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The Classical Ambrosetti-Prodi

Let f : R → R be a C2-fct s.t.

(f1) f(0) = 0 and f ′′(t) > 0, for all t,

(f2) limt→−∞ f ′(t) = l′, with 0 < l′ < λ1,
limt→+∞ f ′(t) = l”, with λ1 < l” < λ2,

with Ω bdd smooth in RN , consider the Dirichlet problem:
∆u+ f(u) = g in Ω, u = 0 on ∂Ω, (1)
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Let f : R → R be a C2-fct s.t.

(f1) f(0) = 0 and f ′′(t) > 0, for all t,

(f2) limt→−∞ f ′(t) = l′, with 0 < l′ < λ1,
limt→+∞ f ′(t) = l”, with λ1 < l” < λ2,

with Ω bdd smooth in RN , consider the Dirichlet problem:
∆u+ f(u) = g in Ω, u = 0 on ∂Ω, (1)

Then ∃ in C0,α(Ω) a closed connected C1-manifold M s.t.
C0,α(Ω) \M = A0

⋃
A2 (connected components) s.t

(0) g ∈ A0 ⇒ (1) no solution,

(1) g ∈M ⇒ (1) exactly one solution

(2) g ∈ A2 ⇒ (1) exactly 2 solutions – p.



Earlier Results on Ambrosetti-Prodi

The 1973 paper called much attention to this kind of BVP
with nonlinearities of the above type.
As a matter of fact the A-P paper is much more than the
PDE problem. It treats the inversion of differentiable
mappings with singularities between Banach Spaces
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Earlier Results on Ambrosetti-Prodi

The 1973 paper called much attention to this kind of BVP
with nonlinearities of the above type.
As a matter of fact the A-P paper is much more than the
PDE problem. It treats the inversion of differentiable
mappings with singularities between Banach Spaces
It appears that what we call the A-P phenomena has to do
with the crossing of the first eigenvalue. This was soon
realized and many papers appeared afterwards. A very
partial list of earlier papers includes: Berger-Podolak,
Fucik, Kazdan-Warner,Dancer, Hess, Berestycki, Solimini,
Adimurthi-Srikanth,...
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Present formulation of A-P

Let us put the problem in the present framework for the
scalar case :

−Lu = f(x, u) + tϕ1(x) + h(x), in Ω, u = 0 on ∂Ω, (2)

where L =
∑N

i,j=1
aij(x)

∂2

∂xi∂xj
+

∑N

i=1
bi(x)

∂
∂
xi is a general

strongly elliptic operator.
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aij(x)

∂2

∂xi∂xj
+

∑N

i=1
bi(x)

∂
∂
xi is a general

strongly elliptic operator.
From Berestycki-Nirenberg-Varadhan, we know: ϕ1 is a
first positive eigenfunction of−Lϕ1 = λ1ϕ1, with ϕ1 = 0

on ∂Ω, and λ1 > 0.
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Present formulation of A-P

Let us put the problem in the present framework for the
scalar case :

−Lu = f(x, u) + tϕ1(x) + h(x), in Ω, u = 0 on ∂Ω, (2)

where L =
∑N

i,j=1
aij(x)

∂2

∂xi∂xj
+

∑N

i=1
bi(x)

∂
∂
xi is a general

strongly elliptic operator.
From Berestycki-Nirenberg-Varadhan, we know: ϕ1 is a
first positive eigenfunction of−Lϕ1 = λ1ϕ1, with ϕ1 = 0

on ∂Ω, and λ1 > 0.
Problem (2) is said of A-P type if

lim sup
s→−∞

f(x, s)

s
≤ a′ < λ1 < b′ ≤ lim inf

s→+∞

f(x, s)

s
– p.



The A-P statement: the scalar case

In the present framework the A-P statement for the case of
one equation becomes:

(AP) ∃t0 ∈ R, s.t. Problem (2) has at least two solutions for
t < t0, one solution for t = t0 and no solution for t < t− 0.
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The A-P statement: the scalar case

In the present framework the A-P statement for the case of
one equation becomes:

(AP) ∃t0 ∈ R, s.t. Problem (2) has at least two solutions for
t < t0, one solution for t = t0 and no solution for t < t− 0.

One of the main difficulties in proving the statement on the
existence of two solutions comes in the case that f is
superlinear in u. Variational and Topological Methods have
been used.
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Methods for existence of solutions-1

Variational Methods.
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Methods for existence of solutions-1

Variational Methods.
If L is of divergence form, one can use the Calculus of
Variations to get the second solution.In general a first
solution, for small t, can be obtained by the Method of
Lower and Upper Solutions. To use Critical Point Theory,
as usual, one needs some compactness which it is
obtained by an appropriate growth on f with respect to u.

– p.



Methods for existence of solutions-1

Variational Methods.
If L is of divergence form, one can use the Calculus of
Variations to get the second solution.In general a first
solution, for small t, can be obtained by the Method of
Lower and Upper Solutions. To use Critical Point Theory,
as usual, one needs some compactness which it is
obtained by an appropriate growth on f with respect to u.

Already in the 1980’s this technique was used by
deF-Solimini and K.C.Chang to obtain multiplicity for f
subcritical, namely f(x, s) ∼ sp, for 1 < p < N+2

N−2
.
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Methods for existence of solutions-2

Topological Methods.
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Methods for existence of solutions-2

Topological Methods.
In this method the key point is the a priori estimates for
solutions. If L is not of the divergence form, Topological
Degree is the method for second solution.
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Methods for existence of solutions-2

Topological Methods.
In this method the key point is the a priori estimates for
solutions. If L is not of the divergence form, Topological
Degree is the method for second solution.
For superlinear problems this is not easy matter. The first
results in this area treated f(x, s) with linear growth in s,
or polynomial growth in s with a power at most N+1

N−1
. This

restriction comes from the use of Hardy inequality as
initiated by Brézis-Turner for existence of positive solutions
for superlinear problems.
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Methods for existence of solutions-2

Topological Methods.
In this method the key point is the a priori estimates for
solutions. If L is not of the divergence form, Topological
Degree is the method for second solution.
For superlinear problems this is not easy matter. The first
results in this area treated f(x, s) with linear growth in s,
or polynomial growth in s with a power at most N+1

N−1
. This

restriction comes from the use of Hardy inequality as
initiated by Brézis-Turner for existence of positive solutions
for superlinear problems.
Our results next improve this growth up to N+2

N−2
, and also

take care of the case of systems.
– p.



A-P: Semilinear Elliptic Systems

We present the results for a system of two equations, although some are proved for
systems with more equations.

– p.



A-P: Semilinear Elliptic Systems

We present the results for a system of two equations, although some are proved for
systems with more equations.

Let us write the system in the form:
−L1u1 = f1(x, u1, u2) + t1ϕ1 + h1(x)

−L2u2 = f2(x, u1, u2) + t2ϕ2 + h2(x) (PS)t
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f(x, .) = (f1(x, .), f2(x, .)) : R2 → R2 is quasi-monotone,
that is, fi(x, s) is non-decreasing in sj, i 6= j. This is for
Max. Principle.
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A-P: Semilinear Elliptic Systems

We present the results for a system of two equations, although some are proved for
systems with more equations.

Let us write the system in the form:
−L1u1 = f1(x, u1, u2) + t1ϕ1 + h1(x)

−L2u2 = f2(x, u1, u2) + t2ϕ2 + h2(x) (PS)t

f(x, .) = (f1(x, .), f2(x, .)) : R2 → R2 is quasi-monotone,
that is, fi(x, s) is non-decreasing in sj, i 6= j. This is for
Max. Principle.
An A-P result for system should state:
(APS): ∃Γ ⊂ R2, a Lipschitz curve that splits R2 into two
parts A0 and A2 s.t. problem (PS)t has at least two
solutions if t = (t1, t2) ∈ A2, at least one solution if t ∈ Γ,
and no solution if t ∈ A0.
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Systems: "Crossing Eigenvalues"

The condition of crossing the first eigenvalue in the scalar
case can be restated as: ∃ const′s a, b, C s.t.
λ1(∆ + a) > 0, and λ1(∆ + b) < 0, where

f(x, s) ≥ as−C for s ≤ 0, f(x, s) ≥ bs−C for s ≥ 0, ∀x ∈ Ω
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Systems: "Crossing Eigenvalues"

The condition of crossing the first eigenvalue in the scalar
case can be restated as: ∃ const′s a, b, C s.t.
λ1(∆ + a) > 0, and λ1(∆ + b) < 0, where

f(x, s) ≥ as−C for s ≤ 0, f(x, s) ≥ bs−C for s ≥ 0, ∀x ∈ Ω

For the system we have:
∃ cooperative matricesA1(x), A2(x), , and constants b1, b2 s.t.
λ1(L+ A1) > 0, λ1(L+ A2) < 0, where

f(x, s) ≥ A1(x)s− b1e in {s ∈ R2, s ≤ 0}

f(x, s) ≥ A2(x)s− b2e in {s ∈ R2, s ≥ 0}

Here f(x, s) = (f1(x, s), f2(x, s)) and e = (e1, e2)
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On λ1(L + coop.matrix)

Let A be a cooperative matrix. Busca-Sirakov extendend
Berestycki-Nirenberg-Varadhan to systems. So the
principal eigenvalue of L+ A is defined by
λ1 = λ1(L+ A) = sup[λ ∈ R : ∃ψ ∈W

2,N
loc (Ω, R2), s.t. ψ >

0, (L+ A+ λI)ψ ≤ 0 inΩ].
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On λ1(L + coop.matrix)

Let A be a cooperative matrix. Busca-Sirakov extendend
Berestycki-Nirenberg-Varadhan to systems. So the
principal eigenvalue of L+ A is defined by
λ1 = λ1(L+ A) = sup[λ ∈ R : ∃ψ ∈W

2,N
loc (Ω, R2), s.t. ψ >

0, (L+ A+ λI)ψ ≤ 0 inΩ].

the following statements are equivalent:
(i)λ1(L+ A) > 0

(ii)∃ψ ∈W 2,N(Ω, R2)
⋂
C(Ω) s.t. ψ ≥ e, (L+ A)ψ ≤ 0 in Ω

(iii) (L+ A) satisfies the Max Principle:
If (L+ A)u ≤ 0 in Ω and u ≥ 0 on ∂Ω, then u ≥ 0 in Ω

– p. 10



A Priori Bounds for the Systems

The a priori bounds here are proved using the Blow-up
Method, as introduced by Gidas-Spruck to treat the case of
positive solutions for superlinear problems.
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The a priori bounds here are proved using the Blow-up
Method, as introduced by Gidas-Spruck to treat the case of
positive solutions for superlinear problems.
The Blow-up Method works if the nonlinearities fi have
precisely polynomial growth, due to the need of using
Liouville type theorems.
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A Priori Bounds for the Systems

The a priori bounds here are proved using the Blow-up
Method, as introduced by Gidas-Spruck to treat the case of
positive solutions for superlinear problems.
The Blow-up Method works if the nonlinearities fi have
precisely polynomial growth, due to the need of using
Liouville type theorems.
For that matter we shall write the fi as:

f1(x, u1, u2) = a(x)uα11

1 + b(x)uα12

2 + g1(x, u1, u2)

f2(x, u1, u2) = c(x)uα21

1 + d(x)uα22

2 + g2(x, u1, u2),

where the gi are the lower order terms. We assume that
the αij > 1 and the coeficients ∈ C(Ω) and ≥ 0. – p. 11



Construction of Blow-up pairs

In the Blow-up procedure the following lines appear
naturally (here ~β = (β1, β2) ∈ R2):
l1 = {~β|β1 + 2 − β1α11 = 0}, l3 = {~β|β1 + 2 − β2α12 = 0}

l4 = {~β|β2 + 2 − β1α21 = 0}, l2 = {~β|β2 + 2 − β2α22 = 0}

– p. 12
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In the Blow-up procedure the following lines appear
naturally (here ~β = (β1, β2) ∈ R2):
l1 = {~β|β1 + 2 − β1α11 = 0}, l3 = {~β|β1 + 2 − β2α12 = 0}

l4 = {~β|β2 + 2 − β1α21 = 0}, l2 = {~β|β2 + 2 − β2α22 = 0}
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A-P result for systems

Blow-up pairs ~β are defined as the points that are in the
intersection of at least two lines and lie to the left of or on
l1, below or on l2, below or on l3, and above or on l4.
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A-P result for systems

Blow-up pairs ~β are defined as the points that are in the
intersection of at least two lines and lie to the left of or on
l1, below or on l2, below or on l3, and above or on l4.
If the αij are s.t. one can choose a blow-up pair, then this
leads to statements of Liouville type, and thus to a priori
bounds for solutions.
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A-P result for systems

Blow-up pairs ~β are defined as the points that are in the
intersection of at least two lines and lie to the left of or on
l1, below or on l2, below or on l3, and above or on l4.
If the αij are s.t. one can choose a blow-up pair, then this
leads to statements of Liouville type, and thus to a priori
bounds for solutions.
There are three cases:
(i)Case A. The intersection of l1 and l2 is a blow-up pair.
Here a(x) ≥ c > 0 and d(x) ≥ c > 0. Take (β0

1 , β
0
2) = l1

⋂
l2.

(ii)Case B. The intersection of l3 and l4 is a blow-up pair.
Here b(x) ≥ c > 0 and c(x) ≥ c > 0. Take (β0

1 , β
0
2) = l3

⋂
l4.

(iii)Case C. Neither l1
⋂
l2 nor l3

⋂
l4 is a blow-up pair. So

either l1
⋂
l3 or l2

⋂
l4 is a blow-up pair. b(x), c(x) ≥ c > 0. – p. 13



A-P result for systems

THEOREM (deF-Sirakov).Suppose there is a crossing of
the first eigenvalue and a blow-up pair ~β = (β0

1 , β
0
2)can be

chosen satisfying

min{β0

1 , β
0

2} >
N − 2

2
, max{β0

1 , β
0

2} > N − 2.

Then (APS) holds.
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Existence of a first solution

LEMMA 1. (Subsolution) For any t ∈ R2 there is a
subsolution u ≤ 0 of the system.
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LEMMA 1. (Subsolution) For any t ∈ R2 there is a
subsolution u ≤ 0 of the system.
(Proof Lemma 1). Take K = 2 max{‖hi‖ + |ti|} + b1. By the
Max Principle this subsolution is just a solution of the
Dirichlet problem for:
Lu+ A1(x)u = Ke− h(x) − tϕ1
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Existence of a first solution

LEMMA 1. (Subsolution) For any t ∈ R2 there is a
subsolution u ≤ 0 of the system.
(Proof Lemma 1). Take K = 2 max{‖hi‖ + |ti|} + b1. By the
Max Principle this subsolution is just a solution of the
Dirichlet problem for:
Lu+ A1(x)u = Ke− h(x) − tϕ1

LEMMA 2. (Supersolution) ∃t0 ∈ R s.t. for t ≤ t0e the
system has a supersolution.
(Proof Lemma 2). Choose p1, p2 s.t.
f(x, s) ≤ C1(1 + s

p1

1 + s
p2

2 )e. Let u be the solution of
Lu+ h+ + C1e in Ω, u = 0 on ∂Ω. Then the t0 ∈ R is
chosen in such a way that −t0ϕ1 ≥ (up1

1 + u
p2

2 ), which is
possible by Hopf. – p. 15



Bound on negative part of solution

One difficulty in applying the Blow-up Method comes from
the fact that solutions of (PS)t change sign. So the process
of passing to the limit in order to get a Liouville type of
result involves a control on the negative part of solutions.
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and any solution u of (PSt) with this t we have
‖u−‖ ≤M .
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the fact that solutions of (PS)t change sign. So the process
of passing to the limit in order to get a Liouville type of
result involves a control on the negative part of solutions.
LEMMA 3. For each C0 ∈ R+,∃ const M , s.t. for t ≥ −C0e

and any solution u of (PSt) with this t we have
‖u−‖ ≤M .
LEMMA 4. For each C0 ∈ R+,∃ const C1, s.t. for
t ≥ −C0e and any solution u of (PS)t with this t we have
t+i ≤ C1(1 + ‖u+

i ‖) ≤ C1(1 + ‖u‖), for i = 1, 2
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Non-existence of solution for larget

LEMMA 4. For each C0 ∈ R+,∃ const C1, s.t. for
t ≥ −C0e and any solution u of (PS)t with this t we have
t+i ≤ C1(1 + ‖u+

i ‖) ≤ C1(1 + ‖u‖), for i = 1, 2
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LEMMA 4. For each C0 ∈ R+,∃ const C1, s.t. for
t ≥ −C0e and any solution u of (PS)t with this t we have
t+i ≤ C1(1 + ‖u+

i ‖) ≤ C1(1 + ‖u‖), for i = 1, 2

LEMMA 5. ∃ a const. C s.t. ∀t ≥ e and every
solution u = (u1, u2) of (PS)t corresponding to this t, we
have

‖u1‖
1+

2

β0
1 ≤ Ct1 and ‖u2‖

1+
2

β0
2 ≤ Ct2.
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Non-existence of solution for larget

LEMMA 4. For each C0 ∈ R+,∃ const C1, s.t. for
t ≥ −C0e and any solution u of (PS)t with this t we have
t+i ≤ C1(1 + ‖u+

i ‖) ≤ C1(1 + ‖u‖), for i = 1, 2

LEMMA 5. ∃ a const. C s.t. ∀t ≥ e and every
solution u = (u1, u2) of (PS)t corresponding to this t, we
have

‖u1‖
1+

2

β0
1 ≤ Ct1 and ‖u2‖

1+
2

β0
2 ≤ Ct2.

Lemmas 4 and 5 prove that (PS)t has no solution for
large t.

– p. 17



Proof of the (APS)

We have the following:
(i) If C is sufficiently large, (PS)t has a minimal solution for
t ≤ −Ce.
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(iii) A priori bound: given t0 ∈ R2, the (eventual) solutions
of (PS)t for all t ≥ t0 are bounded by the same constant.
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Proof of the (APS)

We have the following:
(i) If C is sufficiently large, (PS)t has a minimal solution for
t ≤ −Ce.
(ii)If C is sufficiently large, (PS)t does not have a solution
for ‖t‖ ≥ C.

(iii) A priori bound: given t0 ∈ R2, the (eventual) solutions
of (PS)t for all t ≥ t0 are bounded by the same constant.

The curve Γ is defined by parametrization with respect to
the line H = {t ∈ R2| t1 + t2 = 0}. For t0 ∈ H, let
A(t0) = {k ∈ R|(PS)t0+ke has a solution}.
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Proof of the (APS), cont.

We have
A(t0) = {k ∈ R : (PS)t0+ke has a solution} 6= ∅.
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Proof of the (APS), cont.

We have
A(t0) = {k ∈ R : (PS)t0+ke has a solution} 6= ∅.

For each t0 ∈ H ∃k0 ∈ R s.t. (PS)t0+ke does not a solution
for k ≥ k0.

So K : H → R is defined by K(t) = supA(t)

A(t0) is an interval. Indeed, let k ∈ A(t0) and k′ ≤ k.
Since a solution of (PS)t0+ke is a supersolution of
(PS)t0+k′e, k′ ∈ A(t0).

– p. 19



Existence of 2 solutions

Define St : C1,α(Ω)2 → C1,α(Ω)2 by u = (St)v, where
−Lu = f(x, v) + tϕ1(x) + h(x) in Ω, u = 0 on ∂Ω.
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Fix t0 ∈ H and k0 < K(t0). We know (PS)t0+k0e has a
minimal solution.
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Existence of 2 solutions

Define St : C1,α(Ω)2 → C1,α(Ω)2 by u = (St)v, where
−Lu = f(x, v) + tϕ1(x) + h(x) in Ω, u = 0 on ∂Ω.

Fix t0 ∈ H and k0 < K(t0). We know (PS)t0+k0e has a
minimal solution.

∃O ⊂ C1,α(Ω)2 s.t.
deg(I − St0+k0e,O, 0) = 1.

∃k1 ∈ R, s.t.(PS)t0+ke has no solution for k ≥ k1. So
deg(I − St0+k1e, BR, 0) = 0. for large ball BR ⊂ C1,α(Ω)2.

– p. 20
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