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Introduction

P J
γ (z0)








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









zt(t, x) =

∫

Ω

J(x − y)(u(t, y) − u(t, x)) dy, x ∈ Ω, t > 0,

z(t, x) ∈ γ(u(t, x)), x ∈ Ω, t > 0,

z(0, x) = z0(x), x ∈ Ω.

Ω is a bounded domain, z0 ∈ L1(Ω),

γ is a maximal monotone graph in R
2 such that 0 ∈ γ(0),

J : R
N → R is a nonnegative continuous radial function with

∫

R
N

J(r)dr = 1

and
0 ∈ int[supp(J)].
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Introduction

A solution of P J
γ (z0) in [0, T ] is a function z ∈ W 1,1(]0, T [;L1(Ω)) which

satisfies z(0, x) = z0(x), a.e. x ∈ Ω, and for which there exists
u ∈ L2(0, T ; L2(Ω)), z ∈ γ(u) a.e. in QT = Ω×]0, T [, such that

zt(t, x) =

∫

Ω

J(x − y)(u(t, y) − u(t, x)) dy a.e in ]0, T [×Ω.
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A solution of P J
γ (z0) in [0, T ] is a function z ∈ W 1,1(]0, T [;L1(Ω)) which

satisfies z(0, x) = z0(x), a.e. x ∈ Ω, and for which there exists
u ∈ L2(0, T ; L2(Ω)), z ∈ γ(u) a.e. in QT = Ω×]0, T [, such that

zt(t, x) =

∫

Ω

J(x − y)(u(t, y) − u(t, x)) dy a.e in ]0, T [×Ω.

“Under some natural assumptions about the initial condition z0, there exists a unique

global solution to P J
γ (z0). Moreover, a contraction principle holds, given two solutions

zi of P J
γ (zi0), i = 1, 2, then

∫

Ω

(z1(t) − z2(t))
+ ≤

∫

Ω

(z10 − z20)
+.

Respect to the asymptotic behaviour of the solution we prove that if γ is a continuous
function, then

lim
t→∞

z(t) =
1

|Ω|

∫

Ω

z0,

strongly in L1(Ω)”. Peral – p. 3/32



Introduction

If γ(r) = rm, problem P J
γ (z0) corresponds to the nonlocal version of the

porous medium (or fast diffusion) problems. Note also that γ may be
multivalued, so we are considering the nonlocal version of various
phenomena with phase changes like
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Introduction

If γ(r) = rm, problem P J
γ (z0) corresponds to the nonlocal version of the

porous medium (or fast diffusion) problems. Note also that γ may be
multivalued, so we are considering the nonlocal version of various
phenomena with phase changes like

Multiphase Stefan problem

γ(r) =











r − 1 if r < 0

[−1, 0] if r = 0

r if r > 0

¡
¡

¡
¡

¡¡

-1
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Introduction

The weak formulation of the Hele Shaw problem

γ(r) =











0 if r < 0

[0, 1] if r = 0

1 if r > 0

1
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Preliminaries

For a maximal monotone graph η in R × R we denote

η− := inf Ran(η) and η+ := sup Ran(η),

where Ran(η) denotes the range of η.
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For a maximal monotone graph η in R × R we denote

η− := inf Ran(η) and η+ := sup Ran(η),

where Ran(η) denotes the range of η.

The main section η0 of η

η0(s) :=















the element of minimal absolute value of η(s) if η(s) 6= ∅,

+∞ if [s,+∞) ∩ D(η) = ∅,

−∞ if (−∞, s] ∩ D(η) = ∅,

where D(η) denotes the domain of η.
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η− := inf Ran(η) and η+ := sup Ran(η),

where Ran(η) denotes the range of η.

The main section η0 of η

η0(s) :=















the element of minimal absolute value of η(s) if η(s) 6= ∅,

+∞ if [s,+∞) ∩ D(η) = ∅,

−∞ if (−∞, s] ∩ D(η) = ∅,

where D(η) denotes the domain of η.

If 0 ∈ D(η), jη(r) =
∫ r

0
η0(s)ds defines a convex l.s.c. function such that

η = ∂jη. If j∗η is the Legendre transform of jη then η−1 = ∂j∗η .
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Preliminaries

J0 = {j : R → [0, +∞], convex and lower semi-continuos with j(0) = 0}.
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Preliminaries

J0 = {j : R → [0, +∞], convex and lower semi-continuos with j(0) = 0}.

For u, v ∈ L1(Ω), Ph. Bénilan and M. G. Crandall (1991) defined

u ≪ v if and only if
∫

Ω

j(u) dx ≤

∫

Ω

j(v) dx ∀ j ∈ J0.
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J0 = {j : R → [0, +∞], convex and lower semi-continuos with j(0) = 0}.

For u, v ∈ L1(Ω), Ph. Bénilan and M. G. Crandall (1991) defined

u ≪ v if and only if
∫

Ω

j(u) dx ≤

∫

Ω

j(v) dx ∀ j ∈ J0.

Proposition Let Ω be a bounded domain in R
N .

(i) If u, v ∈ L1(Ω) and u ≪ v, then ‖u‖q ≤ ‖v‖q for any q ∈ [1, +∞].

(ii) If v ∈ L1(Ω), then {u ∈ L1(Ω) : u ≪ v} is a weakly compact subset of
L1(Ω).
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Preliminaries

The following Poincaré’s type inequality is given in [ E. Chasseigne, M.
Chaves and J. D. Rossi. Asymptotic behaviour for nonlocal diffusion equations.
To appear in J. Math. Pures Appl.]

Proposition 1 Given J and Ω the quantity

β1 := β1(J,Ω) = inf
u∈L2(Ω),

∫

Ω
u=0

1

2

∫

Ω

∫

Ω

J(x − y)(u(y) − u(x))2 dy dx
∫

Ω

(u(x))2 dx

is strictly positive. Consequently

β1

∫

Ω

∣

∣

∣

∣

u −
1

|Ω|

∫

Ω

u

∣

∣

∣

∣

2

≤
1

2

∫

Ω

∫

Ω

J(x−y)(u(y)−u(x))2 dy dx, ∀u ∈ L2(Ω).
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Preliminaries

To simplify the notation we define the linear self-adjoint operator
A : L2(Ω) → L2(Ω) by

Au(x) =

∫

Ω

J(x − y)(u(y) − u(x)) dy, x ∈ Ω.
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A : L2(Ω) → L2(Ω) by

Au(x) =

∫

Ω

J(x − y)(u(y) − u(x)) dy, x ∈ Ω.

−

∫

Ω

Au(x) u(x) dx =
1

2

∫

Ω

∫

Ω

J(x − y)(u(y) − u(x))2 dy dx.
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Preliminaries

To simplify the notation we define the linear self-adjoint operator
A : L2(Ω) → L2(Ω) by

Au(x) =

∫

Ω

J(x − y)(u(y) − u(x)) dy, x ∈ Ω.

−

∫

Ω

Au(x) u(x) dx =
1

2

∫

Ω

∫

Ω

J(x − y)(u(y) − u(x))2 dy dx.

Proposition 2 (Generalized Poincaré’s inequality) Let Ω ⊂ R
N be a

bounded open set and k > 0. There exists a constant C = C(J,Ω, k)

such that, for any K ⊂ Ω with |K| > k,

‖u‖L2(Ω) ≤ C

(

(

−

∫

Ω

Au u

)1/2

+ ‖u‖L2(K)

)

∀u ∈ L2(Ω).
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Preliminaries

Lemma Let γ be a maximal monotone graph in R
2 such that 0 ∈ γ(0).

Let {un}n∈N ⊂ L2(Ω) and {zn}n∈N ⊂ L1(Ω) such that, for every n ∈ N,
zn ∈ γ(un) a.e. in Ω. Let us suppose that
(i) if γ+ = +∞, there exists M > 0 such that

∫

Ω

z+
n < M, ∀n ∈ N,

(ii) if γ+ < +∞, there exists M ∈ R and h > 0 such that

∫

Ω

zn < M < γ+|Ω|, ∀n ∈ N

and
∫

{x∈Ω:zn(x)<−h}

|zn| <
γ+|Ω| − M

4
, ∀n ∈ N.

Then, there exists a constant C, such that

‖u+
n ‖L2(Ω) ≤ C

(

(

−

∫

Ω

Au+
n u+

n

)1/2

+ 1

)

, ∀n ∈ N. Peral – p. 10/32



Preliminaries

Let us suppose that
(iii) if γ− = −∞, there exists M > 0 such that

∫

Ω

z−n < M, ∀n ∈ N,

(iv) if γ− > −∞, there exists M ∈ R and h > 0 such that

∫

Ω

zn > M > γ−|Ω|, ∀n ∈ N

and
∫

{x∈Ω:zn(x)>h}

zn <
M − γ−|Ω|

4
, ∀n ∈ N.

Then, there exists a constant C̃, such that

‖u−
n ‖L2(Ω) ≤ C̃

(

(

−

∫

Ω

Au−
n u−

n

)1/2

+ 1

)

, ∀n ∈ N.
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Mild solutions

Given a maximal monotone graph γ in R
2 such that 0 ∈ γ(0), γ− < γ+,

we consider the problem,

(Sγ
φ) γ(u) − Au ∋ φ in Ω.
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Mild solutions

Given a maximal monotone graph γ in R
2 such that 0 ∈ γ(0), γ− < γ+,

we consider the problem,

(Sγ
φ) γ(u) − Au ∋ φ in Ω.

Definition Let φ ∈ L1(Ω). A pair of functions (u, z) ∈ L2(Ω) × L1(Ω) is a
solution of problem (Sγ

φ) if z(x) ∈ γ(u(x)) a.e. x ∈ Ω and
z(x) − Au(x) = φ(x) a.e. x ∈ Ω, that is,

z(x) −

∫

Ω

J(x − y)(u(y) − u(x)) dy = φ(x) a.e. x ∈ Ω.
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Mild solutions

Theorem 1 (Maximun Principle)
(i) Let φ1 ∈ L1(Ω) and (u1, z1) a subsolution of (Sγ

φ1
), that is,

z1(x) ∈ γ(u1(x)) a.e. x ∈ Ω and z1(x)−Au1(x) ≤ φ1(x) a.e. x ∈ Ω, and let
φ2 ∈ L1(Ω) and (u2, z2) a supersolution of (Sγ

φ2
), that is, z2(x) ∈ γ(u2(x))

a.e. x ∈ Ω and z2(x) − Au2(x) ≥ φ2(x) a.e. x ∈ Ω. Then

∫

Ω

(z1 − z2)
+ ≤

∫

Ω

(φ1 − φ2)
+.

Moreover, if φ1 ≤ φ2, φ1 6= φ2, then u1(x) ≤ u2(x) a.e. x ∈ Ω.

(ii) Let φ ∈ L1(Ω), and (u1, z1), (u2, z2) two solutions of (Sγ
φ). Then,

z1 = z2 a.e. and there exists a constant c such that u1 = u2 + c, a.e.
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Theorem 1 (Maximun Principle)
(i) Let φ1 ∈ L1(Ω) and (u1, z1) a subsolution of (Sγ

φ1
), that is,

z1(x) ∈ γ(u1(x)) a.e. x ∈ Ω and z1(x)−Au1(x) ≤ φ1(x) a.e. x ∈ Ω, and let
φ2 ∈ L1(Ω) and (u2, z2) a supersolution of (Sγ

φ2
), that is, z2(x) ∈ γ(u2(x))

a.e. x ∈ Ω and z2(x) − Au2(x) ≥ φ2(x) a.e. x ∈ Ω. Then

∫

Ω

(z1 − z2)
+ ≤

∫

Ω

(φ1 − φ2)
+.

Moreover, if φ1 ≤ φ2, φ1 6= φ2, then u1(x) ≤ u2(x) a.e. x ∈ Ω.

(ii) Let φ ∈ L1(Ω), and (u1, z1), (u2, z2) two solutions of (Sγ
φ). Then,

z1 = z2 a.e. and there exists a constant c such that u1 = u2 + c, a.e.

Let k > 0. Since (u, ku) is a supersolution of (Sγ
0 ), where γ(r) = kr, and

(0, 0) is a subsolution of (Sγ
0 ), by Theorem 1, we have
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Mild solutions

Corollary Let k > 0 and u ∈ L2(Ω) such that

ku − Au ≥ 0 a.e. in Ω,

then u ≥ 0 a.e. in Ω.
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Mild solutions

Corollary Let k > 0 and u ∈ L2(Ω) such that

ku − Au ≥ 0 a.e. in Ω,

then u ≥ 0 a.e. in Ω.

Lemma 1 Assume γ : R → R is a nondecreasing Lipschitz continuous
function with γ(0) = 0 and γ− < γ+. Let φ ∈ C(Ω) such that
γ− < φ < γ+. Then, there exists a solution (u, γ(u)) of problem (Sγ

φ).
Moreover, γ(u) ≪ φ.
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Mild solutions

Corollary Let k > 0 and u ∈ L2(Ω) such that

ku − Au ≥ 0 a.e. in Ω,

then u ≥ 0 a.e. in Ω.

Lemma 1 Assume γ : R → R is a nondecreasing Lipschitz continuous
function with γ(0) = 0 and γ− < γ+. Let φ ∈ C(Ω) such that
γ− < φ < γ+. Then, there exists a solution (u, γ(u)) of problem (Sγ

φ).
Moreover, γ(u) ≪ φ.

Lemma 2 Assume γ is a maximal monotone graph in R
2,

] −∞, 0] ⊂ D(γ), 0 ∈ γ(0), γ− < γ+. Let γ̃(s) = γ(s) if s < 0, γ̃(s) = 0 if
s ≥ 0. Assume γ̃ is Lipschitz continuous in ] −∞, 0]. Let φ ∈ C(Ω) such
that γ− < φ < γ+. Then, there exists a solution (u, z) of (Sγ

φ). Moreover,
z ≪ φ.
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Mild solutions

Sketch of proof of Lemma 2: Let γr, r ∈ N, be the Yosida approximation
of γ and let the maximal monotone graph

γr(s) =







γ(s) if s < 0,

γr(s) if s ≥ 0.

γr is a nondecreasing Lipschitz continuous function with γr(0) = 0 and
γr ≤ γr+1.

Peral – p. 15/32



Mild solutions

Sketch of proof of Lemma 2: Let γr, r ∈ N, be the Yosida approximation
of γ and let the maximal monotone graph

γr(s) =







γ(s) if s < 0,

γr(s) if s ≥ 0.

γr is a nondecreasing Lipschitz continuous function with γr(0) = 0 and
γr ≤ γr+1.
Theorem 2 Assume γ is a maximal monotone graph in R

2, 0 ∈ γ(0) and
γ− < γ+. Let φ ∈ C(Ω) such that γ− < φ < γ+. Then, there exists a
solution (u, z) of (Sγ

φ).
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Mild solutions

Sketch of proof of Lemma 2: Let γr, r ∈ N, be the Yosida approximation
of γ and let the maximal monotone graph

γr(s) =







γ(s) if s < 0,

γr(s) if s ≥ 0.

γr is a nondecreasing Lipschitz continuous function with γr(0) = 0 and
γr ≤ γr+1.
Theorem 2 Assume γ is a maximal monotone graph in R

2, 0 ∈ γ(0) and
γ− < γ+. Let φ ∈ C(Ω) such that γ− < φ < γ+. Then, there exists a
solution (u, z) of (Sγ

φ).

Sketch of proof of Theorem 2 Let γr, r ∈ N, be the Yosida
approximation of γ and let the maximal monotone graph

γr(s) =







γ(s) if s > 0,

γr(s) if s ≤ 0.
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Mild solutions

Bγ :=

{

(z, ẑ) ∈ L1(Ω) × L1(Ω) : ∃u ∈ L2(Ω) such that

(u, z) is a solution of (Sγ
z+ẑ)

}

,

in other words, ẑ ∈ Bγ(z) if and only if there exists u ∈ L2(Ω) such that
z(x) ∈ γ(u(x)) a.e. in Ω, and

−

∫

Ω

J(x − y)(u(y) − u(x)) dy = ẑ(x), a.e. x ∈ Ω.
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Mild solutions

Bγ :=

{

(z, ẑ) ∈ L1(Ω) × L1(Ω) : ∃u ∈ L2(Ω) such that

(u, z) is a solution of (Sγ
z+ẑ)

}

,

in other words, ẑ ∈ Bγ(z) if and only if there exists u ∈ L2(Ω) such that
z(x) ∈ γ(u(x)) a.e. in Ω, and

−

∫

Ω

J(x − y)(u(y) − u(x)) dy = ẑ(x), a.e. x ∈ Ω.

(CP )







z′(t) + Bγ(z(t)) ∋ 0 t ∈ (0, T )

z(0) = z0.
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Mild solutions

Corollary Assume γ is a maximal monotone graph in R
2, 0 ∈ γ(0).

Then, the operator Bγ is T -accretive in L1(Ω) and satisfies

{

φ ∈ C(Ω) : γ− < φ < γ+

}

⊂ Ran(I + Bγ).
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Mild solutions

Corollary Assume γ is a maximal monotone graph in R
2, 0 ∈ γ(0).

Then, the operator Bγ is T -accretive in L1(Ω) and satisfies

{

φ ∈ C(Ω) : γ− < φ < γ+

}

⊂ Ran(I + Bγ).

z(t) is a solution of P J
γ (z0) if and only if z(t) is a strong solution of

problem (CP)
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Mild solutions

Corollary Assume γ is a maximal monotone graph in R
2, 0 ∈ γ(0).

Then, the operator Bγ is T -accretive in L1(Ω) and satisfies

{

φ ∈ C(Ω) : γ− < φ < γ+

}

⊂ Ran(I + Bγ).

z(t) is a solution of P J
γ (z0) if and only if z(t) is a strong solution of

problem (CP)

Theorem 3 Let T > 0 and zi0 ∈ L1(Ω), i = 1, 2. Let zi be a solution in
[0, T ] of P J

γ (zi0), i = 1, 2. Then

∫

Ω

(z1(t) − z2(t))
+ ≤

∫

Ω

(z10 − z20)
+

for almost every t ∈]0, T [.
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Mild solutions

Theorem 4 Assume γ is a maximal monotone graph in R
2. Then, we

have

D(Bγ)
L1(Ω)

=
{

z ∈ L1(Ω) : γ− ≤ z ≤ γ+

}

.
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Mild solutions

Theorem 4 Assume γ is a maximal monotone graph in R
2. Then, we

have

D(Bγ)
L1(Ω)

=
{

z ∈ L1(Ω) : γ− ≤ z ≤ γ+

}

.

Theorem 5 Assume γ is a maximal monotone graph in R
2. Let T > 0

and let z0 ∈ L1(Ω) satisfying γ− ≤ z0 ≤ γ+. Then, there exists a unique
mild solution of (CP). Moreover z ≪ z0.
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Mild solutions

Theorem 4 Assume γ is a maximal monotone graph in R
2. Then, we

have

D(Bγ)
L1(Ω)

=
{

z ∈ L1(Ω) : γ− ≤ z ≤ γ+

}

.

Theorem 5 Assume γ is a maximal monotone graph in R
2. Let T > 0

and let z0 ∈ L1(Ω) satisfying γ− ≤ z0 ≤ γ+. Then, there exists a unique
mild solution of (CP). Moreover z ≪ z0.

By Crandall-Liggett’s Theorem, the mild solution obtained above is
given by the well-known exponential formula,

e−tBγ

z0 = lim
n→∞

(

I +
t

n
Bγ

)−n

z0.
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Mild solutions

Theorem 4 Assume γ is a maximal monotone graph in R
2. Then, we

have

D(Bγ)
L1(Ω)

=
{

z ∈ L1(Ω) : γ− ≤ z ≤ γ+

}

.

Theorem 5 Assume γ is a maximal monotone graph in R
2. Let T > 0

and let z0 ∈ L1(Ω) satisfying γ− ≤ z0 ≤ γ+. Then, there exists a unique
mild solution of (CP). Moreover z ≪ z0.

By Crandall-Liggett’s Theorem, the mild solution obtained above is
given by the well-known exponential formula,

e−tBγ

z0 = lim
n→∞

(

I +
t

n
Bγ

)−n

z0.

Theorem 6 Let z0 ∈ L1(Ω) such that γ− ≤ z0 ≤ γ+, γ− < 1
|Ω|

∫

Ω
z0 < γ+

and
∫

Ω
j∗γ(z0) < +∞. Then, there exists a unique solution to P J

γ (z0) in
[0, T ] for every T > 0.
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Existence of solutions

Sketch of Proof We divide the proof in three steps.
Step 1. First, let us suppose that

there exist c1, c2 such that c1 ≤ c2, m1 ∈ γ(c1), m2 ∈ γ(c2)

and γ− < m1 ≤ z0 ≤ m2 < γ+.

Let z(t) be the mild solution of (CP) given by Theorem 5. We shall
show that z is a solution of problem P J

γ (z0).
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Existence of solutions

Sketch of Proof We divide the proof in three steps.
Step 1. First, let us suppose that

there exist c1, c2 such that c1 ≤ c2, m1 ∈ γ(c1), m2 ∈ γ(c2)

and γ− < m1 ≤ z0 ≤ m2 < γ+.

Let z(t) be the mild solution of (CP) given by Theorem 5. We shall
show that z is a solution of problem P J

γ (z0).

For n ∈ N, let ε = T/n, and consider a subdivision
t0 = 0 < t1 < · · · < tn−1 < T = tn with ti − ti−1 = ε. Then, it follows that

z(t) = L1(Ω)- lim
ε

zε(t) uniformly for t ∈ [0, T ],

where zε(t) is given, for ε small enough, by







zε(t) = z0 for t ∈] −∞, 0],

zε(t) = zn
i , for t ∈]ti−1, ti], i = 1, . . . , n, Peral – p. 19/32



Existence of solutions

where (un
i , zn

i ) ∈ L2(Ω) × L1(Ω) is the solution of

(∗) −Aun
i +

zn
i − zn

i−1

ε
= 0, i = 1, 2, . . . , n.
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Existence of solutions

where (un
i , zn

i ) ∈ L2(Ω) × L1(Ω) is the solution of

(∗) −Aun
i +

zn
i − zn

i−1

ε
= 0, i = 1, 2, . . . , n.

Moreover, zn
i ≪ z0. Hence γ− < m1 ≤ zn

i ≤ m2 < γ+ and consequently,

inf γ−1(m1) ≤ un
i ≤ sup γ−1(m2).
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Existence of solutions

where (un
i , zn

i ) ∈ L2(Ω) × L1(Ω) is the solution of

(∗) −Aun
i +

zn
i − zn

i−1

ε
= 0, i = 1, 2, . . . , n.

Moreover, zn
i ≪ z0. Hence γ− < m1 ≤ zn

i ≤ m2 < γ+ and consequently,

inf γ−1(m1) ≤ un
i ≤ sup γ−1(m2).

Therefore, if we write

uε(t) = un
i , t ∈]ti−1, ti], i = 1, . . . , n,

we can suppose that

uε ⇀ u weakly in L2(0, T ; L2(Ω)) as ε → 0+.
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Existence of solutions

Since
zε ∈ γ(uε) a.e.in QT ,

zε → z in L1(QT ),

we obtain that z ∈ γ(u) a.e. in QT .
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zε ∈ γ(uε) a.e.in QT ,

zε → z in L1(QT ),

we obtain that z ∈ γ(u) a.e. in QT .

On the other hand, from (*),

zε(t) − zε(t − ε)

ε
⇀ zt weakly in L2(0, T ; L2(Ω)) as ε → 0+.
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Existence of solutions

Since
zε ∈ γ(uε) a.e.in QT ,

zε → z in L1(QT ),

we obtain that z ∈ γ(u) a.e. in QT .

On the other hand, from (*),

zε(t) − zε(t − ε)

ε
⇀ zt weakly in L2(0, T ; L2(Ω)) as ε → 0+.

Step 2. Let now z0 ∈ L1(Ω) such that

γ− ≤ z0 ≤ γ+, γ−|Ω| <

∫

Ω

z0 < γ−|Ω|,

∫

Ω

j∗γ(z0) < +∞

and
there exists c1 and m1 ∈ γ(c1) with γ− < m1 ≤ z0
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Asymptotic behaviour

The nonlinear contraction semigroup e−tBγ

generated by the operator
−Bγ will be denoted in the sequel by (S(t))t≥0.
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The nonlinear contraction semigroup e−tBγ

generated by the operator
−Bγ will be denoted in the sequel by (S(t))t≥0.

ω(z0) =
{

w ∈ L1(Ω) : ∃ tn → ∞ with S(tn)z0 → w, strongly in L1(Ω)
}

ωσ(z0) =
{

w ∈ L1(Ω) : ∃ tn → ∞ with S(tn)z0 ⇀ w, weakly in L1(Ω)
}

.
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{
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}

.

Since S(t)z0 ≪ z0, ωσ(z0) 6= ∅ always.
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Asymptotic behaviour

The nonlinear contraction semigroup e−tBγ

generated by the operator
−Bγ will be denoted in the sequel by (S(t))t≥0.

ω(z0) =
{

w ∈ L1(Ω) : ∃ tn → ∞ with S(tn)z0 → w, strongly in L1(Ω)
}

ωσ(z0) =
{

w ∈ L1(Ω) : ∃ tn → ∞ with S(tn)z0 ⇀ w, weakly in L1(Ω)
}

.

Since S(t)z0 ≪ z0, ωσ(z0) 6= ∅ always.

Since S(t) preserves the total mass, for all w ∈ ωσ(z0),

∫

Ω

w =

∫

Ω

z0.
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Asymptotic behaviour

We denote by F the set of fixed points of the semigroup (S(t)), that is,

F =

{

w ∈ D(Bγ)
L1(Ω)

: S(t)w = w ∀ t ≥ 0

}

.
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Asymptotic behaviour

We denote by F the set of fixed points of the semigroup (S(t)), that is,

F =

{

w ∈ D(Bγ)
L1(Ω)

: S(t)w = w ∀ t ≥ 0

}

.

F =
{

w ∈ L1(Ω) : ∃k ∈ D(γ) such that w ∈ γ(k)
}

.
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Asymptotic behaviour

We denote by F the set of fixed points of the semigroup (S(t)), that is,

F =

{

w ∈ D(Bγ)
L1(Ω)

: S(t)w = w ∀ t ≥ 0

}

.

F =
{

w ∈ L1(Ω) : ∃k ∈ D(γ) such that w ∈ γ(k)
}

.

Theorem Let z0 ∈ L1(Ω) such that γ− ≤ z0 ≤ γ+, γ− < 1
|Ω|

∫

Ω
z0 < γ+

and
∫

Ω
j∗γ(z0) < +∞. Then, ωσ(z0) ⊂ F . Moreover, if ω(z0) 6= ∅, then

ω(z0) consists of a unique w ∈ F , and consequently,

lim
t→∞

S(t)z0 = w strongly in L1(Ω).
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Asymptotic behaviour

In order to proof that ω(z0) 6= ∅, a usual tool is to show that the
resolvent of Bγ is compact. In our case this fails in general as the
following example shows.

Peral – p. 24/32



Asymptotic behaviour

In order to proof that ω(z0) 6= ∅, a usual tool is to show that the
resolvent of Bγ is compact. In our case this fails in general as the
following example shows.

Let γ any maximal monotone graph with γ(0) = [0, 1], zn ∈ L∞(Ω),
0 ≤ zn ≤ 1 such that {zn} is not relatively compact in L1(Ω). It is easy to
check that zn = (I + Bγ)−1(zn). Hence (I + Bγ)−1 is not a compact
operator in L1(Ω).
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Asymptotic behaviour

In order to proof that ω(z0) 6= ∅, a usual tool is to show that the
resolvent of Bγ is compact. In our case this fails in general as the
following example shows.

Let γ any maximal monotone graph with γ(0) = [0, 1], zn ∈ L∞(Ω),
0 ≤ zn ≤ 1 such that {zn} is not relatively compact in L1(Ω). It is easy to
check that zn = (I + Bγ)−1(zn). Hence (I + Bγ)−1 is not a compact
operator in L1(Ω).

Given a maximal monotone graph γ in R × R, we set

γ(r+) := inf γ(]r, +∞[), γ(r−) := sup γ(] −∞, r[)

γ(r) = [γ(r−), γ(r+)] ∩ R for r ∈ R.

Moreover, γ(r−) = γ(r+) except at a countable set of points, which we
denote by J(γ).
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Asymptotic behaviour

Teorem Let z0 ∈ L1(Ω) such that γ− ≤ z0 ≤ γ+, γ− < 1
|Ω|

∫

Ω
z0 < γ+ and

∫

Ω
j∗γ(z0) < +∞. The following statements hold.

(1) If
1

|Ω|

∫

Ω

z0 6∈ γ(J(γ))

or
1

|Ω|

∫

Ω

z0 ∈ {γ(k+), γ(k−)} for some k ∈ J(γ),

then

lim
t→∞

S(t)z0 =
1

|Ω|

∫

Ω

z0 strongly in L1(Ω).
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Teorem Let z0 ∈ L1(Ω) such that γ− ≤ z0 ≤ γ+, γ− < 1
|Ω|

∫

Ω
z0 < γ+ and

∫

Ω
j∗γ(z0) < +∞. The following statements hold.

(1) If
1

|Ω|

∫

Ω

z0 6∈ γ(J(γ))

or
1

|Ω|

∫

Ω

z0 ∈ {γ(k+), γ(k−)} for some k ∈ J(γ),

then

lim
t→∞

S(t)z0 =
1

|Ω|

∫

Ω

z0 strongly in L1(Ω).

(2) If γ is a continuous function then

lim
t→∞

S(t)z0 =
1

|Ω|

∫

Ω

z0 strongly in L1(Ω).
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Asymptotic behaviour

(3) If
1

|Ω|

∫

Ω

z0 ∈]γ(k−), γ(k+)[ for some k ∈ J(γ),

then

ωσ(z0) ⊂

{

w ∈ L1(Ω) : w ∈ [γ(k−), γ(k+)] a.e.,

∫

Ω

w =

∫

Ω

z0

}

.
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Work in progress

The nonlocal p-Laplacian-type problem (with homogeneous Neumann
boundary condition),

P J
p (u0)











ut(x, t) =

∫

Ω

J(x − y)|u(y, t) − u(x, t)|p−2(u(y, t) − u(x, t)) dy,

u(x, 0) = u0(x).

where J : R
N → R is a nonnegative continuous radial function with

compact support,
∫

R
N J(x)dx = 1 and J(0) > 0, 1 ≤ p < +∞ and

Ω ⊂ R
N is a bounded domain.
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Work in progress

The nonlocal p-Laplacian-type problem (with homogeneous Neumann
boundary condition),

P J
p (u0)











ut(x, t) =

∫

Ω

J(x − y)|u(y, t) − u(x, t)|p−2(u(y, t) − u(x, t)) dy,

u(x, 0) = u0(x).

where J : R
N → R is a nonnegative continuous radial function with

compact support,
∫

R
N J(x)dx = 1 and J(0) > 0, 1 ≤ p < +∞ and

Ω ⊂ R
N is a bounded domain.

Definition Let 1 < p < +∞. A solution of P J
p (z0) in [0, T ] is a function

u ∈ W 1,1(]0, T [;L1(Ω)) ∩ L1(0, T ; Lp(Ω)) which satisfies u(0, x) = u0(x)
a.e. x ∈ Ω and

ut(t, x) =

∫

Ω

J(x−y)|u(y, t)−u(x, t)|p−2(u(y, t)−u(x, t)) dy a.e in (0, T )×Ω.
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Work in progress

Definition For 1 < p < +∞ we define the operator BJ
p : Lp(Ω) → Lp′

(Ω)

by

BJ
p u(x) = −

∫

Ω

J(x − y)|u(y) − u(x)|p−2(u(y) − u(x)) dy, x ∈ Ω.

Note that we can consider BJ
p as an operator in L1(Ω) with

Dom(BJ
p ) = Lp(Ω).
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Work in progress

Definition For 1 < p < +∞ we define the operator BJ
p : Lp(Ω) → Lp′

(Ω)

by

BJ
p u(x) = −

∫

Ω

J(x − y)|u(y) − u(x)|p−2(u(y) − u(x)) dy, x ∈ Ω.

Note that we can consider BJ
p as an operator in L1(Ω) with

Dom(BJ
p ) = Lp(Ω).

Theorem For 1 < p < +∞, the operator BJ
p is completely accretive and

verifies the range condition

Lp(Ω) ⊂ Ran(I + BJ
p ).

If BJ
p denotes the closure of BJ

p in L1(Ω), then BJ
p is m-completely

accretive in L1(Ω).
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Work in progress

For any u0 ∈ L1(Ω), there exists a unique mild solution u of the abstract
Cauchy problem

(CP )











u′(t) + BJ
p u(t) ∋ 0 t ∈ (0, T )

u(0) = u0.
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Work in progress

For any u0 ∈ L1(Ω), there exists a unique mild solution u of the abstract
Cauchy problem

(CP )











u′(t) + BJ
p u(t) ∋ 0 t ∈ (0, T )

u(0) = u0.

Theorem Assume p > 1. Let T > 0 and let u0 ∈ Lp(Ω). Then, the unique
mild solution u of (CP) is a solution of P J

p (u0).
Moreover, for i = 1, 2, let ui0 ∈ L1(Ω); let ui be a solution in [0, T ] of
P J

p (ui0), i = 1, 2. Then

∫

Ω

(u1(t) − u2(t))
+ ≤

∫

Ω

(u10 − u20)
+ for almost every t ∈]0, T [.

Peral – p. 29/32



Work in progress

We show that the solutions of

Np(u0)















ut = ∆pu in Ω × (0, T )
∂u

∂ηa
= 0 on ∂Ω × (0, T )

u(x, 0) = u0(x) in Ω,

can be approximated by solutions of a sequence of nonlocal
p-Laplacian problems.
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Work in progress

We show that the solutions of

Np(u0)















ut = ∆pu in Ω × (0, T )
∂u

∂ηa
= 0 on ∂Ω × (0, T )

u(x, 0) = u0(x) in Ω,

can be approximated by solutions of a sequence of nonlocal
p-Laplacian problems.

For given p > 1 and J we consider the rescaled kernels

Jp,ε(x) :=
CJ,p

εp+N
J

(x

ε

)

with

C−1
J,p :=

1

2

∫

R
N

J(z)|zN |p dz

which is a normalizing constant
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Work in progress

Consider Bp ⊂ L1(Ω) × L1(Ω) the operator associated to the
p-Laplacian with homogeneous boundary condition, that is, (u, û) ∈ Bp

if and only if û ∈ L1(Ω), u ∈ W 1,p(Ω) and

∫

Ω

|∇u|p−2∇u · ∇v =

∫

Ω

ûv for every v ∈ W 1,p(Ω) ∩ L∞(Ω).
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Work in progress

Consider Bp ⊂ L1(Ω) × L1(Ω) the operator associated to the
p-Laplacian with homogeneous boundary condition, that is, (u, û) ∈ Bp

if and only if û ∈ L1(Ω), u ∈ W 1,p(Ω) and

∫

Ω

|∇u|p−2∇u · ∇v =

∫

Ω

ûv for every v ∈ W 1,p(Ω) ∩ L∞(Ω).

Theorem Let Ω a smooth bounded domain in R
N . Assume J(x) ≥ J(y)

if |x| ≤ |y|. For any φ ∈ Lp(Ω),

(

I + BJp,ε
p

)−1
φ → (I + Bp)

−1
φ in Lp(Ω) as ε → 0.
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Work in progress

Consider Bp ⊂ L1(Ω) × L1(Ω) the operator associated to the
p-Laplacian with homogeneous boundary condition, that is, (u, û) ∈ Bp

if and only if û ∈ L1(Ω), u ∈ W 1,p(Ω) and

∫

Ω

|∇u|p−2∇u · ∇v =

∫

Ω

ûv for every v ∈ W 1,p(Ω) ∩ L∞(Ω).

Theorem Let Ω a smooth bounded domain in R
N . Assume J(x) ≥ J(y)

if |x| ≤ |y|. For any φ ∈ Lp(Ω),

(

I + BJp,ε
p

)−1
φ → (I + Bp)

−1
φ in Lp(Ω) as ε → 0.

Theorem Let Ω a smooth bounded domain in R
N . Assume J(x) ≥ J(y)

if |x| ≤ |y|. Let T > 0 and u0 ∈ Lp(Ω). Let uε the unique solution of

P
Jp,ε
p (u0) and u the unique solution of Np(u0). Then

lim
ε→0

sup
t∈[0,T ]

‖uε(., t) − u(., t)‖Lp(Ω) = 0.
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Work in progress

Theorem Let 1 ≤ q < +∞. Let ρ : R
N → R be a nonnegative continuous

radial function with compact support, non-identically zero, and
ρn(x) := nNρ(nx). Let {fn} be a sequence of functions in Lq(Ω) such
that

∫

Ω

∫

Ω

|fn(y) − fn(x)|qρn(y − x)dxdy ≤ M
1

nq
. (1)

1. If {fn} is weakly convergent in Lq(Ω) to f then
(i) if q > 1, f ∈ W 1,q(Ω), and moreover

(ρ(z))
1/q χΩ

(

x +
1

n
z

)

fn

(

x + 1
nz

)

− f
n
(x)

1/n
⇀ (ρ(z))

1/q
z · ∇f

weakly in Lq(Ω) × Lq(RN ).
(ii) If q = 1, f ∈ BV (Ω).
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Work in progress

2. Assume that Ω is a smooth bounded domain in R
N and ρ(x) ≥ ρ(y) if

|x| ≤ |y|. Then {fn} is relatively compact in Lq(Ω), and consequently,
there exists a subsequence {fnk

} such that
(i) if q > 1, fnk

→ f in Lq(Ω) with f ∈ W 1,q(Ω),
(ii) if q = 1, fnk

→ f in L1(Ω) with f ∈ BV (Ω).
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