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Existence of solutions for two types of (model)
problems. The first one:

(E) { —Au-+ = Bw)|Dul?+ f(z) in Q
u=20 on 02

A>0, f(z) >0, f(z)e L°(2) ,2 bounded
B(u) is singular in each point where v = 0, in

particular on the boundary.
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Early results by L. Boccardo-F.Murat-J.P.Puel
['89], in the case p[(s) continuous.
D.Arcoya-S.Barile-P.Martinez-Aparicio
D.Giachetti-F.Murat (in  progress).

We will need to define carefully the sense of
"solution” .

The second one:
wi—Aw=g(w)+pn in Qx(0,o00)
(SP)} w(x,t) =0 on 092 x (0,00)
w(z,0) = wo(x) € L1(Q).



where p is a finite Radon measure and g is
slightly superlinear.

A.Dall’Aglio-D.Giachetti-I.Peral-S.Segura de Leon

(in progress).

The problem can be obtained, via Cole-Hopf
trasformation, by the problem :

y

ug — Au=Gw)|Dul?+1 in £ x(0,00)
(P)} u(z,t) =0 on 9092 x (0,c0)

| u(x,0) = ug(x) in

with the function 8(s) unbounded, ex: (G(u) =

e,

Common feature is the presence of a first order
term which depends on u and its gradient and
which is, in both cases, unbounded in the u
variable.

Uu

Change of unknown w

where ~(s) = /Osﬁ(a)da

W(y) = /

0



—Au~+u=0b(x,u,Du) + f(xz) in Q

(E){u:o on 02

A>0, f(x) >0, f(zx) € L®(N)

b(z,s,8)  Qx R—{0yxRY - R

Caratheodory function whose behaviour near

s — 0O is prescribed by one of the following
Hypotheses:
(Hp<1)
b(z, s,£)| < |k|g|2 s#0,0<k<1,¢c,>0

| Dul?

(Ex : b(xz,u, Du) = :|:|u|1/2)

(Hi>1)

E |I<:|§|2 b(z,s,§) < s |k|€|2 s#0,k>1,¢,,c,>0
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2
(Fx : b(x,u, Du) = _|_|D7,;| )
u

Remark 1.In (Hp.1) the function §(s) = 2—% is
an L1 function near s = 0, while in (Hy>1) is
not an L1 function near s = 0.

We define, for s € (0, M] where M = %
the function W(s) = [j e7(8)ds where ~(s) is a

primitive of function B(s) = % i.e.

( 1—k
S (32 S

0 O'k:CQ].—k

S C2 S .
v(s) = 4 / —= = CQZOQ(M) if k=1

if O0<k<1

M o
2 = if k>1
\/M kO kE—1

In the case 0 < k£ < 1, ~(s) is an increasing,
non-negative, bounded function in [0, M] with

v(0) = 0.



If £k > 1 ~(s) is an increasing, non-positive
function in (0, M] with Iim+7(s) = —00.

s—0

Moreover, for s € (0,M] and m > 0 , let us
define
m if 0<s<m

Sm)={"™ I D=°S

s If s>m

TH.1 (0<k<1)

2
Ju € HY(Q)NL®(Q), u>0, U5 e
LY(Q) : Vb € CX(Q)

/Q DuD¢ +\ /Q up = /Q fo+ /Q b(z, u, Du)X, 509

TH.2 (k> 1)

Ju € HE

L (QNL>®(2), u >0, W(u) € HA(Q), Sm(u) €
2
i@ wm>o, B e b @)

loc

| DuDo+A [uo = [ fo+ [ bla,u, Du)x,o6
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Remark 2.The definition of solution involves in
the last term [ b(x, u, Du)xy>0¢ = [o b(x,u, Du)é
where

5@ﬁ@>:{?%;@$303#0

This is not a Caratheodory function, since it is
not continuous at the point s = 0.

Anyway, we can easily prove that b(z,u,v) is a
measurable function when v and v are measur-
able functions. Note that this definition is not
the natural one in the case of (Hy>;1) which is

Indeed it would be more natural to define

b(x,0,6) =4+oco0 for €#£0

which means

E(CE, S, S) — E(CB, S, S) _I_ (_I_OO)X{S:O}ﬂ{g#O}

MﬁF s#0,k>1



But we observe that b(z,u, Du) coincide a.e.
with b(z,u, Du) when u € H} (£2) since, in this
case, Du = 0 a.e. on the set «u=0. This
is, in fact, the situation in T'H.2. Therefore we
could also replace b(x, u, Du)xy>0 by b(z, u, Du)
in the last term of the definition.

Sketch of the proof of theorems 1 and 2.

* Approximating problems

— A up + Aun, = b(x, Sl/nun, Dup) + f(x)in2

En

Jup € H5(2) N L®(2), up >0
Recall that
b(, S1/n(5), )] < B(S/n(8))IEI°

where [(s) = 2—%



Define

Bn(s) = B(S1/n)(s)

(/OSﬁn(U)da if O<k<1
Yn(s) =«

S
\/Mﬁn(g)da if k>1
and

Wp(s) = /O ® (@) 4o

* (un)pneny Uniformly bounded in  L°°(£2).

Test function in (Ey):
e%z(?m)(un — ]\4)+ c Hol(Q),

/Q|D(un—M)_|_ |2€'Yn(un) —|—/Q‘Dun|26n(un)(un_M>+e’yn(un)
+A /Qun(un — M)+6’Yn(un) <

/Q|DUn|Qﬂn(un)(un—M)_'_e%l(un)_|_/Qf(un_M)+ éyn(un)
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Recalling that M = % we easily get

* Uniform estimates on (W (un))pen in HE(S2).

/Q |Dwn(un))|2 — /Q |Dun|2€%(u”) < cost.
Test function in (Ep):

o = W, (uy,) € HA (D).

Untill now we need not to distinguish the two
cases kK < 1 and k > 1 neither to impose sign
conditions, but, from the last estimate,we see
a first difference:

k<1l = <C Vv
||un||Hé < n
k>1 <C Vv
= 7 ||Un||H(% = n
Thecase k<1
*Uniform estimates on ((b(x, S ,,(un), Dun))nen

in L1(Q)
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Test function in (Ey):

vp = eM(un) _ 1 ¢ H&(Q)

Note that v, > 0. Uniform L! estimate on
b(x, Sl/n(un), Dupn)) = bp(x, un, Duy).

In the case £ > 1 we would have used v, =
(emun) —1)n2(z) < 0, getting just LZOC(Q) esti-
mates for (Bn(un)|Dun|?),en. We deduce from
this also an Hlloc(Q) estimates.Here ( the only
point) we need the more restrictive condition

|k|£|2<b(:v 5,6) < |,\CI£|2 s#£0,k>1,¢,c, >0

xUp — w4 a.e. in €2,
%D Sm(un) — DSm(u)in  (L2(Q)Y  Vm >0

x [im bn(x, un, Dun)dr = 0
m—0 JCN{up<m} n " n)

uniformly in n, for any compact set C in 2.

11



This is a main point ( confine to the case
b(z,s5,§) >0 )

Test function in (Ep):
v = —n2(z)(emun)—mm) _ 1)

/{u <m}_277D77DUn(€7”(u”)_vn(m) — 1)+
2 ’Yn(un)—’Yn(m) 2
[{uﬂ | Dunl?BaCun)e n

< bn x,un,Dun)(e%(u")_%(m) —1) 24
(uy<m) ( n

2
A (< ()

* Equiabsolute integrability of (bn(x, un, Dun)npen
on compact sets

/E bn(@, un, Dun) = /Em{ungm} + /Eﬂ{un>m}
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b , Un, D
/Eﬂ{ungm} (@, tn, Dun)

is small uniformly in n, for m sufficiently small.

ba:,u,Du<m/DSu2
Sty B s Dein) < 5Gm) [ DS (un)|
is small uniformly in n, for |E| sufficiently small
and fixed m ( due to the strong convergence
of |DSm(upn)| in L2(2)).

* Passage to the limit

Let us focus our attention on the term

/ bn(%,u'n, DUn)CD — / bn(ﬂf,Un,D'U/n)cb
Q u>0

+ bn(xaunaDun)cb

u=0
We easily pass to the limit in the first integral
(a.e. convergence and equiabsolute integrabil-
ity).Moreover we prove that, on the compact

set
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n——+o0o JCN{u=0}

Indeed
/ bn(xyunyDun) — / bn(x7u’fbaDun>+
Cn{u=0} C¢n{u=0}
+ bn(x, un, Dun)

(C—-C¢)N{u=0}

Here C€ is a subset of C such that in C—-C*€ the
sequence b, converges uniformly and whose
size is sufficiently small ( Severini-Egoroff). For
fixed €,the first integral is less than ¢/2 by the
equiabsolute integrability. The second one can
be bounded by

/ bn(a'},’U/n, D'U/n) S 6/2
(C=C)N{un<m}

Vn > no(m(e)) = ng(e)
(Recall that we proved that

lim bn(xz, un, Dun)dz = 0)

m—0 C{un<m}
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Let us come back to the second problem
wi—Aw=g(w)+p in Qx(0,o00)
(SP) < w(x,t) =0 on 90 x (0,00)
w(z,0) = wo(z) € L1(Q).
and to the related one
(wp— Au = B(w)|Dul2+1 in Q x(0,00)
(P) ¢ u(z,t) =0 on 900 x (0,c0)
| u(x,0) = up(x) in
Precise relation between g(s) and (G(s):
g(w) = (W (w))

S
(recall that W(s) = /0 e7(@)do ang ~(s) is a

primitive of 8(s).) Some examples about the
behaviour of g at 400 : l0og*s = max{1,logs}

If B(s) =1 then g(s) ~ s

A
If 8(s) = s*then ¢(s) ~ s(log* s) 1
If B(s) =e%, then g(s) ~slog*s

If B(s) = e, then g(s) ~ slog*s log*(log* s)
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In all the last cases g(s) is slightly superlinear
and we may write it as g(s) = C(1+sA(log*s))
with and A satisfies:

(A is increasing,

oo (s

1 A(s) -

SII_[T;O A(s) = oo,

| A(2s) < KA(s) K>0 s>s59>0

Recall that we are interested in the case 3(s)
increasing, possibly unbounded.

7\

Results by Abdellaoui-Dall’Aglio-Peral for the
case B = 1, which corresponds to ¢g(s) = s+ 1.

They study the connection between the two
problems

"

ug — Au = |Du|? + f(z,t)

u(z,0) = up(x)
u € L2(0,T; H} ()

N\
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and

(wi—Aw=f(w+1)+p
w(z,0) = W(ug())
(v € LU0, T; W () ¢ < (N+2)/N+1)

via the change of unknown w = W (u) = e%—1,
getting a result of "strong” nonuniqueness of
solutions of the first problem. Here u is a pos-
itive singular Radon measure ( i.e. concen-
trated on a set of null capacity ).

N\

They also have similar results for 3(s) increas-
ing. Preliminary result : global existence for

w—Aw=g(w)+p in Qx(0,o00)
(SP)} w(x,t) =0 on 092 x (0,00)
w(z,0) = wo(z) € LI(D).

where 0 < g(s) < C(1 + sA(log*s)),
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A satisfying:

(A is increasing,

o0 ds
:CX),

¢ J1 A(s)
lim A(s) = oo,

S—00

| A(25) < KA(s) K>0 52>5,>0

Difficulties that appear when we look for a pri-
ori estimates. Multiplying the model equation

ur — Au =14+ uvA(log®u) + u

by v and integrating on 2, one of the terms
appearing is :

/Q w2 (z, ) A(log* u(z, t)) d.

We guess that an inequality such as
1
/Q w2 (2, ) A(log* u(z, t)) dz < E/Q Vu(z, )| dot

F(/Q u(z,t)? dz)

for a suitable function F'is needed ( a Sobolev’'s
inequality of logarithmic type .)
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Actually, the presence of the measure term
worsens the situation. Indeed, when dealing
with measure data, it is not possible to take
u as a test, but appropriate functions of w are
required. Taking one of these test functions,
we are led to estimate, instead of the term
/Q w2 (2, t)A(10g* u(z, 1)) dz, a term like

/Q vz, ) A(log* v(z, b)) da,

with 2 < ¢ < 2* and v(xz) power of u(xz). So
that,we need an inequality such as

/Q vi(z, ) Alog* v(z, ) da

1 2
< §/Q|Vv(a:,t)| dr + F( /Q v9(xz,t) dx)

Generalized logarithmic Sobolev’s inequality

(Adams '79 ,Cipriani-Grillo, Dall'Aglio-Giachetti-
Segura)
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TH 3. If g satisfies the previous hypotheses,
ug € LY() and p is a finite Radon measure,
then there exists a global distributional solution
u to problem (SP) such that

1
7 ([0,00); LE(2))NLE ([0, 00); Wo 1))n
L7 (£2x [0,00)) for every ¢ <1+ N—|—1 and
for every o < 1 + 2 X

a) u € L

b) For every B <3, |ul® € L? ([0, 00); HA(S2))

c) For all k>0, Tyu € L2 ([0,00); H3(S2))

loc

d) g(u) € L (2 x [0,0))

loc

Sketch of the proof of TH 3 ( non negative
data ).
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* Approximating problems

C(un)t — D un = gn(un) + fn in 2 x (0,00)
(SPy) { un(x,t) =0 on 02 x (0,0)
L un(z,0) = upo(x) € L(Q).

where ug , — ug strongly in L1(2), fn — p in
the weak-x sense and gn(s) = Th(g(s)).

* A priori estimates. Test function:
X(O,t)(l — (1 _I_ Un)_a) (874 > O
|Vun|2

/Q <l>(un(t))dw—/Q ¢(un,o)dfﬂ‘+/ot /Q (1 4 wy)oF1

t
< c/o /Q un (A(log" un) + 1) + ||ull,

where

D(s) = /08(1 (147 Ydr .
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Since c18 — ¢ < P(s) < s.

1-a 2
max /Qun<t>dx+ /QT|V[<1 Fun) 2z — 1]

QT

11—«
(vn+1)9—1 and, moreover, in terms of v,, we
have

q 2 q *
/Q vl (£)da + /Qlwm < O( /Qt vd A(1og* vp) + 1).

Next, using generalized Sobolev logarithmic in-
equality, we get

[on @I+ [ 190nl? < O fJon(r)3A008" [on(D)l)+1)

Here is where we use the condition

/OO ds
= 00
1 sA(log*s)
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to obtain the estimate we wish on v, Iin

L>®(0,T; LY(2)) N L?(0, T, HA (2)).

The conclusion follows in a standard way by re-
sults of Gagliardo-Nirenberg, Boccardo-Gallouet,
Aubin.

The logarithmic Sobolev inequality we have
used.

/ lv|? A(log™ |v|) dx < c(e/ |Voul|P de+
Q Y

1
lvliz AClog™ =) + [lvlig AClog™ [|vllg) + 1)
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