General lower order terms depending on u and $|D u|$ in some elliptic and parabolic problem

Daniela Giachetti

Existence of solutions for two types of (model) problems. The first one:

$$
\text { (E) }\left\{\begin{array}{l}
-\Delta u+\lambda u=\beta(u)|D u|^{2}+f(x) \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

$\lambda>0, f(x) \geq 0, f(x) \in L^{\infty}(\Omega), \Omega$ bounded
$\beta(u)$ is singular in each point where $u=0$, in particular on the boundary.

$$
\beta(u)=\frac{1}{u^{k}}, k>0, u>0
$$

Early results by L. Boccardo-F.Murat-J.P.Puel ['89], in the case $\beta(s)$ continuous. D.Arcoya-S.Barile-P.Martinez-Aparicio D. Giachetti-F.Murat (in progress). We will need to define carefully the sense of "solution".

The second one:

$$
(S P)\left\{\begin{array}{l}
w_{t}-\Delta w=g(w)+\mu \quad \text { in } \quad \Omega \times(0, \infty) \\
w(x, t)=0 \quad \text { on } \partial \Omega \times(0, \infty) \\
w(x, 0)=w_{0}(x) \in L^{1}(\Omega) .
\end{array}\right.
$$

where μ is a finite Radon measure and g is slightly superlinear.
A.Dall'Aglio-D.Giachetti-I.Peral-S.Segura de Leon (in progress).

The problem can be obtained, via Cole-Hopf trasformation, by the problem :
$(P)\left\{\begin{array}{l}u_{t}-\Delta u=\beta(u)|D u|^{2}+1 \quad \text { in } \Omega \times(0, \infty) \\ u(x, t)=0 \quad \text { on } \quad \partial \Omega \times(0, \infty) \\ u(x, 0)=u_{0}(x) \quad \text { in } \Omega\end{array}\right.$
with the function $\beta(s)$ unbounded, ex: $\beta(u)=$ e^{u}.

Common feature is the presence of a first order term which depends on u and its gradient and which is, in both cases, unbounded in the u variable.

Change of unknown $w=\Psi(u)=\int_{0}^{u} e^{\gamma(s)} d s$ where $\gamma(s)=\int_{0}^{s} \beta(\sigma) d \sigma$

$$
\text { (E) }\left\{\begin{array}{l}
-\Delta u+\lambda u=b(x, u, D u)+f(x) \text { in } \quad \Omega \\
u=0 \quad \text { on } \quad \partial \Omega
\end{array}\right.
$$

$$
\lambda>0, f(x) \geq 0, f(x) \in L^{\infty}(\Omega)
$$

$$
b(x, s, \xi): \Omega \times R-\{0\} \times R^{N} \rightarrow R
$$

Caratheodory function whose behaviour near $s=0$ is prescribed by one of the following Hypotheses:

$$
\begin{gathered}
|b(x, s, \xi)| \leq \frac{c_{2}}{|s|^{k}}|\xi|^{2} \quad s \neq 0,0<k<1, c_{2}>0 \\
\left(E x: b(x, u, D u)= \pm \frac{|D u|^{2}}{|u|^{1 / 2}}\right) \\
\left(H_{k \geq 1}\right) \\
\frac{c_{1}}{|s|^{k}}|\xi|^{2} \leq b(x, s, \xi) \leq \frac{c_{2}}{|s|^{k}}|\xi|^{2} \quad s \neq 0, k \geq 1, c_{1}, c_{2}>0
\end{gathered}
$$

$$
\left(E x: b(x, u, D u)=+\frac{|D u|^{2}}{u^{2}}\right)
$$

Remark 1.In $\left(H_{k<1}\right)$ the function $\beta(s)=\frac{c_{2}}{s^{k}}$ is an L^{1} function near $s=0$, while in $\left(H_{k \geq 1}\right)$ is not an L^{1} function near $s=0$.

We define, for $s \in(0, M]$ where $M=\frac{\|f\|_{\infty}}{\lambda}$ the function $\Psi(s)=\int_{0}^{s} e^{\gamma(s)} d s$ where $\gamma(s)$ is a primitive of function $\beta(s)=\frac{c_{2}}{\sigma^{k}}$ i.e.

$$
\gamma(s)=\left\{\begin{array}{l}
\int_{0}^{s} \frac{c_{2}}{\sigma^{k}}=c_{2} \frac{s^{1-k}}{1-k} \quad \text { if } \quad 0<k<1 \\
\int_{M}^{s} \frac{c_{2}}{\sigma^{k}}=c_{2} \log \left(\frac{s}{M}\right) \quad \text { if } \quad k=1 \\
\int_{M}^{s} \frac{c_{2}}{\sigma^{k}}=c_{2} \frac{M^{1-k}-s^{1-k}}{k-1} \quad \text { if } \quad k>1
\end{array}\right.
$$

In the case $0<k<1, \gamma(s)$ is an increasing, non-negative, bounded function in $[0, M]$ with $\gamma(0)=0$.

If $k>1 \gamma(s)$ is an increasing, non-positive function in $(0, M]$ with $\lim ^{+} \gamma(s)=-\infty$.

Moreover, for $s \in(0, M]$ and $m>0$, let us define

$$
S_{m}(s)=\left\{\begin{array}{lll}
m & \text { if } \quad 0 \leq s \leq m \\
s & \text { if } \quad s>m
\end{array}\right.
$$

TH. $1(0<k<1)$

$$
\begin{aligned}
& \exists u \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega), \quad u \geq 0, \quad \frac{|D u|^{2}}{u^{k}} \chi_{u>0} \in \\
& L^{1}(\Omega): \forall \Phi \in C_{c}^{\infty}(\Omega) \\
& \int_{\Omega} D u D \phi+\lambda \int_{\Omega} u \phi=\int_{\Omega} f \phi+\int_{\Omega} b(x, u, D u) \chi_{u>0} \phi
\end{aligned}
$$

TH. $2(k \geq 1)$
$\exists u \in H_{l o c}^{1}(\Omega) \cap L^{\infty}(\Omega), u \geq 0, \Psi(u) \in H_{0}^{1}(\Omega), S_{m}(u) \in$ $H^{1}(\Omega) \quad \forall m>0, \quad \frac{|D u|^{2}}{u^{k}} \chi_{u>0} \in L_{l o c}^{1}(\Omega):$
$\int_{\Omega} D u D \phi+\lambda \int_{\Omega} u \phi=\int_{\Omega} f \phi+\int_{\Omega} b(x, u, D u) \chi_{u>0} \phi$

Remark 2. The definition of solution involves in the last term $\int_{\Omega} b(x, u, D u) \chi_{u>0} \phi=\int_{\Omega} \tilde{b}(x, u, D u) \phi$ where

$$
\tilde{b}(x, s, \xi)=\left\{\begin{array}{l}
b(x, s, \xi) \quad \text { if } \quad s \neq 0 \\
0 \quad \text { if } \quad s=0
\end{array}\right.
$$

This is not a Caratheodory function, since it is not continuous at the point $s=0$.

Anyway, we can easily prove that $\tilde{b}(x, u, v)$ is a measurable function when u and v are measurable functions. Note that this definition is not the natural one in the case of ($H_{k \geq 1}$) which is

$$
\frac{c_{1}}{|s|^{k}}|\xi|^{2} \leq b(x, s, \xi) \leq \frac{c_{2}}{|s|^{k}}|\xi|^{2} \quad s \neq 0, k \geq 1
$$

Indeed it would be more natural to define

$$
\bar{b}(x, 0, \xi)=+\infty \quad \text { for } \quad \xi \neq 0
$$

which means

$$
\bar{b}(x, s, \xi)=\tilde{b}(x, s, \xi)+(+\infty) \chi_{\{s=0\} \cap\{\xi \neq 0\}}
$$

But we observe that $\bar{b}(x, u, D u)$ coincide a.e. with $\widetilde{b}(x, u, D u)$ when $u \in H_{l o c}^{1}(\Omega)$ since, in this case, $D u=0$ a.e. on the set $u=0$. This is, in fact, the situation in TH.2. Therefore we could also replace $b(x, u, D u) \chi_{u>0}$ by $\bar{b}(x, u, D u)$ in the last term of the definition.

Sketch of the proof of theorems 1 and 2. * Approximating problems
$\left(E_{n}\right)\left\{\begin{array}{l}-\Delta u_{n}+\lambda u_{n}=b\left(x, S_{1 / n} u_{n}, D u_{n}\right)+f(x) \text { in } \Omega \\ u_{n}=0 \quad \text { on } \quad \partial \Omega\end{array}\right.$

$$
\exists u_{n} \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega), \quad u_{n} \geq 0
$$

Recall that

$$
\left|b\left(x, S_{1 / n}(s), \xi\right)\right| \leq \beta\left(S_{1 / n}(s)\right)|\xi|^{2}
$$

where $\beta(s)=\frac{c_{2}}{s^{k}}$

Define

$$
\begin{gathered}
\beta_{n}(s)=\beta\left(S_{1 / n}\right)(s) \\
\gamma_{n}(s)=\left\{\begin{array}{lll}
\int_{0}^{s} \beta_{n}(\sigma) d \sigma & \text { if } & 0<k<1 \\
\int_{M}^{s} \beta_{n}(\sigma) d \sigma & \text { if } & k \geq 1
\end{array}\right.
\end{gathered}
$$

and

$$
\Psi_{n}(s)=\int_{0}^{s} e^{\gamma_{n}(\sigma)} d \sigma
$$

* $\left(u_{n}\right)_{n \in N}$ uniformly bounded in $L^{\infty}(\Omega)$.

Test function in (E_{n}):

$$
\begin{gathered}
e^{\gamma_{n}\left(u_{n}\right)}\left(u_{n}-M\right)_{+} \in H_{0}^{1}(\Omega), \\
\int_{\Omega}\left|D\left(u_{n}-M\right)_{+}\right|^{2} e^{\gamma_{n}\left(u_{n}\right)}+\int_{\Omega}\left|D u_{n}\right|^{2} \beta_{n}\left(u_{n}\right)\left(u_{n}-M\right)_{+} e^{\gamma_{n}\left(u_{n}\right)} \\
+\lambda \int_{\Omega} u_{n}\left(u_{n}-M\right)_{+} e^{\gamma_{n}\left(u_{n}\right)} \leq \\
\int_{\Omega}\left|D u_{n}\right|^{2} \beta_{n}\left(u_{n}\right)\left(u_{n}-M\right)_{+} e^{\gamma_{n}\left(u_{n}\right)}+\int_{\Omega} f\left(u_{n}-M\right)_{+} e^{\gamma_{n}\left(u_{n}\right)}
\end{gathered}
$$

Recalling that $M=\frac{\|f\|_{\infty}}{\lambda}$, we easily get

$$
\left\|u_{n}\right\|_{\infty} \leq M \quad \forall n \in N
$$

* Uniform estimates on $\left(\Psi\left(u_{n}\right)\right)_{n \in N}$ in $H_{0}^{1}(\Omega)$.

$$
\left.\int_{\Omega} \mid D \Psi_{n}\left(u_{n}\right)\right)\left.\right|^{2}=\int_{\Omega}\left|D u_{n}\right|^{2} e^{\gamma_{n}\left(u_{n}\right)} \leq \text { cost }
$$

Test function in $\left(E_{n}\right)$:

$$
v_{n}=e^{\gamma_{n}\left(u_{n}\right)} \Psi_{n}\left(u_{n}\right) \in H_{0}^{1}(\Omega)
$$

Untill now we need not to distinguish the two cases $k<1$ and $k \geq 1$ neither to impose sign conditions, but, from the last estimate, we see a first difference:

$$
\begin{array}{ll}
k<1 & \Rightarrow\left\|u_{n}\right\|_{H_{0}^{1}} \leq C \quad \forall n \\
k \geq 1 & \nRightarrow\left\|u_{n}\right\|_{H_{0}^{1}} \leq C \quad \forall n
\end{array}
$$

The case $k<1$
*Uniform estimates on $\left(\left(b\left(x, S_{1 / n}\left(u_{n}\right), D u_{n}\right)\right)_{n \in N}\right.$ in $L^{1}(\Omega)$

Test function in $\left(E_{n}\right)$:

$$
v_{n}=e^{\gamma_{n}\left(u_{n}\right)}-1 \in H_{0}^{1}(\Omega) .
$$

Note that $v_{n} \geq 0$. Uniform L^{1} estimate on $\left.b\left(x, S_{1 / n}\left(u_{n}\right), D u_{n}\right)\right)=b_{n}\left(x, u_{n}, D u_{n}\right)$.

In the case $k \geq 1$ we would have used $v_{n}=$ $\left(e^{\gamma_{n}\left(u_{n}\right)}-1\right) \eta^{2}(x) \leq 0$, getting just $L_{l o c}^{1}(\Omega)$ estimates for $\left(\beta_{n}\left(u_{n}\right)\left|D u_{n}\right|^{2}\right)_{n \in N}$. We deduce from this also an $H_{l o c}^{1}(\Omega)$ estimates.Here (the only point) we need the more restrictive condition $\frac{c_{1}}{|s|^{k}}|\xi|^{2} \leq b(x, s, \xi) \leq \frac{c_{2}}{|s|^{k}}|\xi|^{2} \quad s \neq 0, k \geq 1, c_{1}, c_{2}>0$
$* u_{n} \rightarrow u$ a.e. in Ω,
$* D S_{m}\left(u_{n}\right) \rightarrow D S_{m}(u)$ in $\quad\left(L^{2}(\Omega)\right)^{N} \quad \forall m>0$
$* \lim _{m \rightarrow 0} \int_{C \cap\left\{u_{n} \leq m\right\}} b_{n}\left(x, u_{n}, D u_{n}\right) d x=0$
uniformly in n , for any compact set C in Ω.

This is a main point (confine to the case $b(x, s, \xi) \geq 0)$

Test function in (E_{n}):

$$
v_{n}=-\eta^{2}(x)\left(e^{\gamma_{n}\left(u_{n}\right)-\gamma_{n}(m)}-1\right)_{-}
$$

$$
\int_{\left\{u_{n} \leq m\right\}}-2 \eta D \eta D u_{n}\left(e^{\gamma_{n}\left(u_{n}\right)-\gamma_{n}(m)}-1\right)+
$$

$$
\int_{\left\{u_{n} \leq m\right\}}\left|D u_{n}\right|^{2} \beta_{n}\left(u_{n}\right) e^{\gamma_{n}\left(u_{n}\right)-\gamma_{n}(m)} \eta^{2}
$$

$$
\leq \int_{\left\{u_{n} \leq m\right\}} b_{n}\left(x, u_{n}, D u_{n}\right)\left(e^{\gamma_{n}\left(u_{n}\right)-\gamma_{n}(m)}-1\right) \eta^{2}+
$$

$$
\lambda \int_{\left\{u_{n} \leq m\right\}} u_{n} \eta^{2}(x)
$$

* Equiabsolute integrability of $\left(b_{n}\left(x, u_{n}, D u_{n}\right)_{n \in N}\right.$ on compact sets

$$
\int_{E} b_{n}\left(x, u_{n}, D u_{n}\right)=\int_{E \cap\left\{u_{n} \leq m\right\}}+\int_{E \cap\left\{u_{n}>m\right\}}
$$

$$
\int_{E \cap\left\{u_{n} \leq m\right\}} b_{n}\left(x, u_{n}, D u_{n}\right)
$$

is small uniformly in n, for m sufficiently small.
$\int_{E \cap\left\{u_{n}>m\right\}} b_{n}\left(x, u_{n}, D u_{n}\right) \leq \beta(m) \int_{E}\left|D S_{m}\left(u_{n}\right)\right|^{2}$
is small uniformly in n , for $|E|$ sufficiently small and fixed m (due to the strong convergence of $\left|D S_{m}\left(u_{n}\right)\right|$ in $\left.L^{2}(\Omega)\right)$.

* Passage to the limit

Let us focus our attention on the term

$$
\begin{gathered}
\int_{\Omega} b_{n}\left(x, u_{n}, D u_{n}\right) \Phi=\int_{u>0} b_{n}\left(x, u_{n}, D u_{n}\right) \Phi \\
+\int_{u=0} b_{n}\left(x, u_{n}, D u_{n}\right) \Phi
\end{gathered}
$$

We easily pass to the limit in the first integral (a.e. convergence and equiabsolute integrability).Moreover we prove that, on the compact set C

$$
\lim _{n \rightarrow+\infty} \int_{C \cap\{u=0\}} b_{n}\left(x, u_{n}, D u_{n}\right)=0
$$

Indeed

$$
\begin{gathered}
\int_{C \cap\{u=0\}} b_{n}\left(x, u_{n}, D u_{n}\right)=\int_{C^{\epsilon} \cap\{u=0\}} b_{n}\left(x, u_{n}, D u_{n}\right)+ \\
+\int_{\left(C-C^{\epsilon}\right) \cap\{u=0\}} b_{n}\left(x, u_{n}, D u_{n}\right)
\end{gathered}
$$

Here C^{ϵ} is a subset of C such that in $C-C^{\epsilon}$ the sequence b_{n} converges uniformly and whose size is sufficiently small (Severini-Egoroff). For fixed ϵ,the first integral is less than $\epsilon / 2$ by the equiabsolute integrability. The second one can be bounded by

$$
\begin{gathered}
\int_{\left(C-C^{\epsilon}\right) \cap\left\{u_{n} \leq m\right\}} b_{n}\left(x, u_{n}, D u_{n}\right) \leq \epsilon / 2 \\
\forall n \geq n_{o}(m(\epsilon))=n_{0}(\epsilon)
\end{gathered}
$$

(Recall that we proved that

$$
\left.\lim _{m \rightarrow 0} \int_{C \cap\left\{u_{n} \leq m\right\}} b_{n}\left(x, u_{n}, D u_{n}\right) d x=0\right)
$$

Let us come back to the second problem
$(S P)\left\{\begin{array}{l}w_{t}-\Delta w=g(w)+\mu \quad \text { in } \quad \Omega \times(0, \infty) \\ w(x, t)=0 \quad \text { on } \partial \Omega \times(0, \infty) \\ w(x, 0)=w_{0}(x) \in L^{1}(\Omega) .\end{array}\right.$
and to the related one
(P) $\left\{\begin{array}{l}u_{t}-\Delta u=\beta(u)|D u|^{2}+1 \quad \text { in } \Omega \times(0, \infty) \\ u(x, t)=0 \quad \text { on } \quad \partial \Omega \times(0, \infty) \\ u(x, 0)=u_{0}(x) \quad \text { in } \Omega\end{array}\right.$

Precise relation between $g(s)$ and $\beta(s)$:

$$
g(w)=e^{\gamma\left(\Psi^{-1}(w)\right)}
$$

(recall that $\Psi(s)=\int_{0}^{s} e^{\gamma(\sigma) d \sigma}$ and $\gamma(s)$ is a primitive of $\beta(s)$.) Some examples about the behaviour of g at $+\infty: \log ^{*} s=\max \{1, \log s\}$

If $\beta(s)=1 \quad$ then $g(s) \sim s$
If $\beta(s)=s^{\lambda}$ then $g(s) \sim s\left(\log ^{*} s\right)^{\frac{\lambda}{\lambda+1}}$
If $\beta(s)=e^{s}, \quad$ then $g(s) \sim s \log ^{*} s$
If $\beta(s)=e^{e^{s}}, \quad$ then $g(s) \sim s \log ^{*} s \log ^{*}\left(\log ^{*} s\right)$

In all the last cases $g(s)$ is slightly superlinear and we may write it as $g(s)=C\left(1+s A\left(\log ^{*} s\right)\right)$ with and A satisfies:

$$
\left\{\begin{array}{l}
A \quad \text { is increasing }, \\
\int_{1}^{\infty} \frac{d s}{A(s)}=\infty, \\
\lim _{s \rightarrow \infty} A(s)=\infty, \\
A(2 s) \leq K A(s) \quad K>0 \quad s \geq s_{0}>0
\end{array}\right.
$$

Recall that we are interested in the case $\beta(s)$ increasing, possibly unbounded.

Results by Abdellaoui-Dall'Aglio-Peral for the case $\beta=1$, which corresponds to $g(s)=s+1$.

They study the connection between the two problems

$$
\left\{\begin{array}{l}
u_{t}-\Delta u=|D u|^{2}+f(x, t) \\
u(x, 0)=u_{0}(x) \\
u \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
w_{t}-\Delta w=f(w+1)+\mu \\
w(x, 0)=\Psi\left(u_{0}(x)\right) \\
\left.v \in L^{q}\left(0, T ; W_{0}^{1, q}(\Omega)\right) \quad q<(N+2) / N+1\right)
\end{array}\right.
$$

via the change of unknown $w=\Psi(u)=e^{u}-1$, getting a result of "strong" nonuniqueness of solutions of the first problem. Here μ is a positive singular Radon measure (i.e. concentrated on a set of null capacity).

They also have similar results for $\beta(s)$ increasing. Preliminary result : global existence for

$$
(S P)\left\{\begin{array}{l}
w_{t}-\Delta w=g(w)+\mu \quad \text { in } \quad \Omega \times(0, \infty) \\
w(x, t)=0 \quad \text { on } \partial \Omega \times(0, \infty) \\
w(x, 0)=w_{0}(x) \in L^{1}(\Omega)
\end{array}\right.
$$

where $0 \leq g(s) \leq C\left(1+s A\left(\log ^{*} s\right)\right)$,

A satisfying:

$$
\left\{\begin{array}{l}
A \quad \text { is increasing }, \\
\int_{1}^{\infty} \frac{d s}{A(s)}=\infty, \\
\lim _{s \rightarrow \infty} A(s)=\infty, \\
A(2 s) \leq K A(s) \quad K>0 \quad s \geq s_{o}>0
\end{array}\right.
$$

Difficulties that appear when we look for a priori estimates. Multiplying the model equation

$$
u_{t}-\Delta u=1+u A\left(\log ^{*} u\right)+\mu
$$

by u and integrating on Ω, one of the terms appearing is:

$$
\int_{\Omega} u^{2}(x, t) A\left(\log ^{*} u(x, t)\right) d x .
$$

We guess that an inequality such as
$\int_{\Omega} u^{2}(x, t) A\left(\log ^{*} u(x, t)\right) d x \leq \frac{1}{2} \int_{\Omega}|\nabla u(x, t)|^{2} d x+$
$F\left(\int_{\Omega} u(x, t)^{2} d x\right)$
for a suitable function F is needed (a Sobolev's inequality of logarithmic type .)

Actually, the presence of the measure term worsens the situation. Indeed, when dealing with measure data, it is not possible to take u as a test, but appropriate functions of u are required. Taking one of these test functions, we are led to estimate, instead of the term $\int_{\Omega} u^{2}(x, t) A\left(\log ^{*} u(x, t)\right) d x$, a term like

$$
\int_{\Omega} v^{q}(x, t) A\left(\log ^{*} v(x, t)\right) d x
$$

with $2 \leq q<2^{*}$ and $v(x)$ power of $u(x)$. So that, we need an inequality such as

$$
\begin{gathered}
\int_{\Omega} v^{q}(x, t) A\left(\log ^{*} v(x, t)\right) d x \\
\leq \frac{1}{2} \int_{\Omega}|\nabla v(x, t)|^{2} d x+F\left(\int_{\Omega} v^{q}(x, t) d x\right)
\end{gathered}
$$

Generalized Iogarithmic Sobolev's inequality
(Adams '79, Cipriani-Grillo, Dall'Aglio-GiachettiSegura)

TH 3. If g satisfies the previous hypotheses, $u_{0} \in L^{1}(\Omega)$ and μ is a finite Radon measure, then there exists a global distributional solution u to problem ($S P$) such that
a) $u \in L_{l o c}^{\infty}\left([0, \infty) ; L^{1}(\Omega)\right) \cap L_{l o c}^{q}\left([0, \infty) ; W_{0}^{1, q}(\Omega)\right) \cap$ $L_{l o c}^{\sigma}(\Omega \times[0, \infty))$ for every $q<1+\frac{1}{N+1}$ and for every $\sigma<1+\frac{2}{N}$
b) For every $\beta<\frac{1}{2},|u|^{\beta} \in L_{l o c}^{2}\left([0, \infty) ; H_{0}^{1}(\Omega)\right)$
c) For all $k>0, T_{k} u \in L_{l o c}^{2}\left([0, \infty) ; H_{0}^{1}(\Omega)\right)$
d) $g(u) \in L_{l o c}^{1}(\Omega \times[0, \infty))$

Sketch of the proof of TH 3 (non negative data).

* Approximating problems

$\left(S P_{n}\right)\left\{\begin{array}{l}\left(u_{n}\right)_{t}-\Delta u_{n}=g_{n}\left(u_{n}\right)+f_{n} \quad \text { in } \Omega \times(0, \infty) \\ u_{n}(x, t)=0 \quad \text { on } \quad \partial \Omega \times(0, \infty) \\ u_{n}(x, 0)=u_{n, 0}(x) \in L^{1}(\Omega) .\end{array}\right.$
where $u_{0, n} \rightarrow u_{0}$ strongly in $L^{1}(\Omega), f_{n} \rightarrow \mu$ in the weak-* sense and $g_{n}(s)=T_{n}(g(s))$.

* A priori estimates. Test function:

$$
\begin{gathered}
\chi_{(0, t)}\left(1-\left(1+u_{n}\right)^{-\alpha}\right) \quad \alpha>0 \\
\int_{\Omega} \Phi\left(u_{n}(t)\right) d x-\int_{\Omega} \Phi\left(u_{n, 0}\right) d x+\int_{0}^{t} \int_{\Omega} \frac{\left|\nabla u_{n}\right|^{2}}{\left(1+u_{n}\right)^{\alpha+1}} \\
\leq C \int_{0}^{t} \int_{\Omega} u_{n}\left(A\left(\text { log }^{*} u_{n}\right)+1\right)+\|\mu\|
\end{gathered}
$$

where

$$
\Phi(s)=\int_{0}^{s}\left(1-(1+\tau)^{-\alpha}\right) d \tau
$$

Since $c_{1} s-c_{2} \leq \Phi(s) \leq s$.

$$
\begin{gathered}
\max _{t \in[0, T]} \int_{\Omega} u_{n}(t) d x+\int_{Q_{T}}\left|\nabla\left[\left(1+u_{n}\right)^{\frac{1-\alpha}{2}}-1\right]\right|^{2} \\
\leq C \int_{Q_{T}} u_{n} A\left(\log ^{*} u_{n}\right)+C .
\end{gathered}
$$

Calling $v_{n}=\left(1+u_{n}\right)^{\frac{1-\alpha}{2}}-1$ we find that $u_{n}=$ $\left(v_{n}+1\right)^{q}-1$ and, moreover, in terms of v_{n}, we have
$\int_{\Omega} v_{n}^{q}(t) d x+\int_{Q_{t}}\left|\nabla v_{n}\right|^{2} \leq C\left(\int_{Q_{t}} v_{n}^{q} A\left(\log ^{*} v_{n}\right)+1\right)$. Next, using generalized Sobolev logarithmic inequality, we get

$$
\left\|v_{n}(t)\right\|_{q}^{q}+\int_{Q_{t}}\left|\nabla v_{n}\right|^{2} \leq C\left(\int_{0}^{t}\left\|v_{n}(\tau)\right\|_{q}^{q} A\left(\log ^{*}\left\|v_{n}(\tau)\right\|_{q}\right)+1\right)
$$

Here is where we use the condition

$$
\int_{1}^{\infty} \frac{d s}{s A\left(\log ^{*} s\right)}=\infty
$$

to obtain the estimate we wish on v_{n} in

$$
L^{\infty}\left(0, T ; L^{q}(\Omega)\right) \cap L^{2}\left(0, T, H_{0}^{1}(\Omega)\right)
$$

The conclusion follows in a standard way by results of Gagliardo-Nirenberg, Boccardo-Gallouet, Aubin.

The logarithmic Sobolev inequality we have used.

$$
\begin{gathered}
\int_{\Omega}|v|^{q} A\left(\log ^{*}|v|\right) d x \leq c\left(\epsilon \int_{\Omega}|\nabla v|^{p} d x+\right. \\
\left.\|v\|_{q}^{q} A\left(\log ^{*} \frac{1}{\epsilon}\right)+\|v\|_{q}^{q} A\left(\log ^{*}\|v\|_{q}^{q}\right)+1\right)
\end{gathered}
$$

