The Neumann Problem for

 Nonlocal Nonlinear Diffusion
Equations

F. Andreu, J.M. Mazón, J. Rossi and J. Toledo

Introduction

$P_{\gamma}^{J}\left(z_{0}\right) \begin{cases}z_{t}(t, x)=\int_{\Omega} J(x-y)(u(t, y)-u(t, x)) d y, & x \in \Omega, t>0, \\ z(t, x) \in \gamma(u(t, x)), & x \in \Omega, t>0, \\ z(0, x)=z_{0}(x), & x \in \Omega .\end{cases}$
Ω is a bounded domain, $z_{0} \in L^{1}(\Omega)$,
γ is a maximal monotone graph in \mathbb{R}^{2} such that $0 \in \gamma(0)$,
$J: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a nonnegative continuous radial function with

$$
\int_{\mathbb{R}^{N}} J(r) d r=1
$$

and

$$
0 \in \operatorname{int}[\operatorname{supp}(J)] .
$$

Introduction

A solution of $P_{\gamma}^{J}\left(z_{0}\right)$ in $[0, T]$ is a function $z \in W^{1,1}(] 0, T\left[; L^{1}(\Omega)\right)$ which satisfies $z(0, x)=z_{0}(x)$, a.e. $x \in \Omega$, and for which there exists $u \in L^{2}\left(0, T ; L^{2}(\Omega)\right), z \in \gamma(u)$ a.e. in $\left.Q_{T}=\Omega \times\right] 0, T[$, such that

$$
\left.z_{t}(t, x)=\int_{\Omega} J(x-y)(u(t, y)-u(t, x)) d y \quad \text { a.e in }\right] 0, T[\times \Omega .
$$

Introduction

A solution of $P_{\gamma}^{J}\left(z_{0}\right)$ in $[0, T]$ is a function $z \in W^{1,1}(] 0, T\left[; L^{1}(\Omega)\right)$ which satisfies $z(0, x)=z_{0}(x)$, a.e. $x \in \Omega$, and for which there exists $u \in L^{2}\left(0, T ; L^{2}(\Omega)\right), z \in \gamma(u)$ a.e. in $\left.Q_{T}=\Omega \times\right] 0, T[$, such that

$$
\left.z_{t}(t, x)=\int_{\Omega} J(x-y)(u(t, y)-u(t, x)) d y \quad \text { a.e in }\right] 0, T[\times \Omega .
$$

"Under some natural assumptions about the initial condition z_{0}, there exists a unique global solution to $P_{\gamma}^{J}\left(z_{0}\right)$. Moreover, a contraction principle holds, given two solutions z_{i} of $P_{\gamma}^{J}\left(z_{i 0}\right), i=1,2$, then

$$
\int_{\Omega}\left(z_{1}(t)-z_{2}(t)\right)^{+} \leq \int_{\Omega}\left(z_{10}-z_{20}\right)^{+} .
$$

Respect to the asymptotic behaviour of the solution we prove that if γ is a continuous function, then

$$
\lim _{t \rightarrow \infty} z(t)=\frac{1}{|\Omega|} \int_{\Omega} z_{0}
$$

strongly in $L^{1}(\Omega)$ ".

Introduction

If $\gamma(r)=r^{m}$, problem $P_{\gamma}^{J}\left(z_{0}\right)$ corresponds to the nonlocal version of the porous medium (or fast diffusion) problems. Note also that γ may be multivalued, so we are considering the nonlocal version of various phenomena with phase changes like

Introduction

If $\gamma(r)=r^{m}$, problem $P_{\gamma}^{J}\left(z_{0}\right)$ corresponds to the nonlocal version of the porous medium (or fast diffusion) problems. Note also that γ may be multivalued, so we are considering the nonlocal version of various phenomena with phase changes like

Multiphase Stefan problem

$$
\gamma(r)=\left\{\begin{array}{lll}
r-1 & \text { if } & r<0 \\
{[-1,0]} & \text { if } & r=0 \\
r & \text { if } & r>0
\end{array}\right.
$$

Introduction

The weak formulation of the Hele Shaw problem

$$
\gamma(r)=\left\{\begin{array}{lll}
0 & \text { if } \quad r<0 \\
{[0,1] \quad \text { if } \quad r=0} \\
1 & \text { if } \quad r>0
\end{array}\right.
$$

Preliminaries

For a maximal monotone graph η in $\mathbb{R} \times \mathbb{R}$ we denote

$$
\eta_{-}:=\inf \operatorname{Ran}(\eta) \quad \text { and } \quad \eta_{+}:=\sup \operatorname{Ran}(\eta)
$$

where $\operatorname{Ran}(\eta)$ denotes the range of η.

Preliminaries

For a maximal monotone graph η in $\mathbb{R} \times \mathbb{R}$ we denote

$$
\eta_{-}:=\inf \operatorname{Ran}(\eta) \quad \text { and } \quad \eta_{+}:=\sup \operatorname{Ran}(\eta)
$$

where $\operatorname{Ran}(\eta)$ denotes the range of η.
The main section η^{0} of η

$$
\eta^{0}(s):= \begin{cases}\text { the element of minimal absolute value of } \eta(s) \text { if } \eta(s) \neq \emptyset \\ +\infty & \text { if }[s,+\infty) \cap D(\eta)=\emptyset \\ -\infty & \text { if }(-\infty, s] \cap D(\eta)=\emptyset\end{cases}
$$

where $D(\eta)$ denotes the domain of η.

Preliminaries

For a maximal monotone graph η in $\mathbb{R} \times \mathbb{R}$ we denote

$$
\eta_{-}:=\inf \operatorname{Ran}(\eta) \quad \text { and } \quad \eta_{+}:=\sup \operatorname{Ran}(\eta)
$$

where $\operatorname{Ran}(\eta)$ denotes the range of η.
The main section η^{0} of η

$$
\eta^{0}(s):= \begin{cases}\text { the element of minimal absolute value of } \eta(s) \text { if } \eta(s) \neq \emptyset \\ +\infty & \text { if }[s,+\infty) \cap D(\eta)=\emptyset \\ -\infty & \text { if }(-\infty, s] \cap D(\eta)=\emptyset\end{cases}
$$

where $D(\eta)$ denotes the domain of η.
If $0 \in D(\eta), j_{\eta}(r)=\int_{0}^{r} \eta^{0}(s) d s$ defines a convex I.s.c. function such that $\eta=\partial j_{\eta}$. If j_{η}^{*} is the Legendre transform of j_{η} then $\eta^{-1}=\partial j_{\eta}^{*}$.

Preliminaries

$J_{0}=\{j: \mathbb{R} \rightarrow[0,+\infty]$, convex and lower semi-continuos with $j(0)=0\}$.

Preliminaries

$J_{0}=\{j: \mathbb{R} \rightarrow[0,+\infty]$, convex and lower semi-continuos with $j(0)=0\}$.

For $u, v \in L^{1}(\Omega)$, Ph. Bénilan and M. G. Crandall (1991) defined
$u \ll v$ if and only if $\int_{\Omega} j(u) d x \leq \int_{\Omega} j(v) d x \quad \forall j \in J_{0}$.

Preliminaries

$J_{0}=\{j: \mathbb{R} \rightarrow[0,+\infty]$, convex and lower semi-continuos with $j(0)=0\}$.

For $u, v \in L^{1}(\Omega)$, Ph. Bénilan and M. G. Crandall (1991) defined

$$
u \ll v \text { if and only if } \int_{\Omega} j(u) d x \leq \int_{\Omega} j(v) d x \quad \forall j \in J_{0} .
$$

Proposition Let Ω be a bounded domain in \mathbb{R}^{N}.
(i) If $u, v \in L^{1}(\Omega)$ and $u \ll v$, then $\|u\|_{q} \leq\|v\|_{q}$ for any $q \in[1,+\infty]$.
(ii) If $v \in L^{1}(\Omega)$, then $\left\{u \in L^{1}(\Omega): u \ll v\right\}$ is a weakly compact subset of $L^{1}(\Omega)$.

Preliminaries

The following Poincaré's type inequality is given in [E . Chasseigne, M. Chaves and J. D. Rossi. Asymptotic behaviour for nonlocal diffusion equations. To appear in J. Math. Pures Appl.]

Proposition 1 Given J and Ω the quantity

$$
\beta_{1}:=\beta_{1}(J, \Omega)=\inf _{u \in L^{2}(\Omega), \int_{\Omega} u=0} \frac{\frac{1}{2} \int_{\Omega} \int_{\Omega} J(x-y)(u(y)-u(x))^{2} d y d x}{\int_{\Omega}(u(x))^{2} d x}
$$

is strictly positive. Consequently
$\beta_{1} \int_{\Omega}\left|u-\frac{1}{|\Omega|} \int_{\Omega} u\right|^{2} \leq \frac{1}{2} \int_{\Omega} \int_{\Omega} J(x-y)(u(y)-u(x))^{2} d y d x, \quad \forall u \in L^{2}(\Omega)$.

Preliminaries

To simplify the notation we define the linear self-adjoint operator $A: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ by

$$
A u(x)=\int_{\Omega} J(x-y)(u(y)-u(x)) d y, \quad x \in \Omega
$$

Preliminaries

To simplify the notation we define the linear self-adjoint operator $A: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ by

$$
\begin{gathered}
A u(x)=\int_{\Omega} J(x-y)(u(y)-u(x)) d y, \quad x \in \Omega . \\
-\int_{\Omega} A u(x) u(x) d x=\frac{1}{2} \int_{\Omega} \int_{\Omega} J(x-y)(u(y)-u(x))^{2} d y d x .
\end{gathered}
$$

Preliminaries

To simplify the notation we define the linear self-adjoint operator $A: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ by

$$
\begin{gathered}
A u(x)=\int_{\Omega} J(x-y)(u(y)-u(x)) d y, \quad x \in \Omega . \\
-\int_{\Omega} A u(x) u(x) d x=\frac{1}{2} \int_{\Omega} \int_{\Omega} J(x-y)(u(y)-u(x))^{2} d y d x .
\end{gathered}
$$

Proposition 2 (Generalized Poincaré's inequality) Let $\Omega \subset \mathbb{R}^{N}$ be a bounded open set and $k>0$. There exists a constant $C=C(J, \Omega, k)$ such that, for any $K \subset \Omega$ with $|K|>k$,

$$
\|u\|_{L^{2}(\Omega)} \leq C\left(\left(-\int_{\Omega} A u u\right)^{1 / 2}+\|u\|_{L^{2}(K)}\right) \quad \forall u \in L^{2}(\Omega)
$$

Preliminaries

Lemma Let γ be a maximal monotone graph in \mathbb{R}^{2} such that $0 \in \gamma(0)$. Let $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subset L^{2}(\Omega)$ and $\left\{z_{n}\right\}_{n \in \mathbb{N}} \subset L^{1}(\Omega)$ such that, for every $n \in \mathbb{N}$, $z_{n} \in \gamma\left(u_{n}\right)$ a.e. in Ω. Let us suppose that
(i) if $\gamma_{+}=+\infty$, there exists $M>0$ such that

$$
\int_{\Omega} z_{n}^{+}<M, \quad \forall n \in \mathbb{N}
$$

(ii) if $\gamma_{+}<+\infty$, there exists $M \in \mathbb{R}$ and $h>0$ such that

$$
\int_{\Omega} z_{n}<M<\gamma_{+}|\Omega|, \quad \forall n \in \mathbb{N}
$$

and

$$
\int_{\left\{x \in \Omega: z_{n}(x)<-h\right\}}\left|z_{n}\right|<\frac{\gamma_{+}|\Omega|-M}{4}, \quad \forall n \in \mathbb{N} .
$$

Then, there exists a constant C, such that

$$
\left\|u_{n}^{+}\right\|_{L^{2}(\Omega)} \leq C\left(\left(-\int_{0} A u_{n}^{+} u_{n}^{+}\right)^{1 / 2}+1\right), \quad \forall n \in \mathbb{N}
$$

Preliminaries

Let us suppose that
(iii) if $\gamma_{-}=-\infty$, there exists $M>0$ such that

$$
\int_{\Omega} z_{n}^{-}<M, \quad \forall n \in \mathbb{N}
$$

(iv) if $\gamma_{-}>-\infty$, there exists $M \in \mathbb{R}$ and $h>0$ such that

$$
\int_{\Omega} z_{n}>M>\gamma_{-}|\Omega|, \quad \forall n \in \mathbb{N}
$$

and

$$
\int_{\left\{x \in \Omega: z_{n}(x)>h\right\}} z_{n}<\frac{M-\gamma_{-}|\Omega|}{4}, \quad \forall n \in \mathbb{N} .
$$

Then, there exists a constant \tilde{C}, such that

$$
\left\|u_{n}^{-}\right\|_{L^{2}(\Omega)} \leq \tilde{C}\left(\left(-\int_{\Omega} A u_{n}^{-} u_{n}^{-}\right)^{1 / 2}+1\right), \quad \forall n \in \mathbb{N} .
$$

Mild solutions

Given a maximal monotone graph γ in \mathbb{R}^{2} such that $0 \in \gamma(0), \gamma_{-}<\gamma_{+}$, we consider the problem,

$$
\left(S_{\phi}^{\gamma}\right) \quad \gamma(u)-A u \ni \phi \quad \text { in } \Omega .
$$

Mild solutions

Given a maximal monotone graph γ in \mathbb{R}^{2} such that $0 \in \gamma(0), \gamma_{-}<\gamma_{+}$, we consider the problem,

$$
\left(S_{\phi}^{\gamma}\right) \quad \gamma(u)-A u \ni \phi \quad \text { in } \Omega .
$$

Definition Let $\phi \in L^{1}(\Omega)$. A pair of functions $(u, z) \in L^{2}(\Omega) \times L^{1}(\Omega)$ is a solution of problem $\left(S_{\phi}^{\gamma}\right)$ if $z(x) \in \gamma(u(x))$ a.e. $x \in \Omega$ and $z(x)-A u(x)=\phi(x)$ a.e. $x \in \Omega$, that is,

$$
z(x)-\int_{\Omega} J(x-y)(u(y)-u(x)) d y=\phi(x) \quad \text { a.e. } x \in \Omega .
$$

Mild solutions

Theorem 1 (Maximun Principle)
(i) Let $\phi_{1} \in L^{1}(\Omega)$ and (u_{1}, z_{1}) a subsolution of ($S_{\phi_{1}}^{\gamma}$), that is, $z_{1}(x) \in \gamma\left(u_{1}(x)\right)$ a.e. $x \in \Omega$ and $z_{1}(x)-A u_{1}(x) \leq \phi_{1}(x)$ a.e. $x \in \Omega$, and let $\phi_{2} \in L^{1}(\Omega)$ and (u_{2}, z_{2}) a supersolution of $\left(S_{\phi_{2}}^{\gamma}\right)$, that is, $z_{2}(x) \in \gamma\left(u_{2}(x)\right)$ a.e. $x \in \Omega$ and $z_{2}(x)-A u_{2}(x) \geq \phi_{2}(x)$ a.e. $x \in \Omega$. Then

$$
\int_{\Omega}\left(z_{1}-z_{2}\right)^{+} \leq \int_{\Omega}\left(\phi_{1}-\phi_{2}\right)^{+} .
$$

Moreover, if $\phi_{1} \leq \phi_{2}, \phi_{1} \neq \phi_{2}$, then $u_{1}(x) \leq u_{2}(x)$ a.e. $x \in \Omega$.
(ii) Let $\phi \in L^{1}(\Omega)$, and $\left(u_{1}, z_{1}\right),\left(u_{2}, z_{2}\right)$ two solutions of $\left(S_{\phi}^{\gamma}\right)$. Then, $z_{1}=z_{2}$ a.e. and there exists a constant c such that $u_{1}=u_{2}+c$, a.e.

Mild solutions

Theorem 1 (Maximun Principle)
(i) Let $\phi_{1} \in L^{1}(\Omega)$ and (u_{1}, z_{1}) a subsolution of ($S_{\phi_{1}}^{\gamma}$), that is, $z_{1}(x) \in \gamma\left(u_{1}(x)\right)$ a.e. $x \in \Omega$ and $z_{1}(x)-A u_{1}(x) \leq \phi_{1}(x)$ a.e. $x \in \Omega$, and let $\phi_{2} \in L^{1}(\Omega)$ and $\left(u_{2}, z_{2}\right)$ a supersolution of $\left(S_{\phi_{2}}^{\gamma}\right)$, that is, $z_{2}(x) \in \gamma\left(u_{2}(x)\right)$ a.e. $x \in \Omega$ and $z_{2}(x)-A u_{2}(x) \geq \phi_{2}(x)$ a.e. $x \in \Omega$. Then

$$
\int_{\Omega}\left(z_{1}-z_{2}\right)^{+} \leq \int_{\Omega}\left(\phi_{1}-\phi_{2}\right)^{+} .
$$

Moreover, if $\phi_{1} \leq \phi_{2}, \phi_{1} \neq \phi_{2}$, then $u_{1}(x) \leq u_{2}(x)$ a.e. $x \in \Omega$.
(ii) Let $\phi \in L^{1}(\Omega)$, and $\left(u_{1}, z_{1}\right),\left(u_{2}, z_{2}\right)$ two solutions of $\left(S_{\phi}^{\gamma}\right)$. Then, $z_{1}=z_{2}$ a.e. and there exists a constant c such that $u_{1}=u_{2}+c$, a.e.

Let $k>0$. Since $(u, k u)$ is a supersolution of $\left(S_{0}^{\gamma}\right)$, where $\gamma(r)=k r$, and $(0,0)$ is a subsolution of $\left(S_{0}^{\gamma}\right)$, by Theorem 1, we have

Mild solutions

Corollary Let $k>0$ and $u \in L^{2}(\Omega)$ such that

$$
k u-A u \geq 0 \quad \text { a.e. in } \Omega,
$$

then $u \geq 0$ a.e. in Ω.

Mild solutions

Corollary Let $k>0$ and $u \in L^{2}(\Omega)$ such that

$$
k u-A u \geq 0 \quad \text { a.e. in } \Omega,
$$

then $u \geq 0$ a.e. in Ω.
Lemma 1 Assume $\gamma: \mathbb{R} \rightarrow \mathbb{R}$ is a nondecreasing Lipschitz continuous function with $\gamma(0)=0$ and $\gamma_{-}<\gamma_{+}$. Let $\phi \in C(\bar{\Omega})$ such that $\gamma_{-}<\phi<\gamma_{+}$. Then, there exists a solution $(u, \gamma(u))$ of problem $\left(S_{\phi}^{\gamma}\right)$. Moreover, $\gamma(u) \ll \phi$.

Mild solutions

Corollary Let $k>0$ and $u \in L^{2}(\Omega)$ such that

$$
k u-A u \geq 0 \quad \text { a.e. in } \Omega
$$

then $u \geq 0$ a.e. in Ω.
Lemma 1 Assume $\gamma: \mathbb{R} \rightarrow \mathbb{R}$ is a nondecreasing Lipschitz continuous function with $\gamma(0)=0$ and $\gamma_{-}<\gamma_{+}$. Let $\phi \in C(\bar{\Omega})$ such that $\gamma_{-}<\phi<\gamma_{+}$. Then, there exists a solution $(u, \gamma(u))$ of problem $\left(S_{\phi}^{\gamma}\right)$. Moreover, $\gamma(u) \ll \phi$.

Lemma 2 Assume γ is a maximal monotone graph in \mathbb{R}^{2}, $]-\infty, 0] \subset D(\gamma), 0 \in \gamma(0), \gamma_{-}<\gamma_{+}$. Let $\tilde{\gamma}(s)=\gamma(s)$ if $s<0, \tilde{\gamma}(s)=0$ if $s \geq 0$. Assume $\tilde{\gamma}$ is Lipschitz continuous in] $-\infty, 0]$. Let $\phi \in C(\bar{\Omega})$ such that $\gamma_{-}<\phi<\gamma_{+}$. Then, there exists a solution (u, z) of $\left(S_{\phi}^{\gamma}\right)$. Moreover, $z \ll \phi$.

Mild solutions

Sketch of proof of Lemma 2: Let $\gamma_{r}, r \in \mathbb{N}$, be the Yosida approximation of γ and let the maximal monotone graph

$$
\gamma^{r}(s)= \begin{cases}\gamma(s) & \text { if } s<0 \\ \gamma_{r}(s) & \text { if } s \geq 0\end{cases}
$$

γ^{r} is a nondecreasing Lipschitz continuous function with $\gamma^{r}(0)=0$ and $\gamma^{r} \leq \gamma^{r+1}$.

Mild solutions

Sketch of proof of Lemma 2: Let $\gamma_{r}, r \in \mathbb{N}$, be the Yosida approximation of γ and let the maximal monotone graph

$$
\gamma^{r}(s)= \begin{cases}\gamma(s) & \text { if } s<0 \\ \gamma_{r}(s) & \text { if } s \geq 0\end{cases}
$$

γ^{r} is a nondecreasing Lipschitz continuous function with $\gamma^{r}(0)=0$ and $\gamma^{r} \leq \gamma^{r+1}$.
Theorem 2 Assume γ is a maximal monotone graph in $\mathbb{R}^{2}, 0 \in \gamma(0)$ and $\gamma_{-}<\gamma_{+}$. Let $\phi \in C(\bar{\Omega})$ such that $\gamma_{-}<\phi<\gamma_{+}$. Then, there exists a solution (u, z) of $\left(S_{\phi}^{\gamma}\right)$.

Mild solutions

Sketch of proof of Lemma 2: Let $\gamma_{r}, r \in \mathbb{N}$, be the Yosida approximation of γ and let the maximal monotone graph

$$
\gamma^{r}(s)= \begin{cases}\gamma(s) & \text { if } s<0 \\ \gamma_{r}(s) & \text { if } s \geq 0\end{cases}
$$

γ^{r} is a nondecreasing Lipschitz continuous function with $\gamma^{r}(0)=0$ and $\gamma^{r} \leq \gamma^{r+1}$.
Theorem 2 Assume γ is a maximal monotone graph in $\mathbb{R}^{2}, 0 \in \gamma(0)$ and $\gamma_{-}<\gamma_{+}$. Let $\phi \in C(\bar{\Omega})$ such that $\gamma_{-}<\phi<\gamma_{+}$. Then, there exists a solution (u, z) of $\left(S_{\phi}^{\gamma}\right)$.

Sketch of proof of Theorem 2 Let $\gamma_{r}, r \in \mathbb{N}$, be the Yosida approximation of γ and let the maximal monotone graph

$$
\gamma^{r}(s)= \begin{cases}\gamma(s) & \text { if } s>0 \\ \gamma_{r}(s) & \text { if } s \leq 0\end{cases}
$$

Mild solutions

$$
\begin{gathered}
B^{\gamma}:=\left\{(z, \hat{z}) \in L^{1}(\Omega) \times L^{1}(\Omega): \exists u \in L^{2}(\Omega)\right. \text { such that } \\
\left.(u, z) \text { is a solution of }\left(S_{z+\hat{z}}^{\gamma}\right)\right\},
\end{gathered}
$$

in other words, $\hat{z} \in B^{\gamma}(z)$ if and only if there exists $u \in L^{2}(\Omega)$ such that $z(x) \in \gamma(u(x))$ a.e. in Ω, and

$$
-\int_{\Omega} J(x-y)(u(y)-u(x)) d y=\hat{z}(x), \quad \text { a.e. } \quad x \in \Omega .
$$

Mild solutions

$$
\begin{gathered}
B^{\gamma}:=\left\{(z, \hat{z}) \in L^{1}(\Omega) \times L^{1}(\Omega): \exists u \in L^{2}(\Omega)\right. \text { such that } \\
\left.(u, z) \text { is a solution of }\left(S_{z+\hat{z}}^{\gamma}\right)\right\},
\end{gathered}
$$

in other words, $\hat{z} \in B^{\gamma}(z)$ if and only if there exists $u \in L^{2}(\Omega)$ such that $z(x) \in \gamma(u(x))$ a.e. in Ω, and

$$
\begin{aligned}
& -\int_{\Omega} J(x-y)(u(y)-u(x)) d y=\hat{z}(x), \quad \text { a.e. } x \in \Omega . \\
& (C P) \quad\left\{\begin{array}{l}
z^{\prime}(t)+B^{\gamma}(z(t)) \ni 0 \\
z(0)=z_{0} .
\end{array}\right.
\end{aligned}
$$

Mild solutions

Corollary Assume γ is a maximal monotone graph in $\mathbb{R}^{2}, 0 \in \gamma(0)$. Then, the operator B^{γ} is T-accretive in $L^{1}(\Omega)$ and satisfies

$$
\left\{\phi \in C(\bar{\Omega}): \gamma_{-}<\phi<\gamma_{+}\right\} \subset \operatorname{Ran}\left(I+B^{\gamma}\right) .
$$

Mild solutions

Corollary Assume γ is a maximal monotone graph in $\mathbb{R}^{2}, 0 \in \gamma(0)$. Then, the operator B^{γ} is T-accretive in $L^{1}(\Omega)$ and satisfies

$$
\left\{\phi \in C(\bar{\Omega}): \gamma_{-}<\phi<\gamma_{+}\right\} \subset \operatorname{Ran}\left(I+B^{\gamma}\right) .
$$

$z(t)$ is a solution of $P_{\gamma}^{J}\left(z_{0}\right)$ if and only if $z(t)$ is a strong solution of problem (CP)

Mild solutions

Corollary Assume γ is a maximal monotone graph in $\mathbb{R}^{2}, 0 \in \gamma(0)$. Then, the operator B^{γ} is T-accretive in $L^{1}(\Omega)$ and satisfies

$$
\left\{\phi \in C(\bar{\Omega}): \gamma_{-}<\phi<\gamma_{+}\right\} \subset \operatorname{Ran}\left(I+B^{\gamma}\right) .
$$

$z(t)$ is a solution of $P_{\gamma}^{J}\left(z_{0}\right)$ if and only if $z(t)$ is a strong solution of problem (CP)

Theorem 3 Let $T>0$ and $z_{i 0} \in L^{1}(\Omega), i=1,2$. Let z_{i} be a solution in $[0, T]$ of $P_{\gamma}^{J}\left(z_{i 0}\right), i=1,2$. Then

$$
\int_{\Omega}\left(z_{1}(t)-z_{2}(t)\right)^{+} \leq \int_{\Omega}\left(z_{10}-z_{20}\right)^{+}
$$

for almost every $t \in] 0, T[$.

Mild solutions

Theorem 4 Assume γ is a maximal monotone graph in \mathbb{R}^{2}. Then, we have

$$
\overline{D\left(B^{\gamma}\right)}{ }^{L^{1}(\Omega)}=\left\{z \in L^{1}(\Omega): \gamma_{-} \leq z \leq \gamma_{+}\right\} .
$$

Mild solutions

Theorem 4 Assume γ is a maximal monotone graph in \mathbb{R}^{2}. Then, we have

$$
\overline{D\left(B^{\gamma}\right)}{ }^{L^{1}(\Omega)}=\left\{z \in L^{1}(\Omega): \gamma_{-} \leq z \leq \gamma_{+}\right\} .
$$

Theorem 5 Assume γ is a maximal monotone graph in \mathbb{R}^{2}. Let $T>0$ and let $z_{0} \in L^{1}(\Omega)$ satisfying $\gamma_{-} \leq z_{0} \leq \gamma_{+}$. Then, there exists a unique mild solution of (CP). Moreover $z \ll z_{0}$.

Mild solutions

Theorem 4 Assume γ is a maximal monotone graph in \mathbb{R}^{2}. Then, we have

$$
\overline{D\left(B^{\gamma}\right)}{ }^{L^{1}(\Omega)}=\left\{z \in L^{1}(\Omega): \gamma_{-} \leq z \leq \gamma_{+}\right\} .
$$

Theorem 5 Assume γ is a maximal monotone graph in \mathbb{R}^{2}. Let $T>0$ and let $z_{0} \in L^{1}(\Omega)$ satisfying $\gamma_{-} \leq z_{0} \leq \gamma_{+}$. Then, there exists a unique mild solution of (CP). Moreover $z \ll z_{0}$.

By Crandall-Liggett's Theorem, the mild solution obtained above is given by the well-known exponential formula,

$$
e^{-t B^{\gamma}} z_{0}=\lim _{n \rightarrow \infty}\left(I+\frac{t}{n} B^{\gamma}\right)^{-n} z_{0} .
$$

Mild solutions

Theorem 4 Assume γ is a maximal monotone graph in \mathbb{R}^{2}. Then, we have

$$
\overline{D\left(B^{\gamma}\right)}{ }^{L^{1}(\Omega)}=\left\{z \in L^{1}(\Omega): \gamma_{-} \leq z \leq \gamma_{+}\right\} .
$$

Theorem 5 Assume γ is a maximal monotone graph in \mathbb{R}^{2}. Let $T>0$ and let $z_{0} \in L^{1}(\Omega)$ satisfying $\gamma_{-} \leq z_{0} \leq \gamma_{+}$. Then, there exists a unique mild solution of (CP). Moreover $z \ll z_{0}$.

By Crandall-Liggett's Theorem, the mild solution obtained above is given by the well-known exponential formula,

$$
e^{-t B^{\gamma}} z_{0}=\lim _{n \rightarrow \infty}\left(I+\frac{t}{n} B^{\gamma}\right)^{-n} z_{0} .
$$

Theorem 6 Let $z_{0} \in L^{1}(\Omega)$ such that $\gamma_{-} \leq z_{0} \leq \gamma_{+}, \gamma_{-}<\frac{1}{|\Omega|} \int_{\Omega} z_{0}<\gamma_{+}$ and $\int_{\Omega} j_{\gamma}^{*}\left(z_{0}\right)<+\infty$. Then, there exists a unique solution to $P_{\gamma}^{J}\left(z_{0}\right)$ in $[0, T]$ for every $T>0$.

Existence of solutions

Sketch of Proof We divide the proof in three steps.
Step 1. First, let us suppose that

$$
\begin{aligned}
& \text { there exist } c_{1}, c_{2} \text { such that } c_{1} \leq c_{2}, m_{1} \in \gamma\left(c_{1}\right), m_{2} \in \gamma\left(c_{2}\right) \\
& \text { and } \gamma_{-}<m_{1} \leq z_{0} \leq m_{2}<\gamma_{+} \text {. }
\end{aligned}
$$

Let $z(t)$ be the mild solution of (CP) given by Theorem 5 . We shall show that z is a solution of problem $P_{\gamma}^{J}\left(z_{0}\right)$.

Existence of solutions

Sketch of Proof We divide the proof in three steps.
Step 1. First, let us suppose that

$$
\begin{aligned}
& \text { there exist } c_{1}, c_{2} \text { such that } c_{1} \leq c_{2}, m_{1} \in \gamma\left(c_{1}\right), m_{2} \in \gamma\left(c_{2}\right) \\
& \text { and } \gamma_{-}<m_{1} \leq z_{0} \leq m_{2}<\gamma_{+} \text {. }
\end{aligned}
$$

Let $z(t)$ be the mild solution of (CP) given by Theorem 5 . We shall show that z is a solution of problem $P_{\gamma}^{J}\left(z_{0}\right)$.

For $n \in \mathbb{N}$, let $\varepsilon=T / n$, and consider a subdivision
$t_{0}=0<t_{1}<\cdots<t_{n-1}<T=t_{n}$ with $t_{i}-t_{i-1}=\varepsilon$. Then, it follows that

$$
z(t)=L^{1}(\Omega)-\lim _{\varepsilon} z_{\varepsilon}(t) \quad \text { uniformly for } t \in[0, T]
$$

where $z_{\varepsilon}(t)$ is given, for ε small enough, by

$$
\begin{cases}z_{\varepsilon}(t)=z_{0} & \text { for } t \in]-\infty, 0] \\ z_{\varepsilon}(t)=z_{i}^{n}, & \text { for } \left.t \in] t_{i-1}, t_{i}\right], \quad i=1, \ldots, n\end{cases}
$$

Existence of solutions

where $\left(u_{i}^{n}, z_{i}^{n}\right) \in L^{2}(\Omega) \times L^{1}(\Omega)$ is the solution of
(*)

$$
-A u_{i}^{n}+\frac{z_{i}^{n}-z_{i-1}^{n}}{\varepsilon}=0, \quad i=1,2, \ldots, n
$$

Existence of solutions

where $\left(u_{i}^{n}, z_{i}^{n}\right) \in L^{2}(\Omega) \times L^{1}(\Omega)$ is the solution of

$$
\begin{equation*}
-A u_{i}^{n}+\frac{z_{i}^{n}-z_{i-1}^{n}}{\varepsilon}=0, \quad i=1,2, \ldots, n \tag{*}
\end{equation*}
$$

Moreover, $z_{i}^{n} \ll z_{0}$. Hence $\gamma_{-}<m_{1} \leq z_{i}^{n} \leq m_{2}<\gamma_{+}$and consequently,

$$
\inf \gamma^{-1}\left(m_{1}\right) \leq u_{i}^{n} \leq \sup \gamma^{-1}\left(m_{2}\right)
$$

Existence of solutions

where $\left(u_{i}^{n}, z_{i}^{n}\right) \in L^{2}(\Omega) \times L^{1}(\Omega)$ is the solution of

$$
\begin{equation*}
-A u_{i}^{n}+\frac{z_{i}^{n}-z_{i-1}^{n}}{\varepsilon}=0, \quad i=1,2, \ldots, n . \tag{*}
\end{equation*}
$$

Moreover, $z_{i}^{n} \ll z_{0}$. Hence $\gamma_{-}<m_{1} \leq z_{i}^{n} \leq m_{2}<\gamma_{+}$and consequently,

$$
\inf \gamma^{-1}\left(m_{1}\right) \leq u_{i}^{n} \leq \sup \gamma^{-1}\left(m_{2}\right)
$$

Therefore, if we write

$$
\left.\left.u_{\varepsilon}(t)=u_{i}^{n}, \quad t \in\right] t_{i-1}, t_{i}\right], \quad i=1, \ldots, n
$$

we can suppose that

$$
u_{\varepsilon} \rightharpoonup u \quad \text { weakly in } L^{2}\left(0, T ; L^{2}(\Omega)\right) \text { as } \varepsilon \rightarrow 0^{+} .
$$

Existence of solutions

Since

$$
\begin{gathered}
z_{\varepsilon} \in \gamma\left(u_{\varepsilon}\right) \quad \text { a.e.in } Q_{T} \\
z_{\varepsilon} \rightarrow z \quad \text { in } L^{1}\left(Q_{T}\right)
\end{gathered}
$$

we obtain that $z \in \gamma(u)$ a.e. in Q_{T}.

Existence of solutions

Since

$$
\begin{gathered}
z_{\varepsilon} \in \gamma\left(u_{\varepsilon}\right) \quad \text { a.e.in } Q_{T} \\
z_{\varepsilon} \rightarrow z \quad \text { in } L^{1}\left(Q_{T}\right)
\end{gathered}
$$

we obtain that $z \in \gamma(u)$ a.e. in Q_{T}.
On the other hand, from (*),

$$
\frac{z_{\varepsilon}(t)-z_{\varepsilon}(t-\varepsilon)}{\varepsilon} \rightharpoonup z_{t} \quad \text { weakly in } L^{2}\left(0, T ; L^{2}(\Omega)\right) \text { as } \varepsilon \rightarrow 0^{+}
$$

Existence of solutions

Since

$$
\begin{gathered}
z_{\varepsilon} \in \gamma\left(u_{\varepsilon}\right) \quad \text { a.e.in } Q_{T} \\
z_{\varepsilon} \rightarrow z \quad \text { in } L^{1}\left(Q_{T}\right)
\end{gathered}
$$

we obtain that $z \in \gamma(u)$ a.e. in Q_{T}.
On the other hand, from (*),

$$
\frac{z_{\varepsilon}(t)-z_{\varepsilon}(t-\varepsilon)}{\varepsilon} \rightharpoonup z_{t} \quad \text { weakly in } L^{2}\left(0, T ; L^{2}(\Omega)\right) \text { as } \varepsilon \rightarrow 0^{+}
$$

Step 2. Let now $z_{0} \in L^{1}(\Omega)$ such that

$$
\gamma_{-} \leq z_{0} \leq \gamma_{+}, \quad \gamma_{-}|\Omega|<\int_{\Omega} z_{0}<\gamma_{-}|\Omega|, \quad \int_{\Omega} j_{\gamma}^{*}\left(z_{0}\right)<+\infty
$$

and
there exists c_{1} and $m_{1} \in \gamma\left(c_{1}\right)$ with $\gamma_{-}<m_{1} \leq z_{0}$

Asymptotic behaviour

The nonlinear contraction semigroup $e^{-t B^{\gamma}}$ generated by the operator $-B^{\gamma}$ will be denoted in the sequel by $(S(t))_{t \geq 0}$.

Asymptotic behaviour

The nonlinear contraction semigroup $e^{-t B^{\gamma}}$ generated by the operator $-B^{\gamma}$ will be denoted in the sequel by $(S(t))_{t \geq 0}$.

$$
\omega\left(z_{0}\right)=\left\{w \in L^{1}(\Omega): \exists t_{n} \rightarrow \infty \text { with } S\left(t_{n}\right) z_{0} \rightarrow w, \text { strongly in } L^{1}(\Omega)\right\}
$$

$$
\omega_{\sigma}\left(z_{0}\right)=\left\{w \in L^{1}(\Omega): \exists t_{n} \rightarrow \infty \text { with } S\left(t_{n}\right) z_{0} \rightharpoonup w, \text { weakly in } L^{1}(\Omega)\right\}
$$

Asymptotic behaviour

The nonlinear contraction semigroup $e^{-t B^{\gamma}}$ generated by the operator $-B^{\gamma}$ will be denoted in the sequel by $(S(t))_{t \geq 0}$.

$$
\begin{aligned}
& \omega\left(z_{0}\right)=\left\{w \in L^{1}(\Omega): \exists t_{n} \rightarrow \infty \text { with } S\left(t_{n}\right) z_{0} \rightarrow w, \text { strongly in } L^{1}(\Omega)\right\} \\
& \omega_{\sigma}\left(z_{0}\right)=\left\{w \in L^{1}(\Omega): \exists t_{n} \rightarrow \infty \text { with } S\left(t_{n}\right) z_{0} \rightharpoonup w, \text { weakly in } L^{1}(\Omega)\right\} .
\end{aligned}
$$

Since $S(t) z_{0} \ll z_{0}, \omega_{\sigma}\left(z_{0}\right) \neq \emptyset$ always.

Asymptotic behaviour

The nonlinear contraction semigroup $e^{-t B^{\gamma}}$ generated by the operator $-B^{\gamma}$ will be denoted in the sequel by $(S(t))_{t \geq 0}$.

$$
\begin{aligned}
& \omega\left(z_{0}\right)=\left\{w \in L^{1}(\Omega): \exists t_{n} \rightarrow \infty \text { with } S\left(t_{n}\right) z_{0} \rightarrow w, \text { strongly in } L^{1}(\Omega)\right\} \\
& \omega_{\sigma}\left(z_{0}\right)=\left\{w \in L^{1}(\Omega): \exists t_{n} \rightarrow \infty \text { with } S\left(t_{n}\right) z_{0} \rightharpoonup w, \text { weakly in } L^{1}(\Omega)\right\} .
\end{aligned}
$$

Since $S(t) z_{0} \ll z_{0}, \omega_{\sigma}\left(z_{0}\right) \neq \emptyset$ always.
Since $S(t)$ preserves the total mass, for all $w \in \omega_{\sigma}\left(z_{0}\right)$,

$$
\int_{\Omega} w=\int_{\Omega} z_{0} .
$$

Asymptotic behaviour

We denote by F the set of fixed points of the semigroup $(S(t))$, that is,

$$
F=\left\{w \in{\overline{D\left(B^{\gamma}\right)}}^{L^{1}(\Omega)}: S(t) w=w \quad \forall t \geq 0\right\} .
$$

Asymptotic behaviour

We denote by F the set of fixed points of the semigroup $(S(t))$, that is,

$$
\begin{gathered}
F=\left\{w \in{\overline{D\left(B^{\gamma}\right)}}^{L^{1}(\Omega)}: S(t) w=w \quad \forall t \geq 0\right\} . \\
F=\left\{w \in L^{1}(\Omega): \exists k \in D(\gamma) \text { such that } w \in \gamma(k)\right\} .
\end{gathered}
$$

Asymptotic behaviour

We denote by F the set of fixed points of the semigroup $(S(t))$, that is,

$$
\begin{gathered}
F=\left\{w \in{\overline{D\left(B^{\gamma}\right)}}^{L^{1}(\Omega)}: S(t) w=w \quad \forall t \geq 0\right\} . \\
F=\left\{w \in L^{1}(\Omega): \exists k \in D(\gamma) \text { such that } w \in \gamma(k)\right\} .
\end{gathered}
$$

Theorem Let $z_{0} \in L^{1}(\Omega)$ such that $\gamma_{-} \leq z_{0} \leq \gamma_{+}, \gamma_{-}<\frac{1}{|\Omega|} \int_{\Omega} z_{0}<\gamma_{+}$ and $\int_{\Omega} j_{\gamma}^{*}\left(z_{0}\right)<+\infty$. Then, $\omega_{\sigma}\left(z_{0}\right) \subset F$. Moreover, if $\omega\left(z_{0}\right) \neq \emptyset$, then $\omega\left(z_{0}\right)$ consists of a unique $w \in F$, and consequently,

$$
\lim _{t \rightarrow \infty} S(t) z_{0}=w \quad \text { strongly in } L^{1}(\Omega)
$$

Asymptotic behaviour

In order to proof that $\omega\left(z_{0}\right) \neq \emptyset$, a usual tool is to show that the resolvent of B^{γ} is compact. In our case this fails in general as the following example shows.

Asymptotic behaviour

In order to proof that $\omega\left(z_{0}\right) \neq \emptyset$, a usual tool is to show that the resolvent of B^{γ} is compact. In our case this fails in general as the following example shows.

Let γ any maximal monotone graph with $\gamma(0)=[0,1], z_{n} \in L^{\infty}(\Omega)$, $0 \leq z_{n} \leq 1$ such that $\left\{z_{n}\right\}$ is not relatively compact in $L^{1}(\Omega)$. It is easy to check that $z_{n}=\left(I+B^{\gamma}\right)^{-1}\left(z_{n}\right)$. Hence $\left(I+B^{\gamma}\right)^{-1}$ is not a compact operator in $L^{1}(\Omega)$.

Asymptotic behaviour

In order to proof that $\omega\left(z_{0}\right) \neq \emptyset$, a usual tool is to show that the resolvent of B^{γ} is compact. In our case this fails in general as the following example shows.

Let γ any maximal monotone graph with $\gamma(0)=[0,1], z_{n} \in L^{\infty}(\Omega)$, $0 \leq z_{n} \leq 1$ such that $\left\{z_{n}\right\}$ is not relatively compact in $L^{1}(\Omega)$. It is easy to check that $z_{n}=\left(I+B^{\gamma}\right)^{-1}\left(z_{n}\right)$. Hence $\left(I+B^{\gamma}\right)^{-1}$ is not a compact operator in $L^{1}(\Omega)$.

Given a maximal monotone graph γ in $\mathbb{R} \times \mathbb{R}$, we set

$$
\begin{gathered}
\gamma(r+):=\inf \gamma(] r,+\infty[), \quad \gamma(r-):=\sup \gamma(]-\infty, r[) \\
\gamma(r)=[\gamma(r-), \gamma(r+)] \cap \mathbb{R} \quad \text { for } \quad r \in \mathbb{R} .
\end{gathered}
$$

Moreover, $\gamma(r-)=\gamma(r+)$ except at a countable set of points, which we denote by $J(\gamma)$.

Asymptotic behaviour

Teorem Let $z_{0} \in L^{1}(\Omega)$ such that $\gamma_{-} \leq z_{0} \leq \gamma_{+}, \gamma_{-}<\frac{1}{|\Omega|} \int_{\Omega} z_{0}<\gamma_{+}$and $\int_{\Omega} j_{\gamma}^{*}\left(z_{0}\right)<+\infty$. The following statements hold.
(1) If

$$
\frac{1}{|\Omega|} \int_{\Omega} z_{0} \notin \gamma(J(\gamma))
$$

or

$$
\frac{1}{|\Omega|} \int_{\Omega} z_{0} \in\{\gamma(k+), \gamma(k-)\} \text { for some } k \in J(\gamma)
$$

then

$$
\lim _{t \rightarrow \infty} S(t) z_{0}=\frac{1}{|\Omega|} \int_{\Omega} z_{0} \quad \text { strongly in } L^{1}(\Omega)
$$

Asymptotic behaviour

Teorem Let $z_{0} \in L^{1}(\Omega)$ such that $\gamma_{-} \leq z_{0} \leq \gamma_{+}, \gamma_{-}<\frac{1}{|\Omega|} \int_{\Omega} z_{0}<\gamma_{+}$and $\int_{\Omega} j_{\gamma}^{*}\left(z_{0}\right)<+\infty$. The following statements hold.
(1) If

$$
\frac{1}{|\Omega|} \int_{\Omega} z_{0} \notin \gamma(J(\gamma))
$$

or

$$
\frac{1}{|\Omega|} \int_{\Omega} z_{0} \in\{\gamma(k+), \gamma(k-)\} \text { for some } k \in J(\gamma)
$$

then

$$
\lim _{t \rightarrow \infty} S(t) z_{0}=\frac{1}{|\Omega|} \int_{\Omega} z_{0} \quad \text { strongly in } L^{1}(\Omega)
$$

(2) If γ is a continuous function then

$$
\lim _{t \rightarrow \infty} S(t) z_{0}=\frac{1}{|\Omega|} \int_{\Omega} z_{0} \quad \text { strongly in } L^{1}(\Omega) .
$$

Asymptotic behaviour

(3) If

$$
\left.\frac{1}{|\Omega|} \int_{\Omega} z_{0} \in\right] \gamma(k-), \gamma(k+)[\quad \text { for some } k \in J(\gamma)
$$

then

$$
\omega_{\sigma}\left(z_{0}\right) \subset\left\{w \in L^{1}(\Omega): w \in[\gamma(k-), \gamma(k+)] \text { a.e., } \int_{\Omega} w=\int_{\Omega} z_{0}\right\} .
$$

Work in progress

The nonlocal p-Laplacian-type problem (with homogeneous Neumann boundary condition),
$P_{p}^{J}\left(u_{0}\right) \quad\left\{\begin{array}{l}u_{t}(x, t)=\int_{\Omega} J(x-y)|u(y, t)-u(x, t)|^{p-2}(u(y, t)-u(x, t)) d y, \\ u(x, 0)=u_{0}(x) .\end{array}\right.$
where $J: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a nonnegative continuous radial function with compact support, $\int_{\mathbb{R}^{N}} J(x) d x=1$ and $J(0)>0,1 \leq p<+\infty$ and $\Omega \subset \mathbb{R}^{N}$ is a bounded domain.

Work in progress

The nonlocal p-Laplacian-type problem (with homogeneous Neumann boundary condition),
$P_{p}^{J}\left(u_{0}\right) \quad\left\{\begin{array}{l}u_{t}(x, t)=\int_{\Omega} J(x-y)|u(y, t)-u(x, t)|^{p-2}(u(y, t)-u(x, t)) d y, \\ u(x, 0)=u_{0}(x) .\end{array}\right.$
where $J: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a nonnegative continuous radial function with compact support, $\int_{\mathbb{R}^{N}} J(x) d x=1$ and $J(0)>0,1 \leq p<+\infty$ and $\Omega \subset \mathbb{R}^{N}$ is a bounded domain.

Definition Let $1<p<+\infty$. A solution of $P_{p}^{J}\left(z_{0}\right)$ in $[0, T]$ is a function $u \in W^{1,1}(] 0, T\left[; L^{1}(\Omega)\right) \cap L^{1}\left(0, T ; L^{p}(\Omega)\right)$ which satisfies $u(0, x)=u_{0}(x)$ a.e. $x \in \Omega$ and
$u_{t}(t, x)=\int_{\Omega} J(x-y)|u(y, t)-u(x, t)|^{p-2}(u(y, t)-u(x, t)) d y \quad a . e$ in $(0, T) \times \Omega$.

Work in progress

Definition For $1<p<+\infty$ we define the operator $B_{p}^{J}: L^{p}(\Omega) \rightarrow L^{p^{\prime}}(\Omega)$ by

$$
B_{p}^{J} u(x)=-\int_{\Omega} J(x-y)|u(y)-u(x)|^{p-2}(u(y)-u(x)) d y, \quad x \in \Omega .
$$

Note that we can consider B_{p}^{J} as an operator in $L^{1}(\Omega)$ with $\operatorname{Dom}\left(B_{p}^{J}\right)=L^{p}(\Omega)$.

Work in progress

Definition For $1<p<+\infty$ we define the operator $B_{p}^{J}: L^{p}(\Omega) \rightarrow L^{p^{\prime}}(\Omega)$ by

$$
B_{p}^{J} u(x)=-\int_{\Omega} J(x-y)|u(y)-u(x)|^{p-2}(u(y)-u(x)) d y, \quad x \in \Omega .
$$

Note that we can consider B_{p}^{J} as an operator in $L^{1}(\Omega)$ with $\operatorname{Dom}\left(B_{p}^{J}\right)=L^{p}(\Omega)$.

Theorem For $1<p<+\infty$, the operator B_{p}^{J} is completely accretive and verifies the range condition

$$
L^{p}(\Omega) \subset \operatorname{Ran}\left(I+B_{p}^{J}\right) .
$$

If \mathcal{B}_{p}^{J} denotes the closure of B_{p}^{J} in $L^{1}(\Omega)$, then \mathcal{B}_{p}^{J} is m-completely accretive in $L^{1}(\Omega)$.

Work in progress

For any $u_{0} \in L^{1}(\Omega)$, there exists a unique mild solution u of the abstract Cauchy problem

$$
(C P) \begin{cases}u^{\prime}(t)+\mathcal{B}_{p}^{J} u(t) \ni 0 & t \in(0, T) \\ u(0)=u_{0} . & \end{cases}
$$

Work in progress

For any $u_{0} \in L^{1}(\Omega)$, there exists a unique mild solution u of the abstract Cauchy problem

$$
(C P) \begin{cases}u^{\prime}(t)+\mathcal{B}_{p}^{J} u(t) \ni 0 & t \in(0, T) \\ u(0)=u_{0} . & \end{cases}
$$

Theorem Assume $p>1$. Let $T>0$ and let $u_{0} \in L^{p}(\Omega)$. Then, the unique mild solution u of (CP) is a solution of $P_{p}^{J}\left(u_{0}\right)$.
Moreover, for $i=1,2$, let $u_{i 0} \in L^{1}(\Omega)$; let u_{i} be a solution in $[0, T]$ of $P_{p}^{J}\left(u_{i 0}\right), i=1,2$. Then

$$
\left.\int_{\Omega}\left(u_{1}(t)-u_{2}(t)\right)^{+} \leq \int_{\Omega}\left(u_{10}-u_{20}\right)^{+} \quad \text { for almost every } t \in\right] 0, T[.
$$

Work in progress

We show that the solutions of

$$
N_{p}\left(u_{0}\right) \begin{cases}u_{t}=\Delta_{p} u & \text { in } \Omega \times(0, T) \\ \frac{\partial u}{\partial \eta_{a}}=0 & \text { on } \partial \Omega \times(0, T) \\ u(x, 0)=u_{0}(x) & \text { in } \Omega,\end{cases}
$$

can be approximated by solutions of a sequence of nonlocal p-Laplacian problems.

Work in progress

We show that the solutions of

$$
N_{p}\left(u_{0}\right) \begin{cases}u_{t}=\Delta_{p} u & \text { in } \Omega \times(0, T) \\ \frac{\partial u}{\partial \eta_{a}}=0 & \text { on } \partial \Omega \times(0, T) \\ u(x, 0)=u_{0}(x) & \text { in } \Omega,\end{cases}
$$

can be approximated by solutions of a sequence of nonlocal p-Laplacian problems.

For given $p>1$ and J we consider the rescaled kernels

$$
J_{p, \varepsilon}(x):=\frac{C_{J, p}}{\varepsilon^{p+N}} J\left(\frac{x}{\varepsilon}\right)
$$

with

$$
C_{J, p}^{-1}:=\frac{1}{2} \int_{\mathbb{R}^{N}} J(z)\left|z_{N}\right|^{p} d z
$$

which is a normalizing constant

Work in progress

Consider $B_{p} \subset L^{1}(\Omega) \times L^{1}(\Omega)$ the operator associated to the p-Laplacian with homogeneous boundary condition, that is, $(u, \hat{u}) \in B_{p}$ if and only if $\hat{u} \in L^{1}(\Omega), u \in W^{1, p}(\Omega)$ and

$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla v=\int_{\Omega} \hat{u} v \quad \text { for every } v \in W^{1, p}(\Omega) \cap L^{\infty}(\Omega)
$$

Work in progress

Consider $B_{p} \subset L^{1}(\Omega) \times L^{1}(\Omega)$ the operator associated to the p-Laplacian with homogeneous boundary condition, that is, $(u, \hat{u}) \in B_{p}$ if and only if $\hat{u} \in L^{1}(\Omega), u \in W^{1, p}(\Omega)$ and

$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla v=\int_{\Omega} \hat{u} v \quad \text { for every } v \in W^{1, p}(\Omega) \cap L^{\infty}(\Omega)
$$

Theorem Let Ω a smooth bounded domain in \mathbb{R}^{N}. Assume $J(x) \geq J(y)$ if $|x| \leq|y|$. For any $\phi \in L^{p}(\Omega)$,

$$
\left(I+B_{p}^{J_{p, \varepsilon}}\right)^{-1} \phi \rightarrow\left(I+B_{p}\right)^{-1} \phi \quad \text { in } L^{p}(\Omega) \text { as } \varepsilon \rightarrow 0
$$

Work in progress

Consider $B_{p} \subset L^{1}(\Omega) \times L^{1}(\Omega)$ the operator associated to the p-Laplacian with homogeneous boundary condition, that is, $(u, \hat{u}) \in B_{p}$ if and only if $\hat{u} \in L^{1}(\Omega), u \in W^{1, p}(\Omega)$ and

$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla v=\int_{\Omega} \hat{u} v \quad \text { for every } v \in W^{1, p}(\Omega) \cap L^{\infty}(\Omega) .
$$

Theorem Let Ω a smooth bounded domain in \mathbb{R}^{N}. Assume $J(x) \geq J(y)$ if $|x| \leq|y|$. For any $\phi \in L^{p}(\Omega)$,

$$
\left(I+B_{p}^{J_{p, \varepsilon}}\right)^{-1} \phi \rightarrow\left(I+B_{p}\right)^{-1} \phi \quad \text { in } L^{p}(\Omega) \text { as } \varepsilon \rightarrow 0 .
$$

Theorem Let Ω a smooth bounded domain in \mathbb{R}^{N}. Assume $J(x) \geq J(y)$ if $|x| \leq|y|$. Let $T>0$ and $u_{0} \in L^{p}(\Omega)$. Let u_{ε} the unique solution of $P_{p}^{J_{p, \varepsilon}}\left(u_{0}\right)$ and u the unique solution of $N_{p}\left(u_{0}\right)$. Then

$$
\lim _{\varepsilon \rightarrow 0} \sup _{t \in[0, T]}\left\|u_{\varepsilon}(., t)-u(., t)\right\|_{L^{p}(\Omega)}=0
$$

Work in progress

Theorem Let $1 \leq q<+\infty$. Let $\rho: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a nonnegative continuous radial function with compact support, non-identically zero, and $\rho_{n}(x):=n^{N} \rho(n x)$. Let $\left\{f_{n}\right\}$ be a sequence of functions in $L^{q}(\Omega)$ such that

$$
\begin{equation*}
\int_{\Omega} \int_{\Omega}\left|f_{n}(y)-f_{n}(x)\right|^{q} \rho_{n}(y-x) d x d y \leq M \frac{1}{n^{q}} \tag{1}
\end{equation*}
$$

1. If $\left\{f_{n}\right\}$ is weakly convergent in $L^{q}(\Omega)$ to f then
(i) if $q>1, f \in W^{1, q}(\Omega)$, and moreover

$$
(\rho(z))^{1 / q} \chi_{\Omega}\left(x+\frac{1}{n} z\right) \frac{f_{n}\left(x+\frac{1}{n} z\right)-f_{n}(x)}{1 / n} \rightharpoonup(\rho(z))^{1 / q} z \cdot \nabla f
$$

weakly in $L^{q}(\Omega) \times L^{q}\left(\mathbb{R}^{N}\right)$.
(ii) If $q=1, f \in B V(\Omega)$.

Work in progress

2. Assume that Ω is a smooth bounded domain in \mathbb{R}^{N} and $\rho(x) \geq \rho(y)$ if $|x| \leq|y|$. Then $\left\{f_{n}\right\}$ is relatively compact in $L^{q}(\Omega)$, and consequently, there exists a subsequence $\left\{f_{n_{k}}\right\}$ such that
(i) if $q>1, f_{n_{k}} \rightarrow f$ in $L^{q}(\Omega)$ with $f \in W^{1, q}(\Omega)$,
(ii) if $q=1, f_{n_{k}} \rightarrow f$ in $L^{1}(\Omega)$ with $f \in B V(\Omega)$.
