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∗Laboratoire de Mathématiques de Versailles,
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Collaboration with Axel Osses

Coming from a control problem for a coupled fluid-structure system
we are confronted to the following problem :

Ω is a two-dimensional open set with boundary Γ.

We have an eigenfunction of the Stokes operator

−∆u +∇p = λu in Ω, (1)

divu = 0, in Ω, (2)

u = 0, on Γ, (3)

p = constant on Γ0 ⊂ Γ. (4)

Does this imply

u = 0 and p = constant ?
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As we are in dimension 2, the Stokes problem is equivalent to the

following problem of order 4 by setting

u = ∇⊥w

∆2w = −λ∆w in Ω (5)

w =
∂w

∂n
= 0 on Γ (6)

∂∆w

∂n
= 0 on Γ0 (7)

The last condition will be called additional condition.
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Counterexample : case of a disc B(0,1).

Take ϕ such that

−∆ϕ = λϕ in Ω = B(0,1)

ϕ = 0 on Γ

ϕ = ϕ(r).

Then if

u1 = −ϕ(r) sin θ

u2 = ϕ(r) cos θ

u = (u1, u2) is solution of the Stokes eigenvalue problem with p = 0.
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Question : Is the disc the only domain for which we have a non zero

eigenfunction? This is related to the Schiffer conjecture which is set

for the Laplace operator.
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Local Schiffer conjecture :

Let Ω be an open subset of IRN and suppose that there exists an

eigenvalue λ and an eigenfunction w ∈ H1(Ω) satisfying

−∆w = λw in Ω
∂w

∂n
= 0 on Γ

w = constant 6= 0 on Γ0 ⊂ Γ

The conjecture is that the only simply connected domain satisfying a

local Schiffer property of Neumann type is a ball.

Global (classical) Schiffer conjecture : when Γ0 = Γ.
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The analogous local Schiffer conjecture of Dirichlet type is obtained

by interchanging the role of Neumann and Dirichlet boundary condi-

tions.

If Γ0 = Γ or Γ is analytic, then the additional condition holds on the

whole boundary and we are in the case of classical Schiffer conjectures.

In this context, it is well known that the classical Schiffer conjecture

of Neumann type is equivalent to say that the ball is the only simply

connected domain having the Pompeiu property.

The general case Γ0 6= Γ and Γ not analytic is different and, to

our knowledge, a relationship between the local Schiffer property of

Neumann type and some kind of restricted Pompeiu property is not

known.
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Consider a circular sector of IR2 centered at the origin described in

polar coordinates

G = {(r, θ), 0 < r < r0, 0 < θ < θ0}

Let Ω be a lipschitz bounded open subset of IR2 with a corner at the

origin such that

Ω ∩B(0, r0) = G.

We define

Γ0 = {(r,0), 0 < r < r0}, Γ1 = {(r, θ0), 0 < r < r0}.

Our result for the biharmonic problem is the following (we have a

similar result for the Laplace operator which is easier to prove).
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Theorem 1 Let Ω ⊂ IR2 be a lipschitz bounded subset with a corner

of angle 0 < θ0 < 2π at the origin and assume that

θ0 6= π, θ0 6=
3π

2
,

then any weak solution w ∈ H2(Ω) of the problem

∆2w = −λ∆w in Ω

w =
∂w

∂n
= 0 on Γ

∂∆w

∂n
= 0 on Γ0

vanishes in Ω.
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Remark 2 The result cannot be proved by a local argument as shown

by the counterexample for the disc.

We will give an idea of the proof which contains several steps.

First step : C∞ regularity near the origin.

We first use a result by Grisvard saying that if f ∈ Hm(Ω ∩ B(0, r0))

and w is solution with compact support in Ω ∩B(0, r0) of

∆2w = f

w ∈ H2
0(Ω ∩B(0, r0)),

then for a C∞ cut-off function η(r)

w = wr + ηws
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with wr ∈ Hm+3 and

ws =
∑

−(m+1)≤=pk<0

r1+ipk ak upk(θ) +

∑
−(m+1)≤=q`<0

r1+iq`(b` uq`(θ) + c` (vq`(θ) + i(ln r)uq`(θ))),

where ak, b`, c` are complex constants and pk, q` are respectively the

simple and double roots τ of sinh2(τθ0) = τ2 sin2(θ0) with imaginary

part in [−(m + 1),0) and excluding the root −i if tan θ0 6= θ0. The

functions upk, uq`, vq` can be chosen uniquely prescribed from the

linear fourth order ordinary differential equations



u
(iv)
τ + 2(1− τ2)u′′τ + (1 + τ2)2 uτ = 0 in (0, θ0)

uτ(0) = uτ(θ0) = u′τ(0) = u′τ(θ0) = 0, ‖uτ‖L2(0,θ0)
= 1,

corresponding both to τ = pk and τ = q` and

v
(iv)
τ + 2(1− τ2) v′′τ + (1 + τ2)2 vτ = 4τu′′τ − 4τ(1 + τ2)uτ in (0, θ0)

vτ(0) = vτ(θ0) = v′τ(0) = v′τ(θ0) = 0, (uτ , vτ)L2(0,θ0)
= 0,

corresponding only to τ = q`.
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As w ∈ H2 we first start with m = 0. Then wr ∈ H3 and ws has a

complicated development but is biharmonic. We know that ∆wr ∈ H1

and ∆2wr ∈ L2 so that

∂

∂n
∆wr ∈ H−1

2(Γ).

Therefore

∂

∂n
∆wr ∈ (H

1
2
00)

′(Γ0).

As
∂

∂n
∆w = 0 on Γ0

we must have

∂

∂n
∆ws ∈ (H

1
2
00)

′(Γ0).
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The most regular term in the development of ∂
∂n∆ws behaves like 1

r

which does not belong to (H
1
2
00)

′(Γ0). Then we can show that all

coefficients in the development of ws have to be zero which shows

that w ∈ H3.

Then we use a similar argument (easier) with m = 1 and so on and

we can show by induction that w ∈ Hm+3 for all m so that w ∈ C∞

near the origin.
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Second step : Power series expansion.

The edge Γ0 of G coincides with the horizontal axis. Since w ∈
C∞(G∩Bρ) for some ρ > 0, for (x, y) in a neighborhood of (0,0), we

can write for each k ≥ 0

w(x, y) =
∑

i,j≥0, i+j≤k+4

aij xiyj + o(xk+4 + yk+4).

Writing all conditions we obtain for the equation

(i + 4)!j! ai+4,j + 2(i + 2)!(j + 2)! ai+2,j+2 + i!(j + 4)! ai,j+4

= −λ((i + 2)!j! ai+2,j + i!(j + 2)! ai,j+2), ∀i, j ≥ 0.
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For the boundary conditions on Γ0

ai,0 = 0, ai,1 = 0, ai,3 = 0 ∀i ≥ 0.

On Γ1 setting α = tan θ0 (the case θ0 = π
2 can be treated separately)

we have ∑
i,j≥0, i+j=k

aij αj = 0 ∀k ≥ 0.

and ∑
i,j≥0, i+j=k

(i + 1) ai+1,j αj = 0 ∀k ≥ 0.

It is easy to show that

ai,2k+1 = 0 ∀k ≥ 0, ∀i ≥ 0.
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The difficulty is to show that

ai,2k = 0 ∀k ≥ 0, ∀i ≥ 0,

We have an infinite number of linear systems satisfied by the ai,2k.

We prove the result by induction.

First of all we show that a0,2 = a1,2 = 0.

Writing

Ak+2 = (a2k+2,2, a2k,4, . . . , a2,2k+2, a0,2k+4).

and

Bk+2 = (a2k+1,2, a2k−1,4, . . . , a1,2k+2, )
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and assuming Ak+1 = 0 and Bk+1 = 0 we can see that we have the

following system

Mk+2Ak+2 = 0, Nk+2Ak+2 = 0,

where

Mk+2 =
2(2k + 2)!2! (2k)!4! 0 . . . . . . 0 0
(2k + 2)!2! 2(2k)!4! (2k − 2)! 0 . . . 0 0

... . . . ... . . . ... . . . ...
0 . . . . . . 0 4!(2k)! 2 · 2!(2k + 2)! (2k + 4)!

β2k+2 β2k . . . . . . β4 β2 1


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and

Nk+2 =
2(2k + 2)!2! (2k)!4! 0 . . . . . . 0 0
(2k + 2)!2! 2(2k)!4! (2k − 2)! 0 . . . 0 0

... . . . ... . . . ... . . . ...
0 . . . . . . 0 4!(2k)! 2 · 2!(2k + 2)! (2k + 4)!

(2k + 2)β2k+2 (2k)β2k . . . . . . 4β4 2β2 0

 .

with

β =
1

α
−∞ < β < +∞
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We have to prove that

Dk+2(β) =
detMk+2

(2k + 2)!2!(2k)!4! . . .2!(2k + 2)!0!(2k + 4)!
,

Ek+2(β) =
detNk+2

(2k + 2)!2!(2k)!4! . . .2!(2k + 2)!0!(2k + 4)!

can not vanish simultaneously.

We can see that

Ek+2 = β
∂

∂β
Dk+2,
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so if we have

Dk+2(β0) = 0, Ek+2(β0) = 0

it means that β0 is a double root of Dk+2.

In fact Dk+2 can be calculated explicitly .

Dk+2 =
1

0!(2k + 4)!
∆k+1 − β2Dk+1,

where

∆k+1 =

∣∣∣∣∣∣∣∣∣∣∣∣

2 1
1 2 1

.. . . . . . . .
1 2 1

1 2

∣∣∣∣∣∣∣∣∣∣∣∣
= k + 2.
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It is possible to deduce that

Dk+2 =
k+1∑
j=0

(−1)jβ2j(k + 2− j)

(2j)!(2(k − j) + 4)!

=
1

2(2k + 3)!
Re(1 + iβ)2k+3.

Notice that Dk+2(β) is a polynomial of degree 2k + 2 in β. If

ω = arg(1 + iβ), ω ∈
(
−

π

2
,
π

2

)
,

then the number of different roots of Dk+2 corresponds to the number

of different arguments in
(
−π

2, π
2

)
solutions of the equation

(2k + 3)ω =
π

2
+ `π, ` ∈ Z.
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These different solutions are{
w` =

π

2(2k + 3)
(1 + 2`), −(k + 1) ≤ ` ≤ k

}
,

that is, exactly 2k + 2 different values in
(
−π

2, π
2

)
. Therefore, all the

roots of Dk+2 are distinct and simple. There is no double root.

The only solution our system is then the trivial one:

Ak+2 = (a2k+2,2, a2k,4, . . . , a2,2k+2, a0,2k+4) = (0,0, . . . ,0,0).

With an analogous technique, it is possible to show that

Bk+2 = (a2k+1,2, a2k−1,4, . . . , a3,2k, a1,2k+2) = (0,0, . . . ,0,0).
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Third step : Zero of infinite order.

Now we know that the origin is a zero of infinite order of w. To show

that w = 0 we can use a result of Kozlov, Kondratiev and Mazya

about the zeros of infinite order for the biharmonic operator. We

define the space V k
n (G) as the space of functions defined in G for

which

r(−k+|α|+n)Dαw ∈ L2(G), |α| ≤ k.
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Theorem 3 Suppose θ0 6= π and θ0 6= 2π and w ∈ V 4
0 (G) is solution

of the differential inequality

|∆2w| ≤
C

r2

(
|∆w|+

1

r
|w|

)
for r < r0, 0 < θ < θ0

w(r,0) = w(r, θ0) = ∂w
∂θ (r,0) = ∂w

∂θ (r, θ0) = 0 for r < r0

and suppose also that

w ∈ V 4
n (G), ∀n ≤ −1

then w = 0 in G ∩Br0.
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More on Schiffer conjecture??
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