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• Ω1,Ω2 ⊂ Rn domains such that |Ω1| = |Ω2|

• A cost function is given:

c(x, y)= cost of transporting a unit from x ∈ Ω1 to y ∈ Ω2

• Find a measure preserving map t : Ω1 → Ω2, i.e., |t−1(E)| = |E|
for each E ⊂ Ω2 such that minimizes the total cost∫

Ω1

c(x, t(x)) dx
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• Is this problem related to some pde?

• How regular is the optimal map?
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HISTORY OF THE PROBLEM

• Monge (1781) formulated the problem for the first time, c(x, y) =
|x− y|

• Kantorovitch (1942) reformulated the problem in probabilistic

terms, optimal maps → optimal plans, can use linear programming.

Formulation weaker than Monge.

X,Y compact metric spaces, µ, ν Borel measures on X and Y

respectively with µ(X) = ν(Y ).

Let Σ be the class of Borel measures σ on X × Y such that

σ(E × Y ) = µ(E) ∀ Borel sets E ⊂ X and σ(X ×E′) = ν(E′) ∀
Borel sets E′ ⊂ Y .
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Consider

W (σ, µ, ν) =
∫∫

X×Y

c(x, y) dσ(x, y).

Kantorovitch’s formulation is to find a measure σ0 such that

W (σ0, µ, ν) = inf
σ∈Σ

W (σ, µ, ν).

This measure exists and in general is not unique.

• Kantorovitch, ”The best use of economic resources”. Methods to

solve technical and economic problems such us:

– the least wasteful allocation of work to machines,

– the cutting of material with minimum loss,

– the distributions of loads over several means of transport.



• Impressive number of applications and connections: Calculus

of Variations, nonlinear pdes, Convex analysis, Probability,

Economics, Statistical Mechanics, and other fields, see book

by Rachev and Rüschendorf, Mass transportation problems, two

volumes.



• Impressive number of applications and connections: Calculus

of Variations, nonlinear pdes, Convex analysis, Probability,

Economics, Statistical Mechanics, and other fields, see book

by Rachev and Rüschendorf, Mass transportation problems, two

volumes.Villani’s recent book and John Urbas’ lecture notes (1998).

• Kantorovitch and Koopmans received the Nobel prize in Economics

in 1975, for ”contributions to the theory of optimal allocation of

resources”.
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• If c(x, y) = |x − y|2/2, then the optimal map s = Dφ with φ a

convex function.

• This connects optimal transportation with the Monge-Ampère

equation: using his regularity theory for the M-A equation,

Caffarelli obtained regularity of the optimal maps.

• For general cost functions we have the following result of Caffarelli,

Gangbo and McCann (1996):
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Theorem. c : Rn → R strictly convex, f, g ∈ L1(Rn) nonnegative

with bounded support, and

∫
Rn
f(x) dx =

∫
Rn
g(y) dy. Given s ∈

S(f, g), i.e.,

∫
s−1(E)

f(x) dx =
∫

E

g(y) dy for each Borel set E ⊂ Rn,

let

C(s) =
∫

Rn
c(x− s(x)) f(x) dx.

Then

1. ∃ unique t ∈ S(f, g) 1-to-1 such that C(t) = infs∈S(f,g) C(s);

2. ∃ a c-convex function u such that

t(x) = x− (Dc)−1(−Du(x)) a.e.
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• Understand Monge original problem for general cost functions from

the point of view of pde.

• Study a notion of generalized solution in Aleksandrov sense.

• Solve the Dirichlet problem

• How solutions of this pde are related to the optimal map?

• Regularity of generalized solutions?
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• The Monge-Ampère equation:

detD2u(x) = f(x).



• The Monge-Ampère equation:

detD2u(x) = f(x).

• Normal mapping or subdifferential of u : Ω → R, Ω ⊂ Rn

∂u(y) = {p ∈ Rn : u(x) ≥ u(y) + p · (x− y),∀x ∈ Ω}
∂u(E) = ∪y∈E∂u(y).



• The Monge-Ampère equation:

detD2u(x) = f(x).

• Normal mapping or subdifferential of u : Ω → R, Ω ⊂ Rn

∂u(y) = {p ∈ Rn : u(x) ≥ u(y) + p · (x− y),∀x ∈ Ω}
∂u(E) = ∪y∈E∂u(y).



• S = {E ⊂ Ω : ∂u(E) is Lebesgue measurable} is a Borel σ-algebra.



• S = {E ⊂ Ω : ∂u(E) is Lebesgue measurable} is a Borel σ-algebra.

The set of hyperplanes touching the graph of u at more than one

point has measure zero.



• S = {E ⊂ Ω : ∂u(E) is Lebesgue measurable} is a Borel σ-algebra.

The set of hyperplanes touching the graph of u at more than one

point has measure zero.

• The Monge-Ampère measure associated with u is:

Mu(E) = |∂u(E)|.



• S = {E ⊂ Ω : ∂u(E) is Lebesgue measurable} is a Borel σ-algebra.

The set of hyperplanes touching the graph of u at more than one

point has measure zero.

• The Monge-Ampère measure associated with u is:

Mu(E) = |∂u(E)|.

• If u ∈ C2(Ω) is convexa, then

Mu(E) =
∫

E

detD2u(x) dx.



• S = {E ⊂ Ω : ∂u(E) is Lebesgue measurable} is a Borel σ-algebra.

The set of hyperplanes touching the graph of u at more than one

point has measure zero.

• The Monge-Ampère measure associated with u is:

Mu(E) = |∂u(E)|.

• If u ∈ C2(Ω) is convexa, then

Mu(E) =
∫

E

detD2u(x) dx.
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solution (or Aleksandrov’s solution) if

Mu = ν.



• Let ν be a Borel measure in Ω. u ∈ C(Ω), convexa, is a weak
solution (or Aleksandrov’s solution) if

Mu = ν.

• Dirichlet problem: if Ω is strictly convex, ν(Ω) <∞, g ∈ C(∂Ω),
then ∃! u ∈ C(Ω) weak solution to

Mu = ν

u = g on ∂Ω.
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• u : Ω → R ∪ {+∞}, not identically +∞, is c-convex in Ω if there

exists a set A ⊂ Rn × R such that

u(x) = sup
(y,λ)∈A

[−c(x− y)− λ] for all x ∈ Ω.

• If c(x) = 1
2|x|

2, then u is c-convex if and only if the function

u+ 1
2|x|

2 is convex.

• If u is locally bounded and c-convex, then u is Lipschitz.

• u convex =⇒ u is c-convex.
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• Let u : Ω → R ∪ {+∞}. The c-subdifferential ∂cu(x) at x ∈ Ω is

defined by

∂cu(x) = {p ∈ Rn : u(z) ≥ u(x)− c(z − p) + c(x− p), ∀z ∈ Ω}.

• If c(x) = 1
2|x|

2, then p ∈ ∂cu(x) if and only if p ∈ ∂(u+c)(x), i.e.,

∂cu(x) = ∂(u+c)(x) where ∂ denotes the standard subdifferential.

• If c ∈ C1(Rn) and strictly convex, and u is differentiable at x0,

then

∂cu(x0) = {x0 − (Dc)−1(−Du(x0))}.
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EXAMPLE

Let c ∈ C2(Rn) and strictly convex. Suppose u ∈ C2(Ω).

Then u is c-convex if and only if

I +D2c∗ (−Du(x)) D2u(x) ≥ 0,

where c∗ is the Legendre-Fenchel transform of c

c∗(y) = sup
x∈Rn

[x · y − c(x)].

The notions of c-subdifferential and c-convexity were introduced by

Elster and Nehse (1974) and Dietrich (1988), and recently used by

Gangbo and McCann.
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Theorem. Let Ω be an open set in Rn. Let u : Ω → R ∪ {+∞} be

such that on any bounded open set U b Ω, u is not identically +∞
and bounded from below. Then the Lebesgue measure of the set

S = {p ∈ Rn : there exist x, y ∈ Ω, x 6= y and p ∈ ∂cu(x)∩∂cu(y)}

is zero.
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Theorem. Suppose c : Rn → R is C1 and strictly convex. Let

Ω ⊂ Rn be an open set, u ∈ C(Ω), and B = {E ⊂ Ω :
∂cu(E) is Lebesgue measurable}. We have

(i) If K ⊂ Ω is compact, then ∂cu(K) is closed.

(ii) B contains all closed subsets of Ω.

(iii) B is a σ-algebra on Ω containing all Borel subsets of Ω. Moreover,

|∂cu(Ω \ E)| = |∂cu(Ω) \ ∂cu(E)| ∀E ∈ B.



DEFINITION OF THE MONGE-AMPÈRE MEASURE

ASSOCIATED WITH c

Let g ∈ L1
loc(Rn) positive a.e. Suppose that c is C1 and strictly

convex.

Then for each given function u ∈ C(Ω), the generalized Monge-

Ampère measure of u associated with the cost function c and the

weight g is the Borel measure defined by

ωc(g, u)(E) =
∫

∂cu(E)

g(p) dp.

for every Borel set E ⊂ Ω. When g ≡ 1, we simply write the measure

as ωc(u).



Suppose that c is C1 and strictly convex, and c∗ ∈ C2(Rn). Then

If u ∈ C2(Ω) is c-convex in Ω, then

ωc(g, u)(E) =
∫

E

g(x−Dc∗(−Du)) det(I +D2c∗(−Du)D2u) dx

for all Borel sets E ⊂ Ω.
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THEREFORE THE PDE TO CONSIDER IS:

g(x−Dc∗(−Du(x))) det[I +D2c∗(−Du(x))D2u(x)] = f(x) in Ω,

and the c-convex function u ∈ C(Ω) is a generalized solution in

the sense of Aleksandrov, or simply Aleksandrov solution, if

ωc(g, u)(E) =
∫

E

f(x) dx

for any Borel set E ⊂ Ω.



If in the equation

g(x−Dc∗(−Du(x))) det[I +D2c∗(−Du(x))D2u(x)] = f(x) in Ω,

we set c(x) = 1
2 |x|

2,



If in the equation

g(x−Dc∗(−Du(x))) det[I +D2c∗(−Du(x))D2u(x)] = f(x) in Ω,

we set c(x) = 1
2 |x|

2, then c∗(x) = 1
2 |x|

2 and the equation becomes

g(x+Du(x))) det[I +D2u(x)] = f(x) in Ω,

that is, the Monge-Ampère equation for 1
2 |x|

2 + u(x).
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COMPARISON PRINCIPLE

Theorem. Let Ω ⊂ Rn be a bounded open set. Let u, v ∈ C(Ω̄)
be such that u, v are c-convex on Ω, and |∂cu(E)| ≤ |∂cv(E)| for all

Borel sets E ⊂ Ω. Assume that

for every open set D b Ω with |∂cv(D \ spt(ωc(u)))| = 0,

∃ a closed set F ⊂ ∂cv(S ∩D) such that |∂cv(S ∩D) \ F | = 0.

Here S := spt(ωc(u)) \ Int(spt(ωc(u))). Then we have

min
Ω̄
{u(x)− v(x)} = min

∂Ω
{u(x)− v(x)}.



The condition before is satisfied if any of the following hold.

1. For each D b Ω open, the set S ∩D is closed.

2. If stp(ωc(u)) = V̄ with V open subset of Ω. In this case we have

S = ∅.

3. If ωc(v) =
∑N

i=1 ai δxi
. Because in this case we have that for

each E ⊂ Ω there exists F compact such that F ⊂ ∂cv(E)
and |∂cv(E) \ F | = 0. Indeed, the set E ∩ {x1, · · · , xN} is

finite and ∂cv(E ∩ {x1, · · · , xN}) is compact and contained in

∂cv(E), and ωc(v)(E) = ωc(v)(E ∩ {x1, · · · , xN}), so we let

F = ∂cv(E ∩ {x1, · · · , xN}).



SOLUTION OF THE HOMOGENEOUS DIRICHLET PROBLEM

Let c : Rn → R be a continuous function. A bounded set E ⊂ Rn is

called strictly c-convex if for any z ∈ ∂E, any δ > 0 and any a > 0,

there exist y, y∗ ∈ Rn such that

c(x− y)− c(z − y) ≥ 0 ∀x ∈ ∂E,
c(x− y)− c(z − y) ≥ a ∀x ∈ ∂E −B(z, δ)

c(z − y∗)− c(x− y∗) ≥ 0 ∀x ∈ ∂E,
c(z − y∗)− c(x− y∗) ≥ a ∀x ∈ ∂E −B(z, δ).
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Let c : Rn → R be a convex function. Suppose that c(x) =
l(|x|) for some nondecreasing function l : [0,∞) → R satisfying

l ∈ C1(0,∞) and limt→+∞ l
′
(t) = +∞.



Example of a c-strictly convex set.

Let c : Rn → R be a convex function. Suppose that c(x) =
l(|x|) for some nondecreasing function l : [0,∞) → R satisfying

l ∈ C1(0,∞) and limt→+∞ l
′
(t) = +∞.

If Ω ⊂ Rn bounded open set satisfying the exterior sphere

condition, then Ω is strictly c-convex.
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Theorem. Suppose that c ∈ C1(Rn) and strictly convex. Let

Ω ⊂ Rn be a strictly c-convex open set and ψ : ∂Ω → R be a

continuous function. Then there exists a unique c-convex function

u ∈ C(Ω̄) Aleksandrov generalized solution of the problem

det[I +D2c∗(−Du(x))D2u(x)] = 0 in Ω,

u = ψ on ∂Ω.
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SOLUTION OF THE NONHOMOGENEOUS DIRICHLET

PROBLEM

Theorem. Suppose c ∈ C1(Rn) is strictly convex and

lim|x|→∞
c(x)
|x|

= +∞. Let Ω ⊂ Rn be an open bounded set that is

c-strictly convex. Let ψ ∈ C(∂Ω), distinct points x1, · · · , xN ∈ Ω,

and a1, · · · , aN positive numbers.

Then there exists a unique function u ∈ C(Ω), c-convex solution

to the problem

det[I +D2c∗(−Du(x))D2u(x)] =
N∑

i=1

ai δxi

u = ψ, on ∂Ω.
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OUTLINE OF THE SOLUTION OF THE HOMOGENEOUS DP

Define

F := {f(x) = −c(x−y)−λ : y ∈ Rn, λ ∈ R and f(x) ≤ ψ(x) on ∂Ω}.

ψ continuous on ∂Ω =⇒ F 6= ∅

Let

u(x) = sup {f(x) : f ∈ F}.



• Step 1: u(x) = ψ(x) ∀x ∈ ∂Ω.

This follows from the c-convexity of Ω.



• Step 1: u(x) = ψ(x) ∀x ∈ ∂Ω.

This follows from the c-convexity of Ω.

• Step 2: u is c-convex and u ∈ C(Ω).

Let g(x) := −c(x) + maxΩ c + max∂Ωψ. We have g(x) ≥ ψ(x)
on ∂Ω, g is c-convex and as c ∈ C1(Rn) we have ∂cg(Ω) = {0}
and so |∂cg(Ω)| = 0. Hence for each f(x) = −c(x− y)− λ ∈ F ,
and applying the comparison principle we get f(x) ≤ g(x) in Ω
and therefore u is uniformly bounded from above on Ω̄. Thus,
we get u is uniformly bounded on Ω̄. Particularly, this implies
that u is c-convex and moreover locally Lipschitz, so u ∈ C(Ω).



• Step 3: u is continuous up to the boundary.

It follows from the c-convexity of Ω and the comparison principle.



• Step 3: u is continuous up to the boundary.

It follows from the c-convexity of Ω and the comparison principle.

• Step 4: |∂cu(Ω)| = 0.

Let p ∈ ∂cu(Ω). Then there exists x0 ∈ Ω such that

u(x) ≥ u(x0)− c(x− p) + c(x0 − p) = f(x) ∀x ∈ Ω.

There exists ζ ∈ ∂Ω satisfying f(ζ) = ψ(ζ).

Then p ∈ ∂c(u,Ω)(x0) ∩ ∂c(u,Ω)(ζ) but this is a set of measure

zero.



OUTLINE OF THE SOLUTION OF THE NONHOMOGENEOUS

DP

• Let

H = {v ∈ C(Ω) : v is c-convex in Ω, v|∂Ω = ψ,

|∂cv(Ω)| =
N∑

i=1

|∂cv(xi)|, and |∂cv(xi)| ≤ ai for i = 1 ≤ i ≤ N}.
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Let W be the solution to ωc(W ) = 0 and W = ψ on ∂Ω.



OUTLINE OF THE SOLUTION OF THE NONHOMOGENEOUS

DP

• Let

H = {v ∈ C(Ω) : v is c-convex in Ω, v|∂Ω = ψ,

|∂cv(Ω)| =
N∑

i=1

|∂cv(xi)|, and |∂cv(xi)| ≤ ai for i = 1 ≤ i ≤ N}.

Let W be the solution to ωc(W ) = 0 and W = ψ on ∂Ω.

We have W ∈ H, and from the comparison principle

v ≤W, for each v ∈ H.



For each v ∈ H define

V [v] =
∫

Ω

(W (x)− v(x)) dx ≥ 0,

and let

β = sup
v∈H

V [v].



For each v ∈ H define

V [v] =
∫

Ω

(W (x)− v(x)) dx ≥ 0,

and let

β = sup
v∈H

V [v].

• IDEA: there exists u ∈ H such that β = V [u] and u is the desired

solution to the nonhomogeneous DP.



• There exists a convex function w ∈ C(Ω̄) with w = ψ on ∂Ω
and

w(x) ≤ v(x), in Ω̄ and for all v ∈ H.



• There exists a convex function w ∈ C(Ω̄) with w = ψ on ∂Ω
and

w(x) ≤ v(x), in Ω̄ and for all v ∈ H.

Assume Ω is strictly convex, from the solution of the DP for the

standard Monge-Ampère equation, there exists w ∈ C(Ω̄) convex in

Ω solving in the weak sense

detD2w = λ1 δx1 + · · ·+ λN δxN

w = ψ on ∂Ω

for any λi > 0, i = 1, · · · , N . The λi’s are chosen appropriately.



We have β ≤ V [w] <∞. Then there exists a sequence {un} ⊂ H
such that V [un] ↑ β as n→∞. From the estimates we have that

w(x) ≤ un(x) ≤W (x), ∀x ∈ Ω̄.



We have β ≤ V [w] <∞. Then there exists a sequence {un} ⊂ H
such that V [un] ↑ β as n→∞. From the estimates we have that

w(x) ≤ un(x) ≤W (x), ∀x ∈ Ω̄.

• There is a subsequence {unk
} and u ∈ C(Ω̄) with u = ψ on ∂Ω

and unk
→ u locally uniformly in Ω as k →∞.

u IS THE SOLUTION WE LOOK FOR!



VII

FINAL REMARKS



The second boundary value problem for the Monge-Ampère
type operators arises in optimal transportation

g(x−Dc∗(−Du(x))) det[I +D2c∗(−Du(x))D2u(x)] = f(x) in Ω1

∂cu(Ω1) = Ω2.



A c-convex function u ∈ C(Ω1) is called a Brenier solution of
the second BV problem if∫

Ω1

h(s(x))f(x)dx =
∫

Ω2

h(y)g(y)dy, for all h ∈ C(Rn)

or equivalently,∫
s−1(E)

f(x)dx =
∫

E∩Ω2

g(y)dy, for all Borel sets E ⊂ Rn

where s : Ω1 → Rn is a Borel measurable map defined a.e. on Ω1 by
the formula s(x) = x−Dc∗(−Du(x)) whenever u is differentiable
at x.



Lemma. . If u is an Aleksandrov solution, then u is also a Brenier

solution.



Lemma. . If u is an Aleksandrov solution, then u is also a Brenier

solution.

Conversely,

Theorem. Let Ω1, Ω2 be bounded domains in Rn such that Ω2 is

c∗-convex relative to Ω1. Suppose u ∈ C(Ω1) is a c-convex function

on Ω1 Brenier solution of the second BV problem, then u is an

Aleksandrov solution.


