Non Uniqueness of Solutions

 to Homogeneous Kinetic Equations

 to Homogeneous Kinetic Equations}

Miguel Escobedo
Facultad de Ciencia y Tecnología
Universidad del País Vasco

In Collaboration with J. J. L. Velazquez \& S. Mischler.

To Ireneo Peral in his 60th anniversary, with friendship and respect.

The Homogeneous kinetic equation.

$$
\begin{aligned}
& (\mathrm{U}-\mathrm{U})\left\{\begin{array}{l}
\frac{\partial f}{\partial t}\left(t, k_{1}\right)=\iint_{D\left(k_{1}\right)} W\left(k_{1}, k_{2}, k_{3}, k_{4}\right) q(f) d k_{3} d k_{4} \\
q(f)=f_{3} f_{4}\left(1+f_{1}\right)\left(1+f_{2}\right)-f_{1} f_{2}\left(1+f_{3}\right)\left(1+f_{4}\right)
\end{array}\right. \\
& f_{i} \equiv f\left(t, k_{i}\right), \quad i=1,2,3,4 . \\
& D\left(k_{1}\right) \equiv\left\{\left(k_{3}, k_{4}\right): k_{3}>0, k_{4}>0, k_{3}+k_{4} \geq k_{1}>0\right\} \\
& W\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=\frac{\min \left(\sqrt{k_{1}}, \sqrt{k_{2}}, \sqrt{k_{3}}, \sqrt{k_{4}}\right)}{\sqrt{k_{1}}}, \quad k_{2}=k_{3}+k_{4}-k_{1} .
\end{aligned}
$$

L. W. Nordheim (1928), E. A. Uehling \& G. E. Uhlenbeck (1933). Describes a dilute homogeneous isotropic gas of bosons (in polar coordinates).

Theorem For all initial data f_{0} satisfying: $f_{0}(k) \leq C e^{-B k}, \quad k \geq 1$

$$
\begin{aligned}
\left|f_{0}(k)-A k^{-7 / 6}\right| & \leq \frac{C}{k^{7 / 6-\delta}}, \quad 0 \leq k \leq 1 \\
\left|f_{0}^{\prime}(k)+\frac{7}{6} A k^{-13 / 6}\right| & \leq \frac{C}{k^{13 / 6-\delta}}, \quad 0 \leq k \leq 1
\end{aligned}
$$

there exists a unique solution $f \in \mathbf{C}^{1,0}((0, T) \times(0,+\infty))$ and $\lambda(t)$, satisfying:

$$
\begin{aligned}
& 0 \leq f(t, k) \leq L \frac{e^{-D k}}{k^{7 / 6}}, \text { if } k>0 ; \quad|\lambda(t)| \leq L, \quad \text { for } t \in(0, T) \\
& \left|f(t, k)-\lambda(t) k^{-7 / 6}\right| \leq L k^{-7 / 6+\delta / 2}, \quad k \leq 1, \quad t \in(0, T)
\end{aligned}
$$

for some positive constant L and for some $T=T(A, B, \delta)>0$.

Some general properties of the $\mathbf{U}-\mathbf{U}$ equation

Formally:

$$
\frac{d}{d t} \int_{0}^{\infty} f(t, k) \sqrt{k} d k=0 \quad \text { (conserves "total density".) }
$$

Family of steady states \mathcal{B}_{ρ} characterized by their total density $\rho>0$:

- If $0<\rho<\rho_{0} \equiv \int_{0}^{\infty} \frac{\sqrt{k} d k}{e^{k}-1}: \quad \mathcal{B}_{\rho}(k) \equiv F_{\mu}(k):=\frac{1}{e^{k+\mu}-1}$
where $\mu \geq 0$ is such that: $\quad \rho=\int_{0}^{\infty} \frac{\sqrt{k} d k}{e^{\mu+k}-1}, \mu \geq 0$.
- If $\rho>\rho_{0}: \quad \mathcal{B}_{\rho}(k) \equiv \frac{1}{e^{k}-1}+\left(\rho-\rho_{0}\right) \frac{\delta_{0}}{\sqrt{k}}, \quad \int_{0}^{\infty} \mathcal{B}_{\rho}(k) \sqrt{k} d k=\rho$

The solutions $\mathcal{B}_{\rho}(k)$ are the classical equilibria of the equation. For $\rho>\rho_{0}$ they describe the thermal equilibrium of a system of bosons with Bose-Einstein condensate of particles with zero momentum $\left(\left(\rho-\rho_{0}\right) \frac{\delta_{0}}{\sqrt{k}}\right)$.

Two different behaviours at $k=0$:

$$
\text { If } \begin{aligned}
\mu>0: & F_{\mu}(k)=\frac{1}{e^{k+\mu}-1} \rightarrow \frac{1}{e^{\mu}-1}, \quad \text { as } k \rightarrow 0 \\
& F_{0}(k)=\frac{1}{e^{k}-1} \sim k^{-1}, \quad \text { as } k \rightarrow 0 .
\end{aligned}
$$

Our main contribution: To construct classical solutions of the U-U equation which behave like $k^{-7 / 6}$ as $k \sim 0$.

Why -7/6?
See below.

- Extensive literature on solutions for the classical Boltzmann equation :

Carleman '32, '57 (classical solutions for the homogeneous equation)
Lanford ' 73 (validity of the B. equation, local existence)
Ukai '74 (linearisation, perturbation methods)
Kaniel \& Shinbrot '78 (small time result)
Cercignani (Stationary solutions...)
Di Perna \& Lions '89 (Renormalised solutions)

- Much less references for "quantum" equations.

Additional difficulties come from cubic terms and the singular kernel. Moreover the solutions do not remain bounded in general (c.f. F_{0}).

- One reference related to our work: X. Lu in J. Stat. Phys. 116 (2004).

X . Lu proves global existence of weak radial solutions for the U-U equation.
Method of Lu's proof:

1. Solve a regularised equation with a "truncated kernel".
2. Uniform apriori estimates
3. Pass to the limit and obtain a weak solution.

This method gives weak solutions \mathcal{F} such that:
For all $t>0, \quad \sqrt{\cdot} \mathcal{F}(t, \cdot)$ is a non negative bounded measure in \mathbb{R}^{+}.
The total density is constant:

$$
\frac{d}{d t} \int_{0}^{\infty} d(\mathcal{F}(t, k) \sqrt{k})=0
$$

- Concerning our result:

The solutions that we construct are classical $\left(f \in \mathbf{C}^{1,0}((0, T) \times(0,+\infty))\right.$.
They have a precise singular behaviour at the origin:

$$
f(t, k) \sim \lambda(t) k^{-7 / 6} \text { as } k \rightarrow 0
$$

More precisely: $f(t, k)=\lambda(t) k^{-7 / 6}+g(t, k) \quad$ where

$$
g(t, k) \in \mathbf{C}^{1,0}((0, T) \times(0,+\infty)), g(t, k)=\mathcal{O}\left(k^{-7 / 6+\delta / 2}\right) \text { as } k \rightarrow 0
$$

This implies : $\quad \frac{d}{d t}\left(\int_{0}^{\infty} \sqrt{k} f(k, t) d k\right)=-C a^{3}(t)<0$ for some constant $C>0$. The total density is not conserved.
Our solutions can not be the same as Lu's solutions.
Global solutions for all $t>0$. Two problems for such an extension:
1.) The possible blow up of solutions (related with Bose Einstein condensation).
2.) The global solutions should converge, as $t \rightarrow \infty$, to one of the \mathcal{B}_{ρ}.

Our solutions should not exist for all $t>0$.

Sketch of the proof: linearisation + fixed point

The main contribution in the $U-U$ equation comes from the modified equation:

$$
\begin{gathered}
(\mathrm{MU}-\mathrm{U}) \quad \frac{\partial f}{\partial t}(t, k)=\widetilde{Q}(f) \equiv \int_{D\left(k_{1}\right)} W\left(k_{1}, k_{2}, k_{3}, k_{4}\right) \tilde{q}(f) d k_{3} d k_{4} \\
\tilde{q}(f)=f_{3} f_{4}\left(f_{1}+f_{2}\right)-f_{1} f_{2}\left(f_{3}+f_{4}\right) \\
\left.D\left(k_{1}\right) \equiv\left\{\left(k_{3}, k_{4}\right)\right): k_{3}+k_{4} \geq k_{1}\right\} \\
W\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=\frac{\min \left(\sqrt{k_{1}}, \sqrt{k_{2}}, \sqrt{k_{3}}, \sqrt{k_{4}}\right)}{\sqrt{k_{1}}}
\end{gathered}
$$

Particular stationary solutions:

```
q}(1)=\tilde{q}(\mp@subsup{k}{}{-1})=0
```

Another particular solution:

Consider the non radial equation for the function $n(p, t)=f\left(|p|^{2}, t\right)$:

$$
\frac{\partial n}{\partial t}(t, p)=\mathcal{Q}(n) \equiv \int_{D\left(p_{1}\right)} W\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \tilde{q}(n) d p_{3} d p_{4}
$$

The function $n(p)=|p|^{-7 / 3}$ satisfies the equation for all $p \neq 0$. Moreover: the flux of this solution out of the sphere $|p|<R$ is

$$
\int_{|p|<R} \mathcal{Q}\left(|p|^{-7 / 3}\right) d p=C
$$

where C is a positive constant independent of R. So we have actually:

$$
\mathcal{Q}(n)=C \delta_{p=0}
$$

Linearisation of MU-U

We linearise MU-U equation around $f(k)=k^{-7 / 6}$:

$$
f(k, t)=k^{-7 / 6}+F(k, t)
$$

and obtain the following equation for F :

$$
\frac{\partial F}{\partial t}=-\frac{a}{k^{1 / 3}} F(k)+\frac{1}{k^{4 / 3}} \int_{0}^{\infty} K\left(\frac{r}{k}\right) F(r) d r
$$

where a is an explicit positive constant and the kernel $K(r)$ is explicit.

The Fundamental solution

$$
\begin{gathered}
F_{t}\left(t, k, k_{0}\right)=-\frac{a}{k^{1 / 3}} F\left(t, k, k_{0}\right)+\frac{1}{k^{4 / 3}} \int_{0}^{\infty} K\left(\frac{r}{k}\right) F\left(t, r, k_{0}\right) d r, t>0, k>0 \\
F\left(0, k, k_{0}\right)=\delta\left(k-k_{0}\right)
\end{gathered}
$$

Theorem. For all $k_{0}>0$, there exists a unique solution $F\left(t, \cdot, k_{0}\right)$ such that: $F\left(t, k, k_{0}\right)=\frac{1}{k_{0}} F\left(\frac{t}{k_{0}^{1 / 3}}, \frac{k}{k_{0}}, 1\right)$. For $k \in(0,2)$ the function $F(t, k, 1)$ can be written as: $\quad F(t, k, 1)=e^{-a t} \delta(k-1)+\sigma(t) k^{-7 / 6}+\mathcal{R}(t, k) \quad$ where $\sigma(t)=A t^{4}+\mathcal{O}\left(t^{4+k}\right)$ as $t \rightarrow 0, \sigma(t)=\mathcal{O}\left(t^{-3}\right)$ as $t \rightarrow \infty$.
And for $k>2: F(t, k, 1) \leq \beta(t)\left(t^{3} / k\right)^{\frac{11}{6}}$.

Some Remarks.

- The initial Dirac measure at $k=k_{0}$ persists for all time $t>0$ and is not regularised. That is a kind of hyperbolic behaviour.
- The total mass of the Dirac measure decays exponentially fast: it is "asymptotically" regularised.
- The behaviour $k^{-7 / 6}$ as $k \rightarrow 0$ persists for all time.

Sketch of the proof.

Change of variables: $k=e^{x}$,

$$
F(t, k, 1)=\mathcal{G}(t, x), \quad K(r / k)=K\left(e^{-(x-y)}\right)=e^{x-y} \mathcal{K}(x-y)
$$

with $\mathcal{K}(x)=e^{-x} K\left(e^{-x}\right)$. Laplace transform in t and Fourier transform in x

The Carleman equation.

$$
\begin{equation*}
z G(z, \xi)=G\left(z, \xi-\frac{i}{3}\right) \Phi\left(\xi-\frac{i}{3}\right)+\frac{1}{\sqrt{2 \pi}} \tag{1}
\end{equation*}
$$

where $\Phi(\xi)=-a+\widehat{\mathcal{K}}(\xi)$ and $\widehat{\mathcal{K}}$ is the Fourier transform of \mathcal{K}. The problem is then transformed in the following:

For any $z \in \mathbb{C}, \mathcal{R} e z>0$, find a function $G(z, \cdot)$ analytic in the strip

$$
S=\{\xi ; \xi=u+i v, 4 / 3<v<5 / 3, u \in \mathbb{R}\} \text { satisfying (2) on } S
$$

The strip S is determined by the behaviour of the kernel K at $r=0$ and $r \rightarrow+\infty$.
Starting from a PDE we would obtain: $z G(z, \xi)=G(z, \xi) P(\xi)+\frac{1}{\sqrt{2 \pi}}$ for some polynomial P...

The fixed point argument.

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial t}(t, k)=\iint_{D\left(k_{1}\right)} W\left(k, k_{2}, k_{3}, k_{4}\right) q(f) d k_{3} d k_{4} \\
q(f)=f_{3} f_{4}(1+f)\left(1+f_{2}\right)-f f_{2}\left(1+f_{3}\right)\left(1+f_{4}\right)
\end{array}\right.
$$

We look for: $\quad f(t, k)=\lambda(t) f_{0}(k)+g(t, k), \quad g(t, k)=\mathcal{O}\left(k^{-7 / 6+\delta / 2}\right)$ as $k \rightarrow 0$.
Decompose:

$$
q\left(\lambda(t) f_{0}+g\right)=q\left(\lambda(t) f_{0}\right)+\ell\left(\lambda(t) f_{0}, g\right)+n\left(\lambda(t) f_{0}, g\right)
$$

$\ell\left(\lambda(t) f_{0}, g\right)$: linear function of g
$n\left(\lambda(t) f_{0}, g\right)$: contains the quadratic and higher order terms on g.

The function g satisfies:

$$
\frac{\partial g}{\partial t}(t, k)=\mathcal{N}[t, k, g, \lambda]-\lambda^{\prime}(t) f_{0}
$$

where operator $\mathcal{N}[t, k, g, \lambda]$ is given by:

$$
\begin{aligned}
& \mathcal{N}[t, k, g, \lambda]=\mathcal{L}_{k}\left(\lambda(t) f_{0}, g\right)(k, t)+\mathcal{R}(t, k) \\
& \mathcal{L}_{k}\left(\lambda(t) f_{0}, g\right)(k, t)=\int_{D\left(k_{1}\right)} W\left(k, k_{2}, k_{3}, k_{4}\right) \ell\left(\lambda(t) f_{0}, g\right) d k_{3} d k_{4} \\
& \mathcal{R}(t, k)=\int_{D\left(k_{1}\right)} W_{M, M^{\prime}}\left(k, k_{2}, k_{3}, k_{4}\right)\left(q\left(\lambda(t) f_{0}\right)+n\left(\lambda(t) f_{0}, g\right)\right) d k_{3} d k_{4}
\end{aligned}
$$

The dominant terms:

$$
\frac{\partial g}{\partial t}(t, k)=\mathcal{L}_{k}\left(\lambda(t) f_{0}, g\right)(k, t)
$$

The remainder term

$$
\mathcal{R}(t, k)=\int_{D\left(k_{1}\right)} W_{M, M^{\prime}}\left(k, k_{2}, k_{3}, k_{4}\right)\left(q\left(\lambda(t) f_{0}\right)+n\left(\lambda(t) f_{0}, g\right)\right) d k_{3} d k_{4}
$$

is sub dominant because:

- f_{0} behaves like $k^{-7 / 6} \rightarrow$ cancelations in $q\left(\lambda(t) f_{0}\right)$ near $k=0$
- $n\left(\lambda(t) f_{0}, g\right)$ contains the quadratic and higher order terms in g.

We are then led to: $\quad \frac{\partial g}{\partial t}(t, k)=\mathcal{L}_{k}\left(\lambda(t) f_{0}, g\right)(k, t)+\nu(k, t)$.

That equation has the following regularising effect at $k=0$.
Theorem. Suppose $\nu(t, k) \equiv 0$ (for simplicity) and the initial data g_{0} satisfies:

$$
\left\|g_{0}\right\|_{\alpha, \beta}=\sup _{0 \leq k \leq 1}\left\{k^{\alpha}\left|g_{0}(k)\right|\right\}+\sup _{k \geq 1}\left\{k^{\beta}\left|g_{0}(k)\right|\right\} ; \alpha=3 / 2-\delta, \beta=11 / 6-\delta
$$

for δ arbitrarily small. Then, for some $T>0$, the solution g satisfies:

$$
\|g(t)\|_{7 / 6, \beta} \leq C(t, T)\left\|g_{0}\right\|_{\alpha, \beta}, \quad \forall t \in(0, T)
$$

Notice that $\alpha \sim 3 / 2>7 / 6$.
Surprising: the structure of this equation suggests a "hyperbolic" non regularizing behaviour for its solutions. These regularizing effects are, however, restricted to the values of f at the particular point $k=0$.

Moreover, there exists a function $\lambda(t)$ such that, for $t \in(0, T)$:

$$
\begin{gathered}
\left\|g(t)-\lambda(t) k_{1}^{-7 / 6} \chi_{\left.0 \leq k_{1} \leq 1\right\}}\right\|_{7 / 6-\delta / 2, \beta} \leq C t^{-1+9 \delta / 2}\left\|g_{0}\right\|_{\alpha, \beta} \\
|\lambda(t)| \leq C t^{-1+6 \delta}\left\|h_{0}\right\|_{\alpha, \beta}
\end{gathered}
$$

Proofs. Write :

$$
\begin{aligned}
\frac{\partial g}{\partial t}(t, k) & =\mathcal{L}_{k}\left(\lambda(t) f_{0}, g\right)(k, t)+\nu(k, t) \\
& =\mathcal{L}(g)+\mathcal{U}(k, g, \lambda)+\nu(k, t)
\end{aligned}
$$

where \mathcal{L} is the linearised operator of the $\mathrm{MU}-\mathrm{U}$ equation.
Use the explicit behaviours of the fundamental solution. Treat the term \mathcal{U} as a perturbation. For example:

Lemma: Suppose that φ solves

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial \tau}=\mathcal{L}(\varphi) \\
& \varphi(0, k)=\varphi_{0}(k) \\
& \text { where } \quad\left|\varphi_{0}(k)\right| \leq k^{-\alpha} \chi_{\{k \leq 1\}}
\end{aligned}
$$

with $\alpha \in[7 / 6,3 / 2)$.
Then, there exists a function $a \in L^{\infty}([0,1])$ such that, for any $\tau \in[0,1]$:

$$
\begin{aligned}
& \left|\varphi(\tau, k)-a(\tau) k^{-7 / 6}\right| \leq C \tau^{-3 \alpha} \Phi\left(k \tau^{-3}\right), \quad \text { for } 0 \leq k \leq 2 \\
& |a(\tau)| \leq C \tau^{7 / 2-3 \alpha} \\
& \Phi(y)=\min \left\{y^{-\theta}, y^{-7 / 6}\right\},
\end{aligned}
$$

for arbitrary $\theta \in(1,7 / 6)$.

Proof. We write the solution as

$$
\begin{aligned}
& \varphi(\tau, k)=\int_{0}^{1} \frac{1}{k_{0}} F\left(\frac{\tau}{k_{0}^{1 / 3}}, \frac{k}{k_{0}}, 1\right) \varphi_{0}\left(k_{0}\right) d k_{0} \\
& =\int_{0}^{\min (k / 2,1)} \cdots d k_{0}+\int_{\min (k / 2,1)}^{1} \cdots d k_{0} \equiv I_{1}+I_{2}
\end{aligned}
$$

where F is the fundamental solution of the equation. Use the estimates of $F\left(\frac{\tau}{k_{0}^{1 / 3}}, \frac{k}{k_{0}}, 1\right)$ depending on whether $\frac{k}{k_{0}}>2$ or $\frac{k}{k_{0}}<2$.

...back to the The Carleman equation.

$$
\begin{equation*}
z G(z, \xi)=G\left(z, \xi-\frac{i}{3}\right) \Phi\left(\xi-\frac{i}{3}\right)+\frac{1}{\sqrt{2 \pi}} \tag{2}
\end{equation*}
$$

where $\Phi(\xi)=-a+\widehat{\mathcal{K}}(\xi)$ and $\widehat{\mathcal{K}}$ is the Fourier transform of \mathcal{K}. The problem is then transformed in the following:

For any $z \in \mathbb{C}, \mathcal{R} e z>0$, find a function $G(z, \cdot)$ analytic in the strip

$$
S=\{\xi ; \xi=u+i v, 4 / 3<v<5 / 3, u \in \mathbb{R}\} \text { satisfying (2) on } S
$$

We introduce the NEW SET OF VARIABLES:

$$
\zeta=T(\xi) \equiv e^{6 \pi\left(\xi-\frac{4}{3} i\right)}, \quad g(z, \zeta)=G(z, \xi), \quad \widetilde{\varphi}(\zeta)=\Phi(\xi)
$$

Then g SOLVES:

$$
z g(z, x-i 0)=\varphi(x) g(z, x+i 0)+\frac{1}{\sqrt{2 \pi}} \quad \text { for all } x \in \mathbb{R}^{+}
$$

g is analytic and bounded in D,
where,

$$
D=\left\{\zeta \in T(\mathbb{C}) ; \zeta=r e^{i \theta}, r>0,0<\theta<2 \pi\right\}
$$

and, for any $x \in \mathbb{R}^{+}$:

$$
\begin{aligned}
g(z, x+i 0)= & \lim _{\varepsilon \rightarrow 0} g\left(z, x e^{i \varepsilon}\right), \quad g(z, x-i 0)=\lim _{\varepsilon \rightarrow 0} g\left(z, x e^{i(2 \pi-\varepsilon)}\right) \\
& \varphi(x)=\lim _{\varepsilon \rightarrow 0} \widetilde{\varphi}\left(x e^{i \varepsilon}\right)
\end{aligned}
$$

The Wiener Hopf method

Suppose that g is a solution. Assume that the following integral is well defined

$$
H(z, \zeta)=\frac{1}{2 \pi i} \int_{0}^{\infty} \ln \left(\frac{\varphi(\lambda)}{z}\right) \frac{d \lambda}{\lambda-\zeta}
$$

Then, the Plemej Sojoltski formulas give, for $\zeta \in \mathbb{R}^{+}$:

$$
\begin{aligned}
& H(\zeta+i 0)=\frac{1}{2} \ln \left(\frac{\varphi(\zeta)}{z}\right)+\frac{1}{2 \pi i} p v \int_{0}^{\infty} \ln \left(\frac{\varphi(\lambda)}{z}\right) \frac{d \lambda}{\lambda-\zeta} \\
& H(\zeta-i 0)=-\frac{1}{2} \ln \left(\frac{\varphi(\zeta)}{z}\right)+\frac{1}{2 \pi i} p v \int_{0}^{\infty} \ln \left(\frac{\varphi(\lambda)}{z}\right) \frac{d \lambda}{\lambda-\zeta}
\end{aligned}
$$

from where,

$$
\begin{aligned}
& \ln \left(\frac{\varphi(\lambda)}{z}\right)=H(z, \zeta+i 0)-H(z, \zeta-i 0) \\
& \text { and } \quad \frac{\varphi(\lambda)}{z}=\frac{e^{H(z, \zeta+i 0)}}{e^{H(z, \zeta-i 0)}} \equiv \frac{M(z, \zeta+i 0)}{M(z, \zeta-i 0)}
\end{aligned}
$$

Integrability properties of $\ln (\varphi) \Longrightarrow M(z, \zeta)$ ANALYTIC in $\zeta \in \mathbb{C} \backslash \mathbb{R}^{+}$
The function g would then satisfy:

$$
M(z, x-i 0) g(z, x-i 0)=\frac{1}{z} M(z, x+i 0) g(z, x+i 0)+\frac{M(z, x-i 0)}{\sqrt{2 \pi} z}
$$

If M has suitable bounds as $x \rightarrow 0$ and $x \rightarrow+\infty$, by Plemej Sojoltski formulas:

$$
\frac{M(z, x-i 0)}{\sqrt{2 \pi} z}=W(z, x+i 0)-W(z, x-i 0), \quad \text { for any } x>0
$$

where:

$$
W(z, \zeta)=\frac{1}{2 \pi i} \int_{0}^{\infty} \frac{M(z, \lambda-i 0)}{z} \frac{d \lambda}{\lambda-\zeta}
$$

would be an analytic function in $\zeta \in \mathbb{C} \backslash \mathbb{R}^{+}$. Then the function g satisfies:

$$
\begin{aligned}
& M(z, x-i 0) g(z, x-i 0)+W(z, x-i 0)= \\
& \quad M(z, x+i 0) g(z, x+i 0)+W(z, x+i 0), \quad \text { for all } x \in \mathbb{R}^{+}
\end{aligned}
$$

and $M(z, \cdot) g(z, \cdot)+W(z, \cdot)$ is analytic in $\mathbb{C} \backslash \mathbb{R}^{+}$.

It then follows that the function $C(z, \cdot)$ defined by means of:

$$
C(z, \cdot) \equiv M(z, \cdot) g(z, \cdot)+W(z, \cdot)
$$

is analytic in $\mathbb{C} \backslash\{0\}$. Using the boundedness of $g(z, \cdot)$ and suitable size estimates on W and M :

$$
\begin{gathered}
C(z, \zeta) \leq|\zeta|^{-1+\rho} \quad \text { as } \quad|\zeta| \rightarrow 0 \\
C(z, \zeta) \leq|\zeta|^{1-\delta} \quad \text { as } \quad|\zeta| \rightarrow+\infty
\end{gathered}
$$

for some $\rho>0$ and $\delta>0 . C(z, \zeta)$ is then analytic also at 0 and does not depend on ζ i. e.

$$
\forall z \in \mathbb{C} \backslash \mathbb{R}^{-}: \quad C(z, \zeta)=C(z)
$$

whence, IF A SOLUTION g EXISTS:

$$
g(z, \zeta)=\frac{C(z)-W(z, \zeta)}{M(z, \zeta)}
$$

where,

$$
C(z)=\frac{1}{2 \pi i} \int_{0}^{\infty} \frac{M(z, \lambda-i 0)}{z} \frac{d \lambda}{\lambda}
$$

Due to the behaviour of $\ln (\varphi(\zeta))$ and $M(z, \zeta)$ as $\Re e \zeta \rightarrow \pm \infty$, the INTEGRALS which define H and M above do NOT CONVERGE. They have to be slightly MODIFIED as follows:

Theorem. For any $z \in \mathbb{C} \backslash \mathbb{R}^{-}$, there exists a unique bounded solution g, given by:

$$
g(z, \zeta)=\frac{1}{2 \pi i} \frac{\zeta}{z} \int_{0}^{\infty} \frac{M(z, \lambda-i 0)}{M(z, \zeta)} \frac{d \lambda}{\lambda(\lambda-\zeta)}
$$

where,

$$
M(z, \zeta)=\exp \left[\frac{1}{2 \pi i} \int_{0}^{\infty} \ln \left(\frac{\varphi(\lambda)}{z}\right)\left(\frac{1}{\lambda-\zeta}-\frac{1}{\lambda-\lambda_{0}}\right) d \lambda\right]
$$

and $\lambda_{0} \in \mathbb{C} \backslash \mathbb{R}^{+}$is arbitrary.
-The convergence of the integrals rely on the behaviour both local and as $\Re e \lambda \rightarrow \pm \infty$ of the function $\ln (\varphi)$.

The function φ "comes" from the function $\Phi(\xi):=-a+\widehat{\mathcal{K}}(\xi)$:

$$
\begin{aligned}
& \Phi(\xi)=-a+\sum_{j=0}^{\infty} \frac{A_{1}(j)}{(1-6 i \xi+12 j)}+\sum_{j=0}^{\infty} \frac{A_{2}(j)}{(1-3 i \xi+3 j)}+\sum_{j=0}^{\infty} \frac{A_{3}(j)}{(3+2 i \xi+2 j)} \\
& +\sum_{j=0}^{\infty} \frac{A_{4}(j)}{(10+3 i \xi+6 j)} ; \quad A_{i}(j), i=1 \cdots 4, j=0,1, \ldots \text { explicitely known. }
\end{aligned}
$$

1.) One may check that:

$$
\left|\Phi(\xi)-\Phi_{\infty}(\xi)\right|=\mathcal{O}\left(|\xi|^{-\alpha}\right) \quad \text { as }|\xi| \rightarrow+\infty
$$

for some $\alpha>0$; where $\Phi_{\infty}(\xi) \equiv-a+\frac{b_{1}}{\xi^{1 / 6}}+\frac{b_{2}}{\xi}$
uniformly on strips of the form : $S_{\alpha, \beta}=\{\xi \in \mathbb{C} ; \xi=u+i v, a<v<b\}$.
2.) POLES: $\xi=\left(\frac{3}{2}+j\right) i ;\left(\frac{10}{3}+2 j\right) i ;-\left(\frac{1}{3}+j\right) i ;-\left(\frac{1}{6}+2 j\right) i ; j=0,1, \cdots$

The zeros of Φ.

The only exact results on the zeros of Φ are:

- The function Φ has a simple zero at the point $\xi=7 i / 6$. It corresponds to the fact that $k^{-7 / 6}$ is a solution of the linearised equation.
- Moreover, it also has a simple zero at $\xi=13 i / 6$. This corresponds to the fact that k^{-1} is also a solution of the linearised equation.
- THE OTHER ZEROS of Φ are unknown in general. But OTHER ZEROS of Φ determine the behaviour of the term $\sigma(t)$ and the lower order terms \mathcal{R}_{1} and \mathcal{R}_{2} in the expansion of the fundamental solution.

We assume and have numerically checked:

- The point $\xi=7 i / 6$ is the only zero of Φ in the strip $\operatorname{Im} \xi \in(-1 / 6,5 / 3)$.
- The zeros of Φ nearest to $13 i / 6$ are two simple zeros at $\xi= \pm u_{0}+i v_{0}$ with:

$$
u_{0}=0.331 \ldots, \quad v_{0}=1.84020 \ldots
$$

These are the only zeros of Φ in the strip $\operatorname{Im} \xi \in(-1 / 3,5 / 2)$.

- The graph of the function $\Phi(\xi)$ does not make any complete turn around the origin when ξ moves along any curve connecting the two extremes of the strip $7 / 6<\Im m \xi<3 / 2$.

In the (z, ξ) variables:

The explicit solution

$$
\begin{aligned}
G(z, \xi) & =\frac{3 i}{\sqrt{2 \pi} z} \int_{\mathcal{I} m y=\frac{5}{3}} e^{6 \pi \alpha(z)(y-\xi)} e^{\left[3 i(y-\xi) \ln \left(-\frac{\Phi(\xi)}{a}\right)\right]} \frac{e^{[h(\xi, y-\xi)]} d y}{\left(e^{6 \pi(y-\xi)}-1\right)} \\
\alpha(z) & =\frac{1}{2 \pi i} \ln \left(-\frac{z}{a}\right), \quad h: \text { explicit function depending on } \Phi .
\end{aligned}
$$

The zeros of Φ are poles of G
In the (t, x) variables:

$$
g(t, x)=\frac{1}{(2 \pi)^{3 / 2} i} \int_{c-\infty i}^{c+\infty i} \int_{-\infty+b i}^{\infty+b i} e^{i x \xi} e^{z t} G(z, \xi) d \xi d z
$$

with b and c suitabe real numbers. Asymptotic behaviour and estimates follow.

