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The Homogeneous kinetic equation.

(U-U)


∂f

∂t
(t, k1) =

∫ ∫
D(k1)

W (k1, k2, k3, k4) q(f)dk3dk4

q (f) = f3f4(1 + f1)(1 + f2)− f1f2(1 + f3)(1 + f4)
fi ≡ f(t, ki), i = 1, 2, 3, 4.

D (k1) ≡ {(k3, k4) : k3 > 0, k4 > 0, k3 + k4 ≥ k1 > 0}

W (k1, k2, k3, k4) =
min

(√
k1,
√

k2,
√

k3,
√

k4

)
√

k1

, k2 = k3 + k4 − k1.

L. W. Nordheim (1928), E. A. Uehling & G. E. Uhlenbeck (1933).
Describes a dilute homogeneous isotropic gas of bosons (in polar coordinates).
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Theorem For all initial data f0 satisfying: f0(k) ≤ Ce−Bk, k ≥ 1

|f0(k)−A k−7/6| ≤ C

k7/6−δ
, 0 ≤ k ≤ 1,

|f ′0(k) +
7
6

A k−13/6| ≤ C

k13/6−δ
, 0 ≤ k ≤ 1,

there exists a unique solution f ∈ C1,0((0, T )× (0,+∞)) and λ(t), satisfying:

0 ≤ f(t, k) ≤ L
e−Dk

k7/6
, if k > 0; |λ(t)| ≤ L, for t ∈ (0, T )

|f(t, k)− λ(t) k−7/6| ≤ Lk−7/6+δ/2, k ≤ 1, t ∈ (0, T )

for some positive constant L and for some T = T (A,B, δ) > 0.
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Some general properties of the U-U equation

Formally:
d

dt

∫ ∞

0

f(t, k)
√

k dk = 0 (conserves “total density”.)

Family of steady states Bρ characterized by their total density ρ > 0:

• If 0 < ρ < ρ0 ≡
∫ ∞

0

√
k dk

ek − 1
: Bρ(k) ≡ Fµ(k) := 1

ek+µ−1

where µ ≥ 0 is such that: ρ =
∫ ∞

0

√
k dk

eµ+k − 1
, µ ≥ 0.

• If ρ > ρ0: Bρ(k) ≡ 1
ek−1

+ (ρ− ρ0) δ0√
k
,
∫∞
0
Bρ(k)

√
k dk = ρ
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The solutions Bρ(k) are the classical equilibria of the equation.
For ρ > ρ0 they describe the thermal equilibrium of a system of bosons with
Bose-Einstein condensate of particles with zero momentum ((ρ− ρ0) δ0√

k
).

Two different behaviours at k = 0:

If µ > 0 : Fµ(k) =
1

ek+µ − 1
→ 1

eµ − 1
, as k → 0

F0(k) =
1

ek − 1
∼ k−1, as k → 0.

Our main contribution: To construct classical solutions of the U-U equation

which behave like k−7/6 as k ∼ 0.

Why −7/6 ?

See below.
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• Extensive literature on solutions for the classical Boltzmann equation :
Carleman ’32, ’57 (classical solutions for the homogeneous equation)
Lanford ’73 (validity of the B. equation, local existence)
Ukai ’74 (linearisation, perturbation methods)
Kaniel & Shinbrot ’78 (small time result)
Cercignani (Stationary solutions...)
Di Perna & Lions ’89 (Renormalised solutions)
• Much less references for “quantum” equations.
Additional difficulties come from cubic terms and the singular kernel. Moreover
the solutions do not remain bounded in general (c.f. F0).

• One reference related to our work: X. Lu in J. Stat. Phys. 116 (2004).
X. Lu proves global existence of weak radial solutions for the U-U equation.
Method of Lu’s proof:
1. Solve a regularised equation with a “truncated kernel”.
2. Uniform apriori estimates
3. Pass to the limit and obtain a weak solution.
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This method gives weak solutions F such that:

For all t > 0,
√
·F(t, ·) is a non negative bounded measure in R+.

The total density is constant:

d

dt

∫ ∞

0

d
(
F(t, k)

√
k
)

= 0.

• Concerning our result:

The solutions that we construct are classical (f ∈ C1,0((0, T )× (0,+∞)).

They have a precise singular behaviour at the origin:

f(t, k) ∼ λ(t) k−7/6 as k → 0.
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More precisely: f(t, k) = λ(t) k−7/6 + g(t, k) where

g(t, k) ∈ C1,0((0, T )× (0,+∞)), g(t, k) = O(k−7/6+δ/2) as k → 0.

This implies :
d

dt

(∫ ∞

0

√
k f(k, t) dk

)
= −C a3(t) < 0

for some constant C > 0. The total density is not conserved.

Our solutions can not be the same as Lu’s solutions.

Global solutions for all t > 0. Two problems for such an extension:

1.) The possible blow up of solutions (related with Bose Einstein condensation).

2.) The global solutions should converge, as t →∞, to one of the Bρ.

Our solutions should not exist for all t > 0.
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Sketch of the proof: linearisation + fixed point

The main contribution in the U-U equation comes from the modified equation:

(MU-U)
∂f

∂t
(t, k) = Q̃(f) ≡

∫
D(k1)

W (k1, k2, k3, k4) q̃(f)dk3dk4

q̃ (f) = f3f4(f1 + f2)− f1f2(f3 + f4)
D (k1) ≡ {(k3, k4)) : k3 + k4 ≥ k1}

W (k1, k2, k3, k4) =
min

(√
k1,
√

k2,
√

k3,
√

k4

)
√

k1

Particular stationary solutions: q̃(1) = q̃(k−1) = 0.
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Another particular solution: Q̃(k−7/6) = 0 but q̃(k−7/6) 6= 0.

Consider the non radial equation for the function n(p, t) = f(|p|2, t):

∂n

∂t
(t, p) = Q(n) ≡

∫
D(p1)

W (p1, p2, p3, p4) q̃(n)dp3dp4

The function n(p) = |p|−7/3 satisfies the equation for all p 6= 0. Moreover: the
flux of this solution out of the sphere |p| < R is∫

|p|<R

Q(|p|−7/3)d p = C

where C is a positive constant independent of R. So we have actually:

Q(n) = Cδp=0.
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Linearisation of MU-U

We linearise MU-U equation around f(k) = k−7/6:

f(k, t) = k−7/6 + F (k, t)

and obtain the following equation for F :

∂F

∂t
= − a

k1/3
F (k) +

1
k4/3

∫ ∞

0

K
(r

k

)
F (r) dr

where a is an explicit positive constant and the kernel K(r) is explicit.
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The Fundamental solution

Ft(t, k, k0) = − a

k1/3
F (t, k, k0) +

1
k4/3

∫ ∞

0

K
(r

k

)
F (t, r, k0) dr, t > 0, k > 0,

F (0, k, k0) = δ(k − k0).

Theorem. For all k0 > 0, there exists a unique solution F (t, ·, k0)such that:

F (t, k, k0) =
1
k0

F (
t

k
1/3
0

,
k

k0
, 1). For k ∈ (0, 2) the function F (t, k, 1) can be

written as: F (t, k, 1) = e−a tδ(k − 1) + σ(t) k−7/6 +R(t, k) where

σ(t) = A t4 +O(t4+k) as t → 0, σ(t) = O(t−3) as t →∞.

And for k > 2: F (t, k, 1) ≤ β(t)(t3/k)
11
6 .
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Some Remarks.

• The initial Dirac measure at k = k0 persists for all time t > 0 and is not
regularised. That is a kind of hyperbolic behaviour.

• The total mass of the Dirac measure decays exponentially fast: it is
“asymptotically” regularised.

• The behaviour k−7/6 as k → 0 persists for all time.

Sketch of the proof.

Change of variables: k = ex,

F (t, k, 1) = G(t, x), K(r/k) = K(e−(x−y)) = ex−yK(x− y)

with K(x) = e−xK(e−x). Laplace transform in t and Fourier transform in x
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The Carleman equation.

zG(z, ξ) = G(z, ξ − i

3
)Φ(ξ − i

3
) +

1√
2π

, (1)

where Φ(ξ) = −a + K̂(ξ) and K̂ is the Fourier transform of K. The problem is
then transformed in the following:

For any z ∈ C, Rez > 0, find a function G(z, ·) analytic in the strip

S = {ξ; ξ = u + iv, 4/3 < v < 5/3, u ∈ R} satisfying (2) on S.

The strip S is determined by the behaviour of the kernel K at r = 0 and r → +∞.

Starting from a PDE we would obtain: zG(z, ξ) = G(z, ξ) P (ξ) +
1√
2π

for some

polynomial P ...
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The fixed point argument.
∂f

∂t
(t, k) =

∫ ∫
D(k1)

W (k, k2, k3, k4) q(f)dk3dk4

q (f) = f3f4(1 + f)(1 + f2)− ff2(1 + f3)(1 + f4)

We look for: f(t, k) = λ(t)f0(k) + g(t, k), g(t, k) = O(k−7/6+δ/2) as k → 0.

Decompose:

q(λ(t)f0 + g) = q(λ(t)f0) + `(λ(t)f0, g) + n(λ(t)f0, g)

`(λ(t)f0, g) : linear function of g

n(λ(t)f0, g): contains the quadratic and higher order terms on g.
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The function g satisfies:

∂g

∂t
(t, k) = N [t, k, g, λ]− λ′(t) f0

where operator N [t, k, g, λ] is given by:

N [t, k, g, λ] = Lk(λ(t) f0, g)(k, t) +R(t, k)

Lk(λ(t) f0, g)(k, t) =
∫

D(k1)

W (k, k2, k3, k4) `(λ(t)f0, g) dk3 dk4

R(t, k) =
∫

D(k1)

WM,M ′(k, k2, k3, k4) (q(λ(t) f0) + n(λ(t) f0, g)) dk3 dk4
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The dominant terms:

∂g

∂t
(t, k) = Lk(λ(t) f0, g)(k, t)

The remainder term

R(t, k) =
∫

D(k1)

WM,M ′(k, k2, k3, k4) (q(λ(t) f0) + n(λ(t) f0, g)) dk3 dk4

is sub dominant because:

• f0 behaves like k−7/6 → cancelations in q(λ(t) f0) near k = 0

• n(λ(t)f0, g) contains the quadratic and higher order terms in g.

We are then led to:
∂g

∂t
(t, k) = Lk(λ(t) f0, g)(k, t) + ν(k, t).
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That equation has the following regularising effect at k = 0.

Theorem. Suppose ν(t, k) ≡ 0 (for simplicity) and the initial data g0 satisfies:

||g0||α,β = sup
0≤k≤1

{kα|g0(k)|}+ sup
k≥1

{
kβ|g0(k)|

}
; α = 3/2− δ, β = 11/6− δ,

for δ arbitrarily small. Then, for some T > 0, the solution g satisfies:

||g(t)||7/6,β ≤ C(t, T )||g0||α,β, ∀t ∈ (0, T )

Notice that α ∼ 3/2 > 7/6.

Surprising: the structure of this equation suggests a “hyperbolic” non

regularizing behaviour for its solutions. These regularizing effects are, however,
restricted to the values of f at the particular point k = 0.
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Moreover, there exists a function λ(t) such that, for t ∈ (0, T ):

||g(t)− λ(t)k−7/6
1 χ0≤k1≤1}||7/6−δ/2,β ≤ Ct−1+9δ/2||g0||α,β

|λ(t)| ≤ Ct−1+6δ||h0||α,β.

Proofs. Write :

∂g

∂t
(t, k) = Lk(λ(t) f0, g)(k, t) + ν(k, t)

= L(g) + U(k, g, λ) + ν(k, t)

where L is the linearised operator of the MU-U equation.

Use the explicit behaviours of the fundamental solution. Treat the term U as a
perturbation. For example:
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Lemma: Suppose that ϕ solves

∂ϕ

∂τ
= L(ϕ)

ϕ(0, k) = ϕ0(k),

where |ϕ0(k)| ≤ k−αχ{k≤1},

with α ∈ [7/6, 3/2).

Then, there exists a function a ∈ L∞([0, 1]) such that, for any τ ∈ [0, 1]:

|ϕ(τ, k)− a(τ) k−7/6| ≤ Cτ−3αΦ(k τ−3), for 0 ≤ k ≤ 2

|a(τ)| ≤ C τ7/2−3α,

Φ(y) = min{y−θ, y−7/6},

for arbitrary θ ∈ (1, 7/6).
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Proof. We write the solution as

ϕ(τ, k) =
∫ 1

0

1
k0

F

(
τ

k
1/3
0

,
k

k0
, 1

)
ϕ0(k0) dk0

=
∫ min(k/2, 1)

0

· · · dk0 +
∫ 1

min(k/2, 1)

· · · dk0 ≡ I1 + I2.

where F is the fundamental solution of the equation. Use the estimates of

F

(
τ

k
1/3
0

, k
k0

, 1
)

depending on whether k
k0

> 2 or k
k0

< 2.
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...back to the The Carleman equation.

zG(z, ξ) = G(z, ξ − i

3
)Φ(ξ − i

3
) +

1√
2π

, (2)

where Φ(ξ) = −a + K̂(ξ) and K̂ is the Fourier transform of K. The problem is
then transformed in the following:

For any z ∈ C, Rez > 0, find a function G(z, ·) analytic in the strip

S = {ξ; ξ = u + iv, 4/3 < v < 5/3, u ∈ R} satisfying (2) on S.
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We introduce the NEW SET OF VARIABLES:

ζ = T (ξ) ≡ e6π(ξ−4
3i), g(z, ζ) = G(z, ξ), ϕ̃(ζ) = Φ(ξ)

Then g SOLVES:

zg(z, x− i0) = ϕ(x) g(z, x + i0) +
1√
2π

for all x ∈ R+

g is analytic and bounded in D,

where, D = {ζ ∈ T (C); ζ = reiθ, r > 0, 0 < θ < 2π},

and, for any x ∈ R+:

g(z, x + i0) = lim
ε→0

g(z, xeiε), g(z, x− i0) = lim
ε→0

g(z, xei(2π−ε))

ϕ(x) = lim
ε→0

ϕ̃(xeiε).

22



The Wiener Hopf method

Suppose that g is a solution. Assume that the following integral is well defined

H(z, ζ) =
1

2πi

∫ ∞

0

ln
(

ϕ(λ)
z

)
dλ

λ− ζ
.

Then, the Plemej Sojoltski formulas give, for ζ ∈ R+:

H(ζ + i0) =
1
2

ln
(

ϕ(ζ)
z

)
+

1
2πi

pv

∫ ∞

0

ln
(

ϕ(λ)
z

)
dλ

λ− ζ

H(ζ − i0) = −1
2

ln
(

ϕ(ζ)
z

)
+

1
2πi

pv

∫ ∞

0

ln
(

ϕ(λ)
z

)
dλ

λ− ζ
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from where,

ln
(

ϕ(λ)
z

)
= H(z, ζ + i0)−H(z, ζ − i0)

and
ϕ(λ)

z
=

eH(z,ζ+i0)

eH(z,ζ−i0)
≡ M(z, ζ + i0)

M(z, ζ − i0)
.

Integrability properties of ln(ϕ) =⇒ M(z, ζ) ANALYTIC in ζ ∈ C \ R+ .

The function g would then satisfy:

M(z, x− i0) g(z, x− i0) =
1
z
M(z, x + i0) g(z, x + i0) +

M(z, x− i0)√
2πz

If M has suitable bounds as x → 0 and x → +∞, by Plemej Sojoltski formulas:

M(z, x− i0)√
2 π z

= W (z, x + i0)−W (z, x− i0), for any x > 0

24



where:

W (z, ζ) =
1

2πi

∫ ∞

0

M(z, λ− i0)
z

dλ

λ− ζ

would be an analytic function in ζ ∈ C \ R+. Then the function g satisfies:

M(z, x− i0)g(z, x− i0) + W (z, x− i0) =

M(z, x + i0)g(z, x + i0) + W (z, x + i0), for all x ∈ R+

and M(z, ·)g(z, ·) + W (z, ·) is analytic in C \ R+.
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It then follows that the function C(z, ·) defined by means of:

C(z, ·) ≡ M(z, ·)g(z, ·) + W (z, ·)

is analytic in C \ {0}. Using the boundedness of g(z, ·) and suitable size

estimates on W and M :

C(z, ζ) ≤ |ζ|−1+ρ as |ζ| → 0

C(z, ζ) ≤ |ζ|1−δ as |ζ| → +∞

for some ρ > 0 and δ > 0. C(z, ζ) is then analytic also at 0 and does not depend
on ζ i. e.

∀z ∈ C \ R− : C(z, ζ) = C(z),
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whence, IF A SOLUTION g EXISTS:

g(z, ζ) =
C(z)−W (z, ζ)

M(z, ζ)
,

where,

C(z) =
1

2πi

∫ ∞

0

M(z, λ− i0)
z

dλ

λ

Due to the behaviour of ln(ϕ(ζ)) and M(z, ζ) as <eζ → ±∞, the INTEGRALS
which define H and M above do NOT CONVERGE. They have to be slightly
MODIFIED as follows:
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Theorem. For any z ∈ C \R−, there exists a unique bounded solution g, given
by:

g(z, ζ) =
1

2πi

ζ

z

∫ ∞

0

M(z, λ− i0)
M(z, ζ)

dλ

λ (λ− ζ)
where,

M(z, ζ) = exp
[

1
2πi

∫ ∞

0

ln
(

ϕ(λ)
z

)(
1

λ− ζ
− 1

λ− λ0

)
dλ

]
,

and λ0 ∈ C \ R+ is arbitrary.

•The convergence of the integrals rely on the behaviour both local and as
<e λ → ±∞ of the function ln(ϕ).
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The function ϕ “comes” from the function Φ(ξ) := −a + K̂(ξ):

Φ(ξ) = −a +
∞∑

j=0

A1(j)
(1− 6iξ + 12j)

+
∞∑

j=0

A2(j)
(1− 3iξ + 3j)

+
∞∑

j=0

A3(j)
(3 + 2iξ + 2j)

+
∞∑

j=0

A4(j)
(10 + 3iξ + 6j)

; Ai(j), i = 1 · · · 4, j = 0, 1, . . . explicitely known.

1.) One may check that:

|Φ(ξ)− Φ∞(ξ)| = O(|ξ|−α) as |ξ| → +∞

for some α > 0; where Φ∞(ξ) ≡ −a +
b1

ξ1/6
+

b2

ξ

uniformly on strips of the form : Sα,β = {ξ ∈ C; ξ = u + iv, a < v < b}.

2.) POLES: ξ = (3
2 + j) i; (10

3 + 2j) i; −(1
3 + j) i; −(1

6 + 2j) i; j = 0, 1, · · ·

29



The zeros of Φ.

The only exact results on the zeros of Φ are:

• The function Φ has a simple zero at the point ξ = 7i/6. It corresponds to the
fact that k−7/6 is a solution of the linearised equation.

• Moreover, it also has a simple zero at ξ = 13i/6. This corresponds to the fact
that k−1 is also a solution of the linearised equation.

• THE OTHER ZEROS of Φ are unknown in general. But OTHER ZEROS of Φ
determine the behaviour of the term σ(t) and the lower order terms R1 and R2

in the expansion of the fundamental solution.
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We assume and have numerically checked:

• The point ξ = 7i/6 is the only zero of Φ in the strip Imξ ∈ (−1/6, 5/3).

• The zeros of Φ nearest to 13i/6 are two simple zeros at ξ = ±u0 + iv0 with:

u0 = 0.331..., v0 = 1.84020...

These are the only zeros of Φ in the strip Imξ ∈ (−1/3, 5/2).

• The graph of the function Φ(ξ) does not make any complete turn around the
origin when ξ moves along any curve connecting the two extremes of the strip
7/6 < =mξ < 3/2.
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The explicit solutionIn the (z, ξ) variables :

G(z, ξ) =
3i√
2π z

∫
Im y=5

3

e6πα(z) (y−ξ) e

h
3i(y−ξ) ln

“
−Φ(ξ)

a

”i
e[h(ξ,y−ξ)] dy(
e6π(y−ξ) − 1

)
α(z) =

1
2π i

ln
(
−z

a

)
, h : explicit function depending on Φ.

The zeros of Φ are poles of G .

In the (t, x) variables:

g(t, x) =
1

(2 π)3/2
i

∫ c+∞ i

c−∞ i

∫ ∞+b i

−∞+b i

eixξ ezt G(z, ξ) dξ dz

with b and c suitabe real numbers. Asymptotic behaviour and estimates follow.
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