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| ntroduction

(o) = /Q Tz — y)(ult,y) — u(t z)) dy. reQ t>0.
Pl(z0)  { 2(t,z) € y(ult,z)), zeN >0,
| 2(0,7) = 2o(x), x € Q.

Q) is a bounded domain, z, € L*(Q),

~ is a maximal monotone graph in R? such that 0 € v(0),

J: RY — R is a honnegative continuous radial function with

/NJ@MW:l

and
0 € int[supp(J)].
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| ntroduction

A solution of P (z) in [0,T7] is a function z € W"!(]0,T'[; L*(€2)) which
satisfies z(0,z) = zq(x), a.e. x € 2, and for which there exists
u € L*(0,T; L*(Q)), z € v(u) a.e. in Q7 = Q2x]0, T, such that

2 (t, ) :/QJ(:L'—y)(u(t,y) —u(t,x))dy a.ein |0, T[x.

Peral —p. 3/:



| ntroduction

A solution of P (z) in [0,T7] is a function z € W"!(]0,T'[; L*(€2)) which
satisfies z(0,z) = zq(x), a.e. x € 2, and for which there exists
u € L*(0,T; L*(Q)), z € v(u) a.e. in Q7 = Q2x]0, T, such that

2 (t, ) :/QJ(:L'—y)(u(t,y) —u(t,x))dy a.ein |0, T[x.

“Under some natural assumptions about the initial condition zg, there exists a unique
global solution to P,YJ(Z()). Moreover, a contraction principle holds, given two solutions

z; of PVJ(ZZ'O), i =1, 2, then
/Q (21() — 2a(0)F < / (210 — 720)*

Respect to the asymptotic behaviour of the solution we prove that if 7y is a continuous
function, then

Jim 2(2) = mm/Z“

strongly in L ().
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| ntroduction

If v(r) = r™, problem P:/(z,) corresponds to the nonlocal version of the

porous medium (or fast diffusion) problems. Note also that v may be
multivalued, so we are considering the nonlocal version of various
phenomena with phase changes like
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| ntroduction

If v(r) = r™, problem P:/(z,) corresponds to the nonlocal version of the

porous medium (or fast diffusion) problems. Note also that v may be
multivalued, so we are considering the nonlocal version of various
phenomena with phase changes like

Multiphase Stefan problem

r—1 it r<Q0O
y(r)=< [-1,0] if r=0
r it r>0
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| ntroduction

The weak formulation of the Hele Shaw problem

0 it r<0O
y(r) =< [0,1] if r=0
k1 it r>0
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Preliminaries

For a maximal monotone graph n» in R x R we denote

n_ :=inf Ran(n) and n. :=supRan(n),

where Ran(n) denotes the range of .
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Preliminaries

For a maximal monotone graph n» in R x R we denote

n_ :=inf Ran(n) and n. :=supRan(n),

where Ran(n) denotes the range of .

The main section n* of n

[ the element of minimal absolute value of n(s) if n(s) # 0,
n’(s) ;=4 4oo if [s,400) N D(n) =0,
—oo  if (—oo, 8] N D(n) =10,

\

where D(n) denotes the domain of 7.
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Preliminaries

For a maximal monotone graph n» in R x R we denote

n_ :=inf Ran(n) and n. :=supRan(n),

where Ran(n) denotes the range of .

The main section n* of n

[ the element of minimal absolute value of n(s) if n(s) # 0,
n’(s) ;=4 4oo if [s,400) N D(n) =0,
—oo  if (—oo, 8] N D(n) =10,

\

where D(n) denotes the domain of 7.

If 0 € D(n = [ n°(s)ds defines a convex |.s.c. function such that
n = O0Jy. Iflyq7 IS the Legendre transform of j, then n=' = 9;".
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Preliminaries

Jo={j : R — [0,4+00], convex and lower semi-continuos with j(0) = 0}.
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Preliminaries

Jo={j : R — [0,4+00], convex and lower semi-continuos with j(0) = 0}.

For u,v € L'(Q2), Ph. Bénilan and M. G. Crandall (1991) defined

u < v If and Onlyif/j(u)de/j(v)daz Vi e Jo.
Q Q
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Preliminaries

Jo={j : R — [0,4+00], convex and lower semi-continuos with j(0) = 0}.

For u,v € L'(Q2), Ph. Bénilan and M. G. Crandall (1991) defined

u < v If and Onlyif/j(u)de/j(v)daz Vi e Jo.
Q Q

Proposition Let Q be a bounded domain in R¥.
(i) If w,v € L1(Q) and u < v, then |Jul|, < ||v||, for any q € [1, 4+o0].

(i) If v € L'(Q), then {u € L' (Q) : u < v} is a weakly compact subset of
LY(Q).
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Preliminaries

The following Poincaré’s type inequality is given in [ E. Chasseigne, M.
Chaves and J. D. Rossi. Asymptotic behaviour for nonlocal diffusion equations.
To appear in J. Math. Pures Appl.]

Proposition 1 Given J and €2 the quantity

5 [ [ I -yt - ul)? dy da
By = B1(J,0) = inf LAY
ueL?(9), [q u=0 /(u(x))2 dx
Q

IS strictly positive. Consequently

61/9

u__

]

// r—y)( —u(x))? dy dz, Yu € L?(9).
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Preliminaries

To simplify the notation we define the linear self-adjoint operator
A:L*(Q) — L?(Q) by

Au(z) = / (@ — y)(uly) —u(@)dy,  ©eQ
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Preliminaries

To simplify the notation we define the linear self-adjoint operator
A:L*(Q) — L?(Q) by

Au(z) = / (@ — y)(uly) —u(@)dy,  ©eQ

- [ Au@ v de =5 [ [ 3@ = p(ut) - u(w)? dydo.
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Preliminaries

To simplify the notation we define the linear self-adjoint operator
A:L*(Q) — L?(Q) by

Au(z) = / (@ — y)(uly) —u(@)dy,  ©eQ

- [ Au@ v de =5 [ [ 3@ = p(ut) - u(w)? dydo.

Proposition 2 (Generalized Poincaré’s inequality) Let 2 c R be a
bounded open set and k£ > 0. There exists a constant C' = C(J,Q, k)
such that, for any K C Q with |K| > &,

1/2
HUHLQ(Q) <C ((—/ Auu) —+ u|L2(K)> Yu € LQ(Q).
Q
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Preliminaries

Lemma Let v be a maximal monotone graph in R? such that 0 € ~(0).

Let {un tneny C L#*(Q) and {z, },en C LY(Q) such that, for every n € N,
Zn € Y(un) a.e. In Q. Let us suppose that
() if v, = +o0, there exists M > 0 such that

/ zt < M, Vn e N,
Q
(i) if v, < 400, there exists M € R and A > 0 such that
/zn<M<7+\Q\, Vn e N
Q

and

/ 20| < : Vn € N.
{x€Q:z, (x)<—h} 4

Then, there exists a constant C, such that

1/2
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Preliminaries

Let us suppose that
(i) iIf v_ = —oo, there exists M > 0 such that

/ z, < M, Vn € N,
Q
(iv) if v_ > —oo, there exists M € R and h > 0 such that
/zn>M>7_|Q|, Vn € N
Q

and
M — [

/ Zn < : Vn € N.
{(2€Q:z, (x)>h} 4

Then, there exists a constant C, such that

i 1/2
uy, || L2 < C ((/ Au, u;> + 1) : Vn € N.
Q

Peral —p. 11/2



Mild solutions

Given a maximal monotone graph ~ in R? such that 0 € ~v(0), v_ < 74,
we consider the problem,

(S)  ~(w) —Au>3¢ inQ.
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Mild solutions

Given a maximal monotone graph ~ in R? such that 0 € ~v(0), v_ < 74,
we consider the problem,

(S)  ~(w) —Au>3¢ inQ.

Definition Let ¢ € L*(Q). A pair of functions (u, z) € L*(Q) x L'(Q) is a
solution of problem (57) if z(z) € y(u(z)) a.e. z € Q and
z(x) — Au(x) = ¢(x) a.e. x € Q, that Is,
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Mild solutions

Theorem 1 (Maximun Principle)

(i) Let ¢, € L'(Q) and (u1, 21) @ subsolution of (S ), that is,

z1(x) € y(ur(x)) a.e. x € Qand zy(z) — Aui (x) < ¢1(x) a.e. x € 2, and let
$o € L1(Q) and (us, 22) a supersolution of (S4,), thatis, zo(x) € y(uz(z))
a.e. x € Q and zy(x) — Aus(x) > ¢2(x) a.e. x € Q. Then

[r=mt < [ 61— 00"

Moreover, if o1 < @2, 1 # @2, then uy(z) < us(x) a.e. x € Q.

(i) Let ¢ € L'(Q), and (uy, 21), (uz, z2) two solutions of (S7). Then,
21 = 29 a.e. and there exists a constant ¢ such that u; = us + ¢, a.e.

Peral —p. 13/:



Mild solutions

Theorem 1 (Maximun Principle)

(i) Let ¢, € L'(Q) and (u1, 21) @ subsolution of (S ), that is,

z1(x) € y(ur(x)) a.e. x € Qand zy(z) — Aui (x) < ¢1(x) a.e. x € 2, and let
$o € L1(Q) and (us, 22) a supersolution of (S4,), thatis, zo(x) € y(uz(z))
a.e. x € Q and zy(x) — Aus(x) > ¢2(x) a.e. x € Q. Then

[r=mt < [ 61— 00"

Moreover, if o1 < @2, 1 # @2, then uy(z) < us(x) a.e. x € Q.

(i) Let ¢ € L'(Q), and (uy, 21), (uz, z2) two solutions of (S7). Then,
21 = 29 a.e. and there exists a constant ¢ such that u; = us + ¢, a.e.

Let &£ > 0. Since (u, ku) is a supersolution of (S ), where ~(r) = kr, and
(0,0) is a subsolution of (S;), by Theorem 1, we have
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Mild solutions

Corollary Let k > 0 and v € L?(Q2) such that
ku— Au >0 a.e.In €,

then v > 0 a.e. In Q.
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Mild solutions

Corollary Let k > 0 and v € L?(Q2) such that
ku— Au >0 a.e.In €,

then v > 0 a.e. In Q.

Lemma 1 Assume ~ : R — R is a nondecreasing Lipschitz continuous

function with v(0) = 0 and v_ < ~,.. Let ¢ € C(Q) such that
V- < ¢ < 4. Then, there exists a solution (u,y(u)) of problem (S57).

Moreover, v(u) < ¢.
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Mild solutions

Corollary Let k > 0 and v € L?(Q2) such that
ku— Au >0 a.e.In €,

then v > 0 a.e. In Q.

Lemma 1 Assume ~ : R — R is a nondecreasing Lipschitz continuous
function with v(0) = 0 and v_ < v,. Let ¢ € C(Q) such that
V- < ¢ < 4. Then, there exists a solution (u,y(u)) of problem (S57).

Moreover, v(u) < ¢.

Lemma 2 Assume « is a maximal monotone graph in R?,

| — 00,0l C D(),0€~(0), v <vy. Letdy(s) =v(s)ifs<0,5(s)=01If

s > 0. Assume 7 is Lipschitz continuous in | — oo, 0]. Let ¢ € C() such
that v < ¢ < . Then, there exists a solution (u, z) of (5]). Moreover,
z L .
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Mild solutions

Sketch of proof of Lemma 2: Let ~,, r € N, be the Yosida approximation
of v and let the maximal monotone graph

v(s) 1f s <O,

)= vr(s) 1fs>0.

~" is a nondecreasing Lipschitz continuous function with 4" (0) = 0 and
,yr S ’Yr—i_l.
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Mild solutions

Sketch of proof of Lemma 2: Let ~,, r € N, be the Yosida approximation
of v and let the maximal monotone graph

v(s) 1f s <O,
7' (s) = _
vr(s) 1fs>0.

~" is a nondecreasing Lipschitz continuous function with 4" (0) = 0 and
YT

Theorem 2 Assume ~ is a maximal monotone graph in R?, 0 € ~(0) and
v_ < 4. Let ¢ € C(Q) such that v_ < ¢ < v,. Then, there exists a
solution (u, z) of (S}).
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Mild solutions

Sketch of proof of Lemma 2: Let ~,, r € N, be the Yosida approximation
of v and let the maximal monotone graph

v(s) 1f s <O,
7' (s) = { _
vr(s) 1fs>0.

~" is a nondecreasing Lipschitz continuous function with 4" (0) = 0 and
v <y

Theorem 2 Assume ~ is a maximal monotone graph in R?, 0 € ~(0) and
v_ < 4. Let ¢ € C(Q) such that v_ < ¢ < v,. Then, there exists a
solution (u, z) of (S}).

Sketch of proof of Theorem 2 Let ~,., r € N, be the Yosida
approximation of v and let the maximal monotone graph

7' (s) =

v(s) ifs>0,
vr(s) 1fs <0,
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Mild solutions

BY = {(z, 2y e LYQ) x LY(Q) : Ju e L?(Q) such that

(u, z) is a solution of (S§+2)},

in other words, 2 € B7(z) if and only if there exists u € L?(£2) such that
z(z) € y(u(x)) a.e. In , and
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Mild solutions

BY = {(z, 2y e LYQ) x LY(Q) : Ju e L?(Q) such that

(u, z) is a solution of (S§+2)},

in other words, 2 € B7(z) if and only if there exists u € L?(£2) such that
z(z) € y(u(x)) a.e. In , and
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Mild solutions

Corollary Assume + is a maximal monotone graph in R?, 0 € ~(0).
Then, the operator B” is T-accretive in L'(Q) and satisfies

{p€C(Q):7- <9 <~4+} CRan(I + BY).
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Mild solutions

Corollary Assume + is a maximal monotone graph in R?, 0 € ~(0).
Then, the operator B” is T-accretive in L'(Q) and satisfies

{p€C(Q):7- <9 <~4+} CRan(I + BY).

z(t) is a solution of P/ () if and only if z(¢) is a strong solution of
problem (CP)
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Mild solutions

Corollary Assume + is a maximal monotone graph in R?, 0 € ~(0).
Then, the operator B” is T-accretive in L'(Q) and satisfies

{p€C(Q):7- <9 <~4+} CRan(I + BY).

z(t) is a solution of P/ () if and only if z(¢) is a strong solution of
problem (CP)

Theorem 3 Let T > 0 and z;, € L'(Q), i = 1,2. Let z; be a solution in
0,7] of P/ (i), i =1,2. Then

(21(t) = 22(t))" < [ (210 — 220)"
Q

Q

for almost every ¢ €]0, T'.
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Mild solutions

Theorem 4 Assume ~ is a maximal monotone graph in R2. Then, we

have
L (Q)

D(B") ={zeL'(Q): - <z<74}.
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Mild solutions

Theorem 4 Assume ~ is a maximal monotone graph in R2. Then, we

have
L (Q)

D(B") ={zeL'(Q): - <z<74}.

Theorem 5 Assume ~ is a maximal monotone graph in R?. Let T > 0
and let zo € L'(Q) satisfying v_ < zg < .. Then, there exists a unique
mild solution of (CP). Moreover z < z.
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Mild solutions

Theorem 4 Assume ~ is a maximal monotone graph in R2. Then, we
have

L' ()

D(B") ={zeL'(Q): - <z<74}.

Theorem 5 Assume ~ is a maximal monotone graph in R?. Let T > 0

and let zo € L'(Q) satisfying v_ < zg < .. Then, there exists a unique
mild solution of (CP). Moreover z < z.

By Crandall-Liggett’s Theorem, the mild solution obtained above is
given by the well-known exponential formula,

n—oo

) t -
e B 2, = lim <I+ —B”) 20.
n
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Mild solutions

Theorem 4 Assume ~ is a maximal monotone graph in R2. Then, we
have

L' ()

D(B") ={zeL'(Q): - <z<74}.

Theorem 5 Assume ~ is a maximal monotone graph in R?. Let T > 0

and let zo € L'(Q) satisfying v_ < zg < .. Then, there exists a unique
mild solution of (CP). Moreover z < z.

By Crandall-Liggett’s Theorem, the mild solution obtained above is
given by the well-known exponential formula,

n—oo

) t -
e B 2, = lim <I+ —B”) 20.
n

Theorem 6 Let 2, € L'(Q) such that v— < 2z < v, 7 < 5 Jg 20 < 74

and [, j%(z0) < +oo. Then, there exists a unique solution to P:/(z) in
0, T for every T' > 0.
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Existence of solutions

Sketch of Proof We divide the proof in three steps.
Step 1. First, let us suppose that

there exist ¢y, co such that ¢; < co, mq1 € (1), mo € y(c2)
and 7_ <m; < zp <mg < vy

Let z(¢) be the mild solution of (CP) given by Theorem 5. We shall
show that = is a solution of problem P/ ().
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Existence of solutions

Sketch of Proof We divide the proof in three steps.
Step 1. First, let us suppose that

there exist ¢y, co such that ¢; < co, mq1 € (1), mo € y(c2)
and 7_ <m; < zp <mg < vy

Let z(¢) be the mild solution of (CP) given by Theorem 5. We shall
show that = is a solution of problem P/ ().

Forn € N, let e = T'/n, and consider a subdivision
to=0<t;1 < - - <th, 1 <T=t,wWitht;, —t,_1 =e. Then, it follows that

2(t) = L' (Q)-lim z.(t)  uniformly for ¢ € [0, 17,
where z.(t) is given, for e small enough, by

ze(t) = 29 for t €] — 00,0],

Zé‘ t — Zn, fOI‘ t E tz_]_,tz ) /[/ — ].7 . oo 7n7 Peral — p. 19/
(]



Existence of solutions

where (u?, z") € L*(Q) x L'(Q) is the solution of

mn n
Fi T Fi—1

(%) —Aul’ + = =0, 1=1,2,...,n.
£
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Existence of solutions

where (u?, z") € L*(Q) x L'(Q) is the solution of

mn n
Fi T Fi—1

(%) —Aul’ + = =0, 1=1,2,...,n.
£

Moreover, 2" < zp. Hence v_ < m; < 2 < my < 4 and consequently,

inf vt (my) <ul <supytH(me).
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Existence of solutions

where (u?, z") € L*(Q) x L'(Q) is the solution of

mn n
Fi T Fi—1

(%) —Aul’ + = =0, 1=1,2,...,n.
£

Moreover, 2 < z5. Hence v_ < my < 2I* < msy < v, and consequently,

inf vt (my) <ul <supytH(me).

Therefore, if we write

we can suppose that

u. — u  weakly in L?(0,T;L*(Q)) as € — 0.
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Existence of solutions

Since
ze € Y(ue) a.e.in Qr,

Ze — Z iN Ll(QT),

we obtain that z € v(u) a.e. In Qr.
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Existence of solutions

Since
ze € Y(ue) a.e.in Qr,

Ze — Z iN Ll(QT),

we obtain that z € v(u) a.e. In Qr.

On the other hand, from (*),

2e(t) — ze(t — €)

— 2z weakly in L?(0,T;L*(Q)) as € — 07.
£
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Existence of solutions

Since
ze € Y(ue) a.e.in Qr,

2e — 2 1N Ll(QT),

we obtain that z € v(u) a.e. In Qr.

On the other hand, from (*),

2e(t) — ze(t — €)

Step 2. Let now 2z € L'(Q) such that

- <a <o I90< [ 20 <aoll [ B < toc
Q Q

and
there exists ¢; and m; € v(cqy) with v <m; < zg

— 2z weakly in L*(0,T;L*(Q)) as ¢ — 0.
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Asymptotic behaviour

The nonlinear contraction semigroup e *2" generated by the operator
—B” will be denoted in the sequel by (S(t)):>o.
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Asymptotic behaviour

The nonlinear contraction semigroup e *2" generated by the operator
—B” will be denoted in the sequel by (S(t)):>o.

w(z0) = {w € L*(Q) : It,, — oo with S(¢,)20 — w, strongly in L' ()}

wo(z0) = {w € L'(Q) : Tt, — oo With S(t,)z0 — w, weakly in L' ()} |
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Asymptotic behaviour

The nonlinear contraction semigroup e *2" generated by the operator
—B” will be denoted in the sequel by (S(t)):>o.

w(z0) = {w € L*(Q) : It,, — oo with S(¢,)20 — w, strongly in L' ()}

wo(z0) = {w € L'(Q) : Tt, — oo With S(t,)z0 — w, weakly in L' ()} |

Since S(t)zp < zg, ws(20) # () always.
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Asymptotic behaviour

The nonlinear contraction semigroup e *2" generated by the operator
—B” will be denoted in the sequel by (S(t)):>o.

w(z0) = {w € L*(Q) : It,, — oo with S(¢,)20 — w, strongly in L' ()}

wo(z0) = {w € L'(Q) : Tt, — oo With S(t,)z0 — w, weakly in L' ()} |

Since S(t)zp < zg, ws(20) # () always.

Since S(t) preserves the total mass, for all w € w,(2),

e
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Asymptotic behaviour

We denote by F' the set of fixed points of the semigroup (S(¢)), that is,

Q)

F:{weD(Bv) . S(Hw = w wzo}.
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Asymptotic behaviour

We denote by F' the set of fixed points of the semigroup (S(¢)), that is,

Q)

F:{weD(Bv) . S(Hw = w wzo}.

F={weL'(Q) : 3k € D(v) such that w € v(k)} .
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Asymptotic behaviour

We denote by F' the set of fixed points of the semigroup (S(¢)), that is,

Q)

F:{weD(Bv) . S(Hw = w wzo}.

F={weL'(Q) : 3k € D(v) such that w € v(k)} .

Theorem Let zp € L'(2) such that v— < z0 < vy, 7- < 17 f 20 < 7+

and |, j(z0) < +oo. Then, w,(z0) C F. Moreover, if w(z) # 0, then
w(zp) consists of a unique w € F, and consequently,

lim S(t)zo =w strongly in L' (Q).

t—00
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Asymptotic behaviour

In order to proof that w(z,) # (), a usual tool is to show that the
resolvent of B” is compact. In our case this fails in general as the
following example shows.
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Asymptotic behaviour

In order to proof that w(z,) # (), a usual tool is to show that the
resolvent of B” is compact. In our case this fails in general as the

following example shows.

Let v any maximal monotone graph with v(0) = [0, 1], z,, € L*(Q),

0 < 2z, < 1 such that {z,} is not relatively compact in L(Q). It is easy to
check that z,, = (I + B")~!(2,). Hence (I + B”)~! is not a compact
operator in L(9).
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Asymptotic behaviour

In order to proof that w(z,) # (), a usual tool is to show that the
resolvent of B” is compact. In our case this fails in general as the
following example shows.

Let v any maximal monotone graph with v(0) = [0, 1], z,, € L*(Q),

0 < 2z, < 1 such that {z,} is not relatively compact in L(Q). It is easy to
check that z,, = (I + B")~!(2,). Hence (I + B”)~! is not a compact
operator in L(9).

Given a maximal monotone graph v in R x R, we set
v(r+) = infy(Jr, +00[), ~(r—) :=supy(] — oo, r|)

v(r) = [y(r—=),y(r+)]NR for reR.

Moreover, v(r—) = ~(r+) except at a countable set of points, which we
denote by J(~v).
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Asymptotic behaviour

Teorem Let zg € L'(Q) such that v_ < 25 < vy, 7- < Iﬁll [ 70 < 74+ and
Jq J2(20) < 400. The following statements hold.

(1) If
ﬁ /Q 20 € 7(J(7))
or
1
@/QZO c {y(k+),v(k—)} forsome ke J(v),
then

t— o0

1 :
lim S(t)zp = @/ 2o Strongly in L' (Q).
Q
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Asymptotic behaviour

Teorem Let zg € L'(Q) such that v_ < 25 < vy, 7- < Iﬁll [ 70 < 74+ and
Jq J2(20) < 400. The following statements hold.

(1) If
ﬁ /Q 20 € 7(J(7))
or
1
@/QZO c {y(k+),v(k—)} forsome ke J(v),
then

lim S(t)z =T / 2o Strongly in L' (Q).

(2) If v 1s a continuous function then

lim S(t |Q|/z0 strongly in L*(€2).



Asymptotic behaviour

(3) If

1

@/QZO cly(k—),v(k+)| forsome ke J(v),

then

wy(20) C {w c L' Q) 1w e [y(k—-),v(k+)] a.e., /Qw = /on}.

Peral —p. 26/:



Work in progress

The nonlocal p-Laplacian-type problem (with homogeneous Neumann
boundary condition),

2

us(2,t) = /Q J(@ = y)luy, t) — u(@, )P~ (u(y, t) — u(z,t)) dy,

u(x,0) = ug(x).

PpJ<UQ> <

\

where J : RY — R is a honnegative continuous radial function with
compact support, [p~ J(z)dr =1and J(0) >0, 1 < p < +oo and

0 c R" is a bounded domain.
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Work in progress

The nonlocal p-Laplacian-type problem (with homogeneous Neumann
boundary condition),

2

us(2,t) = /Q J(@ = y)luy, t) — u(@, )P~ (u(y, t) — u(z,t)) dy,

u(x,0) = ug(x).

PpJ<UQ> <

\

where J : RY — R is a honnegative continuous radial function with
compact support, [p~ J(z)dr =1and J(0) >0, 1 < p < +oo and

Q c RY is a bounded domain.
Definition Let 1 < p < +o0. A solution of P;/(z,) in [0, 7] is a function

w e WH(0, T[; LY (Q)) N LY(0, T; LP(Q)) which satisfies u(0, z) = ug(z)
a.c. r € ) and

ut(t,x):/QJ(az—y)\u(y,t)—u(m,t)|p_2(u(y,t)—u(w,t))dy a.e in (0,7)x.
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Work in progress

Definition For 1 < p < 400 we define the operator B : L?(Q) — LY (Q)

BJu(z) = - /Q J(@ — )luly) — u@)P2(uly) —u@)dy,  xeQ.

Note that we can consider B, as an operator in L'(Q) with
Dom(B)) = LP(%Q).
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Work in progress

Definition For 1 < p < 400 we define the operator B : L?(Q) — LY (Q)

BJu(z) = - /Q J(@ — )luly) — u@)P2(uly) —u@)dy,  xeQ.

Note that we can consider B, as an operator in L'(Q) with
Dom(B)) = LP(%Q).

Theorem For 1 < p < 400, the operator By is completely accretive and
verifies the range condition

LP(Q) c Ran(I + By).

If B; denotes the closure of B, in L' (2), then B; is m-completely
accretive in L'(Q).

Peral —p. 28/:



Work in progress

For any ug € L*(Q), there exists a unique mild solution « of the abstract
Cauchy problem

2

w'(t)+Bju(t) >0 te(0,T)
(CP) 4

u(0) = uyp.

\
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Work in progress

For any ug € L*(Q), there exists a unique mild solution « of the abstract
Cauchy problem

2

w'(t)+Bju(t) >0 te(0,T)
(CP) 4

u(0) = uyp.

\

Theorem Assume p > 1. Let T > 0 and let ug € LP(£2). Then, the unique
mild solution v of (CP) is a solution of P;/ (ug).

Moreover, fori = 1,2, let u;, € L1 (Q); let u; be a solution in [0, T of
P (uip), i =1,2. Then

/(ul(t) —us(t))T < /(u10 —ugo)"  for almost every t €]0,T].
Q Q

Peral —p. 29/:



Work in progress

We show that the solutions of

[ uy = Ayu In 2 x (0,7)
Ny(uo) ¢ gs - on 99 x (0, T)
| u(z,0) =up(x) 1IN,

can be approximated by solutions of a sequence of nonlocal
p-Laplacian problems.
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Work in progress

We show that the solutions of

[ uy = Ayu In 2 x (0,7)
Ny(uo) ¢ gs - on 9Q x (0,7T)
| u(z,0) =up(x) 1IN,

can be approximated by solutions of a sequence of nonlocal
p-Laplacian problems.

For given p > 1 and J we consider the rescaled kernels

X

Cy
ot = S5 (2
with
C—l;:_/ J(2)|zn|P dz
73 5 fon T

which is a normalizing constant
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Work in progress

Consider B, C L'(Q) x L*(Q) the operator associated to the
p-Laplacian with homogeneous boundary condition, that is, (u,4) € B,
if and only if & € L'(Q), v € W1P(Q) and

/ (Vu|P~?Vu - Vo = / av forevery v e WHP(Q) N L>®(Q).
Q Q
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Work in progress

Consider B, C L'(Q) x L*(Q) the operator associated to the
p-Laplacian with homogeneous boundary condition, that is, (u,4) € B,
if and only if & € L'(Q), v € W1P(Q) and

/ (Vu|P~?Vu - Vo = / av forevery v e WHP(Q) N L>®(Q).
Q Q

Theorem Let Q a smooth bounded domain in RY. Assume J(z) > J(y)
If |x| <|y|. Forany ¢ € LP(Q),

(I+B7) '¢—(I+B) "¢ inLP(Q) ase— 0.
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Work in progress

Consider B, C L'(Q) x L*(Q) the operator associated to the
p-Laplacian with homogeneous boundary condition, that is, (u,4) € B,
if and only if & € L'(Q), v € W1P(Q) and

/ (Vu|P~?Vu - Vo = / av forevery v e WHP(Q) N L>®(Q).
Q Q

Theorem Let Q a smooth bounded domain in RY. Assume J(z) > J(y)
If |x| <|y|. Forany ¢ € LP(Q),

(I+B7) '¢—(I+B) "¢ inLP(Q) ase— 0.

Theorem Let Q a smooth bounded domain in RY. Assume J(z) > J(y)

If || <ly|. LetT > 0 and uy € LP(12). Let u. the unique solution of

Pp‘]p’e(uo) and v the unique solution of N, (ug). Then

lim sup |uc(.,t) — u('7t)HLp(Q) = 0.
e—0 tel0,T] Peral — p. 313



Work in progress

Theorem Let 1 < ¢ < +o00. Let p: RY — R be a nonnegative continuous
radial function with compact support, non-identically zero, and

on(z) :=n" p(nz). Let {f,} be a sequence of functions in L4(£2) such
that

1
[ [ V) = £ty — o)y < 21— 8

1. If {f.} is weakly convergent in L4(2) to f then
(i)ifg > 1, f € WH4(Q), and moreover

0 (24 1) LRI LD opin v

weakly in L4(Q) x L1(RN).
(i) Ifg=1, f € BV(Q).
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Work in progress

2. Assume that Q is a smooth bounded domain in RY and p(z) > p(y) if
lz| < |y|. Then {f,} is relatively compact in L%(2), and consequently,
there exists a subsequence { f,, } such that

(i)if¢ > 1, f,, — fin LYQ) with f € W9(Q),

(i)ifg=1, fn, — fin L1(Q) with f € BV (Q).

Peral —p. 33/:
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