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of
t, k1) W (k1, ko, k3, k dksdk
(U-U) o (k) / k) (K1s k2, ks, ka) q(f ) dkzdha

q(f) = fafa(l+ f1)(1 + f2) = fifo(1 + f3)(1 + fa)
fi=f(t, k), i=1,23,4.
D (k1) = {(ks, kq) : ks > 0,kg > 0, ks + kg > k1 > 0}
min (v'k1, vVka, V3, Vk4)
N :

L. W. Nordheim (1928), E. A. Uehling & G. E. Uhlenbeck (1933).
Describes a dilute homogeneous isotropic gas of bosons (in polar coordinates).

W (ki ko, k3, ky) = ko = ks + ka — k1.



For all initial data fj satisfying: fo(k) < Ce BF, k>1

C

‘fo(k’) — Ak_7/6| < L7/6—6’ 0<k<1,
7 _ C
Folk) + 2 AR < e, 0< k<,

there exists a unique solution f € C°((0,T) x (0,400)) and A(t), satisfying:

e—Dk

L7/67

0< f(t,k) <L if k>0, |\¢)| <L, for t € (0,T)
(8 k) = At k™0 < LETT/O20 k<1, te(0,T)

for some positive constant L and for some T'=T(A, B,§) > 0.



d o
Formally: %/ f(t,k)VEkdk =0  (conserves “total density".)
0

Family of steady states B, characterized by their total density p > 0:

> Vk dk
o |f0<p<pOE/ 1 B,(k) = F,(k) := ek+}ﬁ—1
0
. > Vkdk
where p > 0 is such that: p = T >0,

o If P > po: Bp(k) = ekl—l + (,0 — pO) %7 fooo Bp(k)\/gdk =p



The solutions B,(k) are the classical equilibria of the equation.
For p > po they describe the thermal equilibrium of a system of bosons with
Bose-Einstein condensate of particles with zero momentum ((p — po) %)

Two different behaviours at £ = 0:

1 1
Tkt 1 en—1
1

Fo(k) = T ~k™' ask —0.

OIITENEI e idgl N’ [0 construct classical solutions of the U-U equation

which behave like k=7/6 as k ~ 0.

Why —7/6 7

See below.

If > 0: F,(k) as k — 0




e Extensive literature on solutions for the classical Boltzmann equation :
Carleman '32, '57 (classical solutions for the homogeneous equation)

Lanford '73 (validity of the B. equation, local existence)

Ukai '74 (linearisation, perturbation methods)

Kaniel & Shinbrot '78 (small time result)

Cercignani (Stationary solutions...)

Di Perna & Lions '89 (Renormalised solutions)

e Much less references for “quantum” equations.

Additional difficulties come from cubic terms and the singular kernel. Moreover
the solutions do not remain bounded in general (c.f. Fp).

e One reference related to our work: X. Lu in J. Stat. Phys. 116 (2004).
X. Lu proves global existence of weak radial solutions for the U-U equation.
Method of Lu’s proof:

1. Solve a regularised equation with a “truncated kernel”.

2. Uniform apriori estimates

3. Pass to the limit and obtain a weak solution.



This method gives weak solutions F such that:
Forall t >0, +/-F(t,-) is a non negative bounded measure in R*.

The total density is constant:

%/Oood(f(t,k)\/é) —0.

e Concerning our result:
The solutions that we construct are classical (f € C°((0,T) x (0, +00)).

They have a precise singular behaviour at the origin:

ft, k) ~At) k™76 as k — 0.



More precisely: f(t,k) = A(t)k~7/6 4+ g(t,k)  where

g(t, k) € CLO((0,T) x (0, +00)), g(t, k) = O(k~7/6%9/2) as k — 0.

This implies : % (/OOO VEk f(k,t) dk) = —Ca’(t) <0

for some constant C' > 0. JERIERTeI|Ne [ AR lo)dee]sISIaV1eh

Our solutions can not be the same as Lu's solutions.

Global solutions for all t > 0. Two problems for such an extension:
1.) The possible blow up of solutions (related with Bose Einstein condensation).
2.) The global solutions should converge, as t — oo, to one of the B,.

Our solutions should not exist for all ¢ > 0.



The main contribution in the U-U equation comes from the modified equation:

ﬁ(t, k)= Q(f) = W (K1, k2, ks, ka) q(f)dksdky
ot D(k1)

q(f) = fsfalfr + f2) = fifa(fs + fa)
D (k) = {(ks, ka)) : ks + kg > k1)
min (v'k1, vVka, vVk3, Vk4)
VEi

Particular stationary solutions: _

(MU-U)

|44 (kla k27 k37 k4) —




Another particular solution: - but -

Consider the - equation for the function n(p,t) = f(|p|?,t):

on )

a(tjp) — Q(n) = W (p17p27p37p4) Q(n)dp3dp4
D(p1)

The function n(p) = |20|_7/3 satisfies the equation for all p #% 0. Moreover: the

flux of this solution out of the sphere |p| < R is

/ Q(lp|""*)dp=C
Ip|<R

where C is a positive constant independent of R. So we have actually:
Q(n) = Cd,—.




We linearise MU-U equation around f(k) = k~7/6:
flk,t) =k~ + F(k,t)

and obtain the following equation for F"

OF a 1 > r

where a is an explicit positive constant and the kernel K (r) is explicit.
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The Fundamental solution

Theorem. For all ky > 0, there exists a unique solution F'(t,-, kg)such that:

1 k
F(t,k, ko) = —F( 1t3, ,1). For k € (0,2) the function F(t,k,1) can be
ko kO/ ICO

written as: where

o(t)=At*+ Ot* ™ ) ast — 0, o(t) = O(t™3) as t — 0.
And for k> 2: F(t,k,1) < B(t)(t3/k)® .

o= |l
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e The initial Dirac measure at k£ = kg persists for all time ¢ > 0 and is not
regularised. That is a kind of hyperbolic behaviour.

e The total mass of the Dirac measure decays exponentially fast: it is
“asymptotically” regularised.

e The behaviour k~7/% as k — 0 persists for all time.

Change of variables: k£ = €”,
F(t.k,1) =G(t,z), K(r/k)=K( ") =e""K(z ~y)
with IC(z) = e " K(e™"). Laplace transform in ¢t and Fourier transform in x
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1 ) 1
2G(2,§) = G(z,§ — g)q’(f - §) + T (1)

where ®(¢) = —a + K(€) and K is the Fourier transform of K. The problem is
then transformed in the following:

For any z € C, Rez > 0, find a function G(z,-) analytic in the strip
S={¢ E=u+iv, 4/3 <v <5/3, u € R} satisfying (2) on S.

The strip .S is determined by the behaviour of the kernel K atr = 0 and r — +o0.
1

Starting from a PDE we would obtain: 2G(z,£) = G(z,€) P(£) +
V2T

polynomial P...

for some
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of (t, k) / W (K, ko, ks, ka) q(f)dksdks
ot D(ky)

q(f) = fafs(L+ [)(L+ fo) = [fa(1 + f3)(1 + fa)
We look for:  f(t, k) = At)fo(k) +g(t, k), g(t,k) = O(k~7/679/2) as k — 0.

Decompose:

q(A(t) fo + g9) = q(A(t) fo) + £(A(2) fo, g) + n(A(E) fo, 9)

C(A(t) fo, g) : linear function of g

n(A(t) fo,g): contains the quadratic and higher order terms on g.
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The function g satisfies:

%@, k) = Nt k, g, N = N(1) fo

where operator N[t, k, g, A is given by:

N[t7 kvga )‘] — Ek()‘(t) ang)(kvt) + R(t, k)

Lo(N(®) fo. g) (B 1) = /D o Wk ok Ra) ENO) o) s

R(t, k) = /D . Wis (R, ko, k3, ka) (q(A() fo) +n(A(2) fo, 9)) dks dka
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The dominant terms:

%@, k) = Li(A(t) fo. g) (k. 1)

The remainder term
R(t, k) = / WM,M’(ka k’g, kg, k’4) (C_I()\(t) fo) + n()\(t) fo, g)) dkg dk’4
D (k1)

is sub dominant because:
e fo behaves like k~7/6 — cancelations in g(\(t) fo) near k =0

e n(A(t)fo,g) contains the quadratic and higher order terms in g.

We are then led to: %(t, k)= Lr(A(t) fo,9)(k,t) +v(k,t).
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That equation has the following regularising effect at £ = 0.

Suppose v(t, k) = 0 (for simplicity) and the initial data gg satisfies:

golla.s = sup {k%go(k)|} + sup {k°|go(k)|}; a=3/2—4, B=11/6—4,
0<k<1 k>1

for 0 arbitrarily small. Then, for some 1" > 0, the solution g satisfies:

l9(®)ll7/6,8 < Ct,T)llgollas, VYt € (0,T)
Notice that a ~ 3/2 > 7/6.

Surprising:  the structure of this equation suggests a “hyperbolic” non

regularizing behaviour for its solutions. These regularizing effects are, however,
restricted to the values of f at the particular point £ = 0.
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Moreover, there exists a function A(t) such that, for ¢t € (0,T):

lg(t) — )‘(t)k1_7/6X0§k1§1}||7/6—5/2,B < Ot_1+95/2HgO||a,ﬁ

AW < CE 49 Rl

Proofs. RAYgIM=E:

o (k) = Li(A() fo, 9) (k. t) + vk, 1)
= L(g) +U(k,g,\) +v(k,1)
where L is the linearised operator of the MU-U equation.

Use the explicit behaviours of the fundamental solution. Treat the term U/ as a
perturbation. For example:
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Lemma: Suppose that ¢ solves

do
9r L(p)

90(07 k) — 900(]{)7
where (k)| < kK™ "X qr<1ys
with o € [7/6,3/2).
Then, there exists a function a € L*°([0, 1]) such that, for any 7 € [0, 1]:
(o(1, k) —a(r) k™% < Cr22®(kr73), for 0 <k <2
la(r)| < C 77275,
®(y) = min{y %,y ~7/%},

for arbitrary 6 € (1,7/6).
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Proof. We write the solution as

1
1 T k
k)= —F | —,—,1 ko) dk
SO(T) ) /O k() <k8/37k07 > QOO( O) 0

min(k/2,1) 1
0

min(k/2,1)

where F' is the fundamental solution of the equation. Use the estimates of

F ( Tk 1) depending on whether kﬁo > 2 or kﬁo < 2.

1/39 kn?
kg 0
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1

2G(2,8) = G(2,§ — )26 — o) + TS (2)

where ®(&) = —a + K(€) and K is the Fourier transform of K. The problem is
then transformed in the following:

For any z € C, Rez > 0, find a function G(z,-) analytic in the strip
S={& E=u+w, 4/3 <v <5/3, u e R} satisfying (2) on S.
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We introduce the NEW SET OF VARIABLES:

C=T(E) =eE5) g(z,0) = G(z,6), 3(C) =)

Then g SOLVES:
1
zg(z,x —i0) = p(z) g(z,2 +i0) + —— for all x € RT

V2m

g is analytic and bounded in D,

where, D ={¢eT(C); C=re?, r>0, 0<6<2r},

and, for any z € R*:

g(z,x +140) = lim g(z, ze*), g¢(z,x —i0) = lim g(z, xei(%_s))

e—0 e—0

p(x) = lim G(ze™).
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Suppose that g is a solution. Assume that the following integral is well defined

H(z,¢) = 2%/000 In (9”(;)) Ad_AC.

Then, the Plemej Sojoltski formulas give, for ( € R™:

He i) = 3 (E) 4 Ly [T (22) 2

2 z 271

A
H(C —i0) = —11n<90(€)>+i,pv/0001n(90()‘)) d\

2 z 271
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from where,

In (¢(A)) = H(z,¢+140) — H(z,¢ — i0)

z

p(A) _ MBS0 M (2, 4 i0)

d — ; = .
o z e (2,¢=10) — M (z,( —i0)

Integrability properties of In(¢) = M(z,{) ANALYTIC in NEESKOANNGEN.

The function g would then satisfy:

M(z,x —i0)
V22

If M has suitable bounds as * — 0 and x — +00, by Plemej Sojoltski formulas:

1
M(z,x —1i0) g(z,x —i0) = =M (z,z +i0) g(z, x + 10) +
z

M (z,x —10)
V22

= W(z,x 4+10) — W(z,x —i0), forany x >0
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where:

1 [ M(z,X—i0) dA

would be an analytic function in { € C\ R™T. Then the function g satisfies:

M(z,x —i0)g(z,x —i0) + W(z,z —10) =
M(z,z +140)g(z,x +140) + W(z,z +140), forall z € R

and M (z,)g(z,-) + W(z,-) is analytic in C\ RT.

25



It then follows that the function C'(z, ) defined by means of:

C(Zv ) = M(Zv ')g(za ) + W(Z7 )

is analytic in |EORNR{UIM Using the boundedness of g(z,:) and suitable size

estimates on W and M:

C(z,¢) <[¢|7"* as [(]—0
C(z,¢) <[¢I'° as |¢| = 400

for some p > 0 and § > 0. C(z,() is then analytic also at 0 and does not depend
on ( i. e.

Ve C\R™: C(C(z,() =C(z),

26



whence, IF A SOLUTION ¢ EXISTS:
C( o W(Z,C)

g(z¢) = )

where,

1 [ M(z, A —i0)d)
C<Z>—%/O .

Due to the behaviour of In((¢)) and M(z,() as Re( — +o0o, the INTEGRALS

which define H and M above do NOT CONVERGE. They have to be slightly
MODIFIED as follows:
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Theorem. For any z € C\ R™, there exists a unique bounded solution g, given

by:

1 ¢ [ M(z,A—i0)  d
950 =52y T MEO AG—O)

om0 () (-5 o]

and \g € C\ RY js arbitrary.

where,

e [he convergence of the integrals rely on the behaviour both local and as

Jle \ — +oo of the function In(y).
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The function ¢ “comes” from the function ®(¢) := —a + K(£):

oo oo

—_CH—Z 1—62€—|—123 +jz: 1—32§—|—3] +; 3—|—2z§—|—2])

Ai(f), i=1---4, 5=0.1,... explicitely known.
+]z: 10+32§+6]) (7), 1 J explicitely known

1.) One may check that:

[P(£) — Poo(&)| = O(IE]7)  as [¢] = Fo0

b b
for some a > 0; where ®(§) = —a + —— + —

e ¢

uniformly on strips of the form : S, s ={£ € C; { =u+ v, a <v < b}.

2) PRSI ¢ = 3+ )i (2 +2) i —(+5)is —(3+2))65 5 =01,
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The zeros of o.

The only exact results on the zeros of ® are:

e The function ® has a simple zero at the point £ = 7:/6. It corresponds to the
fact that £~ 7/% is a solution of the linearised equation.

e Moreover, it also has a simple zero at £ = 13i/6. This corresponds to the fact
that k! is also a solution of the linearised equation.

e THE OTHER ZERQOS of ® are unknown in general. But OTHER ZEROS of &
determine the behaviour of the term o(¢) and the lower order terms R; and R,
in the expansion of the fundamental solution.
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e The point £ = 7i/6 is the only zero of ® in the strip Zmé € (—1/6,5/3).

e The zeros of ® nearest to 137/6 are two simple zeros at & = Hug + ivy with:

ug = 0.331..., wvo = 1.84020...

These are the only zeros of ® in the strip Zmé& € (—1/3,5/2).

e The graph of the function ®(£) does not make any complete turn around the
origin when £ moves along any curve connecting the two extremes of the strip

7/6 < Imé < 3/2.
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G(z,¢) = 5 / SGra(z) (y=¢) , |3ily—6) In(—52) el (Ey=9)] gy
, \/%Z Im y:% (eﬁw(y—g) . 1)
1
alz) = i In (_2) , h: explicit function depending on ®.

In the (¢, x) variables:

1 c+oo 1 oco+b1 ot 2t
g(t,x) = / s e** G(z,€) d€ dz
( ) (2 7T)3/2 1Je

—00 1 —oo+b1

with b and c suitabe real numbers. Asymptotic behaviour and estimates follow.
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