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ii Feliz Cumpleanos Ireneo !!

iLarga vida al p-Laplaciano!

i Ala Madrid !

Muchas gracias por tu generosidad
y por tus ensenanzas matematicas.



For p > 2 consider the evolutionaryp-Laplacian:

% — V- (Vo2 (1)

This equation can be viewed as both, in divergence form and in
non-divergence form.

Therefore there are many choices for the definition of weak
solution.

Our objective is to study the regularity of the viscosity super-
solutions and their spatial gradients.



We will present a new, simpler proof of the existence of Vv in
Sobolev's sense and of the validity of the equation

//Q (-Jé—f + (|Vv|P~2 Vo, Vgo))dac dt > 0 (2)

for all test functions ¢ > 0. Here €2 is the underlying domain in
R™**+1 and v is a bounded viscosity supersolution in .

The first step of our proof is to establish (1.2) for the so-called
infimal convolution ve, constructed from v through a simple for-
mula. The function ve has the advantage of being differentiable
with respect to all its variables xq1,x>,--- ,xn, and t, while the
original v is merely lower semicontinuous. The second step is to
pass to the |limit as ¢ — 0. It is clear that ve — v but we also
need convergence of the Vu¢'s.



Different types of supersolutions:

e (Sobolev) weak supersolutions (test functions under the in-
tegral sign);

e viscosity supersolutions (test functions evaluated at points
of contact);

e (potential theoretic) p-superparabolic functions (defined via
a comparison principle).



Sobolev weak supersolutions are assumed to belong to the Sobolev
space Wlp buty they do not form a good closed class under
monotone convergence.

Viscosity supersolutions are assumed to be merely lower semicon-
tinuous. So are the p-superparabolic functions. They coincide
(Juutinen-Lindqgvist-M, 2001)

Lindgvist (1986) for the elliptic case and Kinnunen-Lindqvist
(2005, 2006) for the parablic case proved that BOUNDED p-
superparabolic functions are weak supersolutions satisfying (1.2).

Our contribution is a simpler proof of the last fact by using
technology from the theory of viscosity solutions.



T he elliptic case:

We begin with the p-Laplace equation
V- (|[VuP2ve) =0

in a domain €2 in R™.

Recall that v € Wé’f(Q) is a weak supersolution in €2, if

|92V, Veydz > 0 (3)

whenever ¢ > 0 and ¢ € C3°(€2). If the integral inequality is
reversed, we say that v is a (Sobolev) weak subsolution.



Definition 1 We say that the function v : Q — (—o0,00] is p-
superharmonic in €2, if

(i) v # oo,

(ii) v is lower semicontinuous,

(iii) v obeys the comparison principle in each subdomain D CC Q :
if h € C(D) is p-harmonic in D, then the inequality v > h on
0D implies that v > h in D.

Notice that the definition does not include any regularity hypoth-
esis about V.



Definition 2 Let p > 2. We say that the function v : 2 —
(—oc0, 00] is a viscosity supersolution in 2, if

(i) v# o0,
(ii) v is lower semicontinuous, and

(iii) whenever xq € Q2 and ¢ € C?(Q2) are such that

v(zg) = p(x0), and
v(z) > o(x) when x # xq,

we have
V- (IVe(zo)lP~2Ve(0)) < 0.



Definition 1 and Definition 2 are equivalent (Juutinen-Lindqvist-
M, 2001.)

Theorem 1 (Lindqvist, 1986) Suppose that v is a locally bounded
p-superharmonic function in €2. Then the Sobolev derivative Vv
exists and v € W,%;?(Q). Moreover, v is a weak supersolution,

I.e.,
/Q<|W|p—2w, Vo)dz > 0

whenever ¢ € C3°(2), ¢ > 0.



Sketch of the proof of Theorem 1: WLOG

0<w(x) <L, when zec Q. (4)
Use the inf-convolutions:
|z —y|?
ve(x) = inf + v(y) x € 2, (5)
ye 2¢

thye have many good properties: they are rather smooth, they
form an increasing sequence converging to v(z) as e — 01, and
from v they inherit the property of belng Vviscosity supersolutions
themselves. (The function ve(x) —% is locally concave in 2. so
that the Sobolev gradient Vve exists and Ve € Li3-(£2).)



Proposition 1 The approximant ve is a viscosity supersolution
in the open subset of 2 where dist (x,02) > V2Le.

Write
Qe = {:13 c Q: dist (x,0Q) > \/26L}.

Theorem 2 The approximant ve obeys the comparison principle
in Q2¢. In other words, given a domain D CC S2¢ and a p-harmonic
function h € C(D), then the implication

ve > h on 0D = wve > h in D
holds.



The comparison principle implies that ve is a weak supersolution
with test functions under the integral sign. The proof is based
on an obstacle problem in the calculus of variations.

Theorem 3 The approximant ve is a weak supersolution in 2,
i.e.,
| (Vw2 Ve, Vig)da > 0 (6)

whenever ¢ € C5°(2¢) and ¢ > 0.



The next lemma contains a bound that is independent of e.

Lemma 1 (Caccioppoli) We have

| PIvuede < pP 2P [ |V¢Pda (7)

whenever ¢ € C5°(£2) and ¢ > 0.
Corollary 1 The Sobolev derivative Vv exists and Vv € L (2).

Use Lemma 1 and a standard compactness argument. In order
to proceed to the limit under the integral sign in (6) we need
more than the weak convergence: Vwve — Vv locally weakly in
LP(€2). Actually, the convergence is strong.



Lemma 2 (of Minty type) We have that Vve — Vv strongly in
LY, (€2).

Let 6 € C5°(€2) and 6 > 0. Use the test function ¢ = (v —v¢)0 in
(6).

Note that ¢ > 0.

The inequality can be written as

/Q 0(|Vu[P~2Vo — |VuelP~2Voe, Vo — Vo) dz
+ /Q(v — v ){|V[PT2Vu — |[Vue P72 Ve, V) dx

< /Q<|W|p—2w, V(v = ve)0)) dz



T he parabolic case:

We say that v is a (Sobolev) weak supersolution in 2, if v €
L(t1,t>; WLP(D)) whenever D x (t1,t>) CC Q and

// ( 1 (|VolP~2Vo, Vg&}) dadt > 0 (8)

for all ¢ > 0,p € CSO(Q).



Definition 3 We say that the function v : Q2 — (—o0, 0] is p-
superparabolic in €2, if

(i) v is finite in a dense subset of 2
(ii) v is lower semicontinuous, and
(iii)v obeys the comparison principle in each subdomain Dy, 1, =

D x (t1,tp) CC Q: if h € C(Dyyt,) is p-parabolic in Dy, 1, and if
v > h on the parabolic boundary of Dy, +,, then v > h in Dy ¢,.



Definition 4 Suppose that v : Q2 — (—o0,00] satisfies (i) and
(ii) above. We say that v is a viscosity supersolution, if (iii’)
whenever (zg,tg) € Q2 and ¢ € C2(2) are such that v(zg,tg) =
o(xg,tg) and v(x,t) > p(x,t) when (x,t) = (xg,tg), we have

0 (zo,to)

5 =V (IVe(zo,t)|P*V(zo, to))

Again the test function is touching v from below and the differ-
ential inequality is evaluated only at the point of contact.

Definitions 3 and 4 are equivalent. Moreover, one also obtains
an equivalent definition by looking only at points (x,t) such that
t < tg (Juutinen, 2001)



Theorem 4 (Kinnunen-Lindqvist, 2006) Suppose that v is a lo-
cally bounded p-superparabolic function in £2. Then the spatial
Sobolev derivative Vg v(x,t) exists and Vv € ,OC(Q) Moreover,
v IS a weak supersolution, i.e.,

// < + (| Vo [P~2 Vo, Vgo})cla; dt > 0

whenever ¢ > 0, ¢ € CSO(Q).

The he time derivative could be a measure, as the following
example shows. Every function of the form v(x,t) = ¢g(t) is p-
superparabolic if g(t) is a non-decreasing lower semicontinuous
step function. Thus Dirac deltas can appear in vy.



WLOG v is bounded in the domain € in R*T1, Suppose that
0 <wv(x,t) <L when (z,t) € Q2. (9)

The approximants

(y,7)eRQ ¢
play a central role in our study.

2 2
ve(z.t) = inf {'“”_m t¢-7) —I—fu(y,T)}, e>0. (10)

Proposition 2 The approximant ve iS a viscosity supersolution
in C2¢.

Theorem b The approximant ve obeys the comparison principle
in Q¢. In other words, given a domain Dy, ¢, = D X (t1,t2) CC 2
and a p-parabolic function h € C(D¢,1,) then ve > h on the
parabolic boundary of Dy, ¢, implies that ve > h in Dy, ¢,.



Lemma 3 The approximant ve is a weak supersolution in 2.
That is, we have

// < + (|Vve|P™ 2VUg,V§0>) dxdt > 0 (11)
for all ¢ € C3°(S2), ¢ Z 0.

Recall that 0 < v < L. Then also 0 < ve < L. An estimate for
Ve IS provided in the well-known lemma below.

Lemma 4 (Caccioppoli) We have
o¢P
P|Vue|P dedt < C’LQ// %
//QC| vel” dwdt < Q|8t

+ CrLP / /Q|VC|pdmdt

whenever ¢ € C5°(£2:),( > 0. Here C depends only on p.

dxdt (12)




Keeping 0 < v < L, we can conclude from the Caccioppoli esti-
mate that Vv exists and Vv € L{_ .(€2). Moreover, we have

Vve — Vv weakly in L%OOC(Q),

at least for a subsequence. This proves the first part of the main
theorem. The second part follows, if we can pass to the limit
under the integral sign in

_ 8_90 p—2 >
//Q ( ve S5 (Ve vve,v¢>> dzdt > 0 (13)

as ¢ — 04. When p # 2 the weak convergence alone does not
directly justify such a procedure.

%"f is available.

T he difficulty is that no good bound on



However, the elementary vector inequality
bP72b — [alP2a| < (p — 1)|b— a|(|b] + |a])P 2

valid for p > 2, implies that strong convergence in Lfo_cl IS suffi-
cient for the passage to the limit. This is more accessible. Thus

the theorem follows from

Lemma 5 We have that Vve — Vo strongly in Lfo_cl(Q), when
p=>2.

Remark: The same proof vields strong convergence in L?OC(Q),
where q < p. The method fails for ¢ = p, except when the original
v IS continuous.



Work on QT = Q x (0,T) CC 2.

The key is to use the mollified function (Naumann, 1987)

1 bt =(@=7) —t
—/Oe o v(x,7)dT + e v(x,0),
o

where o > 0.

It is convenient to abandon the last term and so we use only
1 bt =(@-1)
v7(xz,t) =—/ e o v(x,7)dT
o JO
for 0O<t<T and z € Q. We mention that

v? — v, Vv’ — Vo strongly in LP(Qr)

as o — OT.



The rule

ov°? v — V9
Ot - o (14)
will be used to conclude that
ov°?
— 9 — >0
(v —127) 5 2

a. e. in Qp.

Next we need a suitable test function. Let 6 € C5°(Qr),0 <6 < 1.
We now use the test function

@ = (v7 —ve+0)40

where § > 0 is a small number to be adjusted.



Given a > 0, there exists according to Egorov’s theorem a set
Eo with (n + 1)-dimensional measure |Eq| < «, such that

v? — v uniformly in Fo = Q7 \ Eq,

as o — 0.

Remark: If v is continuous we do not need E,, since v7(x,t) +
e~t/7y(x,0) converges uniformly in the whole Q7 in this favorable
case. This allows us to skip the plus sign in .

We thus have v9 —v+ 6 > 0 in F,, when o < o(«,6). Then we
also have

VvV —ve+8>0v —v+86>0in Fy

when o is small enough.



Inserting the selected test function into (11) we obtain after
elementary manipulations

T
/O /Q (Vo [P2V07 — |Voe|P~ 2V, V(07 — ve + 8) 1) dudt
g 2
< /O/Q(v" — ve + 6) 1 (| Vve|P~ Ve, VO) dadt (15)

T T
+/O/Q9<|Vv0'|p_2V’UO-, V(UG—U6+5)+> d$dt—AL)Ue %(UG—U€+5)+9 dxdt

— I€+II€+III€



The procedure is the following. First we prove that the three
terms on the right-hand side can be made as small as we please,
as ¢ — 0. Because of its structure the term on the left-hand
side controls the norm ||0(Vv? — Vue)||p taken over the set Fy.
The triangle inequality will then show that also ||0(Vv — Voe)||p
IS under control.

T he exceptional set E, requires an extra consideration, yielding

6“_% 10(Vv — V’Ue)HLp—l(Ea) =0

where we have p — 1 instead of p.



We estimate with the crucial term involving the time derivative.
Integrations by part vield

I, = —//UG%(’U — Ve + 0) 4 0dxdt
= //(va — ve + 5)2(1)0 — Ve +0) 40 dadt — / (v? + 5)2(1)0 —ve+6)
2//(1) —’U€—|-5) da:dt—l—//é’(fu —v€—|—5)_|_—da:dt

T his expression has a I|m|t as e — 0. Hence

lim I1le < 1v7 = 015 [|6elloo T1Q| + 621611

+ //e(v —v+5)+aaida;dt



where the last integral has to be estimated. In the set where
v2 — v+ 6 > 0 we reason as follows:

o G
0(v° —v+6)4 (’;)t = 9(va—v—l—5)'v UU
I,
< 50 "V
o
ot

This is the place where we have taken advantage of the
structure of v7, see (14).

We are left with the term

5 / / 9— dxdt.
7 —v+46>0 ot



In the formula
5// Q—dxdt — 5// dwdt—l—é// 62" qudt
—v—|—5>0 815 o_p+6<0 Ot

the last mtegral IS positive, because

— )
9_8’0 Gv v >9—>O when v —v 4+ 6 < 0.
ot o o

It follows that
5// 0% drdt < 5// Q—da:dt
o_p4+6>0 Ot

= —5//v —dwdt

< OL||6]]1.

Collecting terms, we record the result
lim I11: < cq]||v? — ’U||2 + 0252 + c3Lé.

e—0

(16)



We arrive at

im su.oz2 p/ 0|V (v7 — ve)[P da dt < limsup(le + I1. + IT1.)
e—0

§a5—|—0252—|—04”v —vl|p + c1|[v°? _'UH%
+cs||Vo? Vv||p—|—c6||Vva||Lp(E )

This controls the norm ||V (v? — ve||p over Fn. An estimation
over the exceptional set E, is yet missing. In order to utilize
the small measure of E,, we take a smaller exponent than p, say
p — 1, and use Holder’s inequality to achieve

1
J] 0197 — vl dadt < |Balr (1907 lp + [ Veclp)? < eral/?
(We have assumed that 8 < 1) Thus, we have an estimate for

€E—



Finally, we use
limsup [|[0(Vv — Vv€)||p_1 < [[0(Vv — Vv0)||p_1

€E—>

+ limsup ||0(Vv? — Vue)|[p—1.

€E—

Here we let ¢ — 0. Recall that ¢ < o(e,8). The first term on
the right-hand side vanishes. The result is a majorant for

limsup [[0(Vv — Vve)l|p—1

e—0
that vanishes together with the quantities

9, @ and HVUHLP(EQ)
It can be made as small as we please, by adjusting 6 and « in
advance. It follows that

limsup [|[0(Vv — Vve)|p—1 = 0.

e—0



