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1 Linear results

Starting result: positive harmonic functions.

Theorem 1.1 (Riesz-Herglotz) Let u be a positive har-

monic function in a smooth bounded domain Ω, then

there exists a positive Radon measure µ on ∂Ω such that

lim
β→0

∫
Σβ

uζ dS =

∫
∂Ω

ζ dµ ∀ζ ∈ C(∂Ω), (1.1)

where Σβ := {x ∈ Ω : ρ
∂Ω(x) = β} with ρ

∂Ω = dist (x, ∂Ω).

Furthermore,

u(x) =

∫
∂Ω

P (x, y)dµ(y) ∀x ∈ Ω, (1.2)

where P (x, y) is the Poisson kernel in Ω.

Pointwise convergence holds (Fatou). Extension by Martin

to general domain, but: ∂Ω replaced by the Martin boundary

Ω∗, the Poisson kernel replaced by the Martin kernel K(x, y).

Extension by Doob to positive super-harmonic functions.
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2 The rough trace

Ω open domain in RN with a C2 boundary, u > 0 solution of

−∆u + uq = 0 in Ω. (2.1)

Theorem 2.1 (Marcus-Véron) Assume q > 1. Then for

any ω ∈ ∂Ω the following dichotomy occurs:

(i) Either for any relatively open neiborhood U ⊂ ∂Ω of

ω, there holds

lim
β→0

∫
U

u(x) dS = ∞. (2.2)

(ii) Or there exists a relatively open neiborhood U ⊂ ∂Ω

of ω and a positive linear functional `U on C0(U) such

that

lim
β→0

∫
U

u(x)ζ dS = `U(ζ) ∀ζ ∈ C0(U). (2.3)
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Note u(x) = u(r, σ(x), with r = ρ
∂Ω(x) and σ(x) = Proj∂Ω(x)

(unique if ρ
∂Ω(x) small enough). Dichotomy according∫

U×(0,β0)

uqρ
∂Ωdx =

∫ β0

0

∫
U

uq(r, σ) dS(σ)rdr

is finite or not.

Consequences: the set S of ω ∈ ∂Ω such that (i) occurs is

closed. It is the singular set of u. The set R of of ω ∈ ∂Ω such

that (ii) occurs is relatively open, and there exists a positive

Radon mesure µ on R such that

lim
β→0

∫
R

u(x)ζ dS =

∫
R

ζ dµ ∀ζ ∈ C0(R). (2.4)

The ”rough” boundary trace, denoted by tr(u), is the

outer regular Borel measure ν defined on any Borel set E ⊂
∂Ω by

ν(E) =

{
µ(E) if E ⊂ R

∞ if E ∩ S 6= ∅. (2.5)
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2.1 The generalized boundary value problem{
−∆u + |u|q−1 u = 0 in Ω

tr(u) = ν ∈ Breg
+ (∂Ω),

(2.6)

where Breg
+ (∂Ω) := the set of outer regular positive Borel mea-

sures on ∂Ω. Set qc := (N + 1)/(N − 1)

Theorem 2.2 (Marcus-Véron) Assume 1 < q < qc. Then

for any ν ∈ Breg
+ (∂Ω) there exists a unique positive solu-

tion of (2.6 ).
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2.1 The generalized boundary value problem{
−∆u + |u|q−1 u = 0 in Ω

tr(u) = ν ∈ Breg
+ (∂Ω),

(2.6)

where Breg
+ (∂Ω) := the set of outer regular positive Borel mea-

sures on ∂Ω. Set qc := (N + 1)/(N − 1)

Theorem 2.3 (Marcus-Véron) Assume 1 < q < qc. Then

for any ν ∈ Breg
+ (∂Ω) there exists a unique positive solu-

tion of (2.6 ).

Key ingredients: 1- The Keller-Osserman estimate

u(x) ≤ CN,q

(
ρ

∂Ω(x)
)−2/(q−1) ∀x ∈ Ω, (2.7)

valid for every q > 1.

2- The estimate from below

u(x) ≥ Ua(x) ∀a ∈ S, ∀x ∈ Ω, ∀x ∈ Ω, (2.8)

valid only for 1 < q < qc, where Ua := limk→∞ ukδa and ukδa

is the unique solution of{
−∆u + |u|q−1 u = 0 in Ω

tr(u) = kδa.
(2.9)

Existence and uniqueness of ukδa and blow-up properties of

Ua and ukδa given by Gmira-Véron in 1990. In particular

Ua(x) ≈ ρ
∂Ω(x) |x− a|−2/(q−1) ∀x ∈ Ω. (2.10)
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Remark. Strong interest for probabilist because of the links

with branching process, 1 < q ≤ 2 (Dynkin, Kuznetsov, Le

Gall, Perkins, Iscoe). In the case q = N = 2 similar results

of existence and uniqueness obtained by Le Gall by the use of

the Brownian snake.

2.2 Boundary Radon measures and removable singularities

Condition for solving{
−∆u + |u|q−1 u = 0 in Ω

u = µ ∈ M+(∂Ω),
(2.11)

where M(∂Ω) := the set of Radon measures on ∂Ω.

Theorem 2.4 Problem (2.11 ) admits a solution u = uµ

(always unique), if and only if µ vanishes on Borel sets

E ⊂ ∂Ω with CN−1
2/q,q′-capacity zero, that is

CN−1
2/q,q′(E) = 0 =⇒ |µ| (E) = 0, (2.12)

where CN−1
2/q,q′ denotes the Bessel capacity in dim. N-1.

Proof by Le Gall (qc ≤ q = 2), Dynkin-Kuznetsov (qc ≤ q ≤
2) by probabilistic methods and Marcus-Véron (qc ≤ q) by

analytic methods.

A positive measure µ satisfies (2.12 ) if and only if there

exists an increasing sequence of measures {µn} ⊂ W
−2/q,q
+ (∂Ω)

such that µn ↑ µ.
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Associated problem: removable singularities. Consider u ∈
C(Ω \ F ), where F ⊂ ∂Ω is closed, solution of{

−∆u + |u|q−1 u = 0 in Ω

u = 0 on ∂Ω \ F.
(2.13)

The next result is proved in the same range of exponents by

the authors of Theorem 2.4

Theorem 2.5 A function u solution of (2.13 ) is neces-

sarily zero if and only if CN−1
2/q,q′(F ) = 0.

Striking observation first by Le Gall: Non uniqueness. If

q ≥ qc the solution of the generalized boundary (2.6 ) value is

not unique whenever S 6= ∅. More precisely it is possible to

construct infinitely solutions u of (2.6 ) such that tr(u) = ν∞,

where ν∞ is the outer regular Borel measure on ∂Ω which

verifies ν∞(E) = ∞ for every Borel set E ⊂ ∂Ω.
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These solutions are constructed as follows: consider an a

countable and dense subset on ∂Ω and Γn = B̄rn(an) with

rn > 0. The maximal solution UΓn satisfies, for some x0 ∈ Ω,

UΓn(x0) ≤ CN,q(x0)C
N−1
2/q,q′(Γn).

Now

q ≥ qc =⇒ CN−1
2/q,q′(Γn) → 0 as rn → 0.

Thus for ε > 0, choose the rn such that∑
n

UΓn(x0) ≤ ε

Now (Harnack)
∑

n UΓn(x) converges locally uniformly and is a

super-solution. Since sup
n
{UΓn} is a sub-solution smaller, there

exists a solution U between, and U satisfies, for any relatively

open subset U ⊂ ∂Ω

lim
β→0

∫
U

U(x) dS = ∞,

and U(x0) < ε.

Kuznetsov’s proposal: the standard topology on ∂Ω in-

duced by RN is not fine enough to distinguish between all

these solutions.
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3 The fine trace

Dynkin-Kuznetsov introduced a notion of fine trace, associ-

ated with the Brownian process, to construct a new boundary

trace for positive solutions of (2.1 ), when qc ≤ q ≤ 2. They de-

fined the class of moderate solutions (resp. σ-moderate solu-

tions) which are solutions u = uµ for some µ ∈ M+(∂Ω) (resp.

for which there exists an increasing sequence {µn} ⊂ M+(∂Ω)

such that uµn ↑ u). They also proved that in the class of σ-

moderate solutions, there is a one-to-one correspondence be-

tween a positive solution u of (2.1 ) and it’s boundary fine trace.

However, by their results, the prescribed trace is attained only

up to equivalence, i.e., up to a set of capacity zero.
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3 The fine trace

Dynkin-Kuznetsov introduced a notion of fine trace, associ-

ated with the Brownian process, to construct a new boundary

trace for positive solutions of (2.1 ), when qc ≤ q ≤ 2. They de-

fined the class of moderate solutions (resp. σ-moderate solu-

tions) which are solutions u = uµ for some µ ∈ M+(∂Ω) (resp.

for which there exists an increasing sequence {µn} ⊂ M+(∂Ω)

such that uµn ↑ u). They also proved that in the class of σ-

moderate solutions, there is a one-to-one correspondence be-

tween a positive solution u of (2.1 ) and it’s boundary fine trace.

However, by their results, the prescribed trace is attained only

up to equivalence, i.e., up to a set of capacity zero.

In 2002, Mselati, a PhD student of Le Gall, succeeded in

proving that in the case q = 2, every positive solution u of (2.1

) is σ- moderate. The proof uses combination of probabilistic

and analytic arguments and needs ∂Ω to be C4.

One of the key argument in Mselati’s proof is to prove that,

for any compact set F ⊂ ∂Ω, the maximal solution UF of (2.1

) with a rough boundary trace supported by K is σ- moderate.

Set

UF = sup{uµ : µ ∈ W
−2/q,q
+ (∂Ω), µ(F c) = 0}. (3.1)

The rough boundary trace of UF is supported by K and UF

is σ- moderate.
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4 The capacitary potential

If F is a closed subset of ∂Ω we set ρF (x) := dist (x, F ). If x

in Ω and n ∈ Z denote

Tn(x) = {y ∈ RN : 2−n−1 < |x− y| ≤ 2−n},

and Fn(x) = Tn(x) ∩ F . The capacitary potential WF of F

is defined, for all x ∈ Ω, by

WF (x) = ρ
∂Ω(x)

∑
n

2−n(q+1)/(q−1)CN−1
2/q,q′(2

nFn(x)). (4.1)

The capacitary potential plays the role devoted to solutions

with pointwise singularity in the case q > qc, solutions which

no longer exist if q > qc. Capacitary potentials can be con-

structed for related equations: nonlinear parabolic, internal

singularities for nonlinear elliptic...
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4 The capacitary potential

If F is a closed subset of ∂Ω we set ρF (x) := dist (x, F ). If x

in Ω and n ∈ Z denote

Tn(x) = {y ∈ RN : 2−n−1 < |x− y| ≤ 2−n},

and Fn(x) = Tn(x) ∩ F . The capacitary potential WF of F

is defined, for all x ∈ Ω, by

WF (x) = ρ
∂Ω(x)

∑
n

2−n(q+1)/(q−1)CN−1
2/q,q′(2

nFn(x)). (4.1)

The capacitary potential plays the role devoted to solutions

with pointwise singularity in the case q > qc, solutions which

no longer exist if q > qc. Capacitary potentials can be con-

structed for related equations: nonlinear parabolic, internal

singularities for nonlinear elliptic...

Theorem 4.1 Marcus-Véron. Let q ≥ qc, and assume

∂Ω is C2; then there exist two positive constants c1 and

c2 depending on Ω and q, such that for any closed set

F ⊂ ∂Ω there holds

c1WF (x) ≤ UF (x) ≤ UF (x) ≤ c2WF (x) ∀x ∈ Ω. (4.2)

Consequence. UF = UF and UF is σ- moderate
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5 The precise trace

5.1 Construction of the precise trace

Developped by Marcus-Véron. Denote by Tq the fine topology

associated with the capacity CN−1
2/q,q′ and by Ẽ the fine closure

of a set E ⊂ ∂Ω. For β > 0, small enough (0 < β < β0), set

Σβ = {x ∈ Ω : ρ
∂Ω(x) = β} and Ω′

β = {x ∈ Ω : ρ
∂Ω(x) > β}.

Theorem 5.1 Let u be a positive solution of (2.1 ) and

let ξ ∈ ∂Ω. If Q ⊂ ∂Ω is a Tq-open set and, provided

the following limit exists, put

LQ = lim
β→0

∫
Σβ(Q)

udS.

Then,

(i) Either LQ = ∞ for every Tq-open neighborhood Q of

ξ.

(ii) Or there exists a Tq-open neighborhood Q such that

LQ < ∞.

The first case occurs if and only if, for every Tq-open

neighborhood Q of ξ,∫
A

uqρ
∂Ω(x)dx = ∞, A = (0, β0)×Q. (5.1)
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A point ξ ∈ ∂Ω is called a singular point of u in the first

case and a regular point otherwise. The set of singular points

denoted by S(u) is Tq-closed and its complement in ∂Ω denoted

by R(u) is Tq-open.

If Q is Tq-open, we denote by uQ
β the solution of (2.1 ) in

Ω′
β with boundary data u where Σβ(Q) = {x ∈ Σβ : σ(x) ∈

Q}. One of the essential features of boundary trace is its local

nature.
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A point ξ ∈ ∂Ω is called a singular point of u in the first

case and a regular point otherwise. The set of singular points

denoted by S(u) is Tq-closed and its complement in ∂Ω denoted

by R(u) is Tq-open.

If Q is Tq-open, we denote by uQ
β the solution of (2.1 ) in

Ω′
β with boundary data u where Σβ(Q) = {x ∈ Σβ : σ(x) ∈

Q}. One of the essential features of boundary trace is its local

nature.

If F ⊂ ∂Ω is Tq-closed set, UF (the maximal solution van-

ishing in some sense on ∂Ω \ F ), can be constructed by ap-

proximations. Estimate (4.2 ) with the capacitary potential

of F is valid, thus UF is σ-moderate. Also inf{u, UF} is a

supersolution of (2.1 ) and the largest solution dominated by

it is denoted by [u]F . It is the maximal solution dominated by

u which vanishes on ∂Ω \ F .

Important

[u]F moderate ⇐⇒
∫

Ω

[u]qFρ
∂Ωdx < ∞⇐⇒ [u]F = uµ

for some µ ∈ W
−2/q,q
+ (∂Ω) with µ(F c) = 0.
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Key result for the dichotomy in Theorem 5.1 are

Lemma 5.2 Let u be a positive solution of (2.1 ), Q ⊂
∂Ω a Tq-open set and let {βn} be a sequence converging

to 0 such that w = limn→∞ uQ
βn

. Then for any Tq-closed

set F ⊂ Q, there holds

[u]F ≤ w ≤ [u]Q̃ in Ω.

Define the almost inclusion by F
q
⊂ Q

F
q
⊂ Q :⇐⇒ C

∂Ω

2/q,q′(F ∩Qc) = 0.

Lemma 5.3 Let u be a positive solution of (2.1 ). Sup-

pose that there exists a Tq-open set Q ⊂ ∂Ω and a se-

quence {βn} converging to zero such that

sup
n

∫
Σβn(Q)

udS < ∞. (5.2)

Then, for any Tq-closed set F
q
⊂ Q, [u]F is a moder-

ate solution. If D is a Tq-open set such that D̃
q
⊂ Q,

there exists a bounded Borel measure µD on ∂Ω such that

µD(∂Ω \ D̃) = 0 and

u(β, .)χ
D

⇀ µD weakly relative to C(∂Ω) (5.3)

as β → 0.
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The behavior of solutions near the regular boundary set is

given by

Theorem 5.4 There exists a non-negative Borel mea-

sure µ on ∂Ω possessing the following properties.

(i) For every σ ∈ R(u) there exist a Tq-open neiborhood

Q of σ and a moderate solution w such that Q̃ ⊂ R(u),

µ(Q̃) < ∞ and

uQ
β → w locally uniformly in Ω , χ

Q
tr(w) = χ

Q
µ. (5.4)

(ii) µ is outer regular relative to Tq and absolutely con-

tinuous relative to C
∂Ω

2/q,q′ on Tq-open sets on which it is

bounded.
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The behavior of solutions near the regular boundary set is

given by

Theorem 5.5 There exists a non-negative Borel mea-

sure µ on ∂Ω possessing the following properties.

(i) For every σ ∈ R(u) there exist a Tq-open neiborhood

Q of σ and a moderate solution w such that Q̃ ⊂ R(u),

µ(Q̃) < ∞ and

uQ
β → w locally uniformly in Ω , χ

Q
tr(w) = χ

Q
µ. (5.5)

(ii) µ is outer regular relative to Tq and absolutely con-

tinuous relative to C
∂Ω

2/q,q′ on Tq-open sets on which it is

bounded.

Idea of proof. With µD constructed for any Tq-open subset D

such that D̃
q
⊂ Q where Q satisfies (5.2 ), then µD = µD′ on

D ∩D′. It follows the existence of some measure µ0 on R(u)

which satisfies (i). The topology Tq has the quasi-Lindelöf

property, i.e. if a set Q is the union of a family of Tq-open

set {Qα}α, there exists a countable sub-family {Qαn}n∈N such

that the C
∂Ω

2/q,q′ capacity of Q \ ∪nQαn is zero.

Thus it can be constructed an increasing sequence {Qn}
of Tq-open subsets of ∂Ω such that Q̃n ⊂ Qn+1, [u]Q̃n

is σ-

moderate and

C
∂Ω

2/q,q′

(
R(u) \

⋃
n

Qn

)
= 0.
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Furthermore µ0 is absolutely continuous relative to the ca-

pacity and outer regular relative to the Euclidean topology. It

is Tq-locally finite on R(u) and σ-finite on R0(u) := ∪nQn. It

is naturally extended by 0 outside R(u). The measure

µ(E) := inf{µ0(D) : ∀D Tq-open, E ⊂ D} (5.6)

satisfies (ii) since, by construction, it is outer regular relative

to the Tq-topology.
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Furthermore µ0 is absolutely continuous relative to the ca-

pacity and outer regular relative to the Euclidean topology. It

is Tq-locally finite on R(u) and σ-finite on R0(u) := ∪nQn. It

is naturally extended by 0 outside R(u). The measure

µ(E) := inf{µ0(D) : ∀D Tq-open, E ⊂ D} (5.7)

satisfies (ii) since, by construction, it is outer regular relative

to the Tq-topology.

The precise trace of u is the couple (S(u), µ). It can be

represented by a Borel measure ν with the property that, for

any Borel set A ⊂ ∂Ω,

ν(A) =

{
µ(A) if A ⊂ R(u)

∞ if A ∩ S(u) 6= ∅.
(5.8)

The Borel measure ν satisfies:

(i) It is outer regular relative to Tq.

(ii) It is essentially absolutely continuous relative to the ca-

pacity, i.e., if Q is Tq-open and A satisfies C
∂Ω

2/q,q′(A) = 0 then

ν(Q) = ν(Q \ A).

A Borel measure which satisfies (i) and (ii) is called q-perfect.
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We recall that if a set A is thick at a point a in the topology

Tq for A if

∫ 1

0

C
∂Ω

2/q,q′(A ∩Br(a))

rN−(q+1)/(q−1)

q−1

d r

r
= ∞

The set of points at which a set A is thick is denoted by bq(A).

This can be the definition of the Tq-topology since

A is Tq-closed ⇐⇒ bq(A) ⊂ A.

Furthermore

F is Tq-closed =⇒ S(UF ) = bq(F ).
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We recall that if a set A is thick at a point a in the topology

Tq for A if

∫ 1

0

C
∂Ω

2/q,q′(A ∩Br(a))

rN−(q+1)/(q−1)

q−1

d r

r
= ∞

The set of points at which a set A is thick is denoted by bq(A).

This can be the definition of the Tq-topology since

A is Tq-closed ⇐⇒ bq(A) ⊂ A.

Furthermore

F is Tq-closed =⇒ S(UF ) = bq(F ).

Lemma 5.6 Let u be a positive solution of (2.1 ) such

that tr(u) = ν = (S(u), µ). Define the blow-up set of µ

by

S0(u) := {ξ ∈ ∂Ω : µ(Q) = ∞, ∀Q Tq-open, ξ ∈ Q}.
(5.9)

Let bq(S(u)) be the set of thick points of S(u) (or equiva-

lently the set of intrinsically non-removable points). Then

S(u) = S0(u) ∪ bq(S(u)).
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5.2 Construction of a solution from its precise trace

If ν is a q-perfect Borel measure on ∂Ω, set

Fν = {Q : Q Tq-open, ν(Q) < ∞},

G =
⋃
Fν

Q and F = ∂Ω \G,

and consider the generalized boundary problem
−∆u + uq = 0 in Ω

u ≥ 0

tr(u) = ν,

(5.10)

Theorem 5.7 If ν is q-perfect, Problem (5.10 ) admits

a solution u given by

u = UF ⊕ v (5.11)

where

v = sup{uχ
Q

ν : Q ∈ Fν}

and UF ⊕v denotes the largest solution of (2.1 ) smallest

than the super-solution UF +v. Furthermore this solution

is the maximal solution and it is the unique solution in

the class of σ-moderate solutions.
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5.3 Open problems

1- What are the connexions of this trace with Dynkin’s fine

trace, in the probabilistic case qc ≤ q ≤ 2 ?

2- Is any positive solution of (2.1 ) σ-moderate ? An important

contribution to this task would be to prove that any non-zero

solution is bounded from below by a non-zero moderate solu-

tion. These two results are obviously true if 1 < q < qc.

3- Prove a pointwise integral blow-up for u on S(u). One idea

could be to identify S(u) with the set of boundary points where

the Poisson kernel P q|u|q−1
of the operator

v 7→ −∆v + q |u|q−1 v

vanishes. It has been proved by Ancona that if a ∈ ∂Ω is such

that ∫ 1

0

uq−1(γ(t))
dt

t
= ∞

for a (actually any) Lipschitz curve t 7→ γ(t) : 0 ≤ t ≤ 1

verifying γ(]0, 1]) ⊂ Ω, γ(0) = a and

〈a− γ(t),na〉 > 0 ∀t ∈ [0, 1],

where na is the unit outward normal vector to ∂Ω at a (non-

tangential convergence), then P q|u|q−1
(x, a) = 0 for all x ∈ Ω.

Is it a characterization of S(u)? Important since it is proved

by Dynkin that if µ ∈ W
−2/q,q′
+ (∂Ω) is concentrated on the set

of a ∈ ∂Ω such that P q|u|q−1
(., a) = 0, then u ≥ uµ.
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