that

(1.8) A(x)ξ · ξ ≥ α|ξ|2, |A(x)| ≤ β,

for almost every x in Ω, and for every ξ in RN . We will consider the fol-
lowing uniformly elliptic equation with Dirichlet boundary conditions

(1.9)

{
−div(A(x)∇u) = f in Ω,

u = 0 on ∂Ω,

where f is a function defined on Ω which satisfies suitable assumptions.
If the matrix A is the identity matrix, problem (1.9) becomes{

−∆u = f in Ω,

u = 0 on ∂Ω,

i.e., the Dirichlet problem for the laplacian operator.

4.2. Classical solutions and weak solutions. Suppose that the ma-
trix A and the functions u and f are sufficiently smooth so that one
can “classically” compute −div(A(x)∇u). If ϕ is a function in C1

0(Ω),
we can then multiply the equation in (1.9) by ϕ and integrate on Ω.
Since

−div(A(x)∇u)ϕ = −div(A(x)∇uϕ) + A(x)∇u · ∇ϕ,
we get ∫

Ω

A(x)∇u · ∇ϕ−
∫

Ω

div(A(x)∇uϕ) =

∫
Ω

f ϕ.

By Gauss-Green formula, we have (if ν is the exterior normal to Ω)∫
Ω

div(A(x)∇uϕ) =

∫
∂Ω

A(x)∇u · ν ϕ = 0,
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since ϕ has compact support in Ω. Therefore, if u is a classical solution
of (1.9), we have∫

Ω

A(x)∇u · ∇v =

∫
Ω

f v, ∀v ∈ C1
0(Ω).

We now remark that there is no need for A, u, ϕ and f to be smooth
in order for the above identity to be well defined. It is indeed enough
that A is a bounded matrix, that u and ϕ belong to H1

0 (Ω), and that
f is in L2(Ω) (or in L2∗(Ω), thanks to Sobolev embedding, see Remark
1.18).

We therefore give the following definition.

Definition 1.21. Let f be a function in L2∗(Ω). A function u in
H1

0 (Ω) is a weak solution of (1.9) if

(1.10)

∫
Ω

A(x)∇u · ∇v =

∫
Ω

f v, ∀v ∈ H1
0 (Ω).

If u is a weak solution of (1.9), and u is sufficiently smooth in order
to perform the same calculations as above “going backwards”, then
it can be proved that u is a “classical” solution of (1.9). The study
of the assumptions on f and A such that a weak solution is also a
classical solution goes beyond the purpose of this text (also because we
are interested in “bad” data!).

4.3. Existence of solutions (using Lax-Milgram).

Theorem 1.22. Let f be a function in L2∗(Ω). Then there exists
a unique solution u of (1.9) in the sense of (1.10).

Proof. We will use Lax-Milgram theorem. Indeed, if we define the
bilinear form a : H1

0 (Ω)×H1
0 (Ω)→ R by

a(u, v) =

∫
Ω

A(x)∇u · ∇v,

and the linear and continuos (thanks to Sobolev embedding) functional
T : H1

0 (Ω)→ R by

〈T, v〉 =

∫
Ω

f v,

solving problem (1.9) in the sense of (1.10) amounts to finding u in
H1

0 (Ω) such that

a(u, v) = 〈T, v〉, ∀v ∈ H1
0 (Ω),

which is exactly the result given by Lax-Milgram theorem. In order to
apply the theorem, we have to check that a is continuous and coercive
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(the fact that it is bilinear being evident). We have, by (1.8), and by
Hölder inequality,

|a(u, v)| ≤
∫

Ω

|A(x)||∇u||∇v| ≤ β ‖u‖H1
0 (Ω) ‖v‖H1

0 (Ω) ,

so that a is continuous. Furthermore, again by (1.8), we have

a(u, u) =

∫
Ω

A(x)∇u · ∇u ≥ α

∫
Ω

|∇u|2 = α ‖u‖2
H1

0 (Ω) ,

so that a is also coercive. �

4.4. Existence of solutions (using minimization). If the matrix A
satisfies (1.8) and is symmetrical, existence and uniqueness of solutions
for (1.9) can be proved using minimization of a suitable functional.

Theorem 1.23. Let f be a function in L2∗(Ω), and let J : H1
0 (Ω)→

R be defined by

J(v) =
1

2

∫
Ω

A(x)∇v · ∇v −
∫

Ω

f v, ∀v ∈ H1
0 (Ω).

Then J has a unique minimum u in H1
0 (Ω), which is the solution of

(1.9) in the sense of (1.10).

Proof. We begin by proving that J is coercive and weakly lower
semicontinuous on H1

0 (Ω), so that a minimum will exist by Theorem
1.4. Recalling (1.8) and using Hölder and Sobolev inequalities, we have

J(v)≥ α
2

∫
Ω

|∇v|2 − ‖f‖L2∗ (Ω) ‖u‖L2∗ (Ω)

≥ α
2
‖u‖2

H1
0 (Ω) − S2 ‖f‖L2∗ (Ω) ‖u‖H1

0 (Ω) ,

and the right hand side diverges as the norm of u in H1
0 (Ω) diverges,

so that J is coercive. Let now {vn} be a sequence of functions which
is weakly convergent to some v in H1

0 (Ω). Since f belongs to L2∗(Ω),
and vn converges weakly to v in L2∗(Ω), we have

lim
n→+∞

∫
Ω

f vn =

∫
Ω

f v,

so that the weak lower semicontinuity of J is equivalent to the weak
lower semicontinuity of

K(v) =

∫
Ω

A(x)∇v · ∇v.
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By (1.8) we have ∫
Ω

A(x)∇(v − vn) · ∇(v − vn) ≥ 0,

which, together with the symmetry of A, implies

(1.11) 2

∫
Ω

A(x)∇v · ∇vn −
∫

Ω

A(x)∇v · ∇v ≤
∫

Ω

A(x)∇vn · ∇vn.

Since ∇vn converges weakly to ∇v in (L2(Ω))N , and since A(x)∇v is
fixed in the same space, we have

lim
n→+∞

∫
Ω

A(x)∇v · ∇vn =

∫
Ω

A(x)∇v · ∇v,

so that taking the inferior limit in both sides of (1.11) implies∫
Ω

A(x)∇v · ∇v ≤ lim inf
n→+∞

∫
Ω

A(x)∇vn · ∇vn,

which means that K is weakly lower semicontinuous on H1
0 (Ω), as

desired.
Let now u be a minimum of J on H1

0 (Ω). We are going to prove
that it is unique. Indeed, if u and v are both minima of J , one has

J(u) ≤ J
(u+ v

2

)
, J(v) ≤ J

(u+ v

2

)
,

that is,

J(u) + J(v) ≤ 2J
(u+ v

2

)
,

which becomes (after cancelling equal terms and multiplying by 4)

2

∫
Ω

A(x)∇u · ∇u+ 2

∫
Ω

A(x)∇u · ∇u =

∫
Ω

A(x)∇(u+ v) · ∇(u+ v).

Using the fact that A is symmetric, expanding the right hand side, and
cancelling equal terms, we arrive at∫

Ω

A(x)∇u · ∇u− 2

∫
Ω

A(x)∇u · ∇v +

∫
Ω

A(x)∇v · ∇v ≤ 0,

which can be rewritten as∫
Ω

A(x)∇(u− v) · ∇(u− v) ≤ 0.

Using (1.8) we therefore have

α ‖u− v‖2
H1

0 (Ω) ≤ 0,

which implies u = v, as desired.
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We are now going to prove that the minimum u is a solution of
(1.9) in the sense of (1.10). Given v in H1

0 (Ω) and t in R, we have
J(u) ≤ J(u+ tv), that is

1

2

∫
Ω

A(x)∇u·∇u−
∫

Ω

fu ≤ 1

2

∫
Ω

A(x)∇(u+tv)·∇(u+tv)−
∫

Ω

f(u+tv).

Expanding the right hand side, cancelling equal terms, and using the
fact that A is symmetric, we obtain

t

∫
Ω

A(x)∇u · ∇v +
t2

2

∫
Ω

A(x)∇v · ∇v − t
∫

Ω

f v ≥ 0.

If t > 0, dividing by t and then letting t tend to zero implies∫
Ω

A(x)∇u · ∇v −
∫

Ω

f v ≥ 0,

while if t < 0, dividing by t and then letting t tend to zero implies the
reverse inequality. It then follows that∫

Ω

A(x)∇u · ∇v =

∫
Ω

f v, ∀v ∈ H1
0 (Ω),

and so u solves (1.9) (in the sense of (1.10)). In order to prove that
such a solution is unique, we are going to prove that if u solves (1.9),
then u is a minimum of J . Indeed, choosing u − v as test function in
(1.10), we have∫

Ω

A(x)∇u · ∇u−
∫

Ω

A(x)∇u · ∇v =

∫
Ω

f(u− v).

This implies

J(u)+
1

2

∫
Ω

A(x)∇u ·∇u−
∫

Ω

A(x)∇u ·∇v = J(v)− 1

2

∫
Ω

A(x)∇v ·∇v,

which implies J(u) ≤ J(v) since

1

2

∫
Ω

A(x)∇u · ∇u−
∫

Ω

A(x)∇u · ∇v +
1

2

∫
Ω

A(x)∇v · ∇v

is nonnegative being equal to

1

2

∫
Ω

A(x)∇(u− v) · ∇(u− v),

which is nonnegative by (1.8). �



CHAPTER 2

Regularity results

Thanks to the results of the previous section, we have existence
of solutions for data f in L2∗(Ω). The solution u then belongs to
H1

0 (Ω) and (thanks to Sobolev embedding) to L2∗(Ω). One then won-
ders whether an increase on the regularity of f will yield more regular
solutions.

1. Examples

We are going to study a model case, in which the solution of (1.9)
can be explictly calculated. This example will give us a hint on what
happens in the general case.

Example 2.1. Let Ω = B 1
2
(0), let N ≥ 3, let α < N and define

f(x) =
1

|x|α (− log(|x|))
.

It is well known that f belongs to Lp(Ω), with p = N
α

. We are going to
study the regularity of the solution u of{

−∆u = f in Ω,

u = 0 on ∂Ω,

taking advantage of the fact that the solution will be radially symmet-
ric. Recalling the formula for the laplacian in radial coordinates, we
have

− 1

ρN−1
(ρN−1u′(ρ))′ =

1

ρα (− log(ρ))
.

Multiplying by ρN−1 and integrating between 0 and ρ, we obtain

ρN−1 u′(ρ) =

∫ ρ

0

tN−1−α

log(t)
dt.

Dividing by ρN−1 and integrating between 1
2

and ρ we then get (recall-

ing that u(1
2
) = 0)

u(ρ) = −
∫ 1

2

ρ

1

sN−1

(∫ s

0

tN−1−α

log(t)
dt

)
ds.

19
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We are integrating on the set E = {(s, t) ∈ R2 : ρ ≤ s ≤ 1
2
, 0 ≤ t ≤ s},

s

t

ρ 1/2

ρ

1/2

E

which, after exchanging t with s, becomes E = {(t, s) ∈ R2 : 0 ≤ t ≤
1
2
, max(ρ, t) ≤ s ≤ 1

2
},

t

s

ρ

1/2

ρ 1/2

E

Exchanging the integration order, we then have

u(ρ) =−
∫ 1

2

0

tN−1−α

log(t)

(∫ 1
2

max(ρ,t)

ds

sN−1

)
dt

=
1

N − 2

∫ 1
2

0

tN−1−α

log(t)

[(
1

2

)2−N

− (max(ρ, t))2−N

]
dt

=
2N−2

N − 2

∫ 1
2

0

tN−1−α

log(t)
dt− 1

N − 2

∫ 1
2

0

tN−1−α(max(ρ, t))2−N

log(t)
dt.

Since α < N , the first integral is bounded, so that it is enough to study
the behaviour near zero of the function

v(ρ) =

∫ 1
2

0

tN−1−α(max(ρ, t))2−N

log(t)
dt

= ρ2−N
∫ ρ

0

tN−1−α

log(t)
dt+

∫ 1
2

ρ

t1−α

log(t)
dt

= ρ2−N w(ρ) + z(ρ).

It is easy to see (using the de l’Hopital rule), that if α 6= 2

w(ρ) ≈ ρN−α

log(ρ)
, and z(ρ) ≈ ρ2−α

log(ρ)
,
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as ρ tends to zero, so that, if α 6= 2,

u(ρ) ≈ ρ2−α

log(ρ)
,

as ρ tends to zero. This implies that u belongs to L∞(Ω) if α < 2,
while it is in Lm(Ω), with m = N

α−2
, if 2 < α < N . Recalling that

f belongs to Lp(Ω) with p = N
α

, we therefore have that u belongs to

L∞(Ω) if f belongs to Lp(Ω), and p > N
2

, while it is in Lm(Ω), with

m = Np
N−2p

, if f belongs to Lp(Ω), with 1 < p < N
2

.

If α = 2, then

w(ρ) ≈ ρN−α

log(ρ)
, and z(ρ) ≈ log(− log(ρ)),

so that u is in every Lm(Ω), but not in L∞(Ω), if f belongs to Lp(Ω)
with p = N

2
. In this case (which we will not study in the following), it

can be proved that e|u| belongs to L1(Ω).
Observe that if α = N+2

2
, so that f belongs to L2∗(Ω), we get

that u belongs to L2∗(Ω), which is exactly the results we already knew
by Sobolev embedding. Also remark that the above example gives
informations also if f does not belong to L2∗(Ω) (i.e., if N+2

2
< α < N),

an assumption under which we do not have any existence results (yet!).
If we want to take α = N , we need to change the definition of f .

We fix β > 1 and define

f(x) =
1

|x|N (− log(|x|))β
,

which is a function belonging to L1(Ω). Performing the same calcula-
tions as above, we obtain

u(ρ) =
1

β − 1

∫ 1
2

ρ

dt

tN−1 (− log(t))β−1
,

so that

u(ρ) ≈ 1

ρN−2 (− log(ρ))β−1
,

as ρ tends to zero. Observe that in this case f belongs to L1(Ω) for
every β > 1, but u belongs to Lm(Ω), with m = N ·1

N−2·1 = N
N−2

if and

only if β > 2− 2
N

. If 1 < β ≤ 2− 2
N

, the solution u belongs “only” to

Lm(Ω), for every m < N
N−2

.
We leave to the interested reader the study of the case N = 2.



22 2. REGULARITY RESULTS

2. Stampacchia’s theorems

The regularity results we are going to prove now show that the
previous example is not just an example. We begin with a real analysis
lemma.

Lemma 2.2 (Stampacchia). Let ψ : R+ → R+ be a nonincreasing
function such that

(2.12) ψ(h) ≤ M ψ(k)δ

(h− k)γ
, ∀h > k > 0,

where M > 0, δ > 1 and γ > 0. Then ψ(d) = 0, where

dγ = M ψ(0)δ−1 2
δγ
δ−1 .

Proof. Let n in N and define dn = d(1− 2−n). We claim that

(2.13) ψ(dn) ≤ ψ(0) 2−
nγ
δ−1 .

Indeed, (2.13) is clearly true if n = 0; if we suppose that it is true for
some n, then, by (2.12),

ψ(dn+1) ≤ M ψ(dn)δ

(dn+1 − dn)γ
≤M ψ(0)δ 2−

nγδ
δ−1 2(n+1)γ d−γ = ψ(0) 2−

(n+1)γ
δ−1 ,

which is (2.13) written for n + 1. Since (2.13) holds for every n, and
since ψ is non increasing, we have

0 ≤ ψ(d) ≤ lim inf
n→+∞

ψ(dn) ≤ lim
n→+∞

ψ(0)δ−1 2−
nγ
δ−1 = 0,

as desired. �
The first result (due to Guido Stampacchia, see [8]), deals with

bounded solutions for (1.9).

Theorem 2.3 (Stampacchia). Let f belong to Lp(Ω), with p > N
2

.
Then the solution u of (1.9) belongs to L∞(Ω), and there exists a
constant C, only depending on N , Ω, p and α, such that

(2.14) ‖u‖L∞(Ω) ≤ C ‖f‖Lp(Ω) .

Proof. Let k > 0 and choose v = Gk(u) as test function in (1.9)
(Gk(s) has been defined in (1.7)). Defining Ak = {x ∈ Ω : |u(x)| ≥ k}
one then has, since ∇v = ∇uχAk , and using (1.8)

α

∫
Ak

|∇Gk(u)|2 ≤
∫

Ω

A(x)∇u · ∇uχAk =

∫
Ω

f Gk(u) =

∫
Ak

f Gk(u).
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Using Sobolev inequality (in the left hand side), and Hölder inequality
(in the right hand side), one has

α

S2
2

(∫
Ak

|Gk(u)|2∗
) 2

2∗

≤
(∫

Ak

|f |2∗
) 1

2∗
(∫

Ak

|Gk(u)|2∗
) 1

2∗

.

Simplifying equal terms, we thus have∫
Ak

|Gk(u)|2∗ ≤
(
S2

2

α

)2∗ (∫
Ak

|f |2∗
) 2∗

2∗
.

Recalling that f belongs to Lp(Ω), and that p > 2∗ since p > N
2

, we
have (again by Hölder inequality)∫

Ak

|Gk(u)|2∗ ≤

(
S2

2 ‖f‖Lp(Ω)

α

)2∗

m(Ak)
2∗
2∗
− 2∗

p .

We now take h > k, so that Ah ⊆ Ak, and Gk(u) ≥ h−k on Ah. Thus,

(h− k)2∗m(Ah) ≤

(
S2

2 ‖f‖Lp(Ω)

α

)2∗

m(Ak)
2∗
2∗
− 2∗

p ,

which implies

m(Ah) ≤

(
S2

2 ‖f‖Lp(Ω)

α

)2∗

m(Ak)
2∗
2∗
− 2∗

p

(h− k)2∗
.

We define now ψ(k) = m(Ak), so that

ψ(h) ≤ M ψ(k)δ

(h− k)γ
,

where

M =

(
S2

2 ‖f‖Lp(Ω)

α

)2∗

, δ =
2∗

2∗
− 2∗

p
, γ = 2∗.

The assumption p > N
2

implies δ > 1, so that applying Lemma 2.2, we
have that ψ(d) = 0, where

d2∗ = C(Ω, N, p)M.

Since m(Ad) = 0, we have |u| ≤ d almost everywhere, which implies

‖u‖L∞(Ω) ≤ d = C(N,Ω, p, α) ‖f‖Lp(Ω) ,

as desired. �
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Remark 2.4. Observe that, in order to prove the previous theorem,
we did not use two of the properties of the equation: that the matrix
A is bounded from above (we only used its ellipticity) and, above all,
the fact that the equation was linear: in other words, the proof above
also holds for every uniformly elliptic operator.

The second results deals with the case of unbounded solutions.

Theorem 2.5 (Stampacchia). Let f belong to Lp(Ω), with 2∗ ≤
p < N

2
. Then the solution u of (1.9) belongs to Lm(Ω), with m = p∗∗ =

Np
N−2p

, and there exists a constant C, only depending on N , Ω, p and

α, such that

(2.15) ‖u‖Lp∗∗ (Ω) ≤ C ‖f‖Lp(Ω) .

Proof. We begin by observing that if p = 2∗, then p∗∗ = 2∗, so
that the result is true in this limit case by the Sobolev embedding.
Therefore, we only have to deal with the case p > 2∗.

The original proof of Stampacchia used a linear interpolation the-
orem; i.e., it is typical of a linear framework. We are going to give
another proof, following [3], which makes use of a technique that can
be applied also in a nonlinear context.

Let k > 0 be fixed, let γ > 1 and choose v = |Tk(u)|2γ−2 Tk(u) as
test function in (1.9) (Tk(s) has been defined in (1.6)). We obtain

(2γ − 1)

∫
Ω

A(x)∇u · ∇Tk(u) |Tk(u)|2γ−2 =

∫
Ω

f |Tk(u)|2γ−2 Tk(u).

Using (1.8), and observing that ∇u = ∇Tk(u) where ∇Tk(u) 6= 0, we
then have

α (2γ − 1)

∫
Ω

|∇Tk(u)|2 |Tk(u)|2γ−2 ≤
∫

Ω

|f | |Tk(u)|2γ−1.

Since |∇Tk(u)|2 |Tk(u)|2γ−2 = 1
γ2 |∇|Tk(u)|γ|2, we have

α (2γ − 1)

γ2

∫
Ω

|∇|Tk(u)|γ|2 ≤
∫

Ω

|f | |Tk(u)|2γ−1.

Using Sobolev inequality (in the left hand side), and Hölder inequality
(in the right one), we obtain

α (2γ − 1)

S2
2γ

2

(∫
Ω

|Tk(u)|γ2∗
) 2

2∗

≤ ‖f‖Lp(Ω)

(∫
Ω

|Tk(u)|(2γ−1)p′
) 1

p′

.

We now choose γ so that γ2∗ = (2γ − 1)p′, that is γ = p∗∗

2∗
(as it is

easily seen). With this choice, γ > 1 if and only if p > 2∗ (which is
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true). Since p < N
2

, we also have 2
2∗
> 1

p′
, and so(∫

Ω

|Tk(u)|p∗∗
) 2

2∗−
1
p′

≤ C(N,Ω, p, α) ‖f‖Lp(Ω) .

Observing that 2
2∗
− 1

p′
= 1

p∗∗
, we have therefore proved that

‖Tk(u)‖Lp∗∗ (Ω) ≤ C(N,Ω, p, α) ‖f‖Lp(Ω) , ∀k > 0.

Letting k tend to infinity, and using Fatou lemma (or the monotone
convergence theorem), we obtain the result. �

Remark 2.6. The results of theorems 2.3 and 2.5 are somehow
“natural” if we make a mistake. . . Indeed, let u be the solution of
−∆u = f , with f in Lp(Ω). Then, if we read the equation, we have
that u has two derivatives in Lp(Ω), so that it belongs to W 2,p

0 (Ω). By

Sobolev embedding, u then belongs to W 1,p∗

0 (Ω) and, again by Sobolev
embedding, to Lp

∗∗
(Ω) (or to L∞(Ω) if p > N

2
). The “mistake” here

is to deduce from the fact that the sum of (some) derivatives of u
belongs to Lp(Ω), the fact that all derivatives are in the same space.
Surprisingly, it turns out that, in the case of the laplacian, the fact
that −∆u belongs to Lp(Ω) actually implies that u is in W 2,p

0 (Ω) (this
is the so-called Calderun-Zygmund theory), so that the “mistake” is
not an actual one. . .

Summarizing the results of this chapter, we have the following pic-
ture.

p1 2N
N+2

N
2

H1
0 (Ω)

L∞(Ω)

Theorem 2.3

H1
0 (Ω)

Lp
∗∗

(Ω)

Theorem 2.5

?

We will deal with the “?” part in the forthcoming chapter (actually,
in all the forthcoming chapters).





CHAPTER 3

Existence via duality for measure data

We are now going to deal with existence results for data which do
not belong to L2∗(Ω) (i.e., they are not in H−1(Ω)), so that neither Lax-
Milgram theorem nor minimization techniques can be applied. Before
going on, we need some definitions.

1. Measures

We recall that a nonnegative measure on Ω is a set function µ :
B(Ω)→ [0,+∞] defined on the σ-algebra B(Ω) of Borel sets of Ω (i.e.,
the smallest σ-algebra containing the open sets) such that µ(∅) = 0
and such that

µ
(+∞⋃
n=1

En
)

=
+∞∑
n=1

µ(En),

for every sequence {En} of disjoint sets in B(Ω). A measure µ is said
to be regular if for every E in B(Ω) and for every ε > 0 there exist an
open set Aε, and a closed set Cε, such that

Cε ⊆ E ⊆ Aε, µ(Aε \ Cε) < ε.

A measure µ is said to be bounded if µ(Ω) < +∞. The set of nonneg-
ative, regular, bounded measures on Ω will be denoted byM+(Ω). We
define the set of bounded Radon measures on Ω as

M(Ω) = {µ1 − µ2, µi ∈M+(Ω)}.
Given a measure µ in M(Ω), there exists a unique pair (µ+, µ−) in
M+(Ω)×M+(Ω) such that

µ = µ+ − µ−,
and such there exist E+ and E− in B(Ω), disjoint sets, such that

µ±(E) = µ(E ∩ E±), ∀E ∈ B(Ω).

The measures µ+ and µ− are the positive and negative parts of the
measure µ. Given a measure µ in M(Ω), the measure |µ| = µ+ + µ−

is said to be the total variation of the measure µ. If we define

‖µ‖M(Ω) = |µ|(Ω),

27
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the vector space M(Ω) becomes a Banach space, which turns out to
be the dual of C0

0(Ω).
A bounded Radon measure µ is said to be concentrated on a Borel

set E if µ(B) = µ(B ∩ E) for every Borel set B. In this case, we will
write µ E. For example, we have µ± = µ E±, with E± as above.

Given two Radon measures µ and ν, we say that µ is absolutely
continuous with respect to ν if ν(E) = 0 implies µ(E) = 0. In this case
we will write µ << ν. Two Radon measures µ and ν are said to be
orthogonal if there exists a set E such that µ(E) = 0, and ν = ν E.
In this case, we will write µ ⊥ ν. For example, given a Radon measure
µ, we have µ+ ⊥ µ−.

Theorem 3.1. Let ν be a nonnegative Radon measure. Given a
Radon measure µ, there exists a unique pair (µ0, µ1) of Radon measures
such that

µ = µ0 + µ1, µ0 << ν, µ1 ⊥ ν.

Proof. Suppose that µ is nonnegative, and define

A = {µ(E) : E ∈ B(Ω), ν(E) = 0}.
Let α = supA, and let En be a maximizing sequence, i.e., a sequence
of Borel sets such that

lim
n→+∞

µ(En) = α, ν(En) = 0.

If we define E as the union of the En, clearly ν(E) = 0 (since ν is σ-
subadditive), and µ(E) = α (since µ(E) ≥ µ(En) for every n). Define
now

µ1 = µ E, µ0 = µ− µ1.

Clearly, µ1 ⊥ ν (since ν(E) = 0, and since µ1 is concentrated on E
by definition). On the other hand, if ν(B) = 0, then µ0(B) = 0; and
indeed, if it were µ0(B) > 0, then

0 < µ0(B) = µ(B)− µ(B ∩ E) = µ(B \ E),

so that B ∪ E is such that ν(B ∪ E) = 0, and

µ(B ∪ E) = µ(E) + µ(B \ E) = α + µ(B \ E) > α,

thus contradicting the definition of α.
As for uniqueness, if µ = µ0 +µ1 = µ′0 +µ′1, then µ0−µ′0 = µ′1−µ1.

If ν(B) = 0, we will have (µ1−µ′1)(B) = 0. Since µ1−µ′1 is orthogonal
with respect to ν, this implies that (µ1 − µ′1)(E) = 0 for every Borel
set E, so that µ1 = µ′1, hence µ0 = µ′0.

If the measure µ has a sign, it is enough to apply the result to µ+

and µ−. �
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Examples of bounded Radon measures are the Lebesgue measure
LN concentrated on a bounded set of RN , or the measure defined by

δx0(E) =

{
1 if x0 ∈ E,

0 if x0 6∈ E,

which is called the Dirac’s delta concentrated at x0. We clearly have
δx0 ⊥ LN . Another example of Radon measure is the measure defined
by

µ(E) =

∫
E

f(x) dx,

with f a function in L1(Ω). In this case µ << LN , and

µ±(E) =

∫
E

f±(x) dx, |µ|(E) =

∫
E

|f(x)| dx.

For sequences of measures, we have two notions of convergence: the
weak∗: ∫

Ω

ϕdµn →
∫

Ω

ϕdµ, ∀ϕ ∈ C0
0(Ω),

and the narrow convergence:∫
Ω

ϕdµn →
∫

Ω

ϕdµ, ∀ϕ ∈ C0
b(Ω).

For positive measures, narrow convergence is equivalent to weak∗ con-
vergence and convergence of the “masses” (i.e., µn(Ω) converges to
µ(Ω)). If xn is a sequence in Ω which converges to a point x0 on
∂Ω, then δxn converges to zero for the weak∗ convergence (since the
measure δx0 is indeed the zero measure in Ω), but not for the narrow
convergence.

Before dealing with existence results for elliptic equations with mea-
sure data, we will begin with a particular case.

2. Duality solutions for L1 data

Let f and g be two functions in L∞(Ω), and let u and v be the
solutions of{
−div(A(x)∇u) = f in Ω,

u = 0 on ∂Ω,

{
−div(A∗(x)∇v) = g in Ω,

v = 0 on ∂Ω.

where A∗ is the transposed matrix of A (note that A∗ satisfies (1.8)
with the same constants as A). Since both u and v belong to H1

0 (Ω), u
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can be chosen as test function in the formulation of weak solution for
v, and vice versa. One obtains∫

Ω

u g =

∫
Ω

A∗(x)∇v · ∇u =

∫
Ω

A(x)∇u · ∇v =

∫
Ω

f v.

In other words, one has ∫
Ω

u g =

∫
Ω

f v,

for every f and g in L∞(Ω), where u and v solve the corresponding
problems with data f and g respectively. Clearly, both u and v belong
to L∞(Ω) by Theorem 2.3, but we remark that the two integrals are
well-defined also if f only belongs to L1(Ω), and u only belongs to
L1(Ω) (always maintaining the assumption that g — and so v — is
a bounded function). This fact inspired to Guido Stampacchia the
following definition of solution for (1.9) if the datum is in L1(Ω).

Definition 3.2. Let f belong to L1(Ω). A function u in L1(Ω) is
a duality solution of (1.8) with datum f if one has∫

Ω

u g =

∫
Ω

f v,

for every g in L∞(Ω), where v is the solution of{
−div(A∗(x)∇v) = g in Ω,

v = 0 on ∂Ω.

Theorem 3.3 (Stampacchia). Let f belong to L1(Ω). Then there
exists a unique duality solution of (1.8) with datum f . Furthermore, u
belongs to Lq(Ω), for every q < N

N−2
.

Proof. Let p > N
2

and define the linear functional T : Lp(Ω) → R
by

〈T, g〉 =

∫
Ω

f v.

By Theorem 2.3, the functional is well-defined; furthermore, since
(2.14) holds, there exists C > 0 such that

|〈T, g〉| ≤
∫

Ω

|f | |v| ≤ ‖f‖L1(Ω) ‖v‖L∞(Ω) ≤ C ‖f‖L1(Ω) ‖g‖Lp(Ω) ,

so that T is continuous on Lp(Ω). By Riesz representation Theorem
for Lp spaces, there exists a unique function up in Lp

′
(Ω) such that

〈T, g〉 =

∫
Ω

up g, ∀g ∈ Lp(Ω).
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Since L∞(Ω) ⊂ Lp(Ω), we have∫
Ω

up g = 〈T, g〉 =

∫
Ω

f v, ∀g ∈ L∞(Ω),

so that up is a duality solution of (1.9), as desired. We claim that up
does not depend on p; indeed, if for example p > q > N

2
, we have∫

Ω

up g =

∫
Ω

f v =

∫
Ω

uq g, ∀g ∈ L∞(Ω),

so that up = uq in L1(Ω) (and so they are almost everywhere the
same function). Therefore, there exists a unique function u which is a
duality solution of (1.9), and it belongs to Lp

′
(Ω) for every p > N

2
; i.e.,

u belongs to Lq(Ω) for every q < N
N−2

, as desired. �
Remark that the fact that u belongs to Lq(Ω) for every q < N

N−2

is consistent with the results of the last part of Example 2.1 (the case
α = N).

3. Duality solutions for measure data

The case of L1(Ω) data is only a particular one, since L1(Ω) is a
subset of M(Ω). However, recalling that M(Ω) is the dual of C0(Ω),
the proof of Theorem 3.3 could be performed in exactly the same way
if one knew that the solution of (1.9) were not only bounded, but also
continuous on Ω if the datum is in Lp(Ω) with p > N

2
. This is exactly

the case if the boundary of Ω is sufficiently regular.

Theorem 3.4 (De Giorgi). Let Ω be of class C1, and let f be in
Lp(Ω), with p > N

2
. Then the solution u of (1.9) with datum f belongs

to C0(Ω), and there exists a constant Cp such that

‖u‖C0(Ω) ≤ Cp ‖f‖Lp(Ω) .

Thanks to the previous result, we thus have the following existence
result.

Theorem 3.5. Let µ be a measure in M(Ω). Then there exists
a unique duality solution of (1.8) with datum µ, i.e., a function u in
L1(Ω) such that ∫

Ω

u g =

∫
Ω

v dµ, ∀g ∈ L∞(Ω),

where v is the solution of (1.9) with datum g and matrix A∗. Further-
more, u belongs to Lq(Ω), for every q < N

N−2
.
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4. Regularity of duality solutions

If the datum f belongs to Lp(Ω), with 1 < p < 2∗, then the duality
solution of (1.9) is more regular.

Theorem 3.6. Let f belong to Lp(Ω), 1 < p < 2∗. Then the
duality solution u of (1.8) belongs to Lp

∗∗
(Ω), p∗∗ = Np

N−2p
.

Proof. Let q = Np
Np−N+2p

, and define T : Lq(Ω)→ R as in the proof

of Theorem 3.3. We then have

|〈T, g〉| ≤
∫

Ω

|f | |v| ≤ ‖f‖Lp(Ω) ‖v‖Lp′ (Ω) .

By Theorem 2.5, the norm of v in Lr(Ω) is controlled by a constant
times the norm of g in Ls(Ω), with r = s∗∗. Taking r = p′, this gives
s = q; hence,

|〈T, g〉| ≤ C ‖f‖Lp(Ω) ‖g‖Lq(Ω) ,

so that the function u which represents T belongs to Lq
′
(Ω); since we

have q′ = Np
N−2p

, the result is proved. �

Once again, the fact that u belongs to Lp
∗∗

(Ω) is consistent with
the results of Example 2.1 (the case N+2

2
< α < N).

The picture at the end of Chapter 2 can now be improved as follows.

p1 2N
N+2

N
2

H1
0 (Ω)

L∞(Ω)

Theorem 2.3

H1
0 (Ω)

Lp
∗∗

(Ω)

Theorem 2.5

?

Lp
∗∗

(Ω)

Theorem 3.6

?

L
N
N−2

−ε(Ω)

Theorem 3.3



CHAPTER 4

Existence via approximation for measure data

The result of Theorem 3.5 is somewhat unsatisfactory: even though
it proves that there exists a unique solution by duality of (1.9) if the
datum belongs to M(Ω), it only states that the solution belongs to
some Lebesgue space, and does not say anything about the gradient
of such a solution. In order to prove gradient estimates on the duality
solution we have to proceed in a different way.

Theorem 4.1. Let µ belong to M(Ω). Then the unique duality
solution of (1.8) with datum f belongs to W 1,q

0 (Ω), for every q < N
N−1

.

Proof. Let fn be a sequence of L∞(Ω) functions which converges to
µ inM(Ω), with the property that ‖fn‖L1(Ω) ≤ ‖µ‖M(Ω), and let un be

the unique solution in H1
0 (Ω) of{

−div(A(x)∇un) = fn in Ω,

un = 0 on ∂Ω.

Let k > 0 and choose v = Tk(un) as test function of the weak for-
mulation for un. We obtain, recalling that ∇un = ∇Tk(un) where
∇Tk(un) 6= 0, and using (1.8),

α

∫
Ω

|∇Tk(un)|2 ≤
∫

Ω

A(x)∇un ·∇Tk(un) =

∫
Ω

fnTk(un) ≤ k ‖µ‖M(Ω) ,

where in the last passage we have used that |Tk(un)| ≤ k. Using Sobolev
embedding in the left hand side, we have

α

S2
2

(∫
Ω

|Tk(un)|2∗
) 2

2∗

≤ k ‖µ‖M(Ω) .

Observing that |Tk(un)| = k on the set An,k = {x ∈ Ω : |un(x)| ≥ k},
we have

α

S2
2

k2 (m(An,k))
2
2∗ ≤ k ‖µ‖M(Ω) ,

which implies

m(An,k) ≤ C
(‖µ‖M(Ω)

k

) N
N−2

,

33
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with C depending only on N and α. Now we fix λ > 0, and we have

{|∇un| ≥ λ} = {|∇un| ≥ λ, |un| < k} ∪ {|∇un| ≥ λ, |un| ≥ k},
so that

{|∇un| ≥ λ} ⊂ {|∇un| ≥ λ, |un| < k} ∪ An,k.
Since

m({|∇un| ≥ λ, |un| < k}) ≤ 1

λ2

∫
Ω

|∇Tk(un)|2 ≤
k ‖µ‖M(Ω)

λ2
,

we have

m({|∇un| ≥ λ}) ≤
k ‖µ‖M(Ω)

λ2
+ C

(‖µ‖M(Ω)

k

) N
N−2

,

for every k > 0. If we choose k = λ
N−2
N−1 ‖µ‖

1
N−1

M(Ω), the above inequality

becomes

m({|∇un| ≥ λ}) ≤ C
(‖µ‖M(Ω)

λ

) N
N−1

.

Let q < N
N−1

be fixed, and let t > 0. Then∫
Ω

|∇un|q =

∫
{|∇un|<t}

|∇un|q +

∫
{|∇un|≥t}

|∇un|q

≤ tqm(Ω) + (q − 1)

∫ +∞

t

λq−1m({|∇un| ≥ λ}) dλ

≤ tqm(Ω) + C(q − 1) ‖f‖
N
N−1

L1(Ω)

∫ +∞

t

λq−1− N
N−1 dλ

= tqm(Ω) +
C(q − 1)
N
N−1
− q
‖µ‖

N
N−1

M(Ω)

t
N
N−1

−q
.

Choosing t = ‖µ‖M(Ω), we obtain

(4.16)

∫
Ω

|∇un|q ≤ Cq ‖µ‖qM(Ω) ,

so that un is bounded in W 1,q
0 (Ω), with q < N

N−1
. Note that Cq diverges

as q tends to N
N−1

. Therefore, up to subsequences, un converges to some

function uq weakly in W 1,q
0 (Ω) and strongly in L1(Ω). Since un, being

a weak solution, is such that∫
Ω

un g =

∫
Ω

fn v, ∀g ∈ L∞(Ω), ∀n ∈ N,

we can pass to the limit as n tends to infinity to have∫
Ω

uq g =

∫
Ω

v dµ, ∀g ∈ L∞(Ω),
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so that uq (which belongs to W 1,q
0 (Ω) for some q < N

N−1
) is the duality

solution of (1.9) with datum µ. This fact is true for every q < N
N−1

, so
that uq does not depend on q. It then follows that the duality solution

u of (1.9) belongs to W 1,q
0 (Ω) for every q < N

N−1
. �

Remark 4.2. If µ = f is a function in L1(Ω), and fn converges to
f strongly in L1(Ω), we have that fn is a Cauchy sequence in L1(Ω).
Thus, if we repeat the proof of the previous theorem working with
un − um, using the linearity of the operator, and “keeping track” of
fn − fm, we find that (4.16) becomes∫

Ω

|∇un − um|q ≤ Cq ‖fn − fm‖qL1(Ω) ,

for every q < N
N−1

. Since {fn} is a Cauchy sequence in L1(Ω), it then

follows that un is a Cauchy sequence in W 1,q
0 (Ω), for every q < N

N−1
.

This implies that un strongly converges to the solution u in W 1,q
0 (Ω),

for every q < N
N−1

, so that (up to subsequences) ∇un converges to ∇u
almost everywhere in Ω.

Remark 4.3. If µ = f is a function in L1(Ω), and we repeat the
proof of the previous theorem working with un − vn, where vn is the
solution of (1.9) with a datum gn which converges to f in L1(Ω), we
find as before that

(4.17)

∫
Ω

|∇(un − vn)|q ≤ C ‖fn − gn‖qL1(Ω) ,

for every q < N
N−1

. Since {fn − gn} tends to zero in L1(Ω), it then

follows that un − vn tends to zero in W 1,q
0 (Ω), for every q < N

N−1
. In

other words, the solution u found by approximation does not depend
on the sequence we choose to approximate the datum f . We already
knew this fact (since every approximating sequence converges to the
duality solution which is unique), but this different proof may be useful
if, for example, the differential operator is not linear, but allows to
prove (4.17) in some way, so that the concept of duality solution is not
available.

If the datum f is “more regular”, one expects solutions with an
increased regularity. We already know, from Theorem 3.6, that the
summability of u increases with the summability of f , but what hap-
pens to the gradient? Recall that if the datum f is “regular” (i.e., if it
belongs to L2∗(Ω)), the summability of u increases with that of f , but
the gradient of u always belongs to (L2(Ω))N . Surprisingly, this is not
the case for “bad” solutions, as the following theorem shows.
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Theorem 4.4. Let f be a function in Lm(Ω), 1 < m < 2∗. Then

the duality solution of (1.9) belongs to W 1,m∗

0 (Ω), m∗ = Nm
N−m .

Proof. Let fn = Tn(f), and let un be the unique solution of{
−div(A(x)∇un) = fn in Ω,

un = 0 on ∂Ω.

Since we already know that un will converge to the duality solution of
(1.9), it is clear that in order to prove the result it will be enough to

prove an a priori estimate on un in W 1,m∗

0 (Ω). In order to do that, we
fix h > 0 and choose ϕh(un) = T1(Gh(un)) as test function in the weak
formulation for un. If we define Bh = {x ∈ Ω : h ≤ |un| ≤ h + 1},
and Ah = {x ∈ Ω : |un| ≥ h} (for the sake of simplicity, we omit the
dependence on n on the sets), we obtain, recalling (1.8),

α

∫
Bh

|∇un|2 ≤
∫

Ω

A(x)∇un · ∇ϕh(un) =

∫
Ω

fn ϕh(un) ≤
∫
Ak

|f |.

Let now 0 < λ < 1; we can then write∫
Ω

|∇un|2

(1 + |u|)λ
=

+∞∑
h=0

∫
Bh

|∇un|2

(1 + |un|)λ
≤

+∞∑
h=0

1

(1 + h)λ

∫
Bh

|∇un|2

≤
+∞∑
h=0

1

α(1 + h)λ

∫
Ah

|f | =
+∞∑
h=0

1

α(1 + h)λ

+∞∑
k=h

∫
Bk

|f |

=
+∞∑
k=0

∫
Bk

|f |
k∑

h=0

1

α(1 + h)λ

≤C
+∞∑
k=0

∫
Bk

|f | (1 + k)1−λ ≤ C

∫
Ω

|f |(1 + |un|)1−λ

≤C ‖f‖Lm(Ω)

(∫
Ω

(1 + |un|)(1−λ)m′
) 1

m′

.

Let now q > 1 be fixed. Then, by Sobolev and Hölder inequality,

1

Sqq

(∫
Ω

|un|q
∗
) q

q∗

≤
∫

Ω

|∇un|q =

∫
Ω

|∇un|q

(1 + |un|)λ
q
2

(1 + |un|)λ
q
2

≤
(∫

Ω

|∇un|2

(1 + |u|)λ

) q
2
(∫

Ω

(1 + |un|)
λq

2−q

)1− q
2

≤C ‖f‖Lm(Ω)

(∫
Ω

(1 + |un|)(1−λ)m′
) q

2m′

×
(∫

Ω

(1 + |un|)
λq

2−q

)1− q
2

.
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We now choose λ and q in such a way that

(1− λ)m′ = q∗ =
λq

2− q
.

This implies

λ =
N(2− q)
N − q

, q = m∗ =
Nm

N −m
.

It is easy to see that 1 < m < 2∗ implies 0 < λ < 1, as desired. We
thus have(∫

Ω

|un|q
∗
) q

q∗

≤ C

∫
Ω

|∇un|q ≤ C ‖f‖Lm(Ω)

(∫
Ω

(1 + |un|)q
∗
)1− q

2m

.

Since q
q∗
> 1 − q

2m
is true (being equivalent to m < N

2
), we obtain

from the first and third term that un is bounded in Lq
∗
(Ω) (which

is again Lm
∗∗

(Ω), see Theorem 2.5) by a constant depending (among
other quantities) on the norm of f in Lm(Ω). Once un is bounded, the
boundedness of |∇un| in Lq(Ω) (with q = m∗) then follows comparing
the second and the third term. �

We can now draw the complete picture.
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N
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CHAPTER 5

Nonuniqueness for distributional solutions

If the datum µ is a measure, we have proved in Theorem 4.1 that
the sequence un of approximating solutions is bounded in W 1,q

0 (Ω),
for every q < N

N−1
. Therefore, and up to subsequences, un weakly

converges to the solution u in W 1,q
0 (Ω), for every q < N

N−1
. Choosing a

C1
0(Ω) test function ϕ in the formulation (1.10) for un, we obtain∫

Ω

A(x)∇un · ∇ϕ =

∫
Ω

fn ϕ,

which, passing to the limit, yields∫
Ω

A(x)∇u · ∇ϕ =

∫
Ω

ϕdµ ∀ϕ ∈ C1
0(Ω),

so that u is a solution in the sense of distributions of (1.9). Since
the definition of solution in the sense of distributions can always be
given (even when the notion of duality solution is unavailable due for
example to the operator being nonlinear), one may wonder whether
there is a way of proving uniqueness of distributional solutions (not
passing through duality solutions).

The following example is due to J. Serrin (see [7]). Let ε > 0 and
Aε(x) be the symmetric matrix defined by

aεij(x) = δij + (aε − 1)
xi xj
|x|2

.

If aε = N−1
ε(N−2+ε)

, then the function

wε(x) = x1 |x|1−N−ε

is a solution in the sense of distributions of

(5.18) −div(Aε(x)∇wε) = 0, in RN \ {0}.
Indeed, if we rewrite w(x) = x1|x|α and

aij(x) = δij + β
xi xj
|x|2

,

simple (but tedious) calculations imply

wx1(x) = |x|α + αx2
1|x|α−2, wxi(x) = αx1xi|x|α−2,

39
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so that
N∑
i=1

aij(x)wxi(x) = δ1j|x|α + (αβ + α + β)x1xj|x|α−2.

Therefore,

(A(x)∇w)x1 = αx1|x|α−2 + (αβ + α+ β)[2x1|x|α−2 + (α− 2)x3
1|x|α−4],

and

(A(x)∇w)xj = (αβ + α + β)[x1|x|α−2 + (α− 2)x1x
2
j |x|α−4],

so that

div(A(x)∇w) = x1|x|α−2[α + (N − 1 + α)(αβ + α + β)].

Given 0 < ε < 1, if we choose α = 1−N − ε, and β = N−1
ε(N−2+ε)

+ 1, we

have
α + (N − 1 + α)(αβ + α + β) = 0,

so that w is a solution of (5.18) if x 6= 0. To prove that wε is a solution
in the sense of distributions in the whole RN , let ϕ be a function in
C1

0(Ω), and observe that since |Aε(x)∇wε| belongs to L1(Ω), we have∫
RN
Aε(x)∇wε · ∇ϕ = lim

r→0+

∫
RN\Br(0)

Aε(x)∇wε · ∇ϕ.

Using Gauss-Green formula, and recalling that wε is a solution of the
equation outside the origin, we have∫

RN
Aε(x)∇wε · ∇ϕ = − lim

r→0+

∫
∂Br(0)

ϕAε(x)∇wε · ν dσ,

where ν is the exterior normal to Br(0), i.e., ν = x
r
. By a direct

computation,

Aε(x)∇wε · x
r

= Qx1|r|α−1,

with Q = 1 + αβ + α+ β = −N−1
ε

. Therefore, recalling the value of α,
and rescaling to the unit sphere,

−
∫
∂Br(0)

ϕAε(x)∇wε · ν dσ =
N − 1

ε

1

rε

∫
∂B1(0)

ϕ(ry)x1 dσ.

Using again the Gauss-Green formula, we have∫
∂B1(0)

ϕ(ry)x1 dσ = r

∫
B1(0)

e1 · ∇ϕ(rx) dx,

where e1 = (1, 0, . . . , 0). Therefore, since 0 < ε < 1, we have

lim
r→0+

∫
∂Br(0)

ϕAε(x)∇wε · ν dσ = lim
r→0+

r1−ε
∫
B1(0)

e1 · ∇ϕ(rx) dx = 0,
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so that wε is a solution in the sense of distributions of−div(Aε∇wε) = 0
in the whole RN .

Let now Ω = B1(0) be the unit ball, and let vε be the unique
solution of {

−div(Aε(x)∇vε) = div(Aε(x)∇x1) in Ω,

vε = 0 on ∂Ω,

which exists since div(Aε(x)∇x1) is a regular function belonging to
H−1(Ω) (as can be easily seen). Therefore, the function zε = vε + x1

is the unique solution in H1(Ω) of the problem{
−div(Aε(x)∇zε) = 0 in Ω,

zε = x1 on ∂Ω,

so that the function uε = wε − zε is a solution in the sense of distribu-
tions of {

−div(Aε(x)∇uε) = 0 in Ω,

uε = 0 on ∂Ω,

which is not identically zero since zε belongs to H1(Ω), while wε belongs
to W 1,q

0 (Ω) for every q < qε = N
N−1+ε

. Hence, the problem{
−div(Aε(x)∇u) = f in Ω,

u = 0 on ∂Ω,

has infinitely many solutions in the sense of distributions, which can
be written as u = u+ t uε, t in R, where u is the duality solution.

One may observe that the solution found by approximation belongs
to W 1,q

0 (Ω) for every q < N
N−1

, while the solution of the above example

belongs to W 1,q
0 (Ω) for some q < N

N−1
, and that we are not allowed to

take ε = 0 since in this case aε diverges. Thus one may hope that there
is still uniqueness of the solution obtained by approximation. However,
it is possible to modify Serrin’s example in dimension N ≥ 3 (see [6])
to find a nonzero solution in the sense of distributions for{

−div(Bε(x)∇u) = 0 in Ω,

u = 0 on ∂Ω,
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which belongs to W 1,q
0 (Ω), for every q < N

N−1
. Here

Bε(x) =


1 + (aε − 1)

x2
1

x2
1+x2

2
(aε − 1) x1 x2

x2
1+x2

2
0

(aε − 1) x1 x2

x2
1+x2

2
1 + (aε − 1)

x2
2

x2
1+x2

2
0

0 0 I

 ,

where I is the identity matrix in RN−2, and aε is as above, with ε fixed
so that wε(x) = x1 (

√
x2

1 + x2
2)ε−1 belongs to W 1,q(R2) for every q < 2.

On the other hand, in dimension N = 2 there is a unique solution
in the sense of distributions belonging to W 1,q

0 (Ω), for every q < 2. The
proof of this fact uses Meyers’ regularity theorem for linear equations
with regular data.

Theorem 5.1 (Meyers). Let A be a matrix which satisfies (1.8).
Then there exists p > 2 (p depends on the ratio α

β
and becomes larger

as α
β

tends to 1) such that if u is a solution of (1.9) with datum f

belonging to L∞(Ω), then u belongs to W 1,p
0 (Ω).

Theorem 5.2. Let N = 2. Then there exists a unique solution in
the sense of distributions of (1.9) such that u belongs to W 1,q

0 (Ω), for
every q < 2.

Proof. Since the equation is linear, it is enough to prove that if u
is such that ∫

Ω

A(x)∇u · ∇ϕ = 0, ∀ϕ ∈ C1
0(Ω),

then u = 0. Since u belongs to W 1,q
0 (Ω), for every q < 2, it is enough

to prove that ∫
Ω

A(x)∇u · ∇ϕ = 0, ∀ϕ ∈ W 1,p
0 (Ω),

for some p > 2, implies u = 0. Let B be a subset of Ω, and let vB be
the solution of {

−div(A∗(x)∇vB) = χB in Ω,

v = 0 on ∂Ω.

By Meyers’ theorem, vB belongs to W 1,p
0 (Ω), for some p > 2. Hence∫

Ω

A(x)∇u · ∇vB = 0,
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while, choosing u as test function in the weak formulation for vB (which
can be done using a density argument and the regularity of ∇vB), we
have ∫

Ω

A∗(x)∇vB · ∇u =

∫
B

u.

Therefore, ∫
B

u = 0, ∀B ⊆ Ω,

and this implies u ≡ 0. �





CHAPTER 6

Entropy solutions

As we have seen, uniqueness of solutions for distributional solu-
tions can fail even in the linear case if the regularity of the solutions
is not “enough” to allow the choice of less regular test functions. And
the lack of regularity of the solution of the counterexample by Serrin
(as modified in [6]) is exactly the one which is typical of the solu-
tions of equations with data in L1(Ω) or in M(Ω). In the linear case,
however, the lack of uniqueness is avoided by using the concept of du-
ality solution, but it is enough for the operator to be non linear (say,
−div(a(x, u)∇u), with a a bounded function) in order to “lose” the du-
ality definition. This problem is much more evident for operators which
are nonlinear also with respect to the gradient. In this case, a further
condition on the solutions has been looked for, in order to guarantee
uniqueness (at least for the solutions obtained by approximation).

The first remark about solutions obtained by approximation is the
following (see the proof of Theorem 4.1): even though the solutions do
not belong to H1

0 (Ω) (since they belong to W 1,q
0 (Ω), for every q < N

N−1
),

the truncates of the solutions are in the “energy space” H1
0 (Ω), and

satisfy the following estimate

α

∫
Ω

|∇Tk(u)|2 ≤ k ‖µ‖M(Ω) .

In other words, the solutions are not in H1
0 (Ω) “only” where they be-

come “infinite”. Since the function in the counterexample of Serrin
has not the truncates in the energy space H1

0 (Ω), one may think that
the “correct” space where to look for uniqueness of solutions is the
following:

T 1,2
0 (Ω) = {u : Ω→ R measurable: Tk(u) ∈ H1

0 (Ω), ∀k > 0}.
This set of functions has a further property: that every function in it
has, in some sense, a “gradient”.

Theorem 6.1. Let u belong to T 1,2
0 (Ω). Then there exists a unique

(up to a.e. equivalence) measurable function v : Ω→ RN such that

v χ{|u|≤k} = ∇Tk(u), a.e. in Ω, ∀k > 0.

45
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Proof. In order to prove the result, it is enough to prove that the
function v, defined as ∇Tk(u) on the set {|u| ≤ k}, does not depend
on k. Let x in Ω be such that u(x) = k. Then x belongs to the set
{|u(x)| ≤ k + ε} for every ε ≥ 0. Therefore, by definition,

v(x) = ∇Tk+ε(u(x)), ∀ε ≥ 0.

On the other hand, Tk+ε(Tk(u)) = Tk(u), so that

∇Tk+ε(Tk(u)) = ∇Tk(u),

which implies

∇Tk+ε(u(x)) = ∇Tk+ε(Tk(u(x))) = ∇Tk(u(x)),

so that the value of v does not depend on ε. �
From now, we will define the gradient ∇u of a function u in T 1,2

0 (Ω)
as the function v given by the previous theorem. It is easy to see that
if u belongs to W 1,1

0 (Ω), then the function v given by the theorem is
nothing but the “standard” distributional gradient of u.

Remark that T 1,2
0 (Ω) is not a vector space: there exist functions u

and v in T 1,2
0 (Ω) such that u+ v does not belong to the same space. If

however u, v and u + v are in T 1,2
0 (Ω), then we also have ∇(u + v) =

∇u+∇v.
Even though the space T 1,2

0 (Ω) seems the natural one where to look
for solutions, this is not the case: the fact that u in T 1,2

0 (Ω) is a solution
in the sense of distributions is not enough in order to prove that it is
unique. In order to do that we need something more (and also the fact
that the datum belongs to L1(Ω)), following [1].

Definition 6.2. Let f be in L1(Ω). A function u in T 1,2
0 (Ω) is an

entropy solution of (1.9) if

(6.19)

∫
Ω

A(x)∇u · ∇Tk(u− ϕ) ≤
∫

Ω

f Tk(u− ϕ),

for every k > 0 and for every ϕ in H1
0 (Ω) ∩ L∞(Ω).

Remark 6.3. Every term in (6.19) is well defined. The right hand
side is finite since Tk(u−ϕ) belongs to L∞(Ω), while the left hand side
is well defined since∇Tk(u−ϕ) is different from zero only if |u−ϕ| ≤ k.
On this set, |u| ≤ k + ‖ϕ‖L∞(Ω) = M , so that we have∫

Ω

A(x)∇u · ∇Tk(u− ϕ) =

∫
{|u−ϕ|≤k}

A(x)∇TM(u) · ∇(TM(u)− ϕ),

which is finite since u belongs to T 1,2
0 (Ω) and ϕ belongs to H1

0 (Ω).

We now prove an existence result for entropy solutions.
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Theorem 6.4 (see [1]). Let f be an L1(Ω) function. Then there
exists an entropy solution u of (1.9).

Proof. As usual, we work by approximation. Let fn = Tn(f), and
let un be the solution of{

−div(A(x)∇un) = fn in Ω,

un = 0 on ∂Ω.

Let k > 0. Taking Tk(un) as test function we obtain, using (1.8),

α

∫
Ω

|∇Tk(un)|2 ≤
∫

Ω

A(x)∇un · ∇Tk(un) =

∫
Ω

fnTk(un) ≤ k ‖f‖L1(Ω) ,

so that the sequence {Tk(un)} is bounded in H1
0 (Ω) for fixed k. This

implies that there exists a function vk in H1
0 (Ω) such that, up to sub-

sequences, Tk(un) converges to vk weakly in H1
0 (Ω) and strongly in

L2(Ω). From Remark 4.2 we know that un converges to u (the unique
duality solution of (1.9)) strongly in W 1,q

0 (Ω), for every q < N
N−1

, and
that ∇un converges to ∇u almost everywhere in Ω. This implies that
Tk(un) converges strongly to Tk(u) in L2(Ω), and so vk = Tk(u). Thus,
by Fatou lemma,

α

∫
Ω

|∇Tk(u)|2 ≤ lim inf
n→+∞

α

∫
Ω

|∇Tk(un)|2 ≤ k ‖f‖L1(Ω) ,

which implies that u belongs to T 1,2
0 (Ω). We now fix k > 0, ϕ in

H1
0 (Ω) ∩ L∞(Ω), and choose v = Tk(un − ϕ) as test function in the

weak formulation (1.10) of (1.9), and we have∫
Ω

A(x)∇un · ∇Tk(un − ϕ) =

∫
Ω

fn Tk(un − ϕ).

For the right hand side we have, by Lebesgue theorem,

lim
n→+∞

∫
Ω

fn Tk(un − ϕ) =

∫
Ω

f Tk(u− ϕ),

while the left hand side can be rewritten as∫
Ω

A(x)∇Tk(un − ϕ) · ∇Tk(un − ϕ) +

∫
Ω

A(x)∇ϕ · ∇Tk(un − ϕ).

The first term is nonnegative, so that the almost everywhere conver-
gence of ∇un to ∇u implies, by Fatou lemma,∫

Ω

A(x)∇Tk(u−ϕ)·∇Tk(u−ϕ) ≤ lim inf
n→+∞

∫
Ω

A(x)∇Tk(un−ϕ)·∇Tk(un−ϕ),
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while for the second we have (thanks to the weak convergence of Tk(un)
to Tk(u) in H1

0 (Ω))∫
Ω

A(x)∇ϕ · ∇Tk(u− ϕ) = lim
n→+∞

∫
Ω

A(x)∇ϕ · ∇Tk(un − ϕ).

Putting together these results, and cancelling equal terms, we have∫
Ω

A(x)∇u · ∇Tk(u− ϕ) ≤
∫

Ω

f Tk(u− ϕ),

so that u is an entropy solution of (1.9). �

Theorem 6.5. Let f be an L1(Ω) function, and let u be an entropy
solution of (1.9) with datum f . Then u belongs to W 1,q

0 (Ω) for every
q < N

N−1
, and is a distributional solution of (1.9).

Proof. Taking ϕ = 0 in (6.19) we obtain, recalling (1.8),

α

∫
Ω

|∇Tk(u)|2 ≤
∫

Ω

A(x)∇u · ∇Tk(u) =

∫
Ω

f Tk(u) ≤ k ‖f‖L1(Ω) .

From this inequality we can reason as in the proof of Theorem 4.1 to
obtain (4.16) for u, so that u belongs to W 1,q

0 (Ω) for every q < N
N−1

.
We now fix h > 0 and choose ϕ = Th(u) as test function in (6.19).

We obtain∫
Ω

A(x)∇u · ∇Tk(u− Th(u)) ≤
∫

Ω

f Tk(u− Th(u)),

which can be rewritten as∫
{h−k≤|u|≤h+k}

A(x)∇u · ∇u =

∫
{|u|≥h}

f Tk(u− Th(u)) ≤ k

∫
{|u|≥h}

|f |.

Defining Ah = {|u| ≥ h}, we have that m(Ah) tends to zero as h
tends to infinity (since u belongs to W 1,1

0 (Ω), hence to L1(Ω)). Since f
belongs to L1(Ω), we have

lim
h→+∞

∫
{|u|≥h}

|f | = 0,

so that, recalling (1.8)

(6.20) lim
h→+∞

∫
{h−k≤|u|≤h+k}

|∇u|2 = 0.

Let now h > 0 and ψ in C1
0(Ω) be fixed, and choose ϕ = Th(u)−ψ as test

function in the entropy formulation (6.19) written for k = ‖ψ‖L∞(Ω).
We obtain∫

Ω

A(x)∇u · ∇Tk(u− Th(u) + ψ) ≤
∫

Ω

f Tk(u− Th(u) + ψ).



6. ENTROPY SOLUTIONS 49

Using Lebesgue theorem, and the choice of k, it is easy to see that

lim
h→+∞

∫
Ω

f Tk(u− Th(u) + ψ) =

∫
Ω

f Tk(ψ) =

∫
Ω

f ψ.

As for the left hand side, using again the choice of k, we can rewrite it
as ∫

{|u|≤h}
A(x)∇u · ∇ψ +

∫
{|u|≥h}

A(x)∇u · ∇Tk(u− Th(u) + ψ).

Since A is bounded, u belongs to W 1,1
0 (Ω) (actually, even better), and

ψ is in C1
0(Ω), we have (by Lebesgue theorem)

lim
h→+∞

∫
{|u|≤h}

A(x)∇u · ∇ψ =

∫
Ω

A(x)∇u · ∇ψ.

On the other hand, since (again by the choice of k)

{|u− Th(u) + ψ| ≤ k, |u| ≥ h} ⊆ {h− 2k ≤ |u| ≤ h+ 2k},
we have, by (1.8),∣∣∣∣∫

{|u|≥h}
A(x)∇u · ∇Tk(u− Th(u) + ψ)

∣∣∣∣
≤ β

∫
{h−2k≤|u|≤h+2k}

|∇u|(|∇u|+ |∇ψ|),

so that by (6.20) we have

lim
h→+∞

∫
{|u|≥h}

A(x)∇u · ∇Tk(u− Th(u) + ψ) = 0.

Putting together the results, we obtain∫
Ω

A(x)∇u · ∇ψ ≤
∫

Ω

f ψ,

for every ψ in C1
0(Ω). Exchanging ψ with −ψ we obtain the reverse

inequality so that u is a distributional solution of (1.9). �
Not only an entropy solution exists, it is also unique.

Theorem 6.6. Let f be a function in L1(Ω). Then the entropy
solution of (1.9) is unique.

Proof. We present three proofs of this result.
1) An entropy solution is a duality solution. We fix g in L∞(Ω), and
let v be the solution of{

−div(A∗(x)∇v) = g in Ω,

v = 0 on ∂Ω.
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By Theorem 2.3, v belongs to L∞(Ω). Now we repeat the proof of
Theorem 6.5, choosing ϕ = Th(u)− v in the entropy formulation, with
h > 0 and k = ‖v‖L∞(Ω). We obtain∫

Ω

A(x)∇u · ∇Tk(u− Th(u) + v) ≤
∫

Ω

f Tk(u− Th(u) + v).

As before, we have (by Lebesgue theorem and by the choice of k)

lim
h→+∞

∫
Ω

f Tk(u− Th(u) + v) =

∫
Ω

f v,

and as before the left hand side can be rewritten as∫
{|u|≤h}

A(x)∇u · ∇v +

∫
{|u|≥h}

A(x)∇u · ∇Tk(u− Th(u) + v).

For the second term we can reason as in the proof of Theorem 6.5 to
have (using (6.20)) that

lim
h→+∞

∫
{|u|≥h}

A(x)∇u · ∇Tk(u− Th(u) + v) = 0,

while the first can be rewritten as∫
{|u|≤h}

A(x)∇u · ∇v=

∫
Ω

A(x)∇Th(u) · ∇v

=

∫
Ω

A∗(x)∇v · ∇Th(u) =

∫
Ω

g Th(u),

since Th(u), being in H1
0 (Ω), can be chosen as test function in the

problem solved by v. Thus, by Lebesgue theorem,

lim
h→+∞

∫
{|u|≤h}

A(x)∇u · ∇v =

∫
Ω

g u.

Putting together the results, we have∫
Ω

g u ≤
∫

Ω

f v.

Exchanging g with −g (and so v with −v, by linearity), we obtain the
reverse inequality, so that u is a duality solution of (1.9).
2) An entropy solution is a solution obtained by approximation. Here
we follow [5]. Let fn be a sequence of L∞(Ω) functions that converges
to f in L1(Ω), and let un be the solution of{

−div(A(x)∇un) = fn in Ω,

un = 0 on ∂Ω.
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By Theorem 2.3, un belongs to H1
0 (Ω) ∩ L∞(Ω), so that ϕ = un is an

admissbile choice in the entropy formulation for u. We then have∫
Ω

A(x)∇u · ∇Tk(u− un) ≤
∫

Ω

f Tk(u− un).

On the other hand, Tk(u − un) belongs to H1
0 (Ω), and so it can be

chosen as test function in the weak formulation for un. We then have∫
Ω

A(x)∇un · ∇Tk(u− un) =

∫
Ω

fn Tk(u− un).

By subtracting the above results, we have∫
Ω

A(x)∇(u− un) · ∇Tk(u− un) ≤
∫

Ω

(f − fn)Tk(u− un),

and using (1.8) we obtain

α

∫
Ω

|∇Tk(u− un)|2 ≤ k ‖f − fn‖L1(Ω) .

Letting n tend to infinity, we have that Tk(u − un) tends to zero in
H1

0 (Ω), and this implies that un converges to the entropy solution u.
Since solutions obtained by approximation are unique, the entropy so-
lution u is unique.
3) There exists at most an entropy solution. Here we follow [1]. Let u
and v be two entropy solutions of (1.9), with the same datum f , and
let h > k > 0. Then ϕ = Th(v) is admissible in the entropy formulation
for u, and ϕ = Th(u) is admissible in the entropy formulation for u.
We thus obtain∫

Ω

A(x)∇u · ∇Tk(u− Th(v)) ≤
∫

Ω

f Tk(u− Th(v)),

and ∫
Ω

A(x)∇v · ∇Tk(v − Th(u)) ≤
∫

Ω

f Tk(v − Th(u)).

Summing the two inequalities, we obtain∫
Ω

A(x)∇u · ∇Tk(u− Th(v)) +

∫
Ω

A(x)∇v · ∇Tk(v − Th(u))

in the left hand side, and∫
Ω

f(Tk(u− Th(v)) + Tk(v − Th(u)))

in the right hand side. Since Tk(s) is an odd function, we obtain, by
Lebesgue theorem,

lim
h→+∞

∫
Ω

f(Tk(u− Th(v)) + Tk(v − Th(u))) = 0,
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so that

lim sup
h→+∞

∫
Ω

A(x)∇u ·∇Tk(u−Th(v)) +

∫
Ω

A(x)∇v ·∇Tk(v−Th(u)) ≤ 0.

For the sake of simplicity we will suppose from now on that u ≥ 0 and
v ≥ 0, since the proof turns out to be considerably simplified. We refer
to [1] for the proof in the general case of changing sign solutions. We
write

Ω = {u ≤ h, v ≤ h} ∪ {u > h, v ≤ h} ∪ {v > h} = Eh
0 ∪ F h

1 ∪ F h
2 ,

and

Ω = {v ≤ h, u ≤ h} ∪ {v > h, u ≤ h} ∪ {u > h} = Eh
0 ∪ F h

3 ∪ F h
4 .

We then have∫
Eh0

A(x)∇u · ∇Tk(u− Th(v)) =

∫
Eh0

A(x)∇u · ∇Tk(u− v),

and, analogously,∫
Eh0

A(x)∇v · ∇Tk(v − Th(u)) =

∫
Eh0

A(x)∇v · ∇Tk(v − u),

On the other hand,∫
Fh1

A(x)∇u · ∇Tk(u− Th(v)) =

∫
{u>h, v≤h0≤u−v≤k }

A(x)∇u · ∇(u− v);

on the set {u > h, v ≤ h, 0 ≤ u− v ≤ k} we have both h < u ≤ h+ k
and h− k < v ≤ h, so that∣∣∣∣∣

∫
Fh1

A(x)∇u · ∇Tk(u− Th(v))

∣∣∣∣∣ ≤ β

∫
{h<u≤h+k
h−k<v≤h}

|∇u||∇v|.

Using (6.20) for both u and v we have

lim
h→+∞

∫
{h<u≤h+k}

|∇u|2 = 0 = lim
h→+∞

∫
{h−k<v≤h}

|∇v|2,

so that, by Hölder inequality, we have

lim
h→+∞

∣∣∣∣∣
∫
Fh1

A(x)∇u · ∇Tk(u− Th(v))

∣∣∣∣∣ = 0;

repeating the same proof, we have

lim
h→+∞

∣∣∣∣∣
∫
Fh3

A(x)∇v · ∇Tk(v − Th(u))

∣∣∣∣∣ = 0.
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Furthermore,∫
Fh2

A(x)∇u · ∇Tk(u− Th(v)) =

∫
{ v>h

0≤u<h+k}
A(x)∇u · ∇u ≥ 0,

and analogously∫
Fh4

A(x)∇v · ∇Tk(v − Th(u)) =

∫
{ u>h

0≤v<h+k}
A(x)∇v · ∇v ≥ 0.

Putting the results together, we have

lim sup
h→+∞

∫
Eh0

A(x)∇(u− v) · ∇Tk(u− v) ≤ 0,

which, by Fatou lemma, implies, since Eh
0 “fills” Ω as h tends to infinity,

0 ≤
∫

Ω

A(x)∇(u− v) · ∇Tk(u− v) ≤ 0.

This, and (1.8), imply ∇Tk(u− v) ≡ 0, and so u = v. �
What happens if the datum f is the Dirac mass concentrated at one

point in Ω? In this case the definition of entropy solution is no longer
enough to guarantee its uniqueness, as the following example shows.

Example 6.7. Let Ω = B1(0) be the unit ball in RN , N ≥ 3, and
let u(x) be the unique duality solution of

(6.21)

{
−∆u = δ0 in Ω,

u = 0 on ∂Ω.

It is well known that u(x) = u(|x|) = |x|2−N−1
(N−2)ωN

, and that u is the limit

of the sequence un of solutions of{
−∆un = fn in Ω,

un = 0 on ∂Ω,

with fn = N nN

ωN
in the ball B 1

n
(0), and fn = 0 elsewhere. Since un is

radially symmetric, it can be easily calculated, obtaining that

un(x) =

{
u(x) in B1(0) \B 1

n
(0),

− nN

2ωn
|x|2 + NnN−2−2

2(N−2)ωN
in B 1

n
(0).

If ϕ belongs to H1
0 (Ω) ∩ L∞(Ω), k is fixed and n is large enough, we

thus have Tk(un − ϕ) = k in B 1
n
(0), and so∫

Ω

∇un · ∇Tk(un − ϕ) =

∫
Ω

fn Tk(un − ϕ) = k.
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Passing to the limit on n as in the proof of Theorem 6.4, we thus have∫
Ω

∇u · ∇Tk(u− ϕ) ≤ k = Tk(u− ϕ)(0) =

∫
Ω

Tk(u− ϕ) dδ0,

so that u is an entropy solution of (6.21). Observe that∫
Ω

Tk(u− ϕ) dδ0

is well defined since Tk(u−ϕ) is continuous (being constantly equal to
k) in a neighbourhood of the origin. Let now λ < 1, and consider the
function uλ = λu. We have∫

Ω

∇uλ · ∇Tk(uλ − ϕ) = λ2

∫
Ω

∇u · ∇T k
λ
(u− ϕ

λ
) ≤ λ2 k

λ
= λ k ≤ k,

so that also uλ is an entropy solution of (6.21).
If, instead of passing to the limit as in the proof of Theorem 6.4

(i.e., dropping a nonnegative term), one performs explicit calculations,
one finds that u is such that

(6.22)

∫
Ω

∇u · ∇Tk(u− ϕ) = k =

∫
Ω

Tk(u− ϕ) dδ0,

for every ϕ in H1
0 (Ω) ∩ L∞(Ω); in other words, the duality solution of

(6.21) is an entropy solution with equality sign, while of course uλ is an
entropy solution with inequality sign for every 0 < λ < 1. Therefore,
one may wonder whether uniqueness can be recovered for measure data
by requiring that u is an entropy solution “with equality sign”. Indeed,
this is not the case; to see it, let va be the duality solution of{

−∆va = δa in Ω,

va = 0 on ∂Ω,

where a is a point in Ω (different from the origin). Performing the same
calculations as above, we find that∫

Ω

∇va · ∇Tk(va − ϕ) = k =

∫
Ω

Tk(va − ϕ)dδa,

for every k > 0 and for every ϕ in H1
0 (Ω) ∩ L∞(Ω). Consider now

w = u+ va. Clearly w is the duality solution of{
−∆w = δ0 + δa in Ω,

w = 0 on ∂Ω,
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so that, once again, for every k > 0 and for every ϕ in H1
0 (Ω)∩L∞(Ω),

we have ∫
Ω

∇w · ∇Tk(w − ϕ) = 2k =

∫
Ω

Tk(w − ϕ)d(δ0 + δa).

However, since w “explodes” both at the origin and at a, we have (if
0 < λ < 2)∫

Ω

Tk(w − ϕ)d(λδ0 + (2− λ)dδa) = λk + (2− λ)k = 2k,

so that w = u + va is an entropy solution, with equality sign, of the
equation {

−∆w = λδ0 + (2− λ)δa in Ω,

w = 0 on ∂Ω.

This equation, however, also has as entropy solution with equality sign
its duality solution z = λu+(2−λ)va (or any other linear combination
of u and va with coefficients ν and 2− ν, 0 < ν < 2).

Remark 6.8. Let f belong to L1(Ω), and let u be the (duality, en-
tropy, found by approximation) solution of (1.9). If we use the entropy
formulation, written for ϕ = 0, we have∫

Ω

A(x)∇Tk(u) · ∇Tk(u) =

∫
Ω

A(x)∇u · ∇Tk(u) ≤
∫

Ω

f Tk(u).

Dividing by k, and then letting k tend to infinity, we have, by (1.8)
and by Lebesgue theorem,

0 ≤ lim
k→+∞

1

k

∫
Ω

A(x)∇Tk(u) · ∇Tk(u) ≤ lim
k→+∞

∫
Ω

f
Tk(u)

k
= 0.

In other words,

(6.23) lim
k→+∞

1

k

∫
{|u|≤k}

A(x)∇u · ∇u = 0.

If, instead of ϕ = 0, we choose ϕ = Tk(u), we find (with the same
calculations)

(6.24) lim
k→+∞

1

k

∫
{k≤|u|≤2k}

A(x)∇u · ∇u = 0.

This formula, and (6.23), state that, even though the quantities∫
{|u|≤k}

A(x)∇u · ∇u and

∫
{k≤|u|≤2k}}

A(x)∇u · ∇u



56 6. ENTROPY SOLUTIONS

do not remain bounded as k tends to infinity (since the solution u does
not belong to H1

0 (Ω), but to a larger space), a suitable “rescaling” of
them not only remains bounded, but converges to zero.

If, instead of taking an L1(Ω) function, we consider a Dirac mass
as datum, this fact is no longer true. Take for example Ω = B1(0) and
consider the unique duality solution of{

−∆u = δ0 in Ω,

u = 0 on ∂Ω.

As stated in Example 6.7, we have u(x) = u(|x|) = |x|2−N−1
(N−2)ωN

. If we fix

k > 0, then

Tk(u) =

{
u in B1(0) \Brk(0),

k in Brk(0),

where rk is such that
r2−Nk −1

(N−2)ωN
= k. If we calculate the “energy” of

∇Tk(u), we have∫
{|u|≤k}

|∇u|2 =

∫
B1(0)\Brk (0)

|∇u|2 =
ωN
ω2
N

∫ 1

rk

ρ1−N dρ =
r2−N
k − 1

(N − 2)ωN
= k,

so that, even though the “rescaled” energy is bounded, we have

lim
k→+∞

1

k

∫
{|u|≤k}

|∇u|2 = 1.

An analogous calculation yields

lim
k→+∞

1

k

∫
{k≤|u|≤2k}

|∇u|2 = 1.



CHAPTER 7

Decomposition of measures using capacity

What is the difference between a measure in M(Ω) and a function
in L1(Ω)? For example, between a Dirac mass concentrated at the
origin and the function 1

|x|N log2(|x|)? As we have seen, both the Dirac

mass and f yield a solution which only belongs to W 1,q
0 (Ω) for every

q < N
N−1

, but in the case of the L1(Ω) datum a certain “energy”,
when renormalized, tends to zero (while it is constant for the Dirac
mass). While the vanishing of the renormalized energy happens for any
L1(Ω) datum, one may wonder for which measures the “Dirac mass”
phenomenon happens. Before answering to this question we need some
(more!) tools.

1. Capacity

Given a subset E of Ω, we define the (harmonic) capacity of E as

cap(E) = inf

{∫
Ω

|∇ϕ|2, ϕ ∈ H1
0 (Ω), ϕ ≥ χE

}
.

The set function cap(·) is not a measure on Ω, nor it is bounded (if E
“touches” the boundary of Ω the set of functions in H1

0 (Ω) greater than
χE is empty, so that the infimum is +∞). It is however a monotone
and σ-subadditive set function, in the sense that

cap
(+∞⋃
n=1

En

)
≤

+∞∑
n=1

cap(En).

If E is an open subset of Ω, then the infimum in the definition of
cap(E) is actually a minimum, which is achieved on an H1

0 (Ω) function
uE, which satisfies 0 ≤ uE ≤ 1 in Ω. If K is compact in Ω, then cap(K)
can be obtained by taking the infimum of the “energy” of ϕ over the
functions ϕ in C1

0(Ω) which are larger than χK .
Recalling the Sobolev embedding, if ϕ is a function in H1

0 (Ω) which
is larger than χE, we have

LN(E) ≤
∫
E

|ϕ|2∗ ≤
∫

Ω

|ϕ|2∗ ≤ S2
2

(∫
Ω

|∇ϕ|2
) 2

2∗

.

57



58 7. DECOMPOSITION OF MEASURES USING CAPACITY

Taking the infimum on the right hand side, we thus obtain

LN(E) ≤ S2
2 (cap(E))

N−2
N ,

so that sets of zero capacity have also zero Lebesgue measure. As a
matter of fact, sets of zero capacity are “thinner” than sets of zero
Lebesgue measure: they have Hausdorff dimension smaller than N −2.

Even though capacity is not a measure, one can always decompose
measures with respect to it.

Theorem 7.1. Let µ be a measure in M(Ω). Then there exists a
unique pair (µ0, λ) such that µ = µ0 + λ, and

cap(B) = 0⇒ µ0(B) = 0, λ = µ E, with cap(E) = 0.

Proof. See the proof of Theorem 3.1, and remark that we only used
the σ-subadditivity of ν in order to prove it. �

Since every set of zero capacity has zero Lebesgue measure, it is
clear that if f belongs to L1(Ω) then the measure µ defined by

µ(B) =

∫
B

f(x) dx

is such that cap(B) = 0 implies µ(E) = 0, so that µ0 = µ. On the
other hand, if µ = δx0 , the Dirac mass concentrated at x0, then since
cap({x0}) = 0, we have that µ is singular with respect to capacity, and
so λ = µ. There is however another set of measures such that µ0 = µ.

Theorem 7.2. Let µ be a nonnegative measure in H−1(Ω), i.e., a
measure such that there exists T in H−1(Ω) for which

〈T, ϕ〉 =

∫
Ω

ϕdµ, ∀ϕ ∈ H1
0 (Ω).

Then cap(B) = 0 implies µ(B) = 0.

Proof. Since cap(B) = 0, there exists a sequence ϕε in H1
0 (Ω) such

that ∫
Ω

|∇ϕε|2 ≤ ε, ϕε ≥ χB.

Let u be the solution of {
−∆u = µ in Ω,

u = 0 on ∂Ω,

which exists since µ belongs to H−1(Ω). Taking ϕε as test function, we
obtain (recalling that µ ≥ 0 and using Hölder inequality),

0 ≤ µ(B) ≤
∫

Ω

ϕε dµ =

∫
Ω

∇u · ∇ϕε ≤ C
√
ε,
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so that, letting ε tend to zero, µ(B) = 0. �
As a consequence of the previous theorem, if we define the set of

“soft measures”

M0(Ω) = {µ ∈M(Ω) : µ(B) = 0 ∀B : cap(B) = 0},
and the set of “singular measures”

Ms(Ω) = {µ ∈M(Ω) : µ = µ E with cap(E) = 0},
we have that L1(Ω)+H−1(Ω) ⊆M0(Ω). Note that there exist functions
in L1(Ω) which are not in H−1(Ω) (for example, f(x) = 1

|x|N log2(|x|)),

and measures in H−1(Ω) which are not in L1(Ω) (for example, the
(N−1)-dimensional Hausdorff measure restricted on an hypersurface of
codimension 1 in RN), but that the intersection of L1(Ω) with H−1(Ω)
is not {0} (for example, L2∗(Ω) is a subset of both spaces). The “nice”
fact is that the opposite inclusion holds.

Theorem 7.3. Let µ be a measure in M(Ω). Then µ belongs to
L1(Ω) +H−1(Ω) if and only if µ belongs to M0(Ω).

Proof. See [2]. �
Therefore, given a measure µ in M(Ω), we can first decompose it

(uniquely) as

µ = µ0 + λ, µ0 ∈M0(Ω), λ ∈Ms(Ω),

and then we can further decompose it (not uniquely, as far as µ0 is
concerned) as

µ = f + T + λ+ − λ−, f ∈ L1(Ω), T ∈ H−1(Ω), λ± ∈Ms(Ω).

The question is now the following: we have uniqueness of entropy
solutions for L1(Ω) data, and we have uniqueness of solutions (hence
of entropy solutions) for H−1(Ω) data (by Lax-Milgram). Thus, by
linearity, we have uniqueness of entropy solutions for data in M0(Ω).
We know that if the datum is δ0 we have counterxamples to uniqueness
due to the nonvanishing of a certain renormalized energy (see Remark
6.8), and we know that δ0 belongs to Ms(Ω). Is the renormalized
energy nonvanishing for every measure inMs(Ω), or is the Dirac mass
a special case?





CHAPTER 8

Renormalized solutions

The result obtained in Remark 6.8 can be improved: not only a
certain renormalized energy remains constant as k diverges if the datum
is a Dirac mass, but we can also “recover” the datum from it.

As stated in Remark 6.8, if u is the duality solution of −∆u = δ0,
i.e.,

u(x) =
|x|2−N − 1

(N − 2)ωN
,

then the sequence |∇u|
2

k
χ{|u|≤k} is bounded in L1(Ω) (since it has “mass”

equal to 1 for every k), so that (up to subsquences) it converges to
some measure λ in the weak∗ topology of measures. We are going to
prove that λ = δ0, so that the measure datum can be in some sense
“reconstructed” by a suitable rescaling of the “energy” of the solution.
If ϕ is a fixed continuous function, we have

1

k

∫
{|u|≤k}

|∇u|2 ϕ =
1

kω2
N

∫
B1(0)\Brk (0)

|x|2−2N ϕ(x) dx,

where rk is such that u(rk) = k. Passing to spherical coordinates we
have

1

k

∫
{|u|≤k}

|∇u|2 ϕ =
1

kω2
N

∫
SN−1

∫ 1

rk

ρ1−Nϕ(ρ, σ) dρ dσ.

Defining y = ρ
rk

, we then have

1

k

∫
{|u|≤k}

|∇u|2 ϕ =
r2−N
k

kω2
N

∫
SN−1

∫ 1
rk

1

y1−Nϕ(rky, σ) dy dσ.

Since rky tends to zero for every fixed y in (1,+∞), since ϕ is con-
tinuous, and since y1−N belongs to L1(1,+∞), we have (by Lebesgue
theorem)

lim
k→+∞

∫ 1
rk

1

y1−Nϕ(rky, σ) dy = ϕ(0)

∫ +∞

1

y1−N dy =
ϕ(0)

N − 2
;
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on the other hand, by definition of rk,

lim
k→+∞

r2−N
k

kω2
N

=
N − 2

ωN
,

so that

lim
k→+∞

1

k

∫
{|u|≤k}

|∇u|2 ϕ =
ϕ(0)

ωN

∫
SN−1

dσ = ϕ(0),

as desired. A similar calculation yields

lim
k→+∞

1

k

∫
{k≤|u|≤2k}

|∇u|2 ϕ = ϕ(0).

We will use this fact to give a new definition of solution for (1.9).

1. Renormalized solutions

The results of this section are contained in [4].

Definition 8.1. A function u in L1(Ω) is a renormalized solution
of {

−div(A(x)∇u) = µ = µ0 + λ+ − λ− in Ω,

u = 0 on ∂Ω,

if u belongs to W 1,q
0 (Ω) for every q < N

N−1
, and if

(8.25)

∫
Ω

A(x)∇u · ∇(h(u)ϕ) =

∫
Ω

h(u)ϕdµ0

+h+∞
∫
ϕdλ+ − h−∞

∫
ϕdλ−,

for every h in W 1,∞(R) such that supp(h′) is compact, and for every ϕ
in C1

0(Ω); here h±∞ are the limits of h at ±∞, respectively. If h(0) = 0,
one may choose ϕ in C1(Ω), while if h has compact support, one may
choose ϕ in H1

0 (Ω) ∩ L∞(Ω).

What is the meaning of (8.25)? It more or less says that h(u) =
h+∞, λ+ almost everyhwere, and that h(u) = h−∞, λ− almost every-
hwere, which means that u = ±∞ on the support of λ. If we take
h(s) = Tk(s), and suppose that µ = f + λ, with f in L1(Ω) and λ
singular and nonnegative, we obtain∫

Ω

A(x)∇u · ∇(Tk(u)ϕ) =

∫
Ω

f Tk(u)ϕ+ k

∫
Ω

ϕdλ,
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which can be rewritten as

1

k

∫
Ω

A(x)∇Tk(u) · ∇Tk(u)ϕ+
1

k

∫
Ω

A(x)∇u · ∇ϕTk(u)

=
1

k

∫
Ω

f Tk(u)ϕ+

∫
Ω

ϕdλ.

Letting k tend to infinity, the second and third term converge to zero,
so that

lim
k→+∞

1

k

∫
{|u|≤k}

A(x)∇u · ∇uϕ =

∫
Ω

ϕdλ,

which means that a renormalized solution allows to “reconstruct” the
singular part of the datum as limit of some rescaled energy (as hap-
pened for the laplacian and for the Dirac mass as datum).

We are going to prove an existence and uniqueness result for renor-
malized solutions of (1.9) with nonnegative data. In order to simplify
the presentation, we will limit ourselves to the case of a nonnegative
datum µ of the form µ = f+λ, with f a nonnegative function in L1(Ω),
and λ a nonnegative bounded Radon measure concentrated on a set E
of zero harmonic capacity. The (much longer, and involved) proof can
be found in [4].

To prove the result, we need to define suitable cut-off functions.

Theorem 8.2. Let λ be a nonnegative measure inMs(Ω), concen-
trated on a set E of zero capacity. Then, for every δ > 0 there exist a
function ψδ in C1

0(Ω) such that 0 ≤ ψδ ≤ 1,∫
Ω

|∇ψδ|2 ≤ δ,

and

(8.26) 0 ≤
∫

Ω

(1− ψδ)dλ ≤ δ.

Proof. See [4]. �
We will consider a sequence un of solutions in H1

0 (Ω) ∩ L∞(Ω) of

(8.27)

{
−div(A(x)∇un) = fn + λn in Ω,

un = 0 on ∂Ω,

where fn is a sequence of nonnegative functions in L∞(Ω) that con-
verges to f in L1(Ω), and λn is a sequence of nonnegative functions
in L∞(Ω) that converges to λ in the narrow topology of measures, i.e.
such that

lim
n→+∞

∫
Ω

fn ϕ =

∫
Ω

ϕdλ, ∀ϕ ∈ C0
b(Ω).
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The solution un of (8.27) exists and is unique, and is nonnegative since
the datum fn + λn is nonnegative.

In the next result we recall some of the properties of the sequence
un.

Theorem 8.3. The sequence un is bounded in W 1,q
0 (Ω), for every

q < N
N−1

, and the sequence Tk(un) is bounded in H1
0 (Ω). Furthermore,

there exists a function u belonging to W 1,q
0 (Ω), for every q < N

N−1
,

such that (up to subsequences) un converges to u weakly in W 1,q
0 (Ω);

moreover, un and ∇un converge to u and ∇u almost everywhere in Ω,
respectively.

Proof. The fact that Tk(un) is bounded in H1
0 (Ω), and that un is

bounded in W 1,q
0 (Ω), for every q < N

N−1
, follows from the result of

Theorem 4.1. From standard compactness results for Sobolev spaces it
then follows that (up to subsequences) un weakly converges to some u
in W 1,q

0 (Ω), and that it converges to the same function almost every-
where in Ω. Therefore, it only remains to prove the almost everywhere
convergence of ∇un to ∇u. Observe that Remark 4.2 is no longer
applicable since λn is not a Cauchy sequence in L1(Ω).

In order to prove this result, we are going to prove that

(8.28) lim
n→+∞

∫
Ω

[A(x)∇(un − u) · ∇(un − u)]
1
2 = 0,

which, in view of (1.8), will imply the convergence of ∇un to ∇u in
(L1(Ω))N (hence the almost everywhere convergence of ∇un to ∇u up
to subsequences). If we define

Ψn(x) = A(x)∇(un − u) · ∇(un − u),

then, if k > 0 is given,∫
Ω

Ψn(x) =

∫
{|u|≤k}

Ψn(x) +

∫
{|u|>k}

Ψn(x) = In,k + Jn,k.

We have, recalling (1.8), and choosing 1 < q < N
N−1

,

Jn,k ≤ β
1
2 21− 1

q

(∫
{|u|>k}

(|∇un|q + |∇u|q)
) 1

q

m({|u| > k})1− 1
q .

Since un is bounded in W 1,q
0 (Ω), and u belongs to the same space, we

thus have
0 ≤ Jn,k ≤ C m({|u| > k})1− 1

q .

Since u belongs to L1(Ω), this implies

(8.29) lim
k→+∞

lim
n→+∞

Jn,k = 0.
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For In,k we have, since Ψn(x) is nonnegative,

In,k =

∫
{|u|≤k}

[A(x)∇(un − Tk(u)) · ∇(un − Tk(u))]
1
2

≤
∫

Ω

[A(x)∇(un − Tk(u)) · ∇(un − Tk(u))]
1
2 = Ln,k.

Given ε > 0 we then have

Ln,k =

∫
{|un−Tk(u)|≤ε}

[A(x)∇(un − Tk(u)) · ∇(un − Tk(u))]
1
2

+

∫
{|un−Tk(u)|>ε}

[A(x)∇(un − Tk(u)) · ∇(un − Tk(u))]
1
2

=Mn,k,ε +Nn,k,ε.

For Nn,k,ε we have, using again the boundedness of un in W 1,q
0 (Ω), and

the fact that u belongs to the same space,

Nn,k,ε ≤ C m({|un − Tk(u)| > ε})1− 1
q ,

which implies, since un converges almost everywhere to u,

(8.30) lim
ε→0+

lim
k→+∞

lim
n→+∞

Nn,k,ε = 0.

For Mn,k,ε we have

Mn,k,ε ≤
(∫
{|un−Tk(u)|≤ε}

A(x)∇(un − Tk(u)) · ∇(un − Tk(u))

) 1
2

m(Ω)
1
2 ,

so that we only have to deal with

Pn,k,ε =

∫
{|un−Tk(u)|≤ε}

A(x)∇(un − Tk(u)) · ∇(un − Tk(u)),

which we rewrite as

Pn,k,ε =

∫
Ω

A(x)∇(un − Tk(u)) · ∇Tε(un − Tk(u))

=

∫
Ω

A(x)∇un · ∇Tε(un − Tk(u))

−
∫

Ω

A(x)∇Tk(u) · ∇Tε(un − Tk(u)) = Qn,k,ε +Rn,k,ε.

We have, thanks to the fact that Tk(un) weakly converges to Tk(u) in
H1

0 (Ω),

lim
n→+∞

Rn,k,ε =

∫
Ω

A(x)∇Tk(u) · ∇Tε(u− Tk(u)) = 0,
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since u−Tk(u) = 0 on the set {|u| ≤ k} where ∇Tk(u) is different from
zero. Thus,

(8.31) lim
ε→0+

lim
k→+∞

lim
n→+∞

Rn,k,ε = 0.

To deal with Qn,k,ε, we use (at last!) the equation, to obtain

Qn,k,ε =

∫
Ω

(fn + λn)Tε(un − Tk(u)) ≤ ε (‖fn‖L1(Ω) + ‖λn‖L1(Ω)),

which implies

(8.32) lim
ε→0+

lim
k→+∞

lim
n→+∞

Qn,k,ε = 0.

Putting together (8.29), (8.30), (8.31) and (8.32) we thus have (8.28),
as desired. �

Remark 8.4. One may wonder why there is need to prove the
almost everywhere convergence of the gradients of un: the equation
being linear, boundedness in a Sobolev space is enough to guarantee
weak convergence, hence passage to the limit in the approximate equa-
tions. However, if we take h(un)ϕ as test function in (8.27), with h
and ϕ as in the definition of renormalized solution, we have∫

Ω

A(x)∇un·∇unh′(un)ϕ+

∫
Ω

A(x)∇un·∇ϕh(un) =

∫
Ω

(fn+λn)h(un)ϕ,

and it is clear that to pass to the limit as n tends to infinity in the first
term we need the strong convergence of un in some space (to be precise,
since h′ has compact support, the strong convergence of the truncates
of un); using weak convergence, we will only obtain an inequality (as
is for entropy solutions), which is not enough for our purposes. And
indeed, we are going to prove that Tk(un) strongly converges to Tk(u)
in H1

0 (Ω).

Lemma 8.5. Let gn be a sequence of nonnegative functions in L1(Ω)
that converges almost everywhere to some function g in L1(Ω). If

(8.33) lim
n→+∞

∫
Ω

gn =

∫
Ω

g,

then gn converges to g in L1(Ω).

Proof. We have∫
Ω

|gn − g| =
∫

Ω

(gn − g) + 2

∫
Ω

(g − gn)χ{0≤gn≤g}.
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The first term tends to zero by (8.33), while the second one tends to
zero by Lebesgue theorem, since (g−gn)χ{0≤gn≤g} tends to zero almost
everywhere, and

|(g − gn)χ{0≤gn≤g}| ≤ 2g,

with 2g in L1(Ω). �

Theorem 8.6. Let un be the solution of (8.27), and suppose that it
satisfies all the properties stated in Theorem 8.3. Then Tk(un) strongly
converges to Tk(u) in H1

0 (Ω).

In what follows, we will denote by ω(n, j, δ) a quantity such that

lim
δ→0+

lim
j→+∞

lim
n→+∞

ω(n, j, δ) = 0.

Should we not take one or more of the limits, we will only write the
dependance of ω(·) from the variables that go to the limit. Analogously,
we will denote by ωj(n) and ωj,δ(n) some quantities such that

lim
n→+∞

ωj(n) = 0, lim
n→+∞

ωj,δ(n) = 0,

for every j > 0 and for every δ > 0.

Proof. We will split the proof in several steps.
Step 1. Let δ > 0, and let ψδ be given by Theorem 8.2. Then

(8.34) 0 ≤ 1

j

∫
{j≤un≤2j}

A(x)∇un · ∇un(1− ψδ) ≤ ω(n, j, δ).

Let βj(s) = 1
j
Tj(Gj(s)), and choose βj(un)(1 − ψδ) as test function in

(8.27); we have

1

j

∫
{j≤un≤2j}

A(x)∇un · ∇un(1− ψδ)−
∫

Ω

A(x)∇un · ∇ψδβj(un)

=

∫
Ω

fnβj(un)(1− ψδ) +

∫
Ω

λnβj(un)(1− ψδ).

Since ψδ is in C1
0(Ω), un is bounded in W 1,q

0 (Ω) for some q > 1, and
βj(un) converges weakly∗ in L∞(Ω) to βj(u), we have∫

Ω

A(x)∇un · ∇ψδβj(un) =

∫
Ω

A(x)∇u · ∇ψδβj(u) + ωj,δ(n);

since βj(u) tends to zero weakly∗ in L∞(Ω) as j tends to infinity we
then have ∫

Ω

A(x)∇un · ∇ψδβj(un) = ωδ(n, j).
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Analogously (since fn converges to f in L1(Ω)), we have∫
Ω

fnβj(un)(1− ψδ) = ωδ(n, j).

As far as the last term is concerned, we have, since 0 ≤ βj(un) ≤ 1,

0 ≤
∫

Ω

λnβj(un)(1− ψδ) ≤
∫

Ω

λn(1− ψδ).

Since λn converges to λ in the narrow topology of measures, we have,
by (8.26) ∫

Ω

λn(1− ψδ) =

∫
Ω

(1− ψδ)dλ+ ωδ(n) ≤ ω(n, δ).

Putting together the results found so far, we obtain (8.34).
Step 2. Let δ > 0 and let ψδ be the function given by Theorem 8.2.
Then, for every k > 0,

(8.35)

∫
Ω

A(x)∇Tk(un) · ∇Tk(un)ψδ = ω(n, δ),

and

(8.36)

∫
Ω

(k − Tk(un))ψδλn = ω(n, δ).

In order to prove this result, we choose (k− Tk(un))ψδ as test function
in (8.27), to find (recalling that un ≥ 0)

−
∫

Ω

A(x)∇Tk(un) · ∇Tk(un)ψδ

+

∫
Ω

A(x)∇un · ∇ψδ(k − Tk(un))

=

∫
Ω

fn(k − Tk(un))ψδ +

∫
Ω

λn(k − Tk(un))ψδ.

For the second term we have, since k − Tk(un) is different from zero
only where 0 ≤ un ≤ k,∫

Ω

A(x)∇un · ∇ψδ(k − Tk(un)) =

∫
Ω

A(x)∇Tk(un) · ∇ψδ(k − Tk(un)).

The weak convergence of Tk(un) to Tk(u) in H1
0 (Ω) (as well as the

L∞(Ω) weak∗ convergence of k−Tk(un) to k−Tk(u)), allows us to pass
to the limit on n, obtaining∫

Ω

A(x)∇un·∇ψδ(k−Tk(un)) =

∫
Ω

A(x)∇Tk(u)·∇ψδ(k−Tk(u))+ωδ(n).
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Since Tk(u) belongs to H1
0 (Ω), k − Tk(u) belongs to L∞(Ω), and ψδ

tends to zero in the same space, we then have∫
Ω

A(x)∇un · ∇ψδ(k − Tk(un)) = ω(n, δ).

The fact the fn converges to f in L1(Ω) (together with the L∞(Ω)
weak∗ convergence of k − Tk(un) to k − Tk(u)) implies that∫

Ω

fn(k − Tk(un))ψδ =

∫
Ω

f(k − Tk(u))ψδ + ωδ(n),

so that the L∞(Ω) weak∗ convergence of ψδ to zero implies∫
Ω

fn(k − Tk(un))ψδ = ω(n, δ).

Using these results, we therefore have∫
Ω

A(x)∇Tk(un) · ∇Tk(un)ψδ +

∫
Ω

λn(k − Tk(un))ψδ = ω(n, δ),

so that (8.35) and (8.36) follow observing that both terms above are
nonnegative.
Step 3. For every k > 0 we have

(8.37)

∫
Ω

A(x)∇Tk(un) · ∇Tk(un)(1− ψδ)

=

∫
Ω

A(x)∇Tk(u) · ∇Tk(u)(1− ψδ) + ω(n, δ).

In order to prove (8.37), we begin by proving that

(8.38)

∫
Ω

A(x)∇Tk(un) · ∇Tk(un)(1− ψδ)−
∫

Ω

A(x)∇u · ∇ψδTk(u)

=

∫
Ω

f Tk(u)(1− ψδ) + ω(n, δ).

To do this, we choose Tk(un)(1−ψδ) as test function in (8.27), to obtain∫
Ω

A(x)∇Tk(un) · ∇Tk(un)(1− ψδ)−
∫

Ω

A(x)∇un · ∇ψδTk(un)

=

∫
Ω

fnTk(un)(1− ψδ) +

∫
Ω

λnTk(un)(1− ψδ).

The fact that un converges to u in W 1,q
0 (Ω) (for some q > 1), that

Tk(un) converges to Tk(u) in the weak∗ topology of L∞(Ω), and that
ψδ is in C1

0(Ω) implies∫
Ω

A(x)∇un · ∇ψδTk(un) =

∫
Ω

A(x)∇u · ∇ψδTk(u) + ωδ(n).



70 8. RENORMALIZED SOLUTIONS

Analogously, we have∫
Ω

fnTk(un)(1− ψδ) =

∫
Ω

fTk(u)(1− ψδ) + ωδ(n),

while, by (8.26),

0 ≤
∫

Ω

λnTk(un)(1− ψδ) ≤ k

∫
Ω

(1− ψδ)dλ+ ωδ(n) = ω(n, δ).

Putting together the results, we find (8.38). The proof of (8.37) will
be complete once we prove that

(8.39)

∫
Ω

A(x)∇Tk(u) · ∇Tk(u)(1− ψδ)−
∫

Ω

A(x)∇u · ∇ψδTk(u)

=

∫
Ω

f Tk(u)(1− ψδ) + ω(δ).

In order to do that, we choose (1−βj(un))Tk(u)(1−ψδ) as test function
in (8.27), where βj(s) has been defined in Step 1. We have

−1

j

∫
{j≤un≤2j}

A(x)∇un · ∇unTk(u)(1− ψδ)

+

∫
Ω

A(x)∇un · ∇Tk(u)(1− βj(un))(1− ψδ)

−
∫

Ω

A(x)∇un · ∇ψδ(1− βj(un))Tk(u)

=

∫
Ω

fn(1− βj(un))Tk(u)(1− ψδ)

+

∫
Ω

λn(1− βj(un))Tk(u)(1− ψδ).

For the first term we have, by (8.34),

1

j

∫
{j≤un≤2j}

A(x)∇un · ∇unTk(u)(1− ψδ) ≤ k ω(n, j, δ).

For the second term, since 1− βj(un) is different from zero only where
0 ≤ un ≤ 2j, we have∫

Ω

A(x)∇un · ∇Tk(u)(1− βj(un))(1− ψδ)

=

∫
Ω

A(x)∇u · ∇Tk(u)(1− βj(u))(1− ψδ) + ωj,δ(n)

=

∫
Ω

A(x)∇Tk(u) · ∇Tk(u)(1− βj(u))(1− ψδ) + ωj,δ(n).
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Since Tk(u) belongs to H1
0 (Ω), and since 1−βj(u) tends to 1 in L∞(Ω)

weak∗, we then have∫
Ω

A(x)∇un · ∇Tk(u)(1− βj(un))(1− ψδ)

=

∫
Ω

A(x)∇Tk(u) · ∇Tk(u)(1− ψδ) + ωδ(n, j).

For the third term we have, since un converges to u weakly in W 1,q
0 (Ω)

(for some q > 1), and since ψδ belongs to C1
0(Ω),∫

Ω

A(x)∇un · ∇ψδ(1− βj(un))Tk(u)

=

∫
Ω

A(x)∇u · ∇ψδ(1− βj(u))Tk(u) + ωj,δ(n)

=

∫
Ω

A(x)∇u · ∇ψδTk(u) + ωδ(n, j),

where in the last passage we have used again that βj(u) tends to 1 in
L∞(Ω) weak∗. For the fourth term we have∫

Ω

fn(1− βj(un))Tk(u)(1− ψδ)

=

∫
Ω

f(1− βj(u))Tk(u)(1− ψδ) + ωj,δ(n)

=

∫
Ω

fTk(u)(1− ψδ) + ωδ(n, j),

while for the fifth term we have, by (8.26),

0 ≤
∫

Ω

λn(1− βj(un))Tk(u)(1− ψδ) ≤
∫

Ω

λn(1− ψδ) = ω(n, δ).

Putting together the results, we obtain (8.39). Comparing (8.38) and
(8.39) we obtain (8.37).
Step 4. We have

(8.40)

∫
Ω

A(x)∇Tk(un) · ∇Tk(un) =

∫
Ω

A(x)∇Tk(u) · ∇Tk(u) + ω(n).

In order to prove (8.40), we use ψδ and (1− ψδ). By (8.35), proved in
Step 2, we have∫

Ω

A(x)∇Tk(un) · ∇Tk(un)ψδ = ω(n, δ),
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while the fact that Tk(u) belongs to H1
0 (Ω), and the fact that ψδ tends

to zero in L∞(Ω) weak∗ implies∫
Ω

A(x)∇Tk(u) · ∇Tk(u)ψδ = ω(δ).

Therefore, in order to prove (8.40) it only remains to prove that∫
Ω

A(x)∇Tk(un) · ∇Tk(un)(1− ψδ)

=

∫
Ω

A(x)∇Tk(u) · ∇Tk(u)(1− ψδ) + ω(n, δ),

which is exactly (8.37).
Step 5. The sequence Tk(un) strongly converges to Tk(u) in H1

0 (Ω).
Since ∇un converges almost everywhere to ∇u, we have that

A(x)∇Tk(un) · ∇Tk(un) tends to A(x)∇Tk(u) · ∇Tk(u),

almost everywhere in Ω. Since A(x)∇Tk(un) · ∇Tk(un) is nonnegative,
this convergence and (8.40) imply by Lemma 8.5 that

A(x)∇Tk(un) · ∇Tk(un) converges to A(x)∇Tk(u) · ∇Tk(u),

strongly in L1(Ω). Therefore, by Vitali theorem,

{A(x)∇Tk(un) · ∇Tk(un)} is equiintegrable.

Using (1.8), this implies that the sequence {|∇Tk(un)|2} is equiinte-
grable. Since ∇Tk(un) converges to ∇Tk(u) almost everywhere in Ω,
we have (again by Vitali theorem) the strong convergence of Tk(un) to
Tk(u) in H1

0 (Ω), as desired. �

Theorem 8.7. There exists a renormalized solution of (1.9).

Proof. Let h and ϕ as in Definition 8.1, and choose h(un)ϕ as test
function in (8.27). We obtain∫

Ω

A(x)∇un · ∇un h′(un)ϕ+

∫
Ω

A(x)∇un · ∇ϕh(un)

=

∫
Ω

fn h(un)ϕ+

∫
Ω

λn h(un)ϕ.

For the second and third term we have∫
Ω

A(x)∇un · ∇ϕh(un) =

∫
Ω

A(x)∇u · ∇ϕh(u) + ω(n),

and ∫
Ω

fn h(un)ϕ =

∫
Ω

f h(u)ϕ,
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since h(s) is bounded, ϕ is regular, and un converges to u strongly in
W 1,1

0 (Ω) (actually, better) and almost everywhere. For the first one,
since h′(s) has compact support (say, [−M,M ]), we have∫

Ω

A(x)∇un · ∇un h′(un)ϕ =

∫
Ω

A(x)∇TM(un) · ∇TM(un)h′(un)ϕ,

and so∫
Ω

A(x)∇un · ∇un h′(un)ϕ =

∫
Ω

A(x)∇u · ∇uh′(u)ϕ+ ω(n),

by the strong convergence of the truncates, the boundedness of h′(s)
and the regularity of ϕ. For the last term we have∫

Ω

λn h(un)ϕ=

∫
Ω

λn (h(un)− h+∞)ϕ+ h+∞
∫

Ω

λn ϕ

=

∫
Ω

λn (h(un)− h+∞)ϕψδ+

+

∫
Ω

λn (h(un)− h+∞)ϕ (1− ψδ) + h+∞
∫

Ω

λn ϕ.

Since h′(s) has compact support, there exists K > 0 such that |h(s)−
h+∞| ≤ K − TK(s), so that∣∣∣∣∫

Ω

λn (h(un)− h+∞)ϕψδ

∣∣∣∣ ≤ C

∫
Ω

λn (K − TK(un))ψδ = ω(n, δ),

by (8.36). Furthermore,∣∣∣∣∫
Ω

λn(h(un)− h+∞)ϕ(1− ψδ)
∣∣∣∣≤C ∫

Ω

λn(1− ψδ)

=C

∫
Ω

(1− ψδ)dλ+ ωδ(n) = ω(n, δ),

by (8.26). Therefore,∫
Ω

λn h(un)ϕ = h+∞
∫

Ω

ϕdλ+ ω(n).

Putting together all the results, we have that u is a renormalized solu-
tion of (1.9). �

We are now going to prove that every renormalized solution is a
duality solution, so that uniqueness of renormalized solutions will fol-
low from uniqueness of duality solutions. Before the proof, we need a
further result.
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Theorem 8.8. Let u be a renormalized solution of (1.9). Then

(8.41) lim
k→+∞

1

k

∫
{k≤u≤2k}

A(x)∇u · ∇uϕ =

∫
Ω

ϕdλ+,

and

(8.42) lim
k→+∞

1

k

∫
{−2k≤u≤−k}

A(x)∇u · ∇uϕ =

∫
Ω

ϕdλ−,

for every ϕ in C0(Ω).

Proof. For the sake of simplicity, we suppose that µ0 = f , a function
in L1(Ω). Let hk(s) : R→ R be defined by hk(s) = 1

k
Tk(Gk(s

+)), i.e.,

hk(s) =


0 if s < k,
s−k
k

if k ≤ s ≤ 2k,

1 if s > 2k,

k 2k

1

and choose hk(u)ϕ as test function in (8.1), with ϕ in C1(Ω). We have,
since h+∞

k = 1, and h−∞k = 0,∫
Ω

A(x)∇u · ∇(hk(u)ϕ) =

∫
Ω

f hk(u)ϕ+

∫
Ω

ϕdλ+.

Since hk(u) tends to zero almost everyhwere, and is bounded, we have

lim
k→+∞

∫
Ω

f hk(u)ϕ = 0,

by Lebesgue theorem. For the same reason, we have

lim
k→+∞

∫
Ω

A(x)∇u · ∇ϕhk(u) = 0,

so that

lim
k→+∞

1

k

∫
{k≤u≤2k}

A(x)∇u · ∇uϕ =

∫
Ω

ϕdλ+,

for every ϕ in C1(Ω). The general result is obtained by a density
argument, since the sequence

1

k
A(x)∇u · ∇uχ{k≤u≤2k}

is bounded in L1(Ω) (just take hk(u) · 1 as test function in (8.1)). The
proof of (8.42) is analogous. �
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We can now prove that any renormalized solution is a duality solu-
tion. Let g be in L∞(Ω), and let v be the solution of{

−div(A∗(x)∇v) = g in Ω,

v = 0 on ∂Ω.

By De Giorgi’s theorem (Theorem 3.4), v belongs to H1
0 (Ω) ∩ C0(Ω),

so that, if we define hk : R→ R by

hk(s) =



0 if s < −2k,
s+2k
k

if −2k ≤ s ≤ −k,

1 if −k < s < k,
2k−s
k

if k ≤ s ≤ 2k,

0 if s > 2k,

−2k

1

2kk−k

we can choose hk(u) v as test function in (8.25) (since hk(s) has compact
support). We obtain∫

Ω

A(x)∇u · ∇v hk(u) +

∫
Ω

A(x)∇u · ∇uh′k(u) v =

∫
Ω

hk(u)vdµ0,

since h±∞k = 0. The middle term can be rewritten as∫
Ω

A(x)∇u · ∇uh′k(u) v

= −1

k

∫
{k<u<2k}

A(x)∇u · ∇u v +
1

k

∫
{−2k<u<−k}

A(x)∇u · ∇u v.

so that by (8.41) and (8.42) we have

lim
k→+∞

∫
Ω

A(x)∇u · ∇uh′k(u) v = −
∫

Ω

v dλ+ +

∫
Ω

v dλ−.

Since hk is bounded and converges to 1 everywhere, the boundedness
of v and Lebesgue theorem imply that

lim
k→+∞

∫
Ω

hk(u)vdµ0 =

∫
Ω

v dµ0.

For the first term, we can rewrite it as∫
Ω

A(x)∇u·∇v hk(u) =

∫
Ω

A∗(x)∇v ·∇uhk(u) =

∫
Ω

A∗(x)∇v ·∇Hk(u),
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where Hk(s) =
∫ s

0
hk(t) dt. Since hk has compact support, Hk(u) be-

longs to H1
0 (Ω), and so it can be chosen as test function in the equation

solved by v, which implies that∫
Ω

A∗(x)∇v · ∇Hk(u) =

∫
Ω

g Hk(u).

Therefore, ∫
Ω

A(x)∇u · ∇v hk(u) =

∫
Ω

g Hk(u).

Since Hk(u) tends to u almost everywhere (and is bounded in absolute
value by u, which is in L1(Ω)), by Lebesgue theorem we have

lim
k→+∞

∫
Ω

A(x)∇u · ∇v hk(u) =

∫
Ω

g u.

Putting the results together, we have∫
Ω

g u−
∫

Ω

v dλ+ +

∫
Ω

v dλ− =

∫
Ω

v dµ0,

which can be rewritten as ∫
Ω

g u =

∫
Ω

v dµ,

so that u is the duality solution, as desired.
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