THE PRECISE BOUNDARY TRACE OF POSITIVE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS

"Recent Trends in Nonlinear Differential Equations" A celebration of the 60th birthday of Prof. Ireneo Peral

Laurent Véron

Laboratoire de Mathématiques et Physique Théorique CNRS UMR 6083,

Université François Rabelais, Tours 37200, France

Joint works with Moshe Marcus (Technion-Haifa)

1 Linear results

Starting result: positive harmonic functions.

Theorem 1.1 (Riesz-Herglotz) Let u be a positive harmonic function in a smooth bounded domain Ω , then there exists a positive Radon measure μ on $\partial\Omega$ such that $\lim_{\beta \to 0} \int_{\Sigma_{\beta}} u\zeta \, dS = \int_{\partial\Omega} \zeta \, d\mu \quad \forall \zeta \in C(\partial\Omega), \quad (1.1)$ where $\Sigma_{\beta} := \{x \in \Omega : \rho_{\partial\Omega}(x) = \beta\}$ with $\rho_{\partial\Omega} = \text{dist}(x, \partial\Omega).$ Furthermore, $u(x) = \int_{\partial\Omega} P(x, y) d\mu(y) \quad \forall x \in \Omega, \quad (1.2)$ where P(x, y) is the Poisson kernel in Ω .

Pointwise convergence holds (Fatou). Extension by Martin to general domain, but: $\partial\Omega$ replaced by the Martin boundary Ω^* , the Poisson kernel replaced by the Martin kernel K(x, y). Extension by Doob to positive super-harmonic functions.

2 The rough trace

 Ω open domain in \mathbb{R}^N with a C^2 boundary, u > 0 solution of

$$-\Delta u + u^q = 0 \qquad \text{in } \Omega. \tag{2.1}$$

Theorem 2.1 (Marcus-Véron) Assume q > 1. Then for any $\omega \in \partial \Omega$ the following dichotomy occurs:

(i) Either for any relatively open neiborhood $\mathcal{U} \subset \partial \Omega$ of ω , there holds

$$\lim_{\beta \to 0} \int_{\mathcal{U}} u(x) \, dS = \infty. \tag{2.2}$$

(ii) Or there exists a relatively open neiborhood $\mathcal{U} \subset \partial \Omega$ of ω and a positive linear functional $\ell_{\mathcal{U}}$ on $C_0(\mathcal{U})$ such that

$$\lim_{\beta \to 0} \int_{\mathcal{U}} u(x)\zeta \, dS = \ell_{\mathcal{U}}(\zeta) \quad \forall \zeta \in C_0(\mathcal{U}).$$
(2.3)

Note $u(x) = u(r, \sigma(x), \text{ with } r = \rho_{\partial\Omega}(x) \text{ and } \sigma(x) = Proj_{\partial\Omega}(x)$ (unique if $\rho_{\partial\Omega}(x)$ small enough). Dichotomy according

$$\int_{\mathfrak{U}\times(0,\beta_0)} u^q \rho_{\partial\Omega} dx = \int_0^{\beta_0} \int_{\mathfrak{U}} u^q(r,\sigma) \, dS(\sigma) r dr$$

is finite or not.

Consequences: the set S of $\omega \in \partial \Omega$ such that (i) occurs is closed. It is the *singular set* of u. The set \mathcal{R} of of $\omega \in \partial \Omega$ such that (ii) occurs is relatively open, and there exists a positive Radon mesure μ on \mathcal{R} such that

$$\lim_{\beta \to 0} \int_{\mathcal{R}} u(x)\zeta \, dS = \int_{\mathcal{R}} \zeta \, d\mu \quad \forall \zeta \in C_0(\mathcal{R}).$$
(2.4)

The "rough" boundary trace, denoted by tr(u), is the outer regular Borel measure ν defined on any Borel set $E \subset \partial \Omega$ by

$$\nu(E) = \begin{cases} \mu(E) & \text{if } E \subset \mathcal{R} \\ \infty & \text{if } E \cap \mathcal{S} \neq \emptyset. \end{cases}$$
(2.5)

2.1 The generalized boundary value problem

$$\begin{cases} -\Delta u + |u|^{q-1} u = 0 \quad \text{in } \Omega\\ tr(u) = \nu \in \mathfrak{B}^{reg}_+(\partial\Omega), \end{cases}$$
(2.6)

where $\mathfrak{B}^{reg}_+(\partial\Omega) :=$ the set of outer regular positive Borel measures on $\partial\Omega$. Set $q_c := (N+1)/(N-1)$

Theorem 2.2 (Marcus-Véron) Assume $1 < q < q_c$. Then for any $\nu \in \mathfrak{B}^{reg}_+(\partial\Omega)$ there exists a unique positive solution of (2.6).

2.1 The generalized boundary value problem

$$\begin{cases} -\Delta u + |u|^{q-1} u = 0 \quad \text{in } \Omega\\ tr(u) = \nu \in \mathfrak{B}^{reg}_+(\partial\Omega), \end{cases}$$
(2.6)

where $\mathfrak{B}^{reg}_+(\partial\Omega) :=$ the set of outer regular positive Borel measures on $\partial\Omega$. Set $q_c := (N+1)/(N-1)$

Theorem 2.3 (Marcus-Véron) Assume $1 < q < q_c$. Then for any $\nu \in \mathfrak{B}^{reg}_+(\partial\Omega)$ there exists a unique positive solution of (2.6).

Key ingredients: 1- The Keller-Osserman estimate

$$u(x) \le C_{N,q} \left(\rho_{\partial \Omega}(x) \right)^{-2/(q-1)} \quad \forall x \in \Omega, \qquad (2.7)$$

valid for every q > 1.

2- The estimate from below

$$u(x) \ge U_a(x) \quad \forall a \in \mathbb{S}, \quad \forall x \in \Omega, \quad \forall x \in \Omega,$$
 (2.8)

valid only for $1 < q < q_c$, where $U_a := \lim_{k \to \infty} u_{k\delta_a}$ and $u_{k\delta_a}$ is the unique solution of

$$\begin{cases} -\Delta u + |u|^{q-1} u = 0 \quad \text{in } \Omega\\ tr(u) = k\delta_a. \end{cases}$$
(2.9)

Existence and uniqueness of $u_{k\delta_a}$ and blow-up properties of U_a and $u_{k\delta_a}$ given by *Gmira-Véron* in 1990. In particular

$$U_a(x) \approx \rho_{\partial\Omega}(x) |x-a|^{-2/(q-1)} \quad \forall x \in \Omega.$$
 (2.10)

Remark. Strong interest for probabilist because of the links with branching process, $1 < q \leq 2$ (Dynkin, Kuznetsov, Le Gall, Perkins, Iscoe). In the case q = N = 2 similar results of existence and uniqueness obtained by Le Gall by the use of the Brownian snake.

2.2Boundary Radon measures and removable singularities

Condition for solving

$$\begin{cases} -\Delta u + |u|^{q-1} u = 0 \quad \text{in } \Omega\\ u = \mu \in \mathfrak{M}_{+}(\partial\Omega), \end{cases}$$
(2.11)

where $\mathfrak{M}(\partial \Omega) :=$ the set of Radon measures on $\partial \Omega$.

Theorem 2.4 Problem (2.11) admits a solution $u = u_{\mu}$ (always unique), if and only if μ vanishes on Borel sets $E \subset \partial \Omega$ with $C_{2/q,q'}^{N-1}$ -capacity zero, that is $C_{2/q,q'}^{N-1}(E) = 0 \Longrightarrow |\mu|(E) = 0,$ (2.12) where $C_{2/q,q'}^{N-1}$ denotes the Bessel capacity in dim. N-1.

Proof by Le Gall $(q_c \leq q = 2)$, Dynkin-Kuznetsov $(q_c \leq q \leq q)$ 2) by probabilistic methods and Marcus-Véron $(q_c \leq q)$ by analytic methods.

A positive measure μ satisfies (2.12) if and only if there exists an increasing sequence of measures $\{\mu_n\} \subset W^{-2/q,q}_+(\partial\Omega)$ such that $\mu_n \uparrow \mu$.

Associated problem: removable singularities. Consider $u \in C(\overline{\Omega} \setminus F)$, where $F \subset \partial \Omega$ is closed, solution of

$$\begin{cases} -\Delta u + |u|^{q-1} u = 0 & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega \setminus F. \end{cases}$$
(2.13)

The next result is proved in the same range of exponents by the authors of Theorem 2.4

Theorem 2.5 A function u solution of (2.13) is necessarily zero if and only if $C_{2/q,q'}^{N-1}(F) = 0$.

Striking observation first by Le Gall: Non uniqueness. If $q \ge q_c$ the solution of the generalized boundary (2.6) value is not unique whenever $\mathbb{S} \ne \emptyset$. More precisely it is possible to construct infinitely solutions u of (2.6) such that $tr(u) = \nu_{\infty}$, where ν_{∞} is the outer regular Borel measure on $\partial\Omega$ which verifies $\nu_{\infty}(E) = \infty$ for every Borel set $E \subset \partial\Omega$.

These solutions are constructed as follows: consider a_n a countable and dense subset on $\partial\Omega$ and $\Gamma_n = \bar{B}_{r_n}(a_n)$ with $r_n > 0$. The maximal solution U_{Γ_n} satisfies, for some $x_0 \in \Omega$,

$$U_{\Gamma_n}(x_0) \le C_{N,q}(x_0) C_{2/q,q'}^{N-1}(\Gamma_n).$$

Now

$$q \ge q_c \Longrightarrow C^{N-1}_{2/q,q'}(\Gamma_n) \to 0 \quad \text{as} \ r_n \to 0.$$

Thus for $\epsilon > 0$, choose the r_n such that

$$\sum_{n} U_{\Gamma_n}(x_0) \le \epsilon$$

Now (Harnack) $\sum_{n} U_{\Gamma_n}(x)$ converges locally uniformly and is a super-solution. Since $\sup_{n} \{U_{\Gamma_n}\}$ is a sub-solution smaller, there exists a solution U between, and U satisfies, for any relatively open subset $\mathcal{U} \subset \partial \Omega$

$$\lim_{\beta \to 0} \int_{\mathcal{U}} U(x) \, dS = \infty,$$

and $U(x_0) < \epsilon$.

Kuznetsov's proposal: the standard topology on $\partial \Omega$ induced by \mathbb{R}^N is not fine enough to distinguish between all these solutions.

3 The fine trace

Dynkin-Kuznetsov introduced a notion of **fine trace**, associated with the Brownian process, to construct a new boundary trace for positive solutions of (2.1), when $q_c \leq q \leq 2$. They defined the class of moderate solutions (resp. σ -moderate solutions) which are solutions $u = u_{\mu}$ for some $\mu \in \mathfrak{M}_{+}(\partial\Omega)$ (resp. for which there exists an increasing sequence $\{\mu_n\} \subset \mathfrak{M}_{+}(\partial\Omega)$ such that $u_{\mu_n} \uparrow u$). They also proved that in the class of σ moderate solutions, there is a one-to-one correspondence between a positive solution u of (2.1) and it's boundary fine trace. However, by their results, the prescribed trace is attained only up to equivalence, i.e., up to a set of capacity zero.

3 The fine trace

Dynkin-Kuznetsov introduced a notion of **fine trace**, associated with the Brownian process, to construct a new boundary trace for positive solutions of (2.1), when $q_c \leq q \leq 2$. They defined the class of moderate solutions (resp. σ -moderate solutions) which are solutions $u = u_{\mu}$ for some $\mu \in \mathfrak{M}_{+}(\partial\Omega)$ (resp. for which there exists an increasing sequence $\{\mu_n\} \subset \mathfrak{M}_{+}(\partial\Omega)$ such that $u_{\mu_n} \uparrow u$). They also proved that in the class of σ moderate solutions, there is a one-to-one correspondence between a positive solution u of (2.1) and it's boundary fine trace. However, by their results, the prescribed trace is attained only up to equivalence, i.e., up to a set of capacity zero.

In 2002, *Mselati*, a PhD student of *Le Gall*, succeeded in proving that in the case q = 2, every positive solution u of (2.1) is σ - moderate. The proof uses combination of probabilistic and analytic arguments and needs $\partial \Omega$ to be C^4 .

One of the key argument in Mselati's proof is to prove that, for any compact set $F \subset \partial \Omega$, the maximal solution U_F of (2.1) with a rough boundary trace supported by K is σ - moderate. Set

$$\underline{U}_F = \sup\{u_\mu : \mu \in W^{-2/q,q}_+(\partial\Omega), \mu(F^c) = 0\}.$$
(3.1)

The rough boundary trace of \underline{U}_F is supported by K and \underline{U}_F is σ -moderate.

4 The capacitary potential

If F is a closed subset of $\partial \Omega$ we set $\rho_F(x) := \text{dist}(x, F)$. If x in Ω and $n \in \mathbb{Z}$ denote

$$T_n(x) = \{ y \in \mathbb{R}^N : 2^{-n-1} < |x-y| \le 2^{-n} \},\$$

and $F_n(x) = T_n(x) \cap F$. The capacitary potential W_F of F is defined, for all $x \in \Omega$, by

$$W_F(x) = \rho_{\partial\Omega}(x) \sum_{n} 2^{-n(q+1)/(q-1)} C_{2/q,q'}^{N-1}(2^n F_n(x)).$$
(4.1)

The capacitary potential plays the role devoted to solutions with pointwise singularity in the case $q > q_c$, solutions which no longer exist if $q > q_c$. Capacitary potentials can be constructed for related equations: nonlinear parabolic, internal singularities for nonlinear elliptic...

4 The capacitary potential

If F is a closed subset of $\partial \Omega$ we set $\rho_F(x) := \text{dist}(x, F)$. If x in Ω and $n \in \mathbb{Z}$ denote

$$T_n(x) = \{ y \in \mathbb{R}^N : 2^{-n-1} < |x-y| \le 2^{-n} \},\$$

and $F_n(x) = T_n(x) \cap F$. The capacitary potential W_F of F is defined, for all $x \in \Omega$, by

$$W_F(x) = \rho_{\partial\Omega}(x) \sum_{n} 2^{-n(q+1)/(q-1)} C_{2/q,q'}^{N-1}(2^n F_n(x)).$$
(4.1)

The capacitary potential plays the role devoted to solutions with pointwise singularity in the case $q > q_c$, solutions which no longer exist if $q > q_c$. Capacitary potentials can be constructed for related equations: nonlinear parabolic, internal singularities for nonlinear elliptic...

Theorem 4.1 Marcus-Véron. Let $q \ge q_c$, and assume $\partial \Omega$ is C^2 ; then there exist two positive constants c_1 and c_2 depending on Ω and q, such that for any closed set $F \subset \partial \Omega$ there holds

$$c_1 W_F(x) \le \underline{U}_F(x) \le U_F(x) \le c_2 W_F(x) \quad \forall x \in \Omega.$$
(4.2)

Consequence. $\underline{U}_F = U_F$ and U_F is σ -moderate

5 The precise trace

5.1 Construction of the precise trace

Developped by Marcus-Véron. Denote by \mathfrak{T}_q the fine topology associated with the capacity $C_{2/q,q'}^{N-1}$ and by \tilde{E} the fine closure of a set $E \subset \partial \Omega$. For $\beta > 0$, small enough $(0 < \beta < \beta_0)$, set

 $\Sigma_{\beta} = \{ x \in \Omega : \rho_{\partial \Omega}(x) = \beta \} \text{ and } \Omega_{\beta}' = \{ x \in \Omega : \rho_{\partial \Omega}(x) > \beta \}.$

Theorem 5.1 Let u be a positive solution of (2.1) and let $\xi \in \partial \Omega$. If $Q \subset \partial \Omega$ is a \mathfrak{T}_q -open set and, provided the following limit exists, put

$$L_Q = \lim_{\beta \to 0} \int_{\Sigma_\beta(Q)} u dS.$$

Then,

(i) Either $L_Q = \infty$ for every \mathfrak{T}_q -open neighborhood Q of ξ .

(ii) Or there exists a \mathfrak{T}_q -open neighborhood Q such that $L_Q < \infty$.

The first case occurs if and only if, for every \mathfrak{T}_q -open neighborhood Q of ξ ,

$$\int_{A} u^{q} \rho_{\partial\Omega}(x) dx = \infty, \quad A = (0, \beta_{0}) \times Q.$$
 (5.1)

A point $\xi \in \partial \Omega$ is called a *singular point* of u in the first case and a *regular point* otherwise. The set of singular points denoted by S(u) is \mathfrak{T}_q -closed and its complement in $\partial \Omega$ denoted by $\mathcal{R}(u)$ is \mathfrak{T}_q -open.

If Q is \mathfrak{T}_q -open, we denote by u_{β}^Q the solution of (2.1) in Ω'_{β} with boundary data u where $\Sigma_{\beta}(Q) = \{x \in \Sigma_{\beta} : \sigma(x) \in Q\}$. One of the essential features of boundary trace is its *local nature*.

A point $\xi \in \partial \Omega$ is called a *singular point* of u in the first case and a *regular point* otherwise. The set of singular points denoted by S(u) is \mathfrak{T}_q -closed and its complement in $\partial \Omega$ denoted by $\mathcal{R}(u)$ is \mathfrak{T}_q -open.

If Q is \mathfrak{T}_q -open, we denote by u_{β}^Q the solution of (2.1) in Ω'_{β} with boundary data u where $\Sigma_{\beta}(Q) = \{x \in \Sigma_{\beta} : \sigma(x) \in Q\}$. One of the essential features of boundary trace is its *local nature*.

If $F \subset \partial\Omega$ is \mathfrak{T}_q -closed set, U_F (the maximal solution vanishing in some sense on $\partial\Omega \setminus F$), can be constructed by approximations. Estimate (4.2) with the capacitary potential of F is valid, thus U_F is σ -moderate. Also $\inf\{u, U_F\}$ is a supersolution of (2.1) and the largest solution dominated by it is denoted by $[u]_F$. It is the maximal solution dominated by u which vanishes on $\partial\Omega \setminus F$.

Important

$$[u]_F$$
 moderate $\iff \int_{\Omega} [u]_F^q \rho_{\partial\Omega} dx < \infty \iff [u]_F = u_\mu$

for some $\mu \in W^{-2/q,q}_+(\partial\Omega)$ with $\mu(F^c) = 0$.

Key result for the dichotomy in Theorem 5.1 are

Lemma 5.2 Let u be a positive solution of (2.1), $Q \subset \partial\Omega$ a \mathfrak{T}_q -open set and let $\{\beta_n\}$ be a sequence converging to 0 such that $w = \lim_{n\to\infty} u_{\beta_n}^Q$. Then for any \mathfrak{T}_q -closed set $F \subset Q$, there holds

$$[u]_F \le w \le [u]_{\tilde{Q}}$$
 in Ω .

Define the almost inclusion by $F \stackrel{q}{\subset} Q$

$$F \stackrel{q}{\subset} Q :\iff C_{2/q,q'}^{\partial\Omega}(F \cap Q^c) = 0.$$

Lemma 5.3 Let u be a positive solution of (2.1). Suppose that there exists a \mathfrak{T}_q -open set $Q \subset \partial \Omega$ and a sequence $\{\beta_n\}$ converging to zero such that

$$\sup_{n} \int_{\Sigma_{\beta_n}(Q)} u dS < \infty.$$
 (5.2)

Then, for any \mathfrak{T}_q -closed set $F \stackrel{q}{\subset} Q$, $[u]_F$ is a moderate solution. If D is a \mathfrak{T}_q -open set such that $\tilde{D} \stackrel{q}{\subset} Q$, there exists a bounded Borel measure μ_D on $\partial\Omega$ such that $\mu_D(\partial\Omega \setminus \tilde{D}) = 0$ and

$$u(\beta, .)\chi_D \rightharpoonup \mu_D$$
 weakly relative to $C(\partial\Omega)$ (5.3)

as $\beta \rightarrow 0$.

The behavior of solutions near the regular boundary set is given by

Theorem 5.4 There exists a non-negative Borel measure μ on $\partial\Omega$ possessing the following properties. (i) For every $\sigma \in \mathbb{R}(u)$ there exist a \mathfrak{T}_q -open neiborhood Q of σ and a moderate solution w such that $\tilde{Q} \subset \mathbb{R}(u)$, $\mu(\tilde{Q}) < \infty$ and $u_{\beta}^Q \to w$ locally uniformly in Ω , $\chi_Q tr(w) = \chi_Q \mu$. (5.4) (ii) μ is outer regular relative to \mathfrak{T}_q and absolutely continuous relative to $C_{2/q,q'}^{\partial\Omega}$ on \mathfrak{T}_q -open sets on which it is bounded.

The behavior of solutions near the regular boundary set is given by

Theorem 5.5 There exists a non-negative Borel mea-**Theorem 5.5** There exists a non-negative boret measure μ on $\partial\Omega$ possessing the following properties. (i) For every $\sigma \in \mathbb{R}(u)$ there exist a \mathfrak{T}_q -open neiborhood Q of σ and a moderate solution w such that $\tilde{Q} \subset \mathbb{R}(u)$, $\mu(\tilde{Q}) < \infty$ and $u_{\beta}^Q \to w$ locally uniformly in Ω , $\chi_Q tr(w) = \chi_Q \mu$. (5.5) (ii) μ is outer regular relative to \mathfrak{T}_q and absolutely con-tinuous relative to $C_{2/q,q'}^{\partial\Omega}$ on \mathfrak{T}_q -open sets on which it is bounded

bounded

Idea of proof. With μ_D constructed for any \mathfrak{T}_q -open subset D such that $\tilde{D} \stackrel{q}{\subset} Q$ where Q satisfies (5.2), then $\mu_D = \mu_{D'}$ on $D \cap D'$. It follows the existence of some measure μ^0 on $\mathcal{R}(u)$ which satisfies (i). The topology \mathfrak{T}_q has the quasi-Lindelöf property, i.e. if a set Q is the union of a family of \mathfrak{T}_q -open set $\{Q_{\alpha}\}_{\alpha}$, there exists a countable sub-family $\{Q_{\alpha_n}\}_{n\in\mathbb{N}}$ such that the $C_{2/q,q'}^{\partial\Omega}$ capacity of $Q \setminus \bigcup_n Q_{\alpha_n}$ is zero.

Thus it can be constructed an increasing sequence $\{Q_n\}$ of \mathfrak{T}_q -open subsets of $\partial\Omega$ such that $\tilde{Q}_n \subset Q_{n+1}$, $[u]_{\tilde{Q}_n}$ is σ moderate and

$$C_{2/q,q'}^{\partial\Omega}\left(\mathcal{R}(u)\setminus\bigcup_{n}Q_{n}\right)=0.$$

Furthermore μ^0 is absolutely continuous relative to the capacity and outer regular relative to the Euclidean topology. It is \mathfrak{T}_q -locally finite on $\mathfrak{R}(u)$ and σ -finite on $\mathfrak{R}_0(u) := \bigcup_n Q_n$. It is naturally extended by 0 outside $\mathfrak{R}(u)$. The measure

$$\mu(E) := \inf\{\mu^0(D) : \forall D \ \mathfrak{T}_q \text{-open}, E \subset D\}$$
(5.6)

satisfies (ii) since, by construction, it is outer regular relative to the \mathfrak{T}_q -topology.

Furthermore μ^0 is absolutely continuous relative to the capacity and outer regular relative to the Euclidean topology. It is \mathfrak{T}_q -locally finite on $\mathfrak{R}(u)$ and σ -finite on $\mathfrak{R}_0(u) := \bigcup_n Q_n$. It is naturally extended by 0 outside $\mathfrak{R}(u)$. The measure

$$\mu(E) := \inf \{ \mu^0(D) : \forall D \ \mathfrak{T}_q \text{-open}, E \subset D \}$$
(5.7)

satisfies (ii) since, by construction, it is outer regular relative to the \mathfrak{T}_q -topology.

The precise trace of u is the couple $(\mathfrak{S}(u), \mu)$. It can be represented by a Borel measure ν with the property that, for any Borel set $A \subset \partial \Omega$,

$$\nu(A) = \begin{cases} \mu(A) & \text{if } A \subset \mathcal{R}(u) \\ \infty & \text{if } A \cap \mathcal{S}(u) \neq \emptyset. \end{cases}$$
(5.8)

The Borel measure ν satisfies:

(i) It is outer regular relative to \mathfrak{T}_q .

(ii) It is essentially absolutely continuous relative to the capacity, i.e., if Q is \mathfrak{T}_q -open and A satisfies $C_{2/q,q'}^{\partial\Omega}(A) = 0$ then $\nu(Q) = \nu(Q \setminus A)$.

A Borel measure which satisfies (i) and (ii) is called *q-perfect*.

We recall that if a set A is *thick* at a point a in the topology \mathfrak{T}_q for A if

$$\int_{0}^{1} \left(\frac{C_{2/q,q'}^{\partial \Omega}(A \cap B_{r}(a))}{r^{N-(q+1)/(q-1)}} \right)^{q-1} \frac{dr}{r} = \infty$$

The set of points at which a set A is thick is denoted by $b_q(A)$. This can be the definition of the \mathfrak{T}_q -topology since

 $A \text{ is } \mathfrak{T}_q\text{-closed } \iff b_q(A) \subset A.$

Furthermore

$$F \text{ is } \mathfrak{T}_q\text{-closed} \implies \mathfrak{S}(U_F) = b_q(F).$$

We recall that if a set A is *thick* at a point a in the topology \mathfrak{T}_q for A if

$$\int_{0}^{1} \left(\frac{C_{2/q,q'}^{\partial \Omega}(A \cap B_{r}(a))}{r^{N-(q+1)/(q-1)}} \right)^{q-1} \frac{dr}{r} = \infty$$

The set of points at which a set A is thick is denoted by $b_q(A)$. This can be the definition of the \mathfrak{T}_q -topology since

$$A \text{ is } \mathfrak{T}_q\text{-closed } \iff b_q(A) \subset A.$$

Furthermore

$$F \text{ is } \mathfrak{T}_q\text{-closed} \implies \mathfrak{S}(U_F) = b_q(F).$$

Lemma 5.6 Let u be a positive solution of (2.1) such that $tr(u) = \nu = (S(u), \mu)$. Define the blow-up set of μ by

$$S_0(u) := \{ \xi \in \partial\Omega : \mu(Q) = \infty, \ \forall Q \ \mathfrak{T}_q \text{-}open, \ \xi \in Q \}.$$
(5.9)

Let $b_q(S(u))$ be the set of thick points of S(u) (or equivalently the set of intrinsically non-removable points). Then

$$\mathbb{S}(u) = \mathbb{S}_0(u) \cup b_q(\mathbb{S}(u)).$$

Construction of a solution from its precise trace 5.2

If ν is a q-perfect Borel measure on $\partial\Omega$, set

$$\mathcal{F}_{\nu} = \{ Q : Q \ \mathfrak{T}_{q}\text{-open}, \ \nu(Q) < \infty \},\$$
$$G = \bigcup_{\mathcal{F}_{\nu}} Q \text{ and } F = \partial \Omega \setminus G,\$$

and consider the generalized boundary problem

$$\begin{cases} -\Delta u + u^q = 0 & \text{in } \Omega \\ u \ge 0 \\ tr(u) = \nu, \end{cases}$$
(5.10)

Theorem 5.7 If ν is q-perfect, Problem (5.10) admits a solution u given by $u = U \oplus v$ (5.11)

$$u = U_F \oplus v \tag{5.11}$$

where

$$v = \sup\{u_{\chi_Q^{\nu}} : Q \in \mathcal{F}_{\nu}\}$$

 $v = \sup\{u_{\chi_Q\nu} : Q \in \mathfrak{F}_{\nu}\}$ and $U_F \oplus v$ denotes the largest solution of (2.1) smallest than the super-solution $U_F + v$. Furthermore this solution is the maximal solution and it is the unique solution in the class of σ -moderate solutions.

5.3 Open problems

1- What are the connexions of this trace with Dynkin's fine trace, in the probabilistic case $q_c \leq q \leq 2$?

2- Is any positive solution of (2.1) σ -moderate? An important contribution to this task would be to prove that any non-zero solution is bounded from below by a non-zero moderate solution. These two results are obviously true if $1 < q < q_c$. 3- Prove a pointwise integral blow-up for u on S(u). One idea could be to identify S(u) with the set of boundary points where the Poisson kernel $P^{q|u|^{q-1}}$ of the operator

$$v \mapsto -\Delta v + q \left| u \right|^{q-1} v$$

vanishes. It has been proved by Ancona that if $a \in \partial \Omega$ is such that

$$\int_0^1 u^{q-1}(\gamma(t))\frac{dt}{t} = \infty$$

for a (actually any) Lipschitz curve $t \mapsto \gamma(t) : 0 \le t \le 1$ verifying $\gamma(]0,1]) \subset \Omega, \ \gamma(0) = a$ and

$$\langle a - \gamma(t), \mathbf{n}_a \rangle > 0 \quad \forall t \in [0, 1],$$

where \mathbf{n}_a is the unit outward normal vector to $\partial\Omega$ at a (nontangential convergence), then $P^{q|u|^{q-1}}(x, a) = 0$ for all $x \in \Omega$. Is it a characterization of S(u)? Important since it is proved by Dynkin that if $\mu \in W^{-2/q,q'}_+(\partial\Omega)$ is concentrated on the set of $a \in \partial\Omega$ such that $P^{q|u|^{q-1}}(., a) = 0$, then $u \ge u_{\mu}$.