A stable branch of solutions of a nonlinear Schrödinger equation

F. Genoud and C.A. Stuart

EPFL

Summary

1. Hypotheses and results
2. Rescaling and the limit problem
3. Non-degenerate solution of the limit problem
4. Branch of solutions
5. Checking the stability criteria

Hypotheses and results

$i \partial_{t} w+\Delta_{x} w+V(x)|w|^{p-1} w=0$ where $w=w(t, x): \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{C}$
where $N \geq 3, p>1$ and $V: \mathbb{R}^{N} \rightarrow \mathbb{R}$

Hypotheses and results

$i \partial_{t} w+\Delta_{x} w+V(x)|w|^{p-1} w=0$ where $w=w(t, x): \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{C}$
where $N \geq 3, p>1$ and $V: \mathbb{R}^{N} \rightarrow \mathbb{R}$
A standing wave is a solution of the form

$$
w(t, x)=e^{i \lambda t} u(x) \text { where } \lambda>0 \text { and } u: \mathbb{R}^{N} \rightarrow \mathbb{R}
$$

Hypotheses and results

$i \partial_{t} w+\Delta_{x} w+V(x)|w|^{p-1} w=0$ where $w=w(t, x): \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{C}$
where $N \geq 3, p>1$ and $V: \mathbb{R}^{N} \rightarrow \mathbb{R}$
A standing wave is a solution of the form

$$
w(t, x)=e^{i \lambda t} u(x) \text { where } \lambda>0 \text { and } u: \mathbb{R}^{N} \rightarrow \mathbb{R}
$$

For standing waves, NLS reduces to SNLS

$$
\Delta u+V(x)|u|^{p-1} u-\lambda u=0 \text { for } x \in \mathbb{R}^{N}
$$

Orbital stability of standing waves
Seek solutions of NLS with

$$
w \in C\left([0, T), H^{1}\left(\mathbb{R}^{N}\right)\right) \cap C^{1}\left((0, T), H^{-1}\left(\mathbb{R}^{N}\right)\right) \text { for some } T>0
$$

Orbital stability of standing waves
Seek solutions of NLS with

$$
w \in C\left([0, T), H^{1}\left(\mathbb{R}^{N}\right)\right) \cap C^{1}\left((0, T), H^{-1}\left(\mathbb{R}^{N}\right)\right) \text { for some } T>0
$$

Correspondingly, solutions of SNLS with $u \in H^{1}\left(\mathbb{R}^{N}, \mathbb{R}\right)$.

Orbital stability of standing waves
Seek solutions of NLS with

$$
w \in C\left([0, T), H^{1}\left(\mathbb{R}^{N}\right)\right) \cap C^{1}\left((0, T), H^{-1}\left(\mathbb{R}^{N}\right)\right) \text { for some } T>0
$$

Correspondingly, solutions of SNLS with $u \in H^{1}\left(\mathbb{R}^{N}, \mathbb{R}\right)$.

A standing wave $e^{i \lambda t} u(x)$ is said to be orbitally stable if, for any $\epsilon>0$, there exists $\delta>0$ such that
$\sup _{t \geq 0} \inf _{\theta \in \mathbb{R}}\left\|w(t, \cdot)-e^{i \theta} u\right\|_{H^{1}\left(\mathbb{R}^{N}, \mathbb{C}\right)}<\epsilon$
whenever $\|w(0, \cdot)-u\|_{H^{1}\left(\mathbb{R}^{N}, \mathbb{C}\right)}<\delta$.

Previous work

A. de Bouard and R. Fukuizumi 2005
(D1) $V \in C\left(\mathbb{R}^{N} \backslash\{0\}, \mathbb{R}\right)$ with $V \geq 0$ but $V \not \equiv 0$ and
$V \in L^{\theta}(|x|<1)$ where $\theta=2 N /\{N+2-(N-2) p\}$.
(D2) There exist $b \in(0,2), C>0$ and
$\alpha>\{N+2-(N-2) p\} / 2>b$
such that $\left|V(x)-|x|^{-b}\right| \leq C|x|^{-\alpha}$ for $|x| \geq 1$.
(This implies that $p<1+(4-2 b) /(N-2)<(N+2) /(N-2))$

Previous work

A. de Bouard and R. Fukuizumi 2005
(D1) $V \in C\left(\mathbb{R}^{N} \backslash\{0\}, \mathbb{R}\right)$ with $V \geq 0$ but $V \not \equiv 0$ and
$V \in L^{\theta}(|x|<1)$ where $\theta=2 N /\{N+2-(N-2) p\}$.
(D2) There exist $b \in(0,2), C>0$ and
$\alpha>\{N+2-(N-2) p\} / 2>b$
such that $\left|V(x)-|x|^{-b}\right| \leq C|x|^{-\alpha}$ for $|x| \geq 1$.
(This implies that $p<1+(4-2 b) /(N-2)<(N+2) /(N-2)$)
(A) For all $\lambda>0$, the SNLS has a positive solution $u_{\lambda} \in H^{1}\left(\mathbb{R}^{N}\right)$ and
(B) if $1<p<1+(4-2 b) / N$, there exists $\lambda_{0}>0$ such that, for $\lambda \in\left(0, \lambda_{0}\right), u_{\lambda}$ is orbitally stable.

Previous work

L. Jeanjean and S. Le Coz 2006
$(\mathrm{J} 1) ~ V \in L_{l o c}^{\theta}\left(\mathbb{R}^{N}\right)$ for some $\theta>2 N /\{N+2-(N-2) p\}$.
(J2) There exists $b \in(0,2)$ such that $\lim _{|x| \rightarrow \infty}|x|^{b} V(x)=1$

Previous work

L. Jeanjean and S. Le Coz 2006
$(\mathrm{J} 1) V \in L_{l o c}^{\theta}\left(\mathbb{R}^{N}\right)$ for some $\theta>2 N /\{N+2-(N-2) p\}$.
(J2) There exists $b \in(0,2)$ such that $\lim _{|x| \rightarrow \infty}|x|^{b} V(x)=1$
(C) For $1<p<1+(4-2 b) / N$, there exists $\lambda_{0}>0$ such that, for $\lambda \in\left(0, \lambda_{0}\right)$, there exists a positive solution $u_{\lambda} \in H^{1}\left(\mathbb{R}^{N}\right)$ of SNLS with

$$
\left\|u_{\lambda}\right\|_{H^{1}} \rightarrow 0 \text { and }\left\|u_{\lambda}\right\|_{L^{\infty}} \rightarrow 0 \text { as } \lambda \rightarrow 0
$$

and u_{λ} is orbitally stable

Previous work

L. Jeanjean and S. Le Coz 2006
$(\mathrm{J} 1) ~ V \in L_{l o c}^{\theta}\left(\mathbb{R}^{N}\right)$ for some $\theta>2 N /\{N+2-(N-2) p\}$.
(J2) There exists $b \in(0,2)$ such that $\lim _{|x| \rightarrow \infty}|x|^{b} V(x)=1$
(C) For $1<p<1+(4-2 b) / N$, there exists $\lambda_{0}>0$ such that, for $\lambda \in\left(0, \lambda_{0}\right)$, there exists a positive solution $u_{\lambda} \in H^{1}\left(\mathbb{R}^{N}\right)$ of SNLS with

$$
\left\|u_{\lambda}\right\|_{H^{1}} \rightarrow 0 \text { and }\left\|u_{\lambda}\right\|_{L^{\infty}} \rightarrow 0 \text { as } \lambda \rightarrow 0
$$

and u_{λ} is orbitally stable
More general nonlinearity: $V(x) g(u(x))$ where
$\lim _{s \rightarrow 0+} s^{-p} g(s)=\lim _{s \rightarrow 0+} p s^{p-1} g^{\prime}(s)=1$

Our hypotheses

(V1) $V \in C^{1}\left(\mathbb{R}^{N} \backslash\{0\}\right)$
(V2) There exists $b \in(0,2)$ such that

$$
\lim _{|x| \rightarrow \infty}|x|^{b} V(x)=1 \text { and } \lim \sup _{|x| \rightarrow 0}|x|^{b}|V(x)|<\infty .
$$

Also $1<p<1+(4-2 b) /(N-2)$.
(V3) Setting $W(x)=x \cdot \nabla V(x)+b V(x)$,

$$
\lim _{|x| \rightarrow \infty}|x|^{b} W(x)=0 \text { and } \lim \sup _{|x| \rightarrow 0}|x|^{b}|W(x)|<\infty
$$

(From (V1)(V2), $V \in L_{l o c}^{\theta}$ for some

$$
\theta>2 N /\{N+2-(N-2) p\} \Longleftrightarrow p<1+(4-2 b) /(N-2) .)
$$

Existence of a branch

There exist $\lambda_{0}>0$ and $u \in C^{1}\left(\left(0, \lambda_{0}\right), H^{1}\left(\mathbb{R}^{N}\right)\right)$ such that $(\lambda, u(\lambda))$ is a weak solution of SNLS for all $\lambda \in\left(0, \lambda_{0}\right)$,
$u(\lambda)=u_{\lambda} \in C\left(\mathbb{R}^{N}\right) \cap L^{\infty}\left(\mathbb{R}^{N}\right)$ and
$u_{\lambda}>0$ on $\mathbb{R}^{N} \backslash\{0\}$.

Existence of a branch

There exist $\lambda_{0}>0$ and $u \in C^{1}\left(\left(0, \lambda_{0}\right), H^{1}\left(\mathbb{R}^{N}\right)\right)$ such that $(\lambda, u(\lambda))$ is a weak solution of SNLS for all $\lambda \in\left(0, \lambda_{0}\right)$,
$u(\lambda)=u_{\lambda} \in C\left(\mathbb{R}^{N}\right) \cap L^{\infty}\left(\mathbb{R}^{N}\right)$ and
$u_{\lambda}>0$ on $\mathbb{R}^{N} \backslash\{0\}$.
Furthermore, the following limits exist and are finite

$$
\begin{gathered}
\lim _{\lambda \rightarrow 0} \lambda^{-\gamma}\left|\nabla u_{\lambda}\right|_{L^{2}}=L_{1}>0 \text { where } \gamma=\frac{4-2 b-(N-2)(p-1)}{2(p-1)}>0, \\
\lim _{\lambda \rightarrow 0} \lambda^{-\gamma+1}\left|u_{\lambda}\right|_{L^{2}}=L_{2}>0, \\
\lim _{\lambda \rightarrow 0} \lambda^{-\alpha}\left|u_{\lambda}\right|_{L^{\infty}}=0 \text { for any } \alpha<\frac{2-b}{2(p-1)}
\end{gathered}
$$

Bifurcation

Noting that $\gamma>1$ for $1<p<1+\frac{4-2 b}{N}$, the branch $\left(\lambda, u_{\lambda}\right)$ bifurcates from $(0,0)$ in $H^{1}\left(\mathbb{R}^{N}\right)$ in this case,
whereas for $1+\frac{4-2 b}{N}<p<1+\frac{4-2 b}{N-2}$, we have asymptotic bifurcation in $L^{2}\left(\mathbb{R}^{N}\right)$ as $\lambda \rightarrow 0$.

Bifurcation

Noting that $\gamma>1$ for $1<p<1+\frac{4-2 b}{N}$, the branch $\left(\lambda, u_{\lambda}\right)$ bifurcates from $(0,0)$ in $H^{1}\left(\mathbb{R}^{N}\right)$ in this case,
whereas for $1+\frac{4-2 b}{N}<p<1+\frac{4-2 b}{N-2}$, we have asymptotic bifurcation in $L^{2}\left(\mathbb{R}^{N}\right)$ as $\lambda \rightarrow 0$.

We also have that $\left|u_{\lambda}\right|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \rightarrow 0$ as $\lambda \rightarrow 0$ for all
$p \in\left(1,1+\frac{4-2 b}{N-2}\right)$.

Stability

For all $\lambda \in\left(0, \lambda_{0}\right)$,

$$
\begin{gathered}
\frac{d}{d \lambda} \int_{\mathbb{R}^{N}} u_{\lambda}(x)^{2} d x>0 \text { if } 1<p<1+\frac{4-2 b}{N} \\
\frac{d}{d \lambda} \int_{\mathbb{R}^{N}} u_{\lambda}(x)^{2} d x<0 \text { if } 1+\frac{4-2 b}{N}<p<1+\frac{4-2 b}{N-2}
\end{gathered}
$$

Stability

For all $\lambda \in\left(0, \lambda_{0}\right)$,

$$
\begin{gathered}
\frac{d}{d \lambda} \int_{\mathbb{R}^{N}} u_{\lambda}(x)^{2} d x>0 \text { if } 1<p<1+\frac{4-2 b}{N} \\
\frac{d}{d \lambda} \int_{\mathbb{R}^{N}} u_{\lambda}(x)^{2} d x<0 \text { if } 1+\frac{4-2 b}{N}<p<1+\frac{4-2 b}{N-2}
\end{gathered}
$$

For $1<p<1+(4-2 b) / N$, we have that u_{λ} is orbitally stable.
For $1+(4-2 b) / N<p<1+(4-2 b) /(N-2), u_{\lambda}$ is not orbitally stable.

Rescaling: from now on $H=H^{1}\left(\mathbb{R}^{N}\right)$

For $\lambda>0$, set $\lambda=k^{2}, k>0$, define $S(k): H \rightarrow H$ by

$$
S(k) v(x)=k^{\frac{2-b}{p-1}} v(k x) \text { for } k>0 .
$$

Rescaling: from now on $H=H^{1}\left(\mathbb{R}^{N}\right)$
For $\lambda>0$, set $\lambda=k^{2}, k>0$, define $S(k): H \rightarrow H$ by

$$
S(k) v(x)=k^{\frac{2-b}{p-1}} v(k x) \quad \text { for } k>0 .
$$

For $u=S(k) v$ and $y=k x \in \mathbb{R}^{N}$, the problem

$$
-\Delta u+\lambda u-V(x)|u|^{p-1} u=0
$$

becomes

$$
-\Delta v+v-k^{-b} V(y / k)|v|^{p-1} v=0, \quad v \in H
$$

Rescaling: from now on $H=H^{1}\left(\mathbb{R}^{N}\right)$
For $\lambda>0$, set $\lambda=k^{2}, k>0$, define $S(k): H \rightarrow H$ by

$$
S(k) v(x)=k^{\frac{2-b}{p-1}} v(k x) \quad \text { for } k>0 .
$$

For $u=S(k) v$ and $y=k x \in \mathbb{R}^{N}$, the problem

$$
-\Delta u+\lambda u-V(x)|u|^{p-1} u=0
$$

becomes

$$
-\Delta v+v-k^{-b} V(y / k)|v|^{p-1} v=0, \quad v \in H
$$

Note that

$$
k^{-b} V(y / k)=\left(\frac{|y|}{k}\right)^{b} V(y / k)|y|^{-b} \rightarrow|y|^{-b}
$$

as $k \rightarrow 0$ for $y \neq 0$.

Continuation

Define $F: \mathbb{R} \times H \rightarrow H^{-1}$ by

$$
F(k, v)= \begin{cases}-\Delta v+v-k^{-b} V(y / k)|v|^{p-1} v & \text { if } k>0, \\ -\Delta v+v-|y|^{-b}|v|^{p-1} v & \text { if } k=0,\end{cases}
$$

and $F(k, v) \equiv F(-k, v)$ for all $k<0$.

Continuation

Define $F: \mathbb{R} \times H \rightarrow H^{-1}$ by

$$
F(k, v)= \begin{cases}-\Delta v+v-k^{-b} V(y / k)|v|^{p-1} v & \text { if } k>0, \\ -\Delta v+v-|y|^{-b}|v|^{p-1} v & \text { if } k=0,\end{cases}
$$

and $F(k, v) \equiv F(-k, v)$ for all $k<0$.

1. $F \in C\left(\mathbb{R} \times H, H^{-1}\right)$.
2. $D_{v} F \in C\left(\mathbb{R} \times H, B\left(H, H^{-1}\right)\right)$
3. $F \in C^{1}\left((0, \infty) \times H, H^{-1}\right)$.

Continuation

Define $F: \mathbb{R} \times H \rightarrow H^{-1}$ by

$$
F(k, v)= \begin{cases}-\Delta v+v-k^{-b} V(y / k)|v|^{p-1} v & \text { if } k>0, \\ -\Delta v+v-|y|^{-b}|v|^{p-1} v & \text { if } k=0,\end{cases}
$$

and $F(k, v) \equiv F(-k, v)$ for all $k<0$.

1. $F \in C\left(\mathbb{R} \times H, H^{-1}\right)$.
2. $D_{v} F \in C\left(\mathbb{R} \times H, B\left(H, H^{-1}\right)\right)$
3. $F \in C^{1}\left((0, \infty) \times H, H^{-1}\right)$.

Find $v_{0} \in H \backslash\{0\}$ such that
$F\left(0, v_{0}\right)=0$ and $D_{v} F\left(0, v_{0}\right): H \rightarrow H^{-1}$ isomorphism.

Continuation

Define $F: \mathbb{R} \times H \rightarrow H^{-1}$ by

$$
F(k, v)= \begin{cases}-\Delta v+v-k^{-b} V(y / k)|v|^{p-1} v & \text { if } k>0, \\ -\Delta v+v-|y|^{-b}|v|^{p-1} v & \text { if } k=0,\end{cases}
$$

and $F(k, v) \equiv F(-k, v)$ for all $k<0$.

1. $F \in C\left(\mathbb{R} \times H, H^{-1}\right)$.
2. $D_{v} F \in C\left(\mathbb{R} \times H, B\left(H, H^{-1}\right)\right)$
3. $F \in C^{1}\left((0, \infty) \times H, H^{-1}\right)$.

Find $v_{0} \in H \backslash\{0\}$ such that
$F\left(0, v_{0}\right)=0$ and $D_{v} F\left(0, v_{0}\right): H \rightarrow H^{-1}$ isomorphism.
More general nonlinearity: $g(x, u(x))$ so long as
$k^{-2-\frac{2-b}{p-1}} g\left(y / k, k^{\frac{2-b}{p-1}} v(y)\right) \rightarrow|y|^{-b}|v(y)|^{p-1} v(y)$ as $k \rightarrow 0$
and F satisfies 1-3

Limit problem

The equation $F(0, v)=0$ is

$$
-\Delta v+v-|y|^{-b}|v|^{p-1} v=0
$$

Limit problem

The equation $F(0, v)=0$ is

$$
-\Delta v+v-|y|^{-b}|v|^{p-1} v=0
$$

There exists a ground state $v_{0}(x)=\psi(r)$ having the following properties:

Limit problem

The equation $F(0, v)=0$ is

$$
-\Delta v+v-|y|^{-b}|v|^{p-1} v=0
$$

There exists a ground state $v_{0}(x)=\psi(r)$ having the following properties:

1. $\psi \in C([0, \infty)) \cap C^{3}((0, \infty))$
2. $\psi>0$ on $[0, \infty)$ and $\psi^{\prime}<0$ on $(0, \infty)$
3. ψ decays exponentially as $r \rightarrow \infty$
4. $D_{v} F(0, \psi): H \rightarrow H^{-1}$ has Morse index $=1$

Non-degeneracy of ψ
For $v \in H$,

$$
D_{v} F(0, \psi) v=-\Delta v+v-p|y|^{-b}|\psi|^{p-1} v=0
$$

Since $D_{v} F(0, \psi): H \rightarrow H^{-1}$ is a Fredholm operator, it is enough to prove that
$\operatorname{ker} D_{v} F(0, \psi)=\{0\}$

Non-degeneracy of ψ
For $v \in H$,

$$
D_{v} F(0, \psi) v=-\Delta v+v-p|y|^{-b}|\psi|^{p-1} v=0
$$

Since $D_{v} F(0, \psi): H \rightarrow H^{-1}$ is a Fredholm operator, it is enough to prove that
ker $D_{v} F(0, \psi)=\{0\}$
If ker $D_{v} F(0, \psi) \neq\{0\}$ then 0 is second eigenvalue of $D_{v} F(0, \psi)$

Non-degeneracy of ψ

For $v \in H$,

$$
D_{v} F(0, \psi) v=-\Delta v+v-p|y|^{-b}|\psi|^{p-1} v=0
$$

Since $D_{v} F(0, \psi): H \rightarrow H^{-1}$ is a Fredholm operator, it is enough to prove that
ker $D_{v} F(0, \psi)=\{0\}$
If ker $D_{v} F(0, \psi) \neq\{0\}$ then 0 is second eigenvalue of $D_{v} F(0, \psi)$
Let $v \in H \backslash\{0\}$ with $D_{v} F(0, \psi) v=0$ Then

1. $v \in L^{\infty}\left(\mathbb{R}^{N}\right) \cap C\left(\mathbb{R}^{N}\right)$
2. $v(x)=\phi(r)$
3. ϕ has exactly one zero in $(0, \infty)$

Let

$$
f(r, s)=-s+r^{-b} s^{p} \text { for } r, s>0,
$$

Then

$$
\psi^{\prime \prime}+\frac{N-1}{r} \psi^{\prime}+f(r, \psi)=0
$$

and

$$
\phi^{\prime \prime}+\frac{N-1}{r} \phi^{\prime}+\partial_{2} f(r, \psi) \phi=0 .
$$

$$
f(r, s)=-s+r^{-b} s^{p} \text { for } r, s>0
$$

Then

$$
\psi^{\prime \prime}+\frac{N-1}{r} \psi^{\prime}+f(r, \psi)=0
$$

and

$$
\phi^{\prime \prime}+\frac{N-1}{r} \phi^{\prime}+\partial_{2} f(r, \psi) \phi=0
$$

It follows that

$$
\int_{0}^{\infty} r^{N-1}\left\{f(r, \psi)-\partial_{2} f(r, \psi) \psi\right\} \phi d r=0
$$

and

$$
\int_{0}^{\infty} r^{N-1}\left\{2 f(r, \psi)+r \partial_{1} f(r, \psi)\right\} \phi d r=0
$$

For any $C \in \mathbb{R}$,

$$
\int_{0}^{\infty} r^{N-1}(1-p) r^{-b} \psi^{p}\{C-g(r)\} \phi d r=0
$$

where $g(r)=\left[2 r^{b} \psi(r)^{1-p}+(b-2)\right] /(1-p)$ is strictly decreasing.

For any $C \in \mathbb{R}$,

$$
\int_{0}^{\infty} r^{N-1}(1-p) r^{-b} \psi^{p}\{C-g(r)\} \phi d r=0,
$$

where $g(r)=\left[2 r^{b} \psi(r)^{1-p}+(b-2)\right] /(1-p)$ is strictly decreasing.
Let $r_{0}>0$ be the unique zero of ϕ.

For any $C \in \mathbb{R}$,

$$
\int_{0}^{\infty} r^{N-1}(1-p) r^{-b} \psi^{p}\{C-g(r)\} \phi d r=0,
$$

where $g(r)=\left[2 r^{b} \psi(r)^{1-p}+(b-2)\right] /(1-p)$ is strictly decreasing.
Let $r_{0}>0$ be the unique zero of ϕ. Choosing $C=g\left(r_{0}\right)$ the integrand does not change sign.

For any $C \in \mathbb{R}$,

$$
\int_{0}^{\infty} r^{N-1}(1-p) r^{-b} \psi^{p}\{C-g(r)\} \phi d r=0,
$$

where $g(r)=\left[2 r^{b} \psi(r)^{1-p}+(b-2)\right] /(1-p)$ is strictly decreasing.
Let $r_{0}>0$ be the unique zero of ϕ.
Choosing $C=g\left(r_{0}\right)$ the integrand does not change sign.
Contradiction. Hence ker $D_{v} F(0, \psi)=\{0\}$

For any $C \in \mathbb{R}$,

$$
\int_{0}^{\infty} r^{N-1}(1-p) r^{-b} \psi^{p}\{C-g(r)\} \phi d r=0,
$$

where $g(r)=\left[2 r^{b} \psi(r)^{1-p}+(b-2)\right] /(1-p)$ is strictly decreasing.
Let $r_{0}>0$ be the unique zero of ϕ.
Choosing $C=g\left(r_{0}\right)$ the integrand does not change sign.
Contradiction. Hence ker $D_{v} F(0, \psi)=\{0\}$
This method of proving non-degeneracy does not require the particular form $f(r, s)=-s+r^{-b} s^{p}$. We expect to be able to produce a global continuation in the radial case.

A branch of solutions

There exist $k_{0}>0$ and
$v \in C\left(\left[0, k_{0}\right), H\right) \cap C^{1}\left(\left(0, k_{0}\right), H\right)$ such that $v(0)=\psi$ and $F(k, v(k))=0$ for all $k \in\left[0, k_{0}\right)$.

A branch of solutions

There exist $k_{0}>0$ and
$v \in C\left(\left[0, k_{0}\right), H\right) \cap C^{1}\left(\left(0, k_{0}\right), H\right)$ such that $v(0)=\psi$ and $F(k, v(k))=0$ for all $k \in\left[0, k_{0}\right)$.

Furthermore, $v(k)=v_{k} \in C\left(\mathbb{R}^{N}\right) \cap L^{\infty}\left(\mathbb{R}^{N}\right)$ for all $k \in\left[0, k_{0}\right)$ $v_{k}>0 \quad\left(v_{k}\right.$ is not radial if V is not radial)

A branch of solutions

There exist $k_{0}>0$ and
$v \in C\left(\left[0, k_{0}\right), H\right) \cap C^{1}\left(\left(0, k_{0}\right), H\right)$ such that $v(0)=\psi$ and $F(k, v(k))=0$ for all $k \in\left[0, k_{0}\right)$.

Furthermore, $v(k)=v_{k} \in C\left(\mathbb{R}^{N}\right) \cap L^{\infty}\left(\mathbb{R}^{N}\right)$ for all $k \in\left[0, k_{0}\right)$
$v_{k}>0 \quad\left(v_{k}\right.$ is not radial if V is not radial)
$\left|v_{k}\right|_{L^{\infty}}$ remains bounded as $k \rightarrow 0$.

A branch of solutions

There exist $k_{0}>0$ and
$v \in C\left(\left[0, k_{0}\right), H\right) \cap C^{1}\left(\left(0, k_{0}\right), H\right)$ such that $v(0)=\psi$ and $F(k, v(k))=0$ for all $k \in\left[0, k_{0}\right)$.

Furthermore, $v(k)=v_{k} \in C\left(\mathbb{R}^{N}\right) \cap L^{\infty}\left(\mathbb{R}^{N}\right)$ for all $k \in\left[0, k_{0}\right)$
$v_{k}>0 \quad\left(v_{k}\right.$ is not radial if V is not radial)
$\left|v_{k}\right|_{L^{\infty}}$ remains bounded as $k \rightarrow 0$.
Set $\lambda_{0}=k_{0}^{2}$ and

$$
u_{\lambda}(x)=S\left(\lambda^{1 / 2}\right) v_{\lambda^{1 / 2}}(x)=\lambda^{\frac{2-b}{2(p-1)}} v_{\lambda^{1 / 2}}\left(\lambda^{1 / 2} x\right)
$$

for $\lambda \in\left(0, \lambda_{0}\right)$

A branch of solutions

There exist $k_{0}>0$ and
$v \in C\left(\left[0, k_{0}\right), H\right) \cap C^{1}\left(\left(0, k_{0}\right), H\right)$ such that $v(0)=\psi$ and $F(k, v(k))=0$ for all $k \in\left[0, k_{0}\right)$.

Furthermore, $v(k)=v_{k} \in C\left(\mathbb{R}^{N}\right) \cap L^{\infty}\left(\mathbb{R}^{N}\right)$ for all $k \in\left[0, k_{0}\right)$
$v_{k}>0 \quad\left(v_{k}\right.$ is not radial if V is not radial)
$\left|v_{k}\right|_{L^{\infty}}$ remains bounded as $k \rightarrow 0$.
Set $\lambda_{0}=k_{0}^{2}$ and

$$
u_{\lambda}(x)=S\left(\lambda^{1 / 2}\right) v_{\lambda^{1 / 2}}(x)=\lambda^{\frac{2-b}{2(p-1)}} v_{\lambda^{1 / 2}}\left(\lambda^{1 / 2} x\right)
$$

for $\lambda \in\left(0, \lambda_{0}\right)$

$$
-\Delta u_{\lambda}+\lambda u_{\lambda}-V(x)\left|u_{\lambda}\right|^{p-1} u_{\lambda}=0
$$

Monotonicity of $\left|u_{\lambda}\right|_{L^{2}}$

$$
\begin{gathered}
\frac{d}{d \lambda}|u(\lambda)|_{L^{2}}^{2}=\frac{1}{2 k} \frac{d}{d k}\left|u\left(k^{2}\right)\right|_{L^{2}}^{2}=\frac{1}{2 k} \frac{d}{d k}\left\{k^{\beta}\left|v_{k}\right|_{L^{2}}^{2}\right\} \\
\text { where } \beta=[4-2 b-N(p-1)] /(p-1)>0
\end{gathered}
$$

Monotonicity of $\left|u_{\lambda}\right|_{L^{2}}$

$$
\begin{gathered}
\frac{d}{d \lambda}|u(\lambda)|_{L^{2}}^{2}=\frac{1}{2 k} \frac{d}{d k}\left|u\left(k^{2}\right)\right|_{L^{2}}^{2}=\frac{1}{2 k} \frac{d}{d k}\left\{k^{\beta}\left|v_{k}\right|_{L^{2}}^{2}\right\} \\
\text { where } \beta=[4-2 b-N(p-1)] /(p-1)>0 \\
\frac{d}{d k}\left|u\left(k^{2}\right)\right|_{L^{2}}^{2}=k^{\beta-1}\left\{\beta\left|v_{k}\right|_{L^{2}}^{2}+2\left\langle v_{k}, k \frac{d}{d k} v_{k}\right\rangle_{L^{2}}\right\}
\end{gathered}
$$

Monotonicity of $\left|u_{\lambda}\right|_{L^{2}}$

$$
\begin{aligned}
& \quad \frac{d}{d \lambda}|u(\lambda)|_{L^{2}}^{2}=\frac{1}{2 k} \frac{d}{d k}\left|u\left(k^{2}\right)\right|_{L^{2}}^{2}=\frac{1}{2 k} \frac{d}{d k}\left\{k^{\beta}\left|v_{k}\right|_{L^{2}}^{2}\right\} \\
& \text { where } \beta=[4-2 b-N(p-1)] /(p-1)>0 \\
& \frac{d}{d k}\left|u\left(k^{2}\right)\right|_{L^{2}}^{2}=k^{\beta-1}\left\{\beta\left|v_{k}\right|_{L^{2}}^{2}+2\left\langle v_{k}, k \frac{d}{d k} v_{k}\right\rangle_{L^{2}}\right\} \\
& D_{k} F\left(k, v_{k}\right)+D_{v} F\left(k, v_{k}\right) \frac{d}{d k} v_{k}=0
\end{aligned}
$$

Monotonicity of $\left|u_{\lambda}\right|_{L^{2}}$

$$
\begin{aligned}
& \qquad \frac{d}{d \lambda}|u(\lambda)|_{L^{2}}^{2}=\frac{1}{2 k} \frac{d}{d k}\left|u\left(k^{2}\right)\right|_{L^{2}}^{2}=\frac{1}{2 k} \frac{d}{d k}\left\{k^{\beta}\left|v_{k}\right|_{L^{2}}^{2}\right\} \\
& \text { where } \beta=[4-2 b-N(p-1)] /(p-1)>0 \\
& \frac{d}{d k}\left|u\left(k^{2}\right)\right|_{L^{2}}^{2}=k^{\beta-1}\left\{\beta\left|v_{k}\right|_{L^{2}}^{2}+2\left\langle v_{k}, k \frac{d}{d k} v_{k}\right\rangle_{L^{2}}\right\} \\
& D_{k} F\left(k, v_{k}\right)+D_{v} F\left(k, v_{k}\right) \frac{d}{d k} v_{k}=0 \\
& k \frac{d}{d k} v_{k}=-\left[D_{v} F\left(k, v_{k}\right)\right]^{-1} k D_{k} F\left(k, v_{k}\right)
\end{aligned}
$$

Monotonicity of $\left|u_{\lambda}\right|_{L^{2}}$

$$
\begin{aligned}
& \qquad \frac{d}{d \lambda}|u(\lambda)|_{L^{2}}^{2}=\frac{1}{2 k} \frac{d}{d k}\left|u\left(k^{2}\right)\right|_{L^{2}}^{2}=\frac{1}{2 k} \frac{d}{d k}\left\{k^{\beta}\left|v_{k}\right|_{L^{2}}^{2}\right\} \\
& \text { where } \beta=[4-2 b-N(p-1)] /(p-1)>0 \\
& \frac{d}{d k}\left|u\left(k^{2}\right)\right|_{L^{2}}^{2}=k^{\beta-1}\left\{\beta\left|v_{k}\right|_{L^{2}}^{2}+2\left\langle v_{k}, k \frac{d}{d k} v_{k}\right\rangle_{L^{2}}\right\} \\
& D_{k} F\left(k, v_{k}\right)+D_{v} F\left(k, v_{k}\right) \frac{d}{d k} v_{k}=0 \\
& k \frac{d}{d k} v_{k}=-\left[D_{v} F\left(k, v_{k}\right)\right]^{-1} k D_{k} F\left(k, v_{k}\right) \\
& k D_{k} F\left(k, v_{k}\right)=k^{-b} W(y / k) v_{k}^{p} \rightarrow 0 \text { in } H^{-1} \\
& \text { where } W(x)=x \cdot \nabla V(x)+b V(x)
\end{aligned}
$$

Monotonicity of $\left|u_{\lambda}\right|_{L^{2}}$

$$
\begin{aligned}
& \qquad \frac{d}{d \lambda}|u(\lambda)|_{L^{2}}^{2}=\frac{1}{2 k} \frac{d}{d k}\left|u\left(k^{2}\right)\right|_{L^{2}}^{2}=\frac{1}{2 k} \frac{d}{d k}\left\{k^{\beta}\left|v_{k}\right|_{L^{2}}^{2}\right\} \\
& \text { where } \beta=[4-2 b-N(p-1)] /(p-1)>0 \\
& \frac{d}{d k}\left|u\left(k^{2}\right)\right|_{L^{2}}^{2}=k^{\beta-1}\left\{\beta\left|v_{k}\right|_{L^{2}}^{2}+2\left\langle v_{k}, k \frac{d}{d k} v_{k}\right\rangle_{L^{2}}\right\} \\
& D_{k} F\left(k, v_{k}\right)+D_{v} F\left(k, v_{k}\right) \frac{d}{d k} v_{k}=0 \\
& k \frac{d}{d k} v_{k}=-\left[D_{v} F\left(k, v_{k}\right)\right]^{-1} k D_{k} F\left(k, v_{k}\right) \\
& k D_{k} F\left(k, v_{k}\right)=k^{-b} W(y / k) v_{k}^{p} \rightarrow 0 \text { in } H^{-1} \\
& \text { where } W(x)=x \cdot \nabla V(x)+b V(x) \\
& \left\langle v_{k}, k \frac{d}{d k} v_{k}\right\rangle_{L^{2}} \rightarrow 0
\end{aligned}
$$

Stability

$$
\begin{aligned}
& \frac{d}{d k}\left|u\left(k^{2}\right)\right|_{L^{2}}^{2}=k^{\beta-1}\left\{\beta\left|v_{k}\right|_{L^{2}}^{2}+2\left\langle v_{k}, k \frac{d}{d k} v_{k}\right\rangle_{L^{2}}\right\} \text { where } \\
& \left|v_{k}\right|_{L^{2}} \rightarrow|\psi|_{L^{2}}>0 \text { and }\left\langle v_{k}, k \frac{d}{d k} v_{k}\right\rangle_{L^{2}} \rightarrow 0 .
\end{aligned}
$$

Stability

$$
\begin{aligned}
& \frac{d}{d k}\left|u\left(k^{2}\right)\right|_{L^{2}}^{2}=k^{\beta-1}\left\{\beta\left|v_{k}\right|_{L^{2}}^{2}+2\left\langle v_{k}, k \frac{d}{d k} v_{k}\right\rangle_{L^{2}}\right\} \text { where } \\
& \left.\left|v_{k}\right|\right|_{L^{2}} \rightarrow|\psi|_{L^{2}}>0 \text { and }\left\langle v_{k}, k \frac{d}{d k} v_{k}\right\rangle_{L^{2}} \rightarrow 0 .
\end{aligned}
$$

If $\beta=[4-2 b-N(p-1)] /(p-1) \neq 0$ then $\frac{d}{d k}\left|u\left(k^{2}\right)\right|_{L^{2}}^{2}$ has same sign as β for $k>0$ small enough.

Stability

$$
\begin{aligned}
& \frac{d}{d k}\left|u\left(k^{2}\right)\right|_{L^{2}}^{2}=k^{\beta-1}\left\{\beta\left|v_{k}\right|_{L^{2}}^{2}+2\left\langle v_{k}, k \frac{d}{d k} v_{k}\right\rangle_{L^{2}}\right\} \text { where } \\
& \left|v_{k}\right|_{L^{2}} \rightarrow|\psi|_{L^{2}}>0 \text { and }\left\langle v_{k}, k \frac{d}{d k} v_{k}\right\rangle_{L^{2}} \rightarrow 0 .
\end{aligned}
$$

If $\beta=[4-2 b-N(p-1)] /(p-1) \neq 0$ then $\frac{d}{d k}\left|u\left(k^{2}\right)\right|_{L^{2}}^{2}$ has same sign as β for $k>0$ small enough.
$\beta>0$ for $1<p<1+\frac{4-2 b}{N}$ and u_{λ} stable
$\beta<0$ for $1+\frac{4-2 b}{N}<p<1+\frac{4-2 b}{N-2}$ and u_{λ} unstable

Spectral conditions required for stability

Let

$$
H_{\lambda}=\left(\begin{array}{cc}
-\Delta+\lambda-p V(x)\left|u_{\lambda}\right|^{p-1} & 0 \\
0 & -\Delta+\lambda-V(x)\left|u_{\lambda}\right|^{p-1}
\end{array}\right),
$$

For all $\lambda>0$ near 0 we need:

Spectral conditions required for stability

Let

$$
H_{\lambda}=\left(\begin{array}{cc}
-\Delta+\lambda-p V(x)\left|u_{\lambda}\right|^{p-1} & 0 \\
0 & -\Delta+\lambda-V(x)\left|u_{\lambda}\right|^{p-1}
\end{array}\right),
$$

For all $\lambda>0$ near 0 we need:
(H1) There exists $a_{\lambda}<0$ such that $S\left(H_{\lambda}\right) \cap(-\infty, 0)=\left\{a_{\lambda}\right\}$ and a_{λ} is simple.
(H2) $\operatorname{ker} H_{\lambda}=\operatorname{span}\left\{\left(0, u_{\lambda}\right)\right\}$.
(H3) $S\left(H_{\lambda}\right) \backslash\left\{a_{\lambda}, 0\right\}$ is bounded away from 0 in \mathbb{R}.

Spectral conditions required for stability

Let

$$
H_{\lambda}=\left(\begin{array}{cc}
-\Delta+\lambda-p V(x)\left|u_{\lambda}\right|^{p-1} & 0 \\
0 & -\Delta+\lambda-V(x)\left|u_{\lambda}\right|^{p-1}
\end{array}\right),
$$

For all $\lambda>0$ near 0 we need:
(H1) There exists $a_{\lambda}<0$ such that $S\left(H_{\lambda}\right) \cap(-\infty, 0)=\left\{a_{\lambda}\right\}$ and a_{λ} is simple.
(H2) $\operatorname{ker} H_{\lambda}=\operatorname{span}\left\{\left(0, u_{\lambda}\right)\right\}$.
(H3) $S\left(H_{\lambda}\right) \backslash\left\{a_{\lambda}, 0\right\}$ is bounded away from 0 in \mathbb{R}.

We also use rescaling and the limit problem to check these conditions for $\lambda=k^{2}$ near 0 .

Non-degeneracy: de Bouard et al
de Bouard-Fukuizumi and Jeanjean-Le Coz use an auxiliary equation

$$
\Delta v+\left(\delta e^{-|x|}+|x|^{-b}\right) v_{+}^{p}-\left(1+\delta e^{-|x|} \psi^{p-1}\right) v=0(\mathrm{~J}-\mathrm{LeC})
$$

where $\delta>0$ is small.

Non-degeneracy: de Bouard et al

de Bouard-Fukuizumi and Jeanjean-Le Coz use an auxiliary equation

$$
\Delta v+\left(\delta e^{-|x|}+|x|^{-b}\right) v_{+}^{p}-\left(1+\delta e^{-|x|} \psi^{p-1}\right) v=0(\mathrm{~J}-\mathrm{LeC})
$$

where $\delta>0$ is small.
$\psi>0$ is a solution for all $\delta>0$
$M(\delta)$ denotes the Morse index of ψ
If ψ degenerate then $M(\delta) \geq 2$

Non-degeneracy: de Bouard et al

de Bouard-Fukuizumi and Jeanjean-Le Coz use an auxiliary equation

$$
\Delta v+\left(\delta e^{-|x|}+|x|^{-b}\right) v_{+}^{p}-\left(1+\delta e^{-|x|} \psi^{p-1}\right) v=0(\mathrm{~J}-\mathrm{LeC})
$$

where $\delta>0$ is small.
$\psi>0$ is a solution for all $\delta>0$
$M(\delta)$ denotes the Morse index of ψ
If ψ degenerate then $M(\delta) \geq 2$
But (J-LeC) has a positive ground state $\varphi(\delta) \in H^{1}\left(\mathbb{R}^{N}\right)$ and the Morse index of $\varphi(\delta)$ is ≤ 1.

Non-degeneracy: de Bouard et al

de Bouard-Fukuizumi and Jeanjean-Le Coz use an auxiliary equation

$$
\Delta v+\left(\delta e^{-|x|}+|x|^{-b}\right) v_{+}^{p}-\left(1+\delta e^{-|x|} \psi^{p-1}\right) v=0(\mathrm{~J}-\mathrm{LeC})
$$

where $\delta>0$ is small.
$\psi>0$ is a solution for all $\delta>0$
$M(\delta)$ denotes the Morse index of ψ
If ψ degenerate then $M(\delta) \geq 2$
But (J-LeC) has a positive ground state $\varphi(\delta) \in H^{1}\left(\mathbb{R}^{N}\right)$ and the Morse index of $\varphi(\delta)$ is ≤ 1.

Yanagida's uniqueness theorem implies $\varphi(\delta)=\psi$ Contradiction.

