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Collaboration with Axel Osses

Coming from a control problem for a coupled fluid-structure system
we are confronted to the following problem :

€2 is a two-dimensional open set with boundary I.

We have an eigenfunction of the Stokes operator

—Au~+Vp=2Au in Q, (1)
divu =0, in €, (2)
u=0, onTl, (3)
p=-constant onlgCT. (4)

Does this imply
v =0 and p = constant 7



As we are in dimension 2, the Stokes problem is equivalent to the

following problem of order 4 by setting

u=VLw

A2w = -AAw in Q

0
w=—w=O on [
on

OAw

=0 onl
on 0

The last condition will be called additional condition.

(5)
(6)

(7)



Counterexample : case of a disc B(0,1).

Take ¢ such that
—Ap=Xp in Q2=B(0,1)
=0 onl
p = p(r).

Then if

up = —p(r)sing
us = o(r) cosf

u = (u1,un) is solution of the Stokes eigenvalue problem with p = 0.
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Question : Is the disc the only domain for which we have a non zero
eigenfunction? This is related to the Schiffer conjecture which is set
for the Laplace operator.



LLocal Schiffer conjecture :

Let €2 be an open subset of RY and suppose that there exists an
eigenvalue X and an eigenfunction w € H(Q) satisfying

—Aw = \w Iin 2

ow
— =0 onl
on

w=-constant##0 onlggCIl

T he conjecture is that the only simply connected domain satisfying a
local Schiffer property of Neumann type is a ball.

Global (classical) Schiffer conjecture : when g =1T.



The analogous local Schiffer conjecture of Dirichlet type is obtained
by interchanging the role of Neumann and Dirichlet boundary condi-
tions.

If To=1T or I is analytic, then the additional condition holds on the
whole boundary and we are in the case of classical Schiffer conjectures.
In this context, it is well known that the classical Schiffer conjecture
of Neumann type is equivalent to say that the ball is the only simply
connected domain having the Pompeiu property.

The general case 'g = ' and ' not analytic is different and, to
our knowledge, a relationship between the local Schiffer property of
Neumann type and some kind of restricted Pompeiu property is not
known.



Consider a circular sector of R? centered at the origin described in
polar coordinates

G={(r,0), 0O<r<rg, 0<0<6bp}

Let €2 be a lipschitz bounded open subset of R2 with a corner at the
origin such that

QN B(0,rg) = G.
We define
o ={(r,0), 0<r<rg}, 1 ={(r06), 0<r<rg}

Our result for the biharmonic problem is the following (we have a
similar result for the Laplace operator which is easier to prove).



Theorem 1 Let Q C IR? be a lipschitz bounded subset with a corner
of angle O < g < 2w at the origin and assume that

3
b0~ 0o #
then any weak solution w € HQ(Q) of the problem

A2w=-A\Aw inQ

0
w=—w=0 on
on

OAw
on

=0 on I_O

vanishes in S2.



Remark 2 The result cannot be proved by a local argument as shown
by the counterexample for the disc.

We will give an idea of the proof which contains several steps.
First step : C°° regularity near the origin.
We first use a result by Grisvard saying that if f € H™(Q2nN B(0,rg))

and w is solution with compact support in QN B(0,rg) of
A2 = f
w € HZ(2N B(0,7p)),

then for a C°° cut-off function n(r)

w = wr + NWs
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with w, € H™13 and

Wws = > p 1Pk ay up, (0) +
—(m—+1)<Spx<0
> (b ug,(6) + ¢ (vg,(8) + i(InT)ug,(6))),
—(m+1)<STq<0

where ag, by, cp are complex constants and p;, gy are respectively the
simple and double roots 7 of sinh?(70g) = 72sin?(0y) with imaginary
part in [—(m + 1),0) and excluding the root —i if tanfg # 0p. The
functions wup,, ug,, vg, Can be chosen uniquely prescribed from the
linear fourth order ordinary differential equations



ul™ 4201 = 72) ! + (1 4+72)2u; =0 in (0,6p)
ur(0) = ur () = u(0) = wl(80) = O, llurll 20,6y = 1,
corresponding both to » = p; and 7 = gy and
o8 421 =22+ (1 + 7220, = 47 — 4r(L + 72 ur  in (0,6)
v7(0) = vr(0p) = v-(0) = v7(6p) = O, (UTaWT)LQ((),gO) = 0,

corresponding only to 7 = qy.
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As w € H? we first start with m = 0. Then w, € H3 and ws has a
complicated development but is biharmonic. We know that Aw, & H1
and A2w, € L? so that

o 1
—Aw, € H2(I).
on
T herefore
o L,
—nAwr € (Hgo) (Mo)-
AS
0
—Aw =0 on ro
on

we must have
0

1
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The most regular term in the development of (%Aws behaves like %

1
which does not belong to (Hg;) (IF'g). Then we can show that all
coefficients in the development of wgs have to be zero which shows
that w € H3.

Then we use a similar argument (easier) with m = 1 and so on and
we can show by induction that w € H™13 for all m so that w € C®
near the origin.
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Second step : Power series expansion.

The edge g of G coincides with the horizontal axis. Since w &
C>*(G N B,) for some p > 0, for (x,y) in a neighborhood of (0,0), we
can write for each k>0

w(z,y) = > ajjx'y! + oz T 4 ),
ij>0, itj<h+4

Writing all conditions we obtain for the equation

G+l ajpa; +20+2)' G +2) ajq0 j40 +i' (G +4) a; 44
= - ME+2)5'ajq0; +i'(G+2) a; j402), Vi, j=>0.
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For the boundary conditions on [
a;0=0, a,1=0, aq3=0 Vi>0.

On 7 setting a = tanfy (the case g = 5 can be treated separately)
we have
Z Qg Oéj =0 Vk Z 0.

,j>0, i+j=k
and

S (i4+1)aiqr,;0 =0 Vk > 0.

1,j20, i+j=k

It is easy to show that

ai72k+1 =0 W Z O, V1 2 0.
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The difficulty is to show that

ajop =0  Vk>0, Vi>0,

We have an infinite number of linear systems satisfied by the a; 5.
We prove the result by induction.

First of all we show that ag> = a1 2 = 0.

Writing

Apyo = (a2k42.2,02k 45 - - -, A2 2k+25 A0 2k+4)-
and

Biyo = (a2k412,00k-1.4,- -+, 01 2425 )
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and assuming Ag41 = 0 and Biy; = 0 we can see that we have the
following system

My42Ag42 =0, Ni4oAg42 =0,
where
Mpyo =
2(2k +2)12!  (2k)14! 0 0 0
(2k +2)121  2(2k)14! (2k—2)! 0O ... 0 0
0 . . 0 41(2k) 2.21(2k +2)1 (2% + 4)!

32k+2 32k e B 32 1
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and

N2 =
2(2k +2)121  (2k)!4! 0 0 0
(2k +2)121  2(2K)14! (2k—2)! 0 0 0
0 o 0 41(2k) 2.21(2k+2)1 (2 + 4)!
(2k 4+ 2)p%F+2  (2k)p%* L ... 4apt 232 0
with
8= é —o0o <G <+
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We have to prove that

D (6) . deth_|_2
k2 T (2k 4+ 2)121(2K)14! ... 21(2k + 2)10!(2k + 4)!’
det N
Er42(8) k2

(2k + 2)121(2k)141 .. . 21(2k + 2)101(2k + 4)!
can not vanish simultaneously.

We can see that

0

Erpn=—Djo,
k2 B@ﬁ k42
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so if we have

Dy42(B0) =0, Ep42(80) =0
it means that [ is a double root of Dy ».

In fact Dy4 o can be calculated explicitly .

1
D —
K127 01(2k + 4)!

Ajy1 — B°Dyg1,

where

=N
N =
|_l

N -
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It is possible to deduce that
kil (—1)96% (k42 — )

D42 : :
2T @)@k - 5) + )
1 -\ 2k+3
— Re(1 .
22k + 3y et +ib)
Notice that Dy4(8) is a polynomial of degree 2k + 2 in 3. If
7T Tr
= ar 1 . ) S <__7_> )
W g(1+1:13), w 575

then the number of different roots of Dy > corresponds to the number
of different arguments in (—g,g) solutions of the equation

(2]<:—|—3)w=g—|—£7r, =
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These different solutions are

{’wz 2(2k—|—3)( + 2¢), —(k—l-l)SESk},

that is, exactly 2k + 2 different values in (—g,g) Therefore, all the
roots of D4 are distinct and simple. There is no double root.

The only solution our system is then the trivial one:

Apyo = (a2p42,2, a2k 4 - - -, 42 2k+2,a0,2k+4) = (0,0,...,0,0).

With an analogous technique, it is possible to show that

Bi4o = (agk+41.2,a2k-1.4,---,03 2k a1 2k+2) = (0,0,...,0,0).

22



Third step : Zero of infinite order.

Now we know that the origin is a zero of infinite order of w. To show
that w = 0 we can use a result of Kozlov, Kondratiev and Mazya
about the zeros of infinite order for the biharmonic operator. We
define the space Wf(G) as the space of functions defined in G for

which
r(“ktlel+n) pay, e L2(@), | < k.
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Theorem 3 Suppose 6y #= © and 6g 7 27 and w € V3 (G) is solution
of the differential inequality

C 1
A2 < <|Aw| + ;|w|) for r < 1o, 0< 6 < 6

w(r,0) = w(r,0p) = %—%’(r, 0) = %—"é)(r, 0p) =0 forr<rmrg

and suppose also that

w E Vf,f'(G), Vn < —1
then w =0 in G N Byy.
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More on Schiffer conjecture??
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