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¡¡ Feliz Cumpleaños Ireneo !!

¡Larga vida al p-Laplaciano!

¡ Ala Madrid !

Muchas gracias por tu generosidad
y por tus enseñanzas matemáticas.



For p > 2 consider the evolutionaryp-Laplacian:

∂v

∂t
= ∇ · (|∇v|p−2∇v) (1)

This equation can be viewed as both, in divergence form and in

non-divergence form.

Therefore there are many choices for the definition of weak

solution.

Our objective is to study the regularity of the viscosity super-

solutions and their spatial gradients.



We will present a new, simpler proof of the existence of ∇v in

Sobolev’s sense and of the validity of the equation∫∫
Ω

(
−v

∂ϕ

∂t
+ 〈|∇v|p−2∇v, ∇ϕ〉

)
dx dt ≥ 0 (2)

for all test functions ϕ ≥ 0. Here Ω is the underlying domain in

Rn+1 and v is a bounded viscosity supersolution in Ω.

The first step of our proof is to establish (1.2) for the so-called

infimal convolution vε, constructed from v through a simple for-

mula. The function vε has the advantage of being differentiable

with respect to all its variables x1, x2, · · · , xn, and t, while the

original v is merely lower semicontinuous. The second step is to

pass to the limit as ε → 0. It is clear that vε → v but we also

need convergence of the ∇vε’s.



Different types of supersolutions:

• (Sobolev) weak supersolutions (test functions under the in-

tegral sign);

• viscosity supersolutions (test functions evaluated at points

of contact);

• (potential theoretic) p-superparabolic functions (defined via

a comparison principle).



Sobolev weak supersolutions are assumed to belong to the Sobolev

space W1,p buty they do not form a good closed class under

monotone convergence.

Viscosity supersolutions are assumed to be merely lower semicon-

tinuous. So are the p-superparabolic functions. They coincide

(Juutinen-Lindqvist-M, 2001)

Lindqvist (1986) for the elliptic case and Kinnunen-Lindqvist

(2005, 2006) for the parablic case proved that BOUNDED p-

superparabolic functions are weak supersolutions satisfying (1.2).

Our contribution is a simpler proof of the last fact by using

technology from the theory of viscosity solutions.



The elliptic case:

We begin with the p-Laplace equation

∇ ·
(
|∇v|p−2∇v

)
= 0

in a domain Ω in Rn.

Recall that v ∈ W
1,p
loc(Ω) is a weak supersolution in Ω, if∫

Ω
〈|∇v|p−2∇v, ∇ϕ〉dx ≥ 0 (3)

whenever ϕ ≥ 0 and ϕ ∈ C∞0 (Ω). If the integral inequality is

reversed, we say that v is a (Sobolev) weak subsolution.



Definition 1 We say that the function v : Ω → (−∞,∞] is p-

superharmonic in Ω, if

(i) v 6≡ +∞,

(ii) v is lower semicontinuous,

(iii) v obeys the comparison principle in each subdomain D ⊂⊂ Ω :

if h ∈ C(D) is p-harmonic in D, then the inequality v ≥ h on

∂D implies that v ≥ h in D.

Notice that the definition does not include any regularity hypoth-

esis about ∇v.



Definition 2 Let p ≥ 2. We say that the function v : Ω →
(−∞,∞] is a viscosity supersolution in Ω, if

(i) v 6≡ +∞,

(ii) v is lower semicontinuous, and

(iii) whenever x0 ∈ Ω and ϕ ∈ C2(Ω) are such that

v(x0) = ϕ(x0), and

v(x) > ϕ(x) when x 6= x0,

we have

∇ ·
(
|∇ϕ(x0)|p−2∇ϕ(x0)

)
≤ 0.



Definition 1 and Definition 2 are equivalent (Juutinen-Lindqvist-

M, 2001.)

Theorem 1 (Lindqvist, 1986) Suppose that v is a locally bounded

p-superharmonic function in Ω. Then the Sobolev derivative ∇v

exists and v ∈ W
1,p
loc(Ω). Moreover, v is a weak supersolution,

i.e., ∫
Ω
〈|∇v|p−2∇v, ∇ϕ〉dx ≥ 0

whenever ϕ ∈ C∞0 (Ω), ϕ ≥ 0.



Sketch of the proof of Theorem 1: WLOG

0 ≤ v(x) ≤ L, when x ∈ Ω. (4)

Use the inf-convolutions:

vε(x) = inf
y∈Ω

{
|x− y|2

2ε
+ v(y)

}
, x ∈ Ω, (5)

thye have many good properties: they are rather smooth, they

form an increasing sequence converging to v(x) as ε → 0+, and

from v they inherit the property of being viscosity supersolutions

themselves. (The function vε(x)− |x|2
2ε is locally concave in Ω. so

that the Sobolev gradient ∇vε exists and ∇vε ∈ L∞loc(Ω).)



Proposition 1 The approximant vε is a viscosity supersolution

in the open subset of Ω where dist (x, ∂Ω) >
√

2Lε.

Write

Ωε =
{
x ∈ Ω: dist (x, ∂Ω) >

√
2εL

}
.

Theorem 2 The approximant vε obeys the comparison principle

in Ωε. In other words, given a domain D ⊂⊂ Ωε and a p-harmonic

function h ∈ C(D), then the implication

vε ≥ h on ∂D ⇒ vε ≥ h in D

holds.



The comparison principle implies that vε is a weak supersolution

with test functions under the integral sign. The proof is based

on an obstacle problem in the calculus of variations.

Theorem 3 The approximant vε is a weak supersolution in Ωε,

i.e., ∫
Ω
〈|∇vε|p−2∇vε,∇ϕ〉dx ≥ 0 (6)

whenever ϕ ∈ C∞0 (Ωε) and ϕ ≥ 0.



The next lemma contains a bound that is independent of ε.

Lemma 1 (Caccioppoli) We have∫
Ω

ζp|∇vε|pdx ≤ pp Lp
∫
Ω
|∇ζ|pdx (7)

whenever ζ ∈ C∞0 (Ωε) and ζ ≥ 0.

Corollary 1 The Sobolev derivative ∇v exists and ∇v ∈ L
p
loc(Ω).

Use Lemma 1 and a standard compactness argument. In order

to proceed to the limit under the integral sign in (6) we need

more than the weak convergence: ∇vε → ∇v locally weakly in

Lp(Ω). Actually, the convergence is strong.



Lemma 2 (of Minty type) We have that ∇vε → ∇v strongly in
L

p
loc(Ω).

Let θ ∈ C∞0 (Ω) and θ ≥ 0. Use the test function ϕ = (v − vε)θ in
(6).

Note that ϕ ≥ 0.

The inequality can be written as∫
Ω

θ〈|∇v|p−2∇v − |∇vε|p−2∇vε, ∇v −∇vε〉 dx

+
∫
Ω
(v − vε)〈|∇v|p−2∇v − |∇vε|p−2∇vε,∇θ〉 dx

≤
∫
Ω
〈|∇v|p−2∇v, ∇((v − vε)θ)〉 dx



The parabolic case:

We say that v is a (Sobolev) weak supersolution in Ω, if v ∈
L(t1, t2;W1,p(D)) whenever D × (t1, t2) ⊂⊂ Ω and∫∫

Ω

(
−v

∂ϕ

∂t
+ 〈|∇v|p−2∇v,∇ϕ〉

)
dxdt ≥ 0 (8)

for all ϕ ≥ 0, ϕ ∈ C∞0 (Ω).



Definition 3 We say that the function v : Ω → (−∞,∞] is p-

superparabolic in Ω, if

(i) v is finite in a dense subset of Ω

(ii) v is lower semicontinuous, and

(iii)v obeys the comparison principle in each subdomain Dt1,t2 =

D × (t1, t2) ⊂⊂ Ω: if h ∈ C(Dt1,t2) is p-parabolic in Dt1,t2 and if

v ≥ h on the parabolic boundary of Dt1,t2, then v ≥ h in Dt1,t2.



Definition 4 Suppose that v : Ω → (−∞,∞] satisfies (i) and

(ii) above. We say that v is a viscosity supersolution, if (iii’)

whenever (x0, t0) ∈ Ω and ϕ ∈ C2(Ω) are such that v(x0, t0) =

ϕ(x0, t0) and v(x, t) > ϕ(x, t) when (x, t) 6= (x0, t0), we have

∂ϕ(x0, t0)

∂t
≥ ∇ · (|∇ϕ(x0, t0)|p−2∇ϕ(x0, t0))

Again the test function is touching v from below and the differ-

ential inequality is evaluated only at the point of contact.

Definitions 3 and 4 are equivalent. Moreover, one also obtains

an equivalent definition by looking only at points (x, t) such that

t < t0 (Juutinen, 2001)



Theorem 4 (Kinnunen-Lindqvist, 2006) Suppose that v is a lo-

cally bounded p-superparabolic function in Ω. Then the spatial

Sobolev derivative ∇xv(x, t) exists and ∇xv ∈ L
p
loc(Ω). Moreover,

v is a weak supersolution, i.e.,∫∫
Ω

(
− v

∂ϕ

∂t
+ 〈|∇v|p−2∇v,∇ϕ〉

)
dx dt ≥ 0

whenever ϕ ≥ 0, ϕ ∈ C∞0 (Ω).

The he time derivative could be a measure, as the following

example shows. Every function of the form v(x, t) = g(t) is p-

superparabolic if g(t) is a non-decreasing lower semicontinuous

step function. Thus Dirac deltas can appear in vt.



WLOG v is bounded in the domain Ω in Rn+1. Suppose that

0 ≤ v(x, t) ≤ L when (x, t) ∈ Ω. (9)

The approximants

vε(x, t) = inf
(y,τ)∈Ω

{
|x− y|2 + (t− τ)2

2ε
+ v(y, τ)

}
, ε > 0, (10)

play a central role in our study.

Proposition 2 The approximant vε is a viscosity supersolution

in Ωε.

Theorem 5 The approximant vε obeys the comparison principle

in Ωε. In other words, given a domain Dt1,t2 = D× (t1, t2) ⊂⊂ Ωε

and a p-parabolic function h ∈ C(Dt1,t2) then vε ≥ h on the

parabolic boundary of Dt1,t2 implies that vε ≥ h in Dt1,t2.



Lemma 3 The approximant vε is a weak supersolution in Ωε.
That is, we have∫∫

Ω

(
−vε

∂ϕ

∂t
+ 〈|∇vε|p−2∇vε,∇ϕ〉

)
dxdt ≥ 0 (11)

for all ϕ ∈ C∞0 (Ωε), ϕ ≥ 0.

Recall that 0 ≤ v ≤ L. Then also 0 ≤ vε ≤ L. An estimate for
∇vε is provided in the well-known lemma below.

Lemma 4 (Caccioppoli) We have∫∫
Ω

ζp|∇vε|p dxdt ≤ CL2
∫∫

Ω

∣∣∣∣∣∂ζp

∂t

∣∣∣∣∣ dxdt (12)

+ CLp
∫∫

Ω
|∇ζ|p dxdt

whenever ζ ∈ C∞0 (Ωε), ζ ≥ 0. Here C depends only on p.



Keeping 0 ≤ v ≤ L, we can conclude from the Caccioppoli esti-

mate that ∇v exists and ∇v ∈ L
p
loc(Ω). Moreover, we have

∇vε → ∇v weakly in L
p
loc(Ω),

at least for a subsequence. This proves the first part of the main

theorem. The second part follows, if we can pass to the limit

under the integral sign in∫∫
Ω

(
− vε

∂ϕ

∂t
+ 〈|∇vp−2

ε ∇vε,∇ϕ〉
)

dxdt ≥ 0 (13)

as ε → 0+. When p 6= 2 the weak convergence alone does not

directly justify such a procedure.

The difficulty is that no good bound on ∂vε
∂t is available.



However, the elementary vector inequality∣∣∣∣∣|b|p−2b− |a|p−2a

∣∣∣∣∣ ≤ (p− 1)|b− a|(|b|+ |a|)p−2

valid for p ≥ 2, implies that strong convergence in L
p−1
loc is suffi-

cient for the passage to the limit. This is more accessible. Thus

the theorem follows from

Lemma 5 We have that ∇vε → ∇v strongly in L
p−1
loc (Ω), when

p ≥ 2.

Remark: The same proof yields strong convergence in L
q
loc(Ω),

where q < p. The method fails for q = p, except when the original

v is continuous.



Work on QT = Q× (0, T ) ⊂⊂ Ω.

The key is to use the mollified function (Naumann, 1987)

1

σ

∫ t

0
e
−(t−τ)

σ v(x, τ)dτ + e
−t
σ v(x,0),

where σ > 0.

It is convenient to abandon the last term and so we use only

vσ(x, t) =
1

σ

∫ t

0
e
−(t−τ)

σ v(x, τ)dτ

for 0 ≤ t ≤ T and x ∈ Q. We mention that

vσ → v, ∇vσ → ∇v strongly in Lp(QT )

as σ → 0+.



The rule
∂vσ

∂t
=

v − vσ

σ
(14)

will be used to conclude that

(v − vσ)
∂vσ

∂t
≥ 0

a. e. in QT .

Next we need a suitable test function. Let θ ∈ C∞0 (QT ),0 ≤ θ ≤ 1.

We now use the test function

ϕ = (vσ − vε + δ)+θ

where δ > 0 is a small number to be adjusted.



Given α > 0, there exists according to Egorov’s theorem a set

Eα with (n + 1)-dimensional measure |Eα| < α, such that

vσ → v uniformly in Fα = QT \ Eα,

as σ → 0.

Remark: If v is continuous we do not need Eα, since vσ(x, t) +

e−t/σv(x,0) converges uniformly in the whole QT in this favorable

case. This allows us to skip the plus sign in ϕ.

We thus have vσ − v + δ ≥ 0 in Fα, when σ < σ(α, δ). Then we

also have

vσ − vε + δ ≥ vσ − v + δ ≥ 0 in Fα

when σ is small enough.



Inserting the selected test function into (11) we obtain after

elementary manipulations∫ T

0

∫
Q

θ〈|∇vσ|p−2∇vσ − |∇vε|p−2∇vε,∇(vσ − vε + δ)+〉 dxdt

≤
∫ T

0

∫
Q
(vσ − vε + δ)+〈|∇vε|p−2∇vε,∇θ〉 dxdt (15)

+
∫ T

0

∫
Q

θ〈|∇vσ|p−2∇vσ,∇(vσ−vε+δ)+〉 dxdt−
∫ T

0

∫
Q
vε

∂

∂t
(vσ−vε+δ)+θ dxdt

= Iε + IIε + IIIε.



The procedure is the following. First we prove that the three

terms on the right-hand side can be made as small as we please,

as ε → 0. Because of its structure the term on the left-hand

side controls the norm ‖θ(∇vσ − ∇vε)‖p taken over the set Fα.

The triangle inequality will then show that also ‖θ(∇v − ∇vε)‖p

is under control.

The exceptional set Eα requires an extra consideration, yielding

lim
ε→0

‖θ(∇v −∇vε)‖Lp−1(Eα) = 0

where we have p− 1 instead of p.



We estimate with the crucial term involving the time derivative.

Integrations by part yield

IIIε = −
∫∫

vε
∂

∂t
(v − vε + δ)+θ dxdt

=
∫∫

(vσ − vε + δ)
∂

∂t
(vσ − vε + δ)+θ dxdt−

∫∫
(vσ + δ)

∂

∂t
(vσ − vε + δ)+θ dxdt

=
1

2

∫∫
(vσ − vε + δ)2+

∂θ

∂t
dxdt +

∫∫
θ(vσ − vε + δ)+

∂vσ

∂t
dxdt.

This expression has a limit as ε → 0. Hence

lim
ε→0

IIIε ≤ ‖vσ − v‖22 ‖θt‖∞ T |Q|+ δ2‖θt‖1

+
∫∫

θ(vσ − v + δ)+
∂vσ

∂t
dxdt,



where the last integral has to be estimated. In the set where

vσ − v + δ > 0 we reason as follows:

θ(vσ − v + δ)+
∂vσ

∂t
= θ(vσ − v + δ) ·

v − vσ

σ

≤ δθ
v − vσ

σ

= δθ
∂vσ

∂t
·

This is the place where we have taken advantage of the

structure of vσ, see (14).

We are left with the term

δ
∫∫

vσ−v+δ>0
θ
∂vσ

∂t
dxdt.



In the formula

δ
∫ T

0

∫
Q

θ
∂vσ

∂t
dxdt = δ

∫∫
vσ−v+δ>0

θ
∂vσ

∂t
dxdt+δ

∫∫
vσ−v+δ≤0

θ
∂vσ

∂t
dxdt

the last integral is positive, because

θ
∂vσ

∂t
= θ

v − vσ

σ
≥

θδ

σ
≥ 0, when vσ − v + δ ≤ 0.

It follows that

δ
∫∫

vσ−v+δ>0
θ
∂vσ

∂t
dxdt ≤ δ

∫ T

0

∫
Q

θ
∂vσ

∂t
dxdt

= −δ
∫ T

0

∫
Q

vσ∂θ

∂t
dxdt

≤ δL‖θt‖1.

Collecting terms, we record the result

lim
ε→0

IIIε ≤ c1‖vσ − v‖22 + c2δ2 + c3Lδ. (16)



We arrive at

lim sup
ε→0

22−p
∫∫

Fα

θ|∇(vσ − vε)|p dx dt ≤ lim sup
ε→0

(Iε + IIε + IIIε)

≤ aδ + c2δ2 + c4‖vσ − v‖p + c1‖vσ − v‖22
+c5||∇vσ −∇v‖p + c6||∇vσ‖p−1

Lp(Eα).

This controls the norm ‖θ∇(vσ − vε‖p over Fα. An estimation
over the exceptional set Eα is yet missing. In order to utilize
the small measure of Eα, we take a smaller exponent than p, say
p− 1, and use Hölder’s inequality to achieve∫∫

Eα

θ|∇(vσ − vε)|p−1 dxdt ≤ |Eα|
1
p(‖∇vσ‖p + ‖∇vε‖p)

p−1 ≤ c7α1/p

(We have assumed that θ ≤ 1) Thus, we have an estimate for

lim sup
ε→0

‖θ(∇vσ −∇vε)‖Lp−1(QT ).



Finally, we use

lim sup
ε→0

‖θ(∇v −∇vε)‖p−1 ≤ ‖θ(∇v −∇vσ)‖p−1

+limsup
ε→0

‖θ(∇vσ −∇vε)‖p−1.

Here we let σ → 0. Recall that σ < σ(α, δ). The first term on
the right-hand side vanishes. The result is a majorant for

lim sup
ε→0

‖θ(∇v −∇vε)‖p−1

that vanishes together with the quantities

δ, α and ‖∇v‖p−1
Lp(Eα).

It can be made as small as we please, by adjusting δ and α in
advance. It follows that

lim sup
ε→0

‖θ(∇v −∇vε)‖p−1 = 0.


