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Hypotheses and results

i∂tw+∆xw+V (x) |w|p−1w = 0 where w = w(t, x) : R×R
N → C

where N ≥ 3, p > 1 and V : R
N → R
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Hypotheses and results

i∂tw+∆xw+V (x) |w|p−1w = 0 where w = w(t, x) : R×R
N → C

where N ≥ 3, p > 1 and V : R
N → R

A standing wave is a solution of the form

w(t, x) = eiλtu(x) where λ > 0 and u : R
N → R

For standing waves, NLS reduces to SNLS

∆u+ V (x) |u|p−1 u− λu = 0 for x ∈ R
N
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Orbital stability of standing waves

Seek solutions of NLS with

w ∈ C
(

[0, T ), H1(RN )
)

∩ C1
(

(0, T ), H−1(RN )
)

for some T > 0
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Orbital stability of standing waves

Seek solutions of NLS with

w ∈ C
(

[0, T ), H1(RN )
)

∩ C1
(

(0, T ), H−1(RN )
)

for some T > 0

Correspondingly, solutions of SNLS with u ∈ H1(RN ,R).
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Orbital stability of standing waves

Seek solutions of NLS with

w ∈ C
(

[0, T ), H1(RN )
)

∩ C1
(

(0, T ), H−1(RN )
)

for some T > 0

Correspondingly, solutions of SNLS with u ∈ H1(RN ,R).

A standing wave eiλtu(x) is said to be orbitally stable if,
for any ǫ > 0, there exists δ > 0 such that
supt≥0 infθ∈R ‖w(t, ·) − eiθu‖H1(RN ,C) < ǫ

whenever ‖w(0, ·) − u‖H1(RN ,C) < δ.
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Previous work

A. de Bouard and R. Fukuizumi 2005

(D1) V ∈ C(RN\{0},R) with V ≥ 0 but V 6≡ 0 and
V ∈ Lθ(|x| < 1) where θ = 2N/{N + 2 − (N − 2)p}.

(D2) There exist b ∈ (0, 2), C > 0 and
α > {N + 2 − (N − 2)p}/2 > b

such that
∣

∣

∣
V (x) − |x|−b

∣

∣

∣
≤ C |x|−α for |x| ≥ 1.

(This implies that p < 1 + (4 − 2b)/(N − 2) < (N + 2)/(N − 2))
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Previous work

A. de Bouard and R. Fukuizumi 2005

(D1) V ∈ C(RN\{0},R) with V ≥ 0 but V 6≡ 0 and
V ∈ Lθ(|x| < 1) where θ = 2N/{N + 2 − (N − 2)p}.

(D2) There exist b ∈ (0, 2), C > 0 and
α > {N + 2 − (N − 2)p}/2 > b

such that
∣

∣

∣
V (x) − |x|−b

∣

∣

∣
≤ C |x|−α for |x| ≥ 1.

(This implies that p < 1 + (4 − 2b)/(N − 2) < (N + 2)/(N − 2))

(A) For all λ > 0, the SNLS has a positive solution uλ ∈ H1(RN )
and
(B) if 1 < p < 1 + (4 − 2b)/N, there exists λ0 > 0 such that, for
λ ∈ (0, λ0), uλ is orbitally stable.

A stable branch of solutions of a nonlinear Schrödinger equation – p. 5/21



Previous work

L. Jeanjean and S. Le Coz 2006

(J1) V ∈ Lθ
loc(R

N ) for some θ > 2N/{N + 2 − (N − 2)p}.

(J2) There exists b ∈ (0, 2) such that lim|x|→∞ |x|b V (x) = 1
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Previous work

L. Jeanjean and S. Le Coz 2006

(J1) V ∈ Lθ
loc(R

N ) for some θ > 2N/{N + 2 − (N − 2)p}.

(J2) There exists b ∈ (0, 2) such that lim|x|→∞ |x|b V (x) = 1

(C) For 1 < p < 1 + (4 − 2b)/N, there exists λ0 > 0 such that, for
λ ∈ (0, λ0), there exists a positive solution uλ ∈ H1(RN ) of SNLS
with

‖uλ‖H1 → 0 and ‖uλ‖L∞ → 0 as λ→ 0

and uλ is orbitally stable
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Previous work

L. Jeanjean and S. Le Coz 2006

(J1) V ∈ Lθ
loc(R

N ) for some θ > 2N/{N + 2 − (N − 2)p}.

(J2) There exists b ∈ (0, 2) such that lim|x|→∞ |x|b V (x) = 1

(C) For 1 < p < 1 + (4 − 2b)/N, there exists λ0 > 0 such that, for
λ ∈ (0, λ0), there exists a positive solution uλ ∈ H1(RN ) of SNLS
with

‖uλ‖H1 → 0 and ‖uλ‖L∞ → 0 as λ→ 0

and uλ is orbitally stable

More general nonlinearity: V (x)g(u(x)) where
lims→0+ s

−pg(s) = lims→0+ ps
p−1g′(s) = 1
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Our hypotheses

(V1) V ∈ C1(RN\{0})

(V2) There exists b ∈ (0, 2) such that

lim
|x|→∞

|x|b V (x) = 1 and lim sup
|x|→0

|x|b |V (x)| <∞.

Also 1 < p < 1 + (4 − 2b)/(N − 2).

(V3) Setting W (x) = x · ∇V (x) + bV (x),

lim
|x|→∞

|x|bW (x) = 0 and lim sup
|x|→0

|x|b |W (x)| <∞.

(From (V1)(V2), V ∈ Lθ
loc for some

θ > 2N/{N + 2 − (N − 2)p} ⇐⇒ p < 1 + (4 − 2b)/(N − 2).)

A stable branch of solutions of a nonlinear Schrödinger equation – p. 7/21



Existence of a branch

There exist λ0 > 0 and u ∈ C1((0, λ0), H
1(RN )) such that

(λ, u(λ)) is a weak solution of SNLS for all λ ∈ (0, λ0),

u(λ) = uλ ∈ C(RN ) ∩ L∞(RN ) and
uλ > 0 on R

N \ {0}.
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Existence of a branch

There exist λ0 > 0 and u ∈ C1((0, λ0), H
1(RN )) such that

(λ, u(λ)) is a weak solution of SNLS for all λ ∈ (0, λ0),

u(λ) = uλ ∈ C(RN ) ∩ L∞(RN ) and
uλ > 0 on R

N \ {0}.

Furthermore, the following limits exist and are finite

lim
λ→0

λ−γ |∇uλ|L2 = L1 > 0 where γ =
4 − 2b− (N − 2)(p− 1)

2(p− 1)
> 0,

lim
λ→0

λ−γ+1|uλ|L2 = L2 > 0,

lim
λ→0

λ−α|uλ|L∞ = 0 for any α <
2 − b

2(p− 1)
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Bifurcation

Noting that γ > 1 for 1 < p < 1 + 4−2b
N , the branch (λ, uλ)

bifurcates from (0, 0) in H1(RN ) in this case,

whereas for 1 + 4−2b
N < p < 1 + 4−2b

N−2 , we have asymptotic

bifurcation in L2(RN ) as λ→ 0.
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Bifurcation

Noting that γ > 1 for 1 < p < 1 + 4−2b
N , the branch (λ, uλ)

bifurcates from (0, 0) in H1(RN ) in this case,

whereas for 1 + 4−2b
N < p < 1 + 4−2b

N−2 , we have asymptotic

bifurcation in L2(RN ) as λ→ 0.

We also have that |uλ|L∞(RN ) → 0 as λ→ 0 for all

p ∈ (1, 1 + 4−2b
N−2 ).
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Stability

For all λ ∈ (0, λ0),

d

dλ

∫

RN

uλ(x)2dx > 0 if 1 < p < 1 +
4 − 2b

N

d

dλ

∫

RN

uλ(x)2dx < 0 if 1 +
4 − 2b

N
< p < 1 +

4 − 2b

N − 2
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Stability

For all λ ∈ (0, λ0),

d

dλ

∫

RN

uλ(x)2dx > 0 if 1 < p < 1 +
4 − 2b

N

d

dλ

∫

RN

uλ(x)2dx < 0 if 1 +
4 − 2b

N
< p < 1 +

4 − 2b

N − 2

For 1 < p < 1 + (4 − 2b)/N, we have that uλ is orbitally stable.

For 1 + (4 − 2b)/N < p < 1 + (4 − 2b)/(N − 2), uλ is not orbitally
stable.

A stable branch of solutions of a nonlinear Schrödinger equation – p. 10/21



Rescaling: from now on H = H1(RN)

For λ > 0, set λ = k2, k > 0, define S(k) : H → H by

S(k)v(x) = k
2−b

p−1 v(kx) for k > 0.
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Rescaling: from now on H = H1(RN)

For λ > 0, set λ = k2, k > 0, define S(k) : H → H by

S(k)v(x) = k
2−b

p−1 v(kx) for k > 0.

For u = S(k)v and y = kx ∈ R
N , the problem

−∆u+ λu− V (x)|u|p−1u = 0

becomes

−∆v + v − k−bV (y/k)|v|p−1v = 0, v ∈ H.
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Rescaling: from now on H = H1(RN)

For λ > 0, set λ = k2, k > 0, define S(k) : H → H by

S(k)v(x) = k
2−b

p−1 v(kx) for k > 0.

For u = S(k)v and y = kx ∈ R
N , the problem

−∆u+ λu− V (x)|u|p−1u = 0

becomes

−∆v + v − k−bV (y/k)|v|p−1v = 0, v ∈ H.

Note that

k−bV (y/k) = (
|y|

k
)bV (y/k)|y|−b → |y|−b

as k → 0 for y 6= 0.
A stable branch of solutions of a nonlinear Schrödinger equation – p. 11/21



Continuation

Define F : R ×H → H−1 by

F (k, v) =

{

−∆v + v − k−bV (y/k)|v|p−1v if k > 0,

−∆v + v − |y|−b|v|p−1v if k = 0,

and F (k, v) ≡ F (−k, v) for all k < 0.
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Continuation

Define F : R ×H → H−1 by

F (k, v) =

{

−∆v + v − k−bV (y/k)|v|p−1v if k > 0,

−∆v + v − |y|−b|v|p−1v if k = 0,

and F (k, v) ≡ F (−k, v) for all k < 0.

1. F ∈ C(R ×H,H−1).

2. DvF ∈ C(R ×H,B(H,H−1))

3. F ∈ C1((0,∞) ×H,H−1).
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Continuation

Define F : R ×H → H−1 by

F (k, v) =

{

−∆v + v − k−bV (y/k)|v|p−1v if k > 0,

−∆v + v − |y|−b|v|p−1v if k = 0,

and F (k, v) ≡ F (−k, v) for all k < 0.

1. F ∈ C(R ×H,H−1).

2. DvF ∈ C(R ×H,B(H,H−1))

3. F ∈ C1((0,∞) ×H,H−1).

Find v0 ∈ H\{0} such that
F (0, v0) = 0 and DvF (0, v0) : H → H−1 isomorphism.
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Continuation

Define F : R ×H → H−1 by

F (k, v) =

{

−∆v + v − k−bV (y/k)|v|p−1v if k > 0,

−∆v + v − |y|−b|v|p−1v if k = 0,

and F (k, v) ≡ F (−k, v) for all k < 0.

1. F ∈ C(R ×H,H−1).

2. DvF ∈ C(R ×H,B(H,H−1))

3. F ∈ C1((0,∞) ×H,H−1).

Find v0 ∈ H\{0} such that
F (0, v0) = 0 and DvF (0, v0) : H → H−1 isomorphism.
More general nonlinearity: g(x, u(x)) so long as

k−2− 2−b

p−1 g(y/k, k
2−b

p−1 v(y)) → |y|−b|v(y)|p−1v(y) as k → 0
and F satisfies 1-3
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Limit problem

The equation F (0, v) = 0 is

−∆v + v − |y|−b|v|p−1v = 0
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Limit problem

The equation F (0, v) = 0 is

−∆v + v − |y|−b|v|p−1v = 0

There exists a ground state v0(x) = ψ(r) having the following
properties:
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Limit problem

The equation F (0, v) = 0 is

−∆v + v − |y|−b|v|p−1v = 0

There exists a ground state v0(x) = ψ(r) having the following
properties:

1. ψ ∈ C([0,∞)) ∩ C3((0,∞))

2. ψ > 0 on [0,∞) and ψ′ < 0 on (0,∞)

3. ψ decays exponentially as r → ∞

4. DvF (0, ψ) : H → H−1 has Morse index = 1

A stable branch of solutions of a nonlinear Schrödinger equation – p. 13/21



Non-degeneracy of ψ

For v ∈ H,

DvF (0, ψ)v = −∆v + v − p|y|−b|ψ|p−1v = 0

Since DvF (0, ψ) : H → H−1 is a Fredholm operator, it is enough
to prove that
kerDvF (0, ψ) = {0}
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Non-degeneracy of ψ

For v ∈ H,

DvF (0, ψ)v = −∆v + v − p|y|−b|ψ|p−1v = 0

Since DvF (0, ψ) : H → H−1 is a Fredholm operator, it is enough
to prove that
kerDvF (0, ψ) = {0}

If kerDvF (0, ψ) 6= {0} then 0 is second eigenvalue of DvF (0, ψ)
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Non-degeneracy of ψ

For v ∈ H,

DvF (0, ψ)v = −∆v + v − p|y|−b|ψ|p−1v = 0

Since DvF (0, ψ) : H → H−1 is a Fredholm operator, it is enough
to prove that
kerDvF (0, ψ) = {0}

If kerDvF (0, ψ) 6= {0} then 0 is second eigenvalue of DvF (0, ψ)

Let v ∈ H\{0} with DvF (0, ψ)v = 0 Then

1. v ∈ L∞(RN ) ∩ C(RN )

2. v(x) = φ(r)

3. φ has exactly one zero in (0,∞)
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Let

f(r, s) = −s+ r−bsp for r, s > 0,

Then

ψ′′ +
N − 1

r
ψ′ + f(r, ψ) = 0

and

φ′′ +
N − 1

r
φ′ + ∂2f(r, ψ)φ = 0.
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Let

f(r, s) = −s+ r−bsp for r, s > 0,

Then

ψ′′ +
N − 1

r
ψ′ + f(r, ψ) = 0

and

φ′′ +
N − 1

r
φ′ + ∂2f(r, ψ)φ = 0.

It follows that
∫ ∞

0
rN−1{f(r, ψ) − ∂2f(r, ψ)ψ}φdr = 0

and
∫ ∞

0
rN−1{2f(r, ψ) + r∂1f(r, ψ)}φdr = 0.
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For any C ∈ R,
∫ ∞

0
rN−1(1 − p)r−bψp{C − g(r)}φdr = 0,

where g(r) = [2rbψ(r)1−p + (b− 2)]/(1 − p) is strictly decreasing.
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For any C ∈ R,
∫ ∞

0
rN−1(1 − p)r−bψp{C − g(r)}φdr = 0,

where g(r) = [2rbψ(r)1−p + (b− 2)]/(1 − p) is strictly decreasing.

Let r0 > 0 be the unique zero of φ.
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For any C ∈ R,
∫ ∞

0
rN−1(1 − p)r−bψp{C − g(r)}φdr = 0,

where g(r) = [2rbψ(r)1−p + (b− 2)]/(1 − p) is strictly decreasing.

Let r0 > 0 be the unique zero of φ.
Choosing C = g(r0) the integrand does not change sign.
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For any C ∈ R,
∫ ∞

0
rN−1(1 − p)r−bψp{C − g(r)}φdr = 0,

where g(r) = [2rbψ(r)1−p + (b− 2)]/(1 − p) is strictly decreasing.

Let r0 > 0 be the unique zero of φ.
Choosing C = g(r0) the integrand does not change sign.

Contradiction. Hence kerDvF (0, ψ) = {0}
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For any C ∈ R,
∫ ∞

0
rN−1(1 − p)r−bψp{C − g(r)}φdr = 0,

where g(r) = [2rbψ(r)1−p + (b− 2)]/(1 − p) is strictly decreasing.

Let r0 > 0 be the unique zero of φ.
Choosing C = g(r0) the integrand does not change sign.

Contradiction. Hence kerDvF (0, ψ) = {0}

This method of proving non-degeneracy does not require the
particular form f(r, s) = −s+ r−bsp. We expect to be able to
produce a global continuation in the radial case.
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A branch of solutions

There exist k0 > 0 and
v ∈ C([0, k0), H) ∩ C1((0, k0), H) such that v(0) = ψ and
F (k, v(k)) = 0 for all k ∈ [0, k0).
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A branch of solutions

There exist k0 > 0 and
v ∈ C([0, k0), H) ∩ C1((0, k0), H) such that v(0) = ψ and
F (k, v(k)) = 0 for all k ∈ [0, k0).

Furthermore, v(k) = vk ∈ C(RN ) ∩ L∞(RN ) for all k ∈ [0, k0)
vk > 0 (vk is not radial if V is not radial)
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A branch of solutions

There exist k0 > 0 and
v ∈ C([0, k0), H) ∩ C1((0, k0), H) such that v(0) = ψ and
F (k, v(k)) = 0 for all k ∈ [0, k0).

Furthermore, v(k) = vk ∈ C(RN ) ∩ L∞(RN ) for all k ∈ [0, k0)
vk > 0 (vk is not radial if V is not radial)

|vk|L∞ remains bounded as k → 0.
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A branch of solutions

There exist k0 > 0 and
v ∈ C([0, k0), H) ∩ C1((0, k0), H) such that v(0) = ψ and
F (k, v(k)) = 0 for all k ∈ [0, k0).

Furthermore, v(k) = vk ∈ C(RN ) ∩ L∞(RN ) for all k ∈ [0, k0)
vk > 0 (vk is not radial if V is not radial)

|vk|L∞ remains bounded as k → 0.

Set λ0 = k2
0 and

uλ(x) = S(λ1/2)vλ1/2(x) = λ
2−b

2(p−1) vλ1/2(λ1/2x)

for λ ∈ (0, λ0)
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A branch of solutions

There exist k0 > 0 and
v ∈ C([0, k0), H) ∩ C1((0, k0), H) such that v(0) = ψ and
F (k, v(k)) = 0 for all k ∈ [0, k0).

Furthermore, v(k) = vk ∈ C(RN ) ∩ L∞(RN ) for all k ∈ [0, k0)
vk > 0 (vk is not radial if V is not radial)

|vk|L∞ remains bounded as k → 0.

Set λ0 = k2
0 and

uλ(x) = S(λ1/2)vλ1/2(x) = λ
2−b

2(p−1) vλ1/2(λ1/2x)

for λ ∈ (0, λ0)

−∆uλ + λuλ − V (x)|uλ|
p−1uλ = 0
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Monotonicity of |uλ|L2

d

dλ
|u(λ)|2L2 =

1

2k

d

dk
|u(k2)|2L2 =

1

2k

d

dk
{kβ|vk|

2
L2}

where β = [4 − 2b−N(p− 1)]/(p− 1) > 0
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Monotonicity of |uλ|L2

d

dλ
|u(λ)|2L2 =

1

2k

d

dk
|u(k2)|2L2 =

1

2k

d

dk
{kβ|vk|

2
L2}

where β = [4 − 2b−N(p− 1)]/(p− 1) > 0

d
dk |u(k

2)|2L2 = kβ−1{β|vk|
2
L2 + 2

〈

vk, k
d
dkvk

〉

L2}
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Monotonicity of |uλ|L2

d

dλ
|u(λ)|2L2 =

1

2k

d

dk
|u(k2)|2L2 =

1

2k

d

dk
{kβ|vk|

2
L2}

where β = [4 − 2b−N(p− 1)]/(p− 1) > 0

d
dk |u(k

2)|2L2 = kβ−1{β|vk|
2
L2 + 2

〈

vk, k
d
dkvk

〉

L2}

DkF (k, vk) +DvF (k, vk)
d
dkvk = 0
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Monotonicity of |uλ|L2

d

dλ
|u(λ)|2L2 =

1

2k

d

dk
|u(k2)|2L2 =

1

2k

d

dk
{kβ|vk|

2
L2}

where β = [4 − 2b−N(p− 1)]/(p− 1) > 0

d
dk |u(k

2)|2L2 = kβ−1{β|vk|
2
L2 + 2

〈

vk, k
d
dkvk

〉

L2}

DkF (k, vk) +DvF (k, vk)
d
dkvk = 0

k d
dkvk = −[DvF (k, vk)]

−1kDkF (k, vk)
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Monotonicity of |uλ|L2

d

dλ
|u(λ)|2L2 =

1

2k

d

dk
|u(k2)|2L2 =

1

2k

d

dk
{kβ|vk|

2
L2}

where β = [4 − 2b−N(p− 1)]/(p− 1) > 0

d
dk |u(k

2)|2L2 = kβ−1{β|vk|
2
L2 + 2

〈

vk, k
d
dkvk

〉

L2}

DkF (k, vk) +DvF (k, vk)
d
dkvk = 0

k d
dkvk = −[DvF (k, vk)]

−1kDkF (k, vk)

kDkF (k, vk) = k−bW (y/k)vp
k → 0 in H−1

where W (x) = x · ∇V (x) + bV (x)
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Monotonicity of |uλ|L2

d

dλ
|u(λ)|2L2 =

1

2k

d

dk
|u(k2)|2L2 =

1

2k

d

dk
{kβ|vk|

2
L2}

where β = [4 − 2b−N(p− 1)]/(p− 1) > 0

d
dk |u(k

2)|2L2 = kβ−1{β|vk|
2
L2 + 2

〈

vk, k
d
dkvk

〉

L2}

DkF (k, vk) +DvF (k, vk)
d
dkvk = 0

k d
dkvk = −[DvF (k, vk)]

−1kDkF (k, vk)

kDkF (k, vk) = k−bW (y/k)vp
k → 0 in H−1

where W (x) = x · ∇V (x) + bV (x)

〈

vk, k
d
dkvk

〉

L2 → 0
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Stability

d
dk |u(k

2)|2L2 = kβ−1{β|vk|
2
L2 + 2

〈

vk, k
d
dkvk

〉

L2} where

|vk|L2 → |ψ|L2 > 0 and
〈

vk, k
d
dkvk

〉

L2 → 0.
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Stability

d
dk |u(k

2)|2L2 = kβ−1{β|vk|
2
L2 + 2

〈

vk, k
d
dkvk

〉

L2} where

|vk|L2 → |ψ|L2 > 0 and
〈

vk, k
d
dkvk

〉

L2 → 0.

If β = [4 − 2b−N(p− 1)]/(p− 1) 6= 0 then d
dk |u(k

2)|2L2 has same
sign as β for k > 0 small enough.
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Stability

d
dk |u(k

2)|2L2 = kβ−1{β|vk|
2
L2 + 2

〈

vk, k
d
dkvk

〉

L2} where

|vk|L2 → |ψ|L2 > 0 and
〈

vk, k
d
dkvk

〉

L2 → 0.

If β = [4 − 2b−N(p− 1)]/(p− 1) 6= 0 then d
dk |u(k

2)|2L2 has same
sign as β for k > 0 small enough.

β > 0 for 1 < p < 1 + 4−2b
N and uλ stable

β < 0 for 1 + 4−2b
N < p < 1 + 4−2b

N−2 and uλ unstable
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Spectral conditions required for stability

Let

Hλ =

(

−∆ + λ− pV (x) |uλ|
p−1 0

0 −∆ + λ− V (x) |uλ|
p−1

)

,

For all λ > 0 near 0 we need:
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Spectral conditions required for stability

Let

Hλ =

(

−∆ + λ− pV (x) |uλ|
p−1 0

0 −∆ + λ− V (x) |uλ|
p−1

)

,

For all λ > 0 near 0 we need:

(H1) There exists aλ < 0 such that S(Hλ) ∩ (−∞, 0) = {aλ} and
aλ is simple.

(H2) kerHλ = span{(0, uλ)}.

(H3) S(Hλ) \ {aλ, 0} is bounded away from 0 in R.
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Spectral conditions required for stability

Let

Hλ =

(

−∆ + λ− pV (x) |uλ|
p−1 0

0 −∆ + λ− V (x) |uλ|
p−1

)

,

For all λ > 0 near 0 we need:

(H1) There exists aλ < 0 such that S(Hλ) ∩ (−∞, 0) = {aλ} and
aλ is simple.

(H2) kerHλ = span{(0, uλ)}.

(H3) S(Hλ) \ {aλ, 0} is bounded away from 0 in R.

We also use rescaling and the limit problem to check these
conditions for λ = k2 near 0.
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Non-degeneracy: de Bouard et al

de Bouard-Fukuizumi and Jeanjean-Le Coz use an auxiliary
equation

∆v + (δe−|x| + |x|−b)vp
+ − (1 + δe−|x|ψp−1)v = 0 (J-LeC)

where δ > 0 is small.
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Non-degeneracy: de Bouard et al

de Bouard-Fukuizumi and Jeanjean-Le Coz use an auxiliary
equation

∆v + (δe−|x| + |x|−b)vp
+ − (1 + δe−|x|ψp−1)v = 0 (J-LeC)

where δ > 0 is small.

ψ > 0 is a solution for all δ > 0
M(δ) denotes the Morse index of ψ
If ψ degenerate then M(δ) ≥ 2
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Non-degeneracy: de Bouard et al

de Bouard-Fukuizumi and Jeanjean-Le Coz use an auxiliary
equation

∆v + (δe−|x| + |x|−b)vp
+ − (1 + δe−|x|ψp−1)v = 0 (J-LeC)

where δ > 0 is small.

ψ > 0 is a solution for all δ > 0
M(δ) denotes the Morse index of ψ
If ψ degenerate then M(δ) ≥ 2

But (J-LeC) has a positive ground state ϕ(δ) ∈ H1(RN ) and the
Morse index of ϕ(δ) is ≤ 1.
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Non-degeneracy: de Bouard et al

de Bouard-Fukuizumi and Jeanjean-Le Coz use an auxiliary
equation

∆v + (δe−|x| + |x|−b)vp
+ − (1 + δe−|x|ψp−1)v = 0 (J-LeC)

where δ > 0 is small.

ψ > 0 is a solution for all δ > 0
M(δ) denotes the Morse index of ψ
If ψ degenerate then M(δ) ≥ 2

But (J-LeC) has a positive ground state ϕ(δ) ∈ H1(RN ) and the
Morse index of ϕ(δ) is ≤ 1.

Yanagida’s uniqueness theorem implies ϕ(δ) = ψ
Contradiction.
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