Non Uniqueness of Solutions

to Homogeneous Kinetic Equations

Miguel Escobedo Facultad de Ciencia y Tecnología Universidad del País Vasco

In Collaboration with J. J. L. Velazquez & S. Mischler.

To Ireneo Peral in his 60th anniversary, with friendship and respect.

The Homogeneous kinetic equation.

$$(\mathsf{U}-\mathsf{U}) \begin{cases} \frac{\partial f}{\partial t}(t,k_1) = \int \int_{D(k_1)} W\left(k_1,k_2,k_3,k_4\right) q(f) dk_3 dk_4 \\ q\left(f\right) = f_3 f_4 (1+f_1)(1+f_2) - f_1 f_2 (1+f_3)(1+f_4) \\ f_i \equiv f(t,k_i), \quad i = 1,2,3,4. \end{cases}$$
$$D\left(k_1\right) \equiv \{(k_3,k_4) : k_3 > 0, k_4 > 0, k_3 + k_4 \ge k_1 > 0\}$$
$$W\left(k_1,k_2,k_3,k_4\right) = \frac{\min\left(\sqrt{k_1},\sqrt{k_2},\sqrt{k_3},\sqrt{k_4}\right)}{\sqrt{k_1}}, \quad k_2 = k_3 + k_4 - k_1 + k_4 + k_4$$

L. W. Nordheim (1928), E. A. Uehling & G. E. Uhlenbeck (1933). Describes a dilute homogeneous isotropic gas of bosons (in polar coordinates). Theorem For all initial data f_0 satisfying: $f_0(k) \leq Ce^{-Bk}$, $k \geq 1$

$$|f_0(k) - A k^{-7/6}| \le \frac{C}{k^{7/6-\delta}}, \quad 0 \le k \le 1,$$
$$f'_0(k) + \frac{7}{6} A k^{-13/6}| \le \frac{C}{k^{13/6-\delta}}, \quad 0 \le k \le 1,$$

there exists a unique solution $f \in \mathbf{C}^{1,0}((0,T) \times (0,+\infty))$ and $\lambda(t)$, satisfying:

$$0 \le f(t,k) \le L \frac{e^{-Dk}}{k^{7/6}}, \text{ if } k > 0; \quad |\lambda(t)| \le L, \quad \text{ for } t \in (0,T)$$
$$|f(t,k) - \lambda(t) k^{-7/6}| \le L k^{-7/6 + \delta/2}, \quad k \le 1, \ t \in (0,T)$$

for some positive constant L and for some $T = T(A, B, \delta) > 0$.

Some general properties of the U-U equation

Formally:
$$\frac{d}{dt} \int_0^\infty f(t,k) \sqrt{k} \, dk = 0$$
 (conserves "total density".)

Family of steady states \mathcal{B}_{ρ} characterized by their total density $\rho > 0$:

• If
$$0 < \rho < \rho_0 \equiv \int_0^\infty \frac{\sqrt{k} \, dk}{e^k - 1}$$
: $\mathcal{B}_\rho(k) \equiv F_\mu(k) := \frac{1}{e^{k + \mu} - 1}$
where $\mu \ge 0$ is such that: $\rho = \int_0^\infty \frac{\sqrt{k} \, dk}{e^{\mu + k} - 1}, \ \mu \ge 0.$

• If
$$\rho > \rho_0$$
: $\mathcal{B}_{\rho}(k) \equiv \frac{1}{e^k - 1} + (\rho - \rho_0) \frac{\delta_0}{\sqrt{k}}, \quad \int_0^\infty \mathcal{B}_{\rho}(k) \sqrt{k} \, dk = \rho$

The solutions $\mathcal{B}_{\rho}(k)$ are the classical equilibria of the equation. For $\rho > \rho_0$ they describe the thermal equilibrium of a system of bosons with Bose-Einstein condensate of particles with zero momentum $((\rho - \rho_0) \frac{\delta_0}{\sqrt{L}})$.

Two different behaviours at k = 0:

f
$$\mu > 0$$
: $F_{\mu}(k) = \frac{1}{e^{k+\mu} - 1} \rightarrow \frac{1}{e^{\mu} - 1}, \text{ as } k \rightarrow 0$
 $F_0(k) = \frac{1}{e^k - 1} \sim k^{-1}, \text{ as } k \rightarrow 0.$

Our main contribution: To construct classical solutions of the U-U equation which behave like $k^{-7/6}$ as $k \sim 0$.

> Why -7/6 ? See below.

Extensive literature on solutions for the classical Boltzmann equation : Carleman '32, '57 (classical solutions for the homogeneous equation) Lanford '73 (validity of the B. equation, local existence) Ukai '74 (linearisation, perturbation methods) Kaniel & Shinbrot '78 (small time result) Cercignani (Stationary solutions...) Di Perna & Lions '89 (Renormalised solutions)
Much less references for "quantum" equations.

Additional difficulties come from cubic terms and the singular kernel. Moreover the solutions do not remain bounded in general (c.f. F_0).

• One reference related to our work: X. Lu in J. Stat. Phys. **116** (2004). X. Lu proves global existence of weak radial solutions for the U-U equation. Method of Lu's proof:

- 1. Solve a regularised equation with a "truncated kernel".
- 2. Uniform apriori estimates
- 3. Pass to the limit and obtain a weak solution.

This method gives weak solutions \mathcal{F} such that:

For all t > 0, $\sqrt{\cdot} \mathcal{F}(t, \cdot)$ is a non negative bounded measure in \mathbb{R}^+ .

The total density is constant:

$$\frac{d}{dt} \int_0^\infty d\left(\mathcal{F}(t,k)\sqrt{k}\right) = 0.$$

• Concerning our result:

The solutions that we construct are classical $(f \in \mathbf{C}^{1,0}((0,T) \times (0,+\infty)))$.

They have a precise singular behaviour at the origin:

$$f(t,k) \sim \lambda(t) \, k^{-7/6}$$
 as $k \to 0$.

More precisely: $f(t,k) = \lambda(t) k^{-7/6} + g(t,k)$ where

 $g(t,k) \in \mathbf{C}^{1,0}((0,T) \times (0,+\infty)), \ g(t,k) = \mathcal{O}(k^{-7/6+\delta/2}) \text{ as } k \to 0.$

This implies :
$$\frac{d}{dt} \left(\int_0^\infty \sqrt{k} f(k,t) \, dk \right) = -C \, a^3(t) < 0$$

for some constant C > 0. The total density is not conserved. Our solutions can not be the same as Lu's solutions.

Global solutions for all t > 0. Two problems for such an extension:

1.) The possible blow up of solutions (related with Bose Einstein condensation).

2.) The global solutions should converge, as $t \to \infty$, to one of the \mathcal{B}_{ρ} .

Our solutions should not exist for all t > 0.

Sketch of the proof: linearisation + fixed point

The main contribution in the U-U equation comes from the modified equation:

$$(\mathsf{MU-U}) \qquad \frac{\partial f}{\partial t}(t,k) = \widetilde{Q}(f) \equiv \int_{D(k_1)} W(k_1,k_2,k_3,k_4) \,\widetilde{q}(f) dk_3 dk_4$$
$$\widetilde{q}(f) = f_3 f_4(f_1 + f_2) - f_1 f_2(f_3 + f_4)$$
$$D(k_1) \equiv \{(k_3,k_4)) : k_3 + k_4 \ge k_1\}$$
$$W(k_1,k_2,k_3,k_4) = \frac{\min\left(\sqrt{k_1},\sqrt{k_2},\sqrt{k_3},\sqrt{k_4}\right)}{\sqrt{k_1}}$$

Particular stationary solutions:

$$\tilde{q}(1) = \tilde{q}(k^{-1}) = 0.$$

Another particular solution:

$$\tilde{Q}(k^{-7/6}) = 0$$
 but $\tilde{q}(k^{-7/6}) \neq 0$.

Consider the non radial equation for the function $n(p,t) = f(|p|^2,t)$:

$$\frac{\partial n}{\partial t}(t,p) = \mathcal{Q}(n) \equiv \int_{D(p_1)} W(p_1, p_2, p_3, p_4) \,\tilde{q}(n) dp_3 dp_4$$

The function $n(p) = |p|^{-7/3}$ satisfies the equation for all $p \neq 0$. Moreover: the flux of this solution out of the sphere |p| < R is

$$\int_{|p| < R} \mathcal{Q}(|p|^{-7/3}) dp = C$$

where C is a positive constant independent of R. So we have actually: $Q(n) = C\delta_{p=0}$.

Linearisation of MU-U

We linearise MU-U equation around $f(k) = k^{-7/6}$:

$$f(k,t) = k^{-7/6} + F(k,t)$$

and obtain the following equation for F:

$$\frac{\partial F}{\partial t} = -\frac{a}{k^{1/3}}F(k) + \frac{1}{k^{4/3}}\int_0^\infty K\left(\frac{r}{k}\right) F(r) dr$$

where a is an explicit positive constant and the kernel K(r) is explicit.

The Fundamental solution

$$F_t(t,k,k_0) = -\frac{a}{k^{1/3}}F(t,k,k_0) + \frac{1}{k^{4/3}}\int_0^\infty K\left(\frac{r}{k}\right) F(t,r,k_0) dr, \ t > 0, k > 0,$$
$$F(0,k,k_0) = \delta(k-k_0).$$

Theorem. For all $k_0 > 0$, there exists a unique solution $F(t, \cdot, k_0)$ such that: $F(t, k, k_0) = \frac{1}{k_0} F(\frac{t}{k_0^{1/3}}, \frac{k}{k_0}, 1)$. For $k \in (0, 2)$ the function F(t, k, 1) can be written as: $F(t, k, 1) = e^{-at} \delta(k - 1) + \sigma(t) k^{-7/6} + \mathcal{R}(t, k)$ where $\sigma(t) = A t^4 + \mathcal{O}(t^{4+k})$ as $t \to 0$, $\sigma(t) = \mathcal{O}(t^{-3})$ as $t \to \infty$. And for k > 2: $F(t, k, 1) \leq \beta(t)(t^3/k)^{\frac{11}{6}}$.

Some Remarks.

- The initial Dirac measure at $k = k_0$ persists for all time t > 0 and is not regularised. That is a kind of hyperbolic behaviour.
- The total mass of the Dirac measure decays exponentially fast: it is "asymptotically" regularised.
- The behaviour $k^{-7/6}$ as $k \to 0$ persists for all time. Sketch of the proof.

Change of variables: $k = e^x$,

$$F(t,k,1) = \mathcal{G}(t,x), \quad K(r/k) = K(e^{-(x-y)}) = e^{x-y}\mathcal{K}(x-y)$$

with $\mathcal{K}(x) = e^{-x} \mathcal{K}(e^{-x})$. Laplace transform in t and Fourier transform in x

The Carleman equation.

$$zG(z,\xi) = G(z,\xi - \frac{i}{3})\Phi(\xi - \frac{i}{3}) + \frac{1}{\sqrt{2\pi}},$$
(1)

where $\Phi(\xi) = -a + \hat{\mathcal{K}}(\xi)$ and $\hat{\mathcal{K}}$ is the Fourier transform of \mathcal{K} . The problem is then transformed in the following:

For any $z \in \mathbb{C}$, $\mathcal{R}ez > 0$, find a function $G(z, \cdot)$ analytic in the strip $S = \{\xi; \xi = u + iv, 4/3 < v < 5/3, u \in \mathbb{R}\}$ satisfying (2) on S.

The strip S is determined by the behaviour of the kernel K at r = 0 and $r \to +\infty$.

Starting from a PDE we would obtain: $zG(z,\xi) = G(z,\xi) P(\xi) + \frac{1}{\sqrt{2\pi}}$ for some polynomial P...

The fixed point argument.

$$\begin{cases} \frac{\partial f}{\partial t}(t,k) = \int \int_{D(k_1)} W(k,k_2,k_3,k_4) q(f) dk_3 dk_4 \\ q(f) = f_3 f_4 (1+f)(1+f_2) - f f_2 (1+f_3)(1+f_4) \end{cases}$$

We look for: $f(t,k) = \lambda(t)f_0(k) + g(t,k)$, $g(t,k) = \mathcal{O}(k^{-7/6 + \delta/2})$ as $k \to 0$.

Decompose:

$$q(\lambda(t)f_0 + g) = q(\lambda(t)f_0) + \ell(\lambda(t)f_0, g) + n(\lambda(t)f_0, g)$$

 $\ell(\lambda(t)f_0,g)$: linear function of g

 $n(\lambda(t)f_0,g)$: contains the quadratic and higher order terms on g.

The function g satisfies:

$$\frac{\partial g}{\partial t}(t,k) = \mathcal{N}[t,k,g,\lambda] - \lambda'(t) f_0$$

where operator $\mathcal{N}[t,k,g,\lambda]$ is given by:

$$\mathcal{N}[t, k, g, \lambda] = \mathcal{L}_k(\lambda(t) f_0, g)(k, t) + \mathcal{R}(t, k)$$

$$\mathcal{L}_k(\lambda(t) f_0, g)(k, t) = \int_{D(k_1)} W(k, k_2, k_3, k_4) \,\ell(\lambda(t) f_0, g) \, dk_3 \, dk_4$$

$$\mathcal{R}(t, k) = \int_{D(k_1)} W_{M,M'}(k, k_2, k_3, k_4) \, (q(\lambda(t) f_0) + n(\lambda(t) f_0, g)) \, dk_3 \, dk_4$$

The dominant terms:

$$\frac{\partial g}{\partial t}(t,k) = \mathcal{L}_k(\lambda(t) f_0, g)(k,t)$$

The remainder term

$$\mathcal{R}(t,k) = \int_{D(k_1)} W_{M,M'}(k,k_2,k_3,k_4) \, \left(q(\lambda(t)\,f_0) + n(\lambda(t)\,f_0,g)\right) \, dk_3 \, dk_4$$

is sub dominant because:

- f_0 behaves like $k^{-7/6} \rightarrow$ cancelations in $q(\lambda(t) f_0)$ near k = 0
- $n(\lambda(t)f_0, g)$ contains the quadratic and higher order terms in g.

We are then led to:
$$rac{\partial g}{\partial t}(t,k) = \mathcal{L}_k(\lambda(t)\,f_0,g)(k,t) +
u(k,t)$$

t).

That equation has the following regularising effect at k = 0.

Theorem. Suppose $\nu(t,k) \equiv 0$ (for simplicity) and the initial data g_0 satisfies:

$$||g_0||_{\alpha,\beta} = \sup_{0 \le k \le 1} \left\{ k^{\alpha} |g_0(k)| \right\} + \sup_{k \ge 1} \left\{ k^{\beta} |g_0(k)| \right\}; \ \alpha = 3/2 - \delta, \ \beta = 11/6 - \delta,$$

for δ arbitrarily small. Then, for some T > 0, the solution g satisfies:

$$||g(t)||_{7/6,\beta} \le C(t,T)||g_0||_{\alpha,\beta}, \quad \forall t \in (0,T)$$

Notice that $\alpha \sim 3/2 > 7/6$.

Surprising: the structure of this equation suggests a "hyperbolic" non regularizing behaviour for its solutions. These regularizing effects are, however, restricted to the values of f at the particular point k = 0.

Moreover, there exists a function $\lambda(t)$ such that, for $t \in (0,T)$:

$$||g(t) - \lambda(t)k_1^{-7/6}\chi_{0 \le k_1 \le 1}||_{7/6 - \delta/2,\beta} \le Ct^{-1 + 9\delta/2}||g_0||_{\alpha,\beta}$$

 $|\lambda(t)| \le Ct^{-1+6\delta} ||h_0||_{\alpha,\beta}.$

$$\frac{\partial g}{\partial t}(t,k) = \mathcal{L}_k(\lambda(t) f_0, g)(k,t) + \nu(k,t)$$
$$= \mathcal{L}(g) + \mathcal{U}(k,g,\lambda) + \nu(k,t)$$

where ${\cal L}$ is the linearised operator of the MU-U equation.

Use the explicit behaviours of the fundamental solution. Treat the term ${\cal U}$ as a perturbation. For example:

Lemma: Suppose that φ solves

$$\begin{split} &\frac{\partial \varphi}{\partial \tau} = \mathcal{L}(\varphi) \\ &\varphi(0,k) = \varphi_0(k), \\ &\text{where} \qquad |\varphi_0(k)| \leq k^{-\alpha} \chi_{\{k \leq 1\}}, \end{split}$$

with $\alpha \in [7/6, 3/2)$.

Then, there exists a function $a \in L^{\infty}([0,1])$ such that, for any $\tau \in [0,1]$:

$$\begin{split} |\varphi(\tau,k) - a(\tau) \, k^{-7/6}| &\leq C \tau^{-3\alpha} \Phi(k \, \tau^{-3}), \qquad \text{for } 0 \leq k \leq 2\\ |a(\tau)| &\leq C \, \tau^{7/2 - 3\alpha}, \\ \Phi(y) &= \min\{y^{-\theta}, y^{-7/6}\}, \end{split}$$

for arbitrary $\theta \in (1, 7/6)$.

Proof. We write the solution as

$$\varphi(\tau,k) = \int_0^1 \frac{1}{k_0} F\left(\frac{\tau}{k_0^{1/3}}, \frac{k}{k_0}, 1\right) \varphi_0(k_0) dk_0$$
$$= \int_0^{\min(k/2, 1)} \cdots dk_0 + \int_{\min(k/2, 1)}^1 \cdots dk_0 \equiv I_1 + I_2.$$

where F is the fundamental solution of the equation. Use the estimates of $F\left(\frac{\tau}{k_0^{1/3}}, \frac{k}{k_0}, 1\right)$ depending on whether $\frac{k}{k_0} > 2$ or $\frac{k}{k_0} < 2$.

...back to the **The Carleman equation**.

$$zG(z,\xi) = G(z,\xi - \frac{i}{3})\Phi(\xi - \frac{i}{3}) + \frac{1}{\sqrt{2\pi}},$$
(2)

where $\Phi(\xi) = -a + \widehat{\mathcal{K}}(\xi)$ and $\widehat{\mathcal{K}}$ is the Fourier transform of \mathcal{K} . The problem is then transformed in the following:

For any $z \in \mathbb{C}$, $\mathcal{R}ez > 0$, find a function $G(z, \cdot)$ analytic in the strip $S = \{\xi; \xi = u + iv, 4/3 < v < 5/3, u \in \mathbb{R}\}$ satisfying (2) on S. We introduce the NEW SET OF VARIABLES:

$$\zeta = T(\xi) \equiv e^{6\pi(\xi - \frac{4}{3}i)}, \quad g(z, \zeta) = G(z, \xi), \quad \widetilde{\varphi}(\zeta) = \Phi(\xi)$$

Then *g* SOLVES:

$$zg(z, x - i0) = \varphi(x) g(z, x + i0) + \frac{1}{\sqrt{2\pi}}$$
 for all $x \in \mathbb{R}^+$
g is analytic and bounded in D ,

where,

$$D = \{ \zeta \in T(\mathbb{C}); \ \zeta = r e^{i\theta}, \ r > 0, \ 0 < \theta < 2\pi \},\$$

and, for any $x \in \mathbb{R}^+$: $g(z, x + i0) = \lim_{\varepsilon \to 0} g(z, xe^{i\varepsilon}), \quad g(z, x - i0) = \lim_{\varepsilon \to 0} g(z, xe^{i(2\pi - \varepsilon)})$ $\varphi(x) = \lim_{\varepsilon \to 0} \widetilde{\varphi}(xe^{i\varepsilon}).$

22

The Wiener Hopf method

Suppose that g is a solution. Assume that the following integral is well defined

$$H(z,\zeta) = \frac{1}{2\pi i} \int_0^\infty \ln\left(\frac{\varphi(\lambda)}{z}\right) \frac{d\lambda}{\lambda - \zeta}.$$

Then, the Plemej Sojoltski formulas give, for $\zeta \in \mathbb{R}^+$:

$$H(\zeta + i0) = \frac{1}{2} \ln\left(\frac{\varphi(\zeta)}{z}\right) + \frac{1}{2\pi i} pv \int_0^\infty \ln\left(\frac{\varphi(\lambda)}{z}\right) \frac{d\lambda}{\lambda - \zeta}$$
$$H(\zeta - i0) = -\frac{1}{2} \ln\left(\frac{\varphi(\zeta)}{z}\right) + \frac{1}{2\pi i} pv \int_0^\infty \ln\left(\frac{\varphi(\lambda)}{z}\right) \frac{d\lambda}{\lambda - \zeta}$$

23

from where,

$$\begin{split} &\ln\left(\frac{\varphi(\lambda)}{z}\right) = H(z,\zeta+i0) - H(z,\zeta-i0) \\ &\text{and} \qquad \frac{\varphi(\lambda)}{z} = \frac{e^{H(z,\zeta+i0)}}{e^{H(z,\zeta-i0)}} \equiv \frac{M(z,\zeta+i0)}{M(z,\zeta-i0)}. \end{split}$$

Integrability properties of $\ln(\varphi) \Longrightarrow M(z,\zeta)$ ANALYTIC in $\zeta \in \mathbb{C} \setminus \mathbb{R}^+$. The function g would then satisfy:

$$M(z, x - i0) g(z, x - i0) = \frac{1}{z} M(z, x + i0) g(z, x + i0) + \frac{M(z, x - i0)}{\sqrt{2\pi}z}$$

If M has suitable bounds as $x \to 0$ and $x \to +\infty$, by Plemej Sojoltski formulas:

$$\frac{M(z, x - i0)}{\sqrt{2 \pi z}} = W(z, x + i0) - W(z, x - i0), \quad \text{for any } x > 0$$

24

where:

$$W(z,\zeta) = \frac{1}{2\pi i} \int_0^\infty \frac{M(z,\lambda-i0)}{z} \frac{d\lambda}{\lambda-\zeta}$$

would be an analytic function in $\zeta \in \mathbb{C} \setminus \mathbb{R}^+$. Then the function g satisfies:

$$\begin{split} M(z,x-i0)g(z,x-i0) + W(z,x-i0) &= \\ M(z,x+i0)g(z,x+i0) + W(z,x+i0), & \text{for all } x \in \mathbb{R}^+ \end{split}$$

and $M(z, \cdot)g(z, \cdot) + W(z, \cdot)$ is analytic in $\mathbb{C} \setminus \mathbb{R}^+$.

It then follows that the function $C(z, \cdot)$ defined by means of:

$$C(z,\cdot) \equiv M(z,\cdot)g(z,\cdot) + W(z,\cdot)$$

is analytic in $\mathbb{C} \setminus \{0\}$. Using the boundedness of $g(z, \cdot)$ and suitable size estimates on W and M:

$$C(z,\zeta) \le |\zeta|^{-1+\rho} \text{ as } |\zeta| \to 0$$
$$C(z,\zeta) \le |\zeta|^{1-\delta} \text{ as } |\zeta| \to +\infty$$

for some $\rho > 0$ and $\delta > 0$. $C(z, \zeta)$ is then analytic also at 0 and does not depend on ζ i. e.

$$\forall z \in \mathbb{C} \setminus \mathbb{R}^- : \quad C(z,\zeta) = C(z),$$

whence, IF A SOLUTION g EXISTS:

$$g(z,\zeta) = \frac{C(z) - W(z,\zeta)}{M(z,\zeta)},$$

where,

$$C(z) = \frac{1}{2\pi i} \int_0^\infty \frac{M(z,\lambda-i0)}{z} \frac{d\lambda}{\lambda}$$

Due to the behaviour of $\ln(\varphi(\zeta))$ and $M(z,\zeta)$ as $\Re e\zeta \to \pm \infty$, the INTEGRALS which define H and M above do NOT CONVERGE. They have to be slightly MODIFIED as follows:

Theorem. For any $z \in \mathbb{C} \setminus \mathbb{R}^-$, there exists a unique bounded solution g, given by:

$$g(z,\zeta) = \frac{1}{2\pi i z} \int_0^\infty \frac{M(z,\lambda-i0)}{M(z,\zeta)} \frac{d\lambda}{\lambda(\lambda-\zeta)}$$

where,

$$M(z,\zeta) = \exp\left[\frac{1}{2\pi i} \int_0^\infty \ln\left(\frac{\varphi(\lambda)}{z}\right) \left(\frac{1}{\lambda-\zeta} - \frac{1}{\lambda-\lambda_0}\right) d\lambda\right],$$

and $\lambda_0 \in \mathbb{C} \setminus \mathbb{R}^+$ is arbitrary.

•The convergence of the integrals rely on the behaviour both local and as $\Re e \lambda \to \pm \infty$ of the function $\ln(\varphi)$.

The function φ "comes" from the function $\Phi(\xi) := -a + \widehat{\mathcal{K}}(\xi)$:

$$\begin{split} \Phi(\xi) &= -a + \sum_{j=0}^{\infty} \frac{A_1(j)}{(1 - 6i\xi + 12j)} + \sum_{j=0}^{\infty} \frac{A_2(j)}{(1 - 3i\xi + 3j)} + \sum_{j=0}^{\infty} \frac{A_3(j)}{(3 + 2i\xi + 2j)} \\ &+ \sum_{j=0}^{\infty} \frac{A_4(j)}{(10 + 3i\xi + 6j)}; \qquad A_i(j), \ i = 1 \cdots 4, \ j = 0, 1, \dots \text{ explicitely known.} \end{split}$$

1.) One may check that:

$$\begin{split} |\Phi(\xi) - \Phi_{\infty}(\xi)| &= \mathcal{O}(|\xi|^{-\alpha}) \quad \text{as } |\xi| \to +\infty \\ \text{for some } \alpha > 0; \text{ where } \Phi_{\infty}(\xi) \equiv -a + \frac{b_1}{\xi^{1/6}} + \frac{b_2}{\xi} \\ \text{uniformly on strips of the form} : S_{\alpha,\beta} = \{\xi \in \mathbb{C}; \ \xi = u + iv, \ a < v < b\}. \end{split}$$

2.) **POLES**:
$$\xi = (\frac{3}{2} + j)i; (\frac{10}{3} + 2j)i; -(\frac{1}{3} + j)i; -(\frac{1}{6} + 2j)i; j = 0, 1, \cdots$$

The zeros of Φ .

The only exact results on the zeros of Φ are:

• The function Φ has a simple zero at the point $\xi = 7i/6$. It corresponds to the fact that $k^{-7/6}$ is a solution of the linearised equation.

• Moreover, it also has a simple zero at $\xi = 13i/6$. This corresponds to the fact that k^{-1} is also a solution of the linearised equation.

• THE OTHER ZEROS of Φ are unknown in general. But OTHER ZEROS of Φ determine the behaviour of the term $\sigma(t)$ and the lower order terms \mathcal{R}_1 and \mathcal{R}_2 in the expansion of the fundamental solution.

We assume and have numerically checked:

- The point $\xi = 7i/6$ is the only zero of Φ in the strip $\mathcal{I}m\xi \in (-1/6, 5/3)$.
- The zeros of Φ nearest to 13i/6 are two simple zeros at $\xi = \pm u_0 + iv_0$ with:

 $u_0 = 0.331..., \quad v_0 = 1.84020...$

These are the only zeros of Φ in the strip $\mathcal{I}m\xi \in (-1/3, 5/2)$.

• The graph of the function $\Phi(\xi)$ does not make any complete turn around the origin when ξ moves along any curve connecting the two extremes of the strip $7/6 < \Im m \xi < 3/2$.

In the (z,ξ) variables :

The explicit solution

$$G(z,\xi) = \frac{3i}{\sqrt{2\pi} z} \int_{\mathcal{I}m} e^{6\pi\alpha(z)(y-\xi)} e^{\left[3i(y-\xi)\ln\left(-\frac{\Phi(\xi)}{a}\right)\right]} \frac{e^{[h(\xi,y-\xi)]} dy}{\left(e^{6\pi(y-\xi)}-1\right)}$$
$$\alpha(z) = \frac{1}{2\pi i} \ln\left(-\frac{z}{a}\right), \quad h: \text{ explicit function depending on } \Phi.$$

The zeros of Φ are poles of G .

In the (t, x) variables:

$$g(t,x) = \frac{1}{(2\pi)^{3/2}} \int_{c-\infty i}^{c+\infty i} \int_{-\infty+bi}^{\infty+bi} e^{ix\xi} e^{zt} G(z,\xi) d\xi dz$$

with b and c suitabe real numbers. Asymptotic behaviour and estimates follow.