Perturbations of singular solutions to Gelfand's problem

Juan Dávila (Universidad de Chile)

In celebration of the 60th birthday of Ireneo Peral

February 2007

collaboration with Louis Dupaigne (Université de Amiens)

The problem

Let $\Omega \subset \mathbb{R}^N$ be an open bounded set with smooth boundary, $\lambda > 0$.

The problem

Let $\Omega \subset \mathbb{R}^N$ be an open bounded set with smooth boundary, $\lambda > 0$. Consider the equation

$$-\Delta u = \lambda e^u \quad \text{in } \Omega$$
$$u = 0 \qquad \text{on } \partial \Omega$$

The problem

Let $\Omega \subset \mathbb{R}^N$ be an open bounded set with smooth boundary, $\lambda > 0$. Consider the equation

 $-\Delta u = \lambda e^u \quad \text{in } \Omega$ $u = 0 \qquad \text{on } \partial \Omega$

Some references:

- Gelfand (1963) Some problems in the theory of quasilinear equations. Section 15 due to Barenblatt.
- Liouville (1853) Sur l'équation aux différences partielles $\frac{d^2 \log \lambda}{du dv} \pm \frac{\lambda}{2a^2} = 0.$

- Chandrasekhar (1939, 1957) An introduction to the study of stellar structure. (N = 3)
- Frank-Kamenetskii (1955) Diffusion and heat exchange in chemical kinetics.
- Bebernes et Eberly (1989) Mathematical problems from combustion theory. (N = 2, 3)

Proposition. There is $0 < \lambda^* < +\infty$ such that:

• if $0 \le \lambda < \lambda^*$ then there exists a classical solution,

Proposition. There is $0 < \lambda^* < +\infty$ such that:

- if $0 \le \lambda < \lambda^*$ then there exists a classical solution,
- if $\lambda = \lambda^*$ there exists a unique "weak" solution u^*

Proposition. There is $0 < \lambda^* < +\infty$ such that:

- if $0 \le \lambda < \lambda^*$ then there exists a classical solution,
- if $\lambda = \lambda^*$ there exists a unique "weak" solution u^*
- if λ > λ* no solution exists (even in the weak sense).

Proposition. There is $0 < \lambda^* < +\infty$ such that:

- if $0 \le \lambda < \lambda^*$ then there exists a classical solution,
- if $\lambda = \lambda^*$ there exists a unique "weak" solution u^*
- if λ > λ* no solution exists (even in the weak sense).

Moreover, if $0 \le \lambda < \lambda^*$ there is a unique minimal solution u_{λ} , which is smooth and characterized by

$$\lambda \int_{\Omega} e^{u_{\lambda}} \varphi^2 \leq \int_{\Omega} |\nabla \varphi|^2 \quad \forall \varphi \in C_0^{\infty}(\Omega).$$

Definition: $u \in L^{1}(\Omega)$ is a weak solution if $dist(x, \partial \Omega)e^{u} \in L^{1}(\Omega)$ and $\int_{\Omega} u(-\Delta \zeta) = \lambda \int_{\Omega} e^{u} \zeta \quad \forall \zeta \in C^{2}(\overline{\Omega}), \zeta|_{\partial \Omega} = 0.$

Definition: $u \in L^{1}(\Omega)$ is a weak solution if $dist(x, \partial \Omega)e^{u} \in L^{1}(\Omega)$ and $\int_{\Omega} u(-\Delta \zeta) = \lambda \int_{\Omega} e^{u} \zeta \quad \forall \zeta \in C^{2}(\overline{\Omega}), \zeta|_{\partial \Omega} = 0.$ Other properties:

 $u^* = \lim_{\lambda \uparrow \lambda^*} u_\lambda$

and

$$\lambda^* \int_{\Omega} e^{u^*} \varphi^2 \leq \int_{\Omega} |\nabla \varphi|^2 \quad \forall \varphi \in C_0^{\infty}(\Omega).$$

The question

We know that there exist λ^* such that

- if $0 \le \lambda < \lambda^*$ there is a classical solution,
- if $\lambda = \lambda^*$ there is a unique weak solution u^*
- if $\lambda > \lambda^*$ there is no solution.

The question

We know that there exist λ^* such that

- if $0 \le \lambda < \lambda^*$ there is a classical solution,
- if $\lambda = \lambda^*$ there is a unique weak solution u^*
- if $\lambda > \lambda^*$ there is no solution.

Is u^* a classical solution?

Bifurcation diagram for $\Omega = B_1$

Joseph-Lundgren (72):

Bifurcation diagram for $\Omega = B_1$

Joseph-Lundgren (72):

In particular **Theorem.** If $\Omega = B_1$ and $N \leq 9$ then u^* is classical, and if $N \geq 10$ then $u^* = -2 \log |x|, \lambda^* = 2(N-2)$.

General domains

Theorem. (Crandall-Rabinowitz (75), Mignot-Puel (80)) If Ω is a smooth bounded domain in \mathbb{R}^N and $N \leq 9$ then u^* is classical.

Stability and Sobolev's inequalities Let $u = u_{\lambda}$. Multiplying the equation by $e^{2ju} - 1$ and integrating

$$\lambda \int_{\Omega} e^{u} (e^{2ju} - 1) = \int_{\Omega} \nabla u \nabla e^{2ju}$$
$$= 2j \int_{\Omega} e^{2ju} |\nabla u|^{2} = \frac{2}{j} \int_{\Omega} |\nabla (e^{ju})|^{2}.$$

Stability and Sobolev's inequalities Let $u = u_{\lambda}$. Multiplying the equation by $e^{2ju} - 1$ and integrating

$$\lambda \int_{\Omega} e^{u} (e^{2ju} - 1) = \int_{\Omega} \nabla u \nabla e^{2ju}$$
$$= 2j \int_{\Omega} e^{2ju} |\nabla u|^{2} = \frac{2}{j} \int_{\Omega} |\nabla (e^{ju})|^{2}.$$

From stability with $\varphi = e^{ju} - 1$ we have

$$\lambda \int_{\Omega} e^u (e^{ju} - 1)^2 \le \int_{\Omega} |\nabla (e^{ju} - 1)|^2.$$

$$\frac{2}{j} \int_{\Omega} e^u (e^{ju} - 1)^2 \le \int_{\Omega} e^u (e^{2ju} - 1)$$

$$\frac{2}{j} \int_{\Omega} e^{u} (e^{ju} - 1)^{2} \leq \int_{\Omega} e^{u} (e^{2ju} - 1)$$
$$\left(\frac{2}{j} - 1\right) \int_{\Omega} e^{(2j+1)u} \leq \text{lower order terms}$$

$$\frac{2}{j} \int_{\Omega} e^{u} (e^{ju} - 1)^{2} \leq \int_{\Omega} e^{u} (e^{2ju} - 1)$$
$$\left(\frac{2}{j} - 1\right) \int_{\Omega} e^{(2j+1)u} \leq \text{lower order terms}$$

Conclusion: if j < 2, q = 2j + 1 then

 $\|\Delta u\|_{L^q} \le C$

where C is independent of λ .

$$\frac{2}{j} \int_{\Omega} e^{u} (e^{ju} - 1)^{2} \leq \int_{\Omega} e^{u} (e^{2ju} - 1)$$
$$\left(\frac{2}{j} - 1\right) \int_{\Omega} e^{(2j+1)u} \leq \text{lower order terms}$$

Conclusion: if j < 2, q = 2j + 1 then

 $\|\Delta u\|_{L^q} \le C$

where C is independent of λ . By elliptic estimates and Sobolev's inequality $u \in W^{2,q} \subset L^{\infty}$ if q > N/2, which works if $N \leq 9$.

General nonlinearities

Let $g: [0, \infty) \to [0, \infty)$ be a C^2 , positive, increasing function satisfying: $\lim_{s \to +\infty} g(u)/u = +\infty$. Consider

$$-\Delta u = \lambda g(u) \quad \text{in } \Omega$$
$$u = 0 \qquad \text{on } \partial \Omega$$

General nonlinearities

Let $g: [0, \infty) \to [0, \infty)$ be a C^2 , positive, increasing function satisfying: $\lim_{s \to +\infty} g(u)/u = +\infty$. Consider

$$-\Delta u = \lambda g(u) \quad \text{in } \Omega$$
$$u = 0 \qquad \text{on } \partial \Omega$$

Cabré (06) If $\Omega \subset \mathbb{R}^N$ is strictly convex and $N \leq 4$ then u^* is classical. Cabré-Capella (06) If $\Omega = B_1$ and $N \leq 9$ then u^* is classical. Nedev (00) If $\Omega \subset \mathbb{R}^N$ is any bounded domain and $N \leq 3$ then u^* is classical.

$$\begin{cases} -\Delta_p u = \lambda g(u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

$$\begin{cases} -\Delta_p u = \lambda g(u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

Clément-de Figueiredo-Mitidieri (96), Jacobsen and Schmitt (02) Considered the radial case with exponential and power nonlinearities.

$$\begin{cases} -\Delta_p u = \lambda g(u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

Clément-de Figueiredo-Mitidieri (96), Jacobsen and Schmitt (02) Considered the radial case with exponential and power nonlinearities.

García-Azorero-Peral-Puel (94) In general domains, if $g(u) = e^u$ the extremal solution is bounded if N and this condition is optimal.

$$\begin{cases} -\Delta_p u = \lambda g(u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

Clément-de Figueiredo-Mitidieri (96), Jacobsen and Schmitt (02) Considered the radial case with exponential and power nonlinearities.

García-Azorero-Peral-Puel (94) In general domains, if $g(u) = e^u$ the extremal solution is bounded if N and this condition is optimal.

Cabré-Sanchón (06) Consider general domains and power type nonlinearities.

Lemma. (Brezis-Vázquez (97)) If $u \in H_0^1(\Omega)$ is a solution $u \notin L^{\infty}(\Omega)$ for some λ which is stable, then $\lambda = \lambda^*$ and $u = u^*$.

Lemma. (Brezis-Vázquez (97)) If $u \in H_0^1(\Omega)$ is a solution $u \notin L^{\infty}(\Omega)$ for some λ which is stable, then $\lambda = \lambda^*$ and $u = u^*$.

Application to the case $\Omega = B_1$. Note that $u = -2 \log |x|, \lambda = 2(N-2)$ is a singular solution.

Lemma. (Brezis-Vázquez (97)) If $u \in H_0^1(\Omega)$ is a solution $u \notin L^{\infty}(\Omega)$ for some λ which is stable, then $\lambda = \lambda^*$ and $u = u^*$.

Application to the case $\Omega = B_1$. Note that $u = -2 \log |x|, \lambda = 2(N-2)$ is a singular solution.

Let $\varphi \in C_0^{\infty}(B_1)$. Then

$$\int_{B_1} |\nabla \varphi|^2 - \lambda \int_{B_1} e^u \varphi^2 = \int_{B_1} |\nabla \varphi|^2 - \lambda \int_{B_1} \frac{\varphi^2}{|x|^2}.$$

Lemma. (Brezis-Vázquez (97)) If $u \in H_0^1(\Omega)$ is a solution $u \notin L^{\infty}(\Omega)$ for some λ which is stable, then $\lambda = \lambda^*$ and $u = u^*$.

Application to the case $\Omega = B_1$. Note that $u = -2 \log |x|, \lambda = 2(N-2)$ is a singular solution.

Let $\varphi \in C_0^{\infty}(B_1)$. Then

$$\int_{B_1} |\nabla \varphi|^2 - \lambda \int_{B_1} e^u \varphi^2 = \int_{B_1} |\nabla \varphi|^2 - \lambda \int_{B_1} \frac{\varphi^2}{|x|^2}.$$

Hardy's inequality: if $N \ge 3$

$$\frac{(N-2)^2}{4} \int_{\mathbb{R}^N} \frac{\varphi^2}{|x|^2} \le \int_{\mathbb{R}^N} |\nabla \varphi|^2 \quad \forall \varphi \in C_0^\infty(\mathbb{R}^N).$$

By Hardy's inequality $u = -2 \log |x|$ is stable if

$$2(N-2) \le \frac{(N-2)^2}{4} \Longleftrightarrow N \ge 10.$$

More precise question

If $N \ge 10$ and Ω is a bounded smooth domain, is u^* singular?

More precise question

If $N \ge 10$ and Ω is a bounded smooth domain, is u^* singular?

Remark: if $\Omega = B_1 \setminus B_{1/2}$ then u^* is always classical (any N).

More precise question

If $N \ge 10$ and Ω is a bounded smooth domain, is u^* singular?

Remark: if $\Omega = B_1 \setminus B_{1/2}$ then u^* is always classical (any N).

Suppose $N \ge 10$ and Ω is a bounded smooth convex domain. Is u^* singular?
Perturbations of a ball

Let $\psi \in C^2(\overline{B}; \mathbb{R}^N)$ and $\Omega_t = \{x + t\psi(x) : x \in B\}.$

Perturbations of a ball

Let
$$\psi \in C^2(\overline{B}; \mathbb{R}^N)$$
 and $\Omega_t = \{x + t\psi(x) : x \in B\}.$
Consider

$$-\Delta u = \lambda e^u \quad \text{in } \Omega_t$$
$$u = 0 \qquad \text{on } \partial \Omega_t$$

Perturbations of a ball

Let $\psi \in C^2(\overline{B}; \mathbb{R}^N)$ and $\Omega_t = \{x + t\psi(x) : x \in B\}$. Consider

 $-\Delta u = \lambda e^u \quad \text{in } \Omega_t$ $u = 0 \qquad \text{on } \partial \Omega_t$

Theorem. (D.-Dupaigne) If $N \ge 4$ there exists $\delta > 0$ such that if $|t| < \delta$ then there is a singular solution $\lambda(t)$, u(t) such that

$$\left\| u(t) - \log \frac{1}{|x - \xi_t|^2} \right\|_{L^{\infty}} + |\lambda(t) - 2(N - 2)| \to 0$$

as $t \to 0$, where $\xi_t \in B$.

Corollary. If $N \ge 11$ and t is small then u^* is singular. Moreover there is $\xi_t \in B$ such that

$$\left\| u^*(t) - \log \frac{1}{|x - \xi_t|^2} \right\|_{L^{\infty}} + |\lambda^*(t) - 2(N - 2)| \to 0$$

as $t \to 0$.

$$\left\| u(t) - \log \frac{1}{|x - \xi_t|^2} \right\|_{L^{\infty}} + |\lambda(t) - 2(N - 2)| \to 0$$

$$\left\| u(t) - \log \frac{1}{|x - \xi_t|^2} \right\|_{L^{\infty}} + |\lambda(t) - 2(N - 2)| \to 0$$

Since
$$N \ge 11$$
 we have $2(N-2) < \frac{(N-2)^2}{4}$. Then for
small $t \lambda(t) e^{\|u(t)-2\log\frac{1}{\|x-\xi_t\|}\|_{L^{\infty}}} \le \frac{(N-2)^2}{4}$.

$$\left\| u(t) - \log \frac{1}{|x - \xi_t|^2} \right\|_{L^{\infty}} + |\lambda(t) - 2(N - 2)| \to 0$$

Since
$$N \ge 11$$
 we have $2(N-2) < \frac{(N-2)^2}{4}$. Then for
small $t \lambda(t) e^{\left\| u(t) - 2\log \frac{1}{|x-\xi_t|} \right\|_{L^{\infty}}} \le \frac{(N-2)^2}{4}$.
For $\varphi \in C_0^{\infty}(\Omega_t)$, by Hardy's inequality:

$$\lambda(t) \int_{\Omega_t} e^{u(t)} \varphi^2 \leq \frac{(N-2)^2}{4} \int_{\mathbb{R}^N} \frac{\varphi^2}{|x|^2} \leq \int_{\mathbb{R}^N} |\nabla \varphi|^2.$$

$$\left\| u(t) - \log \frac{1}{|x - \xi_t|^2} \right\|_{L^{\infty}} + |\lambda(t) - 2(N - 2)| \to 0$$

Since
$$N \ge 11$$
 we have $2(N-2) < \frac{(N-2)^2}{4}$. Then for
small $t \lambda(t) e^{\left\|u(t)-2\log\frac{1}{|x-\xi_t|}\right\|_{L^{\infty}}} \le \frac{(N-2)^2}{4}$.
For $\varphi \in C_0^{\infty}(\Omega_t)$, by Hardy's inequality:

$$\lambda(t) \int_{\Omega_t} e^{u(t)} \varphi^2 \leq \frac{(N-2)^2}{4} \int_{\mathbb{R}^N} \frac{\varphi^2}{|x|^2} \leq \int_{\mathbb{R}^N} |\nabla \varphi|^2.$$

By the lemma of Brezis-Vázquez we conclude $u^*(t) = u(t), \lambda^*(t) = \lambda(t).$

Consider $-\Delta u = \lambda (1+u)^p$ in Ω_t u = 0 on $\partial \Omega_t$ where Ω_t is a C^2 perturbation of the ball, p > 1.

Consider

 $-\Delta u = \lambda (1+u)^p \quad \text{in } \Omega_t$ $u = 0 \quad \text{on } \partial \Omega_t$

where Ω_t is a C^2 perturbation of the ball, p > 1. **Theorem.** If $N \ge 11$ and $p > 6 + \frac{4}{p-1} + 4\sqrt{\frac{p}{p-1}}$ then for t small the extremal solution is singular.

Consider

 $-\Delta u = \lambda (1+u)^p \quad \text{in } \Omega_t$ $u = 0 \quad \text{on } \partial \Omega_t$

where Ω_t is a C^2 perturbation of the ball, p > 1. **Theorem.** If $N \ge 11$ and $p > 6 + \frac{4}{p-1} + 4\sqrt{\frac{p}{p-1}}$ then for t small the extremal solution is singular. It is known that for any domain, if $N \le 10$, or $N \ge 11$ and $p < 6 + \frac{4}{p-1} + 4\sqrt{\frac{p}{p-1}}$ then u^* is classical.

The proof is by linearization around the singular solution $-2\log|x|, \lambda = 2(N-2).$

The proof is by linearization around the singular solution $-2 \log |x|$, $\lambda = 2(N-2)$. We change variables $y = x + t\psi(x)$, $x \in B_1$ and define

$$v(x) = u(x + t\psi(x)).$$

Then

$$\Delta_y u = \Delta_x v + L_t v$$

where L_t is a small second order operator.

We look for a solution of the form

$$v(x) = \log \frac{1}{|x - \xi|^2} + \phi, \quad \lambda = c^* + \mu,$$

where $c^* = 2(N - 2)$.

We look for a solution of the form

$$v(x) = \log \frac{1}{|x - \xi|^2} + \phi, \quad \lambda = c^* + \mu,$$

where $c^* = 2(N - 2)$. Then we need to solve

$$\begin{aligned} -\Delta \phi - L_t \phi - \frac{c^*}{|x - \xi|^2} \phi &= \frac{c^*}{|x - \xi|^2} (e^{\phi} - 1 - \phi) + \frac{\mu}{|x - \xi|^2} e^{\phi} \\ &+ L_t \left(\log \frac{1}{|x - \xi|^2} \right) \quad \text{in } B \\ \phi &= -\log \frac{1}{|x - \xi|^2} \quad \text{on } \partial B. \end{aligned}$$

A simple case

 Ω_t is an ellipsoid, $v(x) = u(x', (1-t)x_N)$, $x = (x', x_N)$, and then $\xi = 0$.

A simple case

 Ω_t is an ellipsoid, $v(x) = u(x', (1-t)x_N)$, $x = (x', x_N)$, and then $\xi = 0$. Then the equation becomes

where $u_0(x) = -2 \log |x|$.

Consider the linear operator
$$-\Delta - \frac{c^*}{|x-\xi|^2}$$

Consider the linear operator
$$-\Delta - \frac{c^*}{|x-\xi|^2}$$

• If $N \leq 9$ the operator is not coercive in H_0^1 .

Consider the linear operator
$$-\Delta - \frac{c^*}{|x-\xi|^2}$$

If N ≤ 9 the operator is not coercive in H₀¹.
If c* ≤ (N-2)²/4, which holds if N ≥ 10, this operator is coercive.

Consider the linear operator $-\Delta - \frac{c^*}{|x-\xi|^2}$

- If $N \leq 9$ the operator is not coercive in H_0^1 .
- If $c^* \leq \frac{(N-2)^2}{4}$, which holds if $N \geq 10$, this operator is coercive.
- Typically solutions are singular at ξ , with a behavior $|x \xi|^{-\alpha}$ for some $\alpha > 0$.

Consider the linear operator $-\Delta - \frac{c^*}{|x-\xi|^2}$

- If $N \leq 9$ the operator is not coercive in H_0^1 .
- If $c^* \leq \frac{(N-2)^2}{4}$, which holds if $N \geq 10$, this operator is coercive.
- Typically solutions are singular at ξ , with a behavior $|x \xi|^{-\alpha}$ for some $\alpha > 0$.
- This functional setting is not useful since the nonlinear term that appears in the right hand side, namely $\frac{c^*}{|x-\xi|^2}(e^{\phi}-1-\phi)$, is too strong.

Lemma. Let $N \ge 4$, h,g be such that $|x - \xi|^2 h, |x - \xi|^2 g \in L^{\infty}(B), h > 0, w$ smooth

Lemma. Let $N \ge 4$, h,g be such that $|x - \xi|^2 h, |x - \xi|^2 g \in L^{\infty}(B), h > 0$, w smooth Consider

$$\begin{cases} -\Delta \phi - \frac{c^*}{|x - \xi|^2} \phi = g + \mu_0 h + \sum_{i=1}^N \mu_i V_{i,\xi} & \text{in } B \\ \phi = w & \text{on } \partial B \end{cases}$$

where $V_{i,\xi}$ are "explicit".

Lemma. Let $N \ge 4$, h,g be such that $|x - \xi|^2 h, |x - \xi|^2 g \in L^{\infty}(B), h > 0$, w smooth Consider

$$\begin{cases} -\Delta \phi - \frac{c^*}{|x-\xi|^2} \phi = g + \mu_0 h + \sum_{i=1}^N \mu_i V_{i,\xi} & \text{in } B \\ \phi = w & \text{on } \partial B \end{cases}$$

where $V_{i,\xi}$ are "explicit".

If $|\xi|$ is small enough there is a solution ϕ , μ_0, \ldots, μ_N such that

$$\|\phi\|_{L^{\infty}} + |\mu_i| \le C_h \| \|x - \xi\|^2 g \|_{L^{\infty}}$$

The same result is true for the linear operator

$$-\Delta\phi - \frac{c^*}{|x-\xi|^2}\phi - L_t\phi$$

if $|\xi|$ and t are small enough.

The nonlinear problem

Using the linear lemma and the fixed point theorem we obtain ϕ , μ_0, \ldots, μ_N such that

The nonlinear problem

Using the linear lemma and the fixed point theorem we obtain ϕ , μ_0, \ldots, μ_N such that

$$\begin{cases} -\Delta \phi - L_t \phi - \frac{c}{|x - \xi|^2} \phi = \frac{c}{|x - \xi|^2} (e^{\phi} - 1 - \phi) \\ + \mu_0 \frac{1}{|x - \xi|^2} e^{\phi} + L_t u_{\xi} + \sum_{i=1}^N \mu_i V_{i,\xi} \\ \phi = -u_{\xi} \quad \partial B \end{cases}$$

where $u_{\xi} = \log \frac{1}{|x-\xi|^2}$

Reduction

We have to show that there is a choice of ξ such that $\mu_1, \ldots, \mu_N = 0$.

Reduction

We have to show that there is a choice of ξ such that $\mu_1, \ldots, \mu_N = 0$. Multiplying the equation by suitable test functions and integrating we reach a system of equations of the form

$$F(\xi, t) = 0$$

Reduction

We have to show that there is a choice of ξ such that $\mu_1, \ldots, \mu_N = 0$. Multiplying the equation by suitable test functions and integrating we reach a system of equations of the form

$$F(\xi, t) = 0$$

This can be solved by the implicit function theorem.

We consider only the operator
$$-\Delta - \frac{c^*}{|x|^2}$$
.

We consider only the operator $-\Delta - \frac{c^*}{|x|^2}$. Let $N \ge 3$, $g \in C^{\infty}(B \setminus \{0\})$ be a radial function such that $|x|^2 g \in L^{\infty}(B)$. Then the equation

$$-\Delta \phi - \frac{c^*}{|x|^2} \phi = g \text{ in } B \quad \phi = 0 \text{ on } \partial B$$

has a solution in $L^{\infty}(B)$ if and only if $\int_{B} gW_0 = 0$

We consider only the operator $-\Delta - \frac{c^*}{|x|^2}$. Let $N \ge 3$, $g \in C^{\infty}(B \setminus \{0\})$ be a radial function such that $|x|^2 g \in L^{\infty}(B)$. Then the equation

$$-\Delta \phi - \frac{c^*}{|x|^2} \phi = g \text{ in } B \quad \phi = 0 \text{ on } \partial B$$

has a solution in $L^{\infty}(B)$ if and only if $\int_{B} gW_{0} = 0$ where $W_{0} = r^{-\alpha^{+}} - r^{-\alpha^{-}}$ and $\alpha^{\pm} = \frac{N-2}{2} \pm \sqrt{\frac{(N-2)^{2}}{4} - c^{*}}.$

We consider only the operator $-\Delta - \frac{c^*}{|x|^2}$. Let $N \ge 3$, $g \in C^{\infty}(B \setminus \{0\})$ be a radial function such that $|x|^2 g \in L^{\infty}(B)$. Then the equation

$$-\Delta \phi - \frac{c^*}{|x|^2} \phi = g \text{ in } B \quad \phi = 0 \text{ on } \partial B$$

has a solution in $L^{\infty}(B)$ if and only if $\int_{B} gW_{0} = 0$ where $W_{0} = r^{-\alpha^{+}} - r^{-\alpha^{-}}$ and $\alpha^{\pm} = \frac{N-2}{2} \pm \sqrt{\frac{(N-2)^{2}}{4} - c^{*}}$. Moreover $\|\phi\|_{L^{\infty}} \leq C \|\|x\|^{2}g\|_{L^{\infty}}$ and this solution is unique.

Idea of the proof: the condition is necessary

 $W_0 = r^{-\alpha^+} - r^{-\alpha^-}$ is in the kernel of the linear operator

$$-\Delta W_0 - \frac{c^*}{|x|^2} W_0 = 0 \text{ in } B$$
$$W_0 = 0 \text{ on } \partial B$$
Idea of the proof: the condition is necessary

 $W_0 = r^{-\alpha^+} - r^{-\alpha^-}$ is in the kernel of the linear operator

$$-\Delta W_0 - \frac{c^*}{|x|^2} W_0 = 0 \text{ in } B$$
$$W_0 = 0 \text{ on } \partial B$$

If ϕ is bounded one may justify the integration by parts

$$\int gW_0 = \int \left(-\Delta\phi - \frac{c^*}{|x|^2}\phi\right) W_0 = \int \phi \left(-\Delta W_0 - \frac{c^*}{|x|^2}W_0\right)$$
$$= 0$$

Idea of the proof: the condition is sufficient

Construction of a solution: we seek $\phi(r)$ that solves $-\Delta \phi - \frac{c^*}{|x|^2} \phi = g$:

$$\phi'' + \frac{N-1}{r}\phi' + \frac{c^*}{r^2}\phi = -g$$

Idea of the proof: the condition is sufficient

Construction of a solution: we seek $\phi(r)$ that solves $-\Delta \phi - \frac{c^*}{|x|^2} \phi = g$:

$$\phi'' + \frac{N-1}{r}\phi' + \frac{c^*}{r^2}\phi = -g$$

Then

$$\phi(r) = \frac{1}{\alpha^{-} - \alpha^{+}} \int_{0}^{r} s((s/r)^{\alpha^{-}} - (s/r)^{\alpha^{+}})g(s) ds$$

Idea of the proof: the condition is sufficient

Construction of a solution: we seek $\phi(r)$ that solves $-\Delta \phi - \frac{c^*}{|x|^2} \phi = g$:

$$\phi'' + \frac{N-1}{r}\phi' + \frac{c^*}{r^2}\phi = -g$$

Then

$$\begin{split} \phi(r) &= \frac{1}{\alpha^{-} - \alpha^{+}} \int_{0}^{r} s((s/r)^{\alpha^{-}} - (s/r)^{\alpha^{+}}) g(s) \, ds \\ \phi(r) &= \frac{r^{2}}{|S^{N-1}|} \int_{B} W_{0}(x) g(rx) \, dx \\ \text{Since } |g(x)| &\leq C/|x|^{2} \text{ we have } \phi \in L^{\infty}. \\ \text{Since } \int_{B} W_{0}g = 0 \text{ we have } \phi(1) = 0. \end{split}$$

Non radial case

We decompose ϕ in a Fourier series $\phi(x) = \sum_k \phi_k(r) \varphi_k(\theta)$ where $r > 0, \theta \in S^{N-1}$, and φ_k are the eigenfunctions of $-\Delta$ on the sphere S^{N-1} :

$$-\Delta_{S^{N-1}}\varphi_k = \lambda_k \varphi_k.$$

Non radial case

We decompose ϕ in a Fourier series $\phi(x) = \sum_k \phi_k(r) \varphi_k(\theta)$ where $r > 0, \theta \in S^{N-1}$, and φ_k are the eigenfunctions of $-\Delta$ on the sphere S^{N-1} :

$$-\Delta_{S^{N-1}}\varphi_k = \lambda_k \varphi_k.$$

Then $-\Delta \phi - \frac{c^*}{|x|^2}\phi = g$ in B is equivalent to

$$-\phi_k'' - \frac{N-1}{r}\phi_k' - \frac{c^* - \lambda_k}{r^2}\phi_k = g_k$$

Non radial case

We decompose ϕ in a Fourier series $\phi(x) = \sum_k \phi_k(r) \varphi_k(\theta)$ where $r > 0, \theta \in S^{N-1}$, and φ_k are the eigenfunctions of $-\Delta$ on the sphere S^{N-1} :

$$-\Delta_{S^{N-1}}\varphi_k = \lambda_k \varphi_k.$$

Then $-\Delta \phi - \frac{c^*}{|x|^2} \phi = g$ in B is equivalent to

$$-\phi_k'' - \frac{N-1}{r}\phi_k' - \frac{c^* - \lambda_k}{r^2}\phi_k = g_k$$

If $c^* - \lambda_k \leq 0$ the equation has a bounded solution without requiring orthogonality conditions. If $c^* - \lambda_k > 0$ orthogonality conditions are required (with respect to "elements in the kernel").

Numbers...

 $c^* = 2(N-2)$ $\lambda_0 = 0$ $\lambda_1 = \ldots = \lambda_N = N-1$ $\lambda_k \ge 2N, k \ge N+1$ and $N \ge 4$ yields

Numbers...

 $c^* = 2(N-2)$ $\lambda_0 = 0$ $\lambda_1 = \ldots = \lambda_N = N - 1$ $\lambda_k \geq 2N, k \geq N+1$ and $N \geq 4$ yields $c^* - \lambda_k > 0$ for k = 0, ..., N $c^* - \lambda_k \leq 0$ for $k \geq N+1$

So N + 1 conditions are required to have a bounded solution.

 Caffarelli-Hardt-Simon (84) Construction of singular minimal surfaces which are not cones (by perturbation of minimal cones).

- Caffarelli-Hardt-Simon (84) Construction of singular minimal surfaces which are not cones (by perturbation of minimal cones).
- Pacard (92,93) Existence of singular solutions to $-\Delta u = e^u$ and u^p (without boundary conditions)

- Caffarelli-Hardt-Simon (84) Construction of singular minimal surfaces which are not cones (by perturbation of minimal cones).
- Pacard (92,93) Existence of singular solutions to $-\Delta u = e^u$ and u^p (without boundary conditions)
- Mazzeo-Pacard (96) construct solutions to $-\Delta u = u^p$ with singularities on points $(\frac{N}{N-2} or manifolds <math>(\frac{k}{k-2} is de codimension).$

- Caffarelli-Hardt-Simon (84) Construction of singular minimal surfaces which are not cones (by perturbation of minimal cones).
- Pacard (92,93) Existence of singular solutions to $-\Delta u = e^u$ and u^p (without boundary conditions)
- Mazzeo-Pacard (96) construct solutions to $-\Delta u = u^p$ with singularities on points $(\frac{N}{N-2} or manifolds <math>(\frac{k}{k-2} is de codimension).$
- Rebai (96,99) $-\Delta u = e^u$ in a ball in dimension 3, also multiple singularities $N \ge 10$ (without boundary condition)

A variant

Consider

 $-\Delta u = \lambda e^u \quad \text{in } B$

 $u = \psi \quad \text{on } \partial B$

where ψ is a smooth function.

A variant

Consider

$$-\Delta u = \lambda e^u \quad \text{in } B$$

 $u = \psi \quad \text{on } \partial B$

where ψ is a smooth function. **Theorem.** (D.-Dupaigne) If $N \ge 4$ and ψ is small enough (in $C^{2,\alpha}$) then there exists $\xi \in B$ and a singular solution λ , u such that

$$u - \log \frac{1}{|x - \xi|^2} \in L^{\infty}(B).$$

A variant

Consider

$$-\Delta u = \lambda e^u \quad \text{in } B$$

 $u = \psi \quad \text{on } \partial B$

where ψ is a smooth function. **Theorem.** (D.-Dupaigne) If $N \ge 4$ and ψ is small enough (in $C^{2,\alpha}$) then there exists $\xi \in B$ and a singular solution λ , u such that

$$u - \log \frac{1}{|x - \xi|^2} \in L^{\infty}(B).$$

Note that ξ depends on ψ .

The case N = 3

Consider

 $-\Delta u = \lambda e^u \quad \text{in } B$

 $u = \psi \quad \text{on } \partial B$

where ψ is a smooth function.

The case N = 3

Consider

 $-\Delta u = \lambda e^u \quad \text{in } B$

 $u = \psi \quad \text{on } \partial B$

where ψ is a smooth function.

Theorem. (Matano, Rebai (99)) If N = 3 there is $\delta > 0$ such that for any $\|\psi\|_{C^{2,\alpha}} < \delta$ and any $|\xi| < \delta$ there is a singular solution λ , u such that

$$u - \log \frac{1}{|x - \xi|^2} \in L^{\infty}(B).$$

Isolated singularities in dimension 3

The function

$$u(r,\theta) = \log(1/r^2) + \log(2/\lambda) + 2\omega(\theta) \quad r > 0, \theta \in S^2$$

is a singular solution in \mathbb{R}^3 if and only if $\Delta_{S^2}\omega + e^{2\omega} - 1 = 0$ in S^2 . Smooth solutions form a 3 dimensional manifold.

Isolated singularities in dimension 3

The function

$$u(r,\theta) = \log(1/r^2) + \log(2/\lambda) + 2\omega(\theta) \quad r > 0, \theta \in S^2$$

is a singular solution in \mathbb{R}^3 if and only if $\Delta_{S^2}\omega + e^{2\omega} - 1 = 0$ in S^2 . Smooth solutions form a 3 dimensional manifold. Bidaut-Veron Veron (91) describe all possible behaviors of smooth solutions to $-\Delta u = \lambda e^u$ in

 $B_1 \setminus \{0\}$ (with an isolated singularity) in dimension 3, such that

 \sim

$$e^u \le \frac{C}{|x|^2}.$$

In dimension 3, if

 $e^u \le \frac{C}{|x|^2}.$

In dimension 3, if

 $e^u \le \frac{C}{|x|^2}.$

then either 0 is a removable singularity,

In dimension 3, if

$$e^u \le \frac{C}{|x|^2}.$$

then either 0 is a removable singularity, or $\lim_{|x|\to 0} (u(x) - \gamma |x|^{-1})$ exists for some $\gamma < 0$ and $-\Delta u = \lambda e^u + 4\pi\gamma\delta_0$,

In dimension 3, if

$$e^u \le \frac{C}{|x|^2}.$$

then either 0 is a removable singularity, or $\lim_{|x|\to 0} (u(x) - \gamma |x|^{-1})$ exists for some $\gamma < 0$ and $-\Delta u = \lambda e^u + 4\pi\gamma\delta_0$, or there exists ω solution to $\Delta_{S^2}\omega + e^{2\omega} - 1 = 0$ in S^2 such that

$$\lim_{r \to +\infty} u(r\theta) - \log(1/r^2) = \omega(\theta), \quad \theta \in S^2.$$

Let $\varepsilon > 0$, $x = (y, z) \in \mathbb{R}^N$, $y \in \mathbb{R}^{N_1}$, $z \in \mathbb{R}^{N_2}$.

Theorem. (Dancer (93)) Suppose $N_2 \leq 9$. If ε is small then u_{ε}^* is classical. Note that $N = N_1 + N_2$ may be larger than 10.

Theorem. (Dancer (93)) Suppose $N_2 \leq 9$. If ε is small then u_{ε}^* is classical. Note that $N = N_1 + N_2$ may be larger than 10.

The result is still true if Ω is a smooth bounded strictly convex.

What happens if $N_2 \ge 10$?

Consider a torus Ω_{ε} in \mathbb{R}^N

with cross-section a ball of radius $\varepsilon > 0$ in \mathbb{R}^{N_2} , $N = N_1 + N_2$, $N_1 \ge 1$.

What happens if $N_2 \ge 10$?

Consider a torus Ω_{ε} in \mathbb{R}^N

with cross-section a ball of radius $\varepsilon > 0$ in \mathbb{R}^{N_2} , $N = N_1 + N_2$, $N_1 \ge 1$.

If $N_2 \ge 11$ then for ε small the extremal solution is singular.

Singularities at infinity

Consider

$$\Delta u + u^p = 0, \ u > 0 \quad \text{ in } \Omega = \mathbb{R}^N \setminus \overline{\mathcal{D}},$$

_ _

$$u = 0 \text{ on } \partial \mathcal{D}, \quad \lim_{|x| \to +\infty} u(x) = 0$$

where $p > \frac{N+2}{N-2}$ and \mathcal{D} is a smooth bounded open set such that Ω is connected.

Singularities at infinity

Consider

$$\Delta u + u^p = 0, \ u > 0 \quad \text{ in } \Omega = \mathbb{R}^N \setminus \overline{\mathcal{D}},$$

$$u = 0 \text{ on } \partial \mathcal{D}, \quad \lim_{|x| \to +\infty} u(x) = 0$$

where $p > \frac{N+2}{N-2}$ and \mathcal{D} is a smooth bounded open set such that Ω is connected. **Theorem.** (D.-del Pino-Musso-Wei) If $N \ge 3$ and $p > \frac{N+2}{N-2}$ then there are infinitely many solutions, that have slow decay

$$u(x) \sim |x|^{-\frac{2}{p-1}}$$
 as $|x| \to +\infty$.

If $\lambda > \lambda^*$ there is no solution.

If $\lambda > \lambda^*$ there is no solution. If $\lambda = \lambda^*$ there is a unique solution. If $\lambda > \lambda^*$ there is no solution. If $\lambda = \lambda^*$ there is a unique solution. Suppose $\lambda < \lambda^*$ and let u_{λ} be the minimal solution. Then

$$\int_{\Omega} \nabla u \nabla (u - u_{\lambda}) = \lambda \int_{\Omega} e^{u} (u - u_{\lambda})$$
$$\int_{\Omega} \nabla u_{\lambda} \nabla (u - u_{\lambda}) = \lambda \int_{\Omega} e^{u_{\lambda}} (u - u_{\lambda})$$

If $\lambda > \lambda^*$ there is no solution. If $\lambda = \lambda^*$ there is a unique solution. Suppose $\lambda < \lambda^*$ and let u_{λ} be the minimal solution. Then

$$\int_{\Omega} \nabla u \nabla (u - u_{\lambda}) = \lambda \int_{\Omega} e^{u} (u - u_{\lambda})$$
$$\int_{\Omega} \nabla u_{\lambda} \nabla (u - u_{\lambda}) = \lambda \int_{\Omega} e^{u_{\lambda}} (u - u_{\lambda})$$

Hence

$$\int_{\Omega} |\nabla (u - u_{\lambda})|^2 = \lambda \int_{\Omega} (e^u - e^{u_{\lambda}})(u - u_{\lambda}).$$
We have
$$\int_{\Omega} |\nabla (u - u_{\lambda})|^2 = \lambda \int_{\Omega} (e^u - e^{u_{\lambda}})(u - u_{\lambda})$$

We have $\int_{\Omega} |\nabla(u - u_{\lambda})|^2 = \lambda \int_{\Omega} (e^u - e^{u_{\lambda}})(u - u_{\lambda})$ Since u is stable $\int_{\Omega} |\nabla(u - u_{\lambda})|^2 \ge \lambda \int_{\Omega} e^u (u - u_{\lambda})^2$ We have $\int_{\Omega} |\nabla(u - u_{\lambda})|^2 = \lambda \int_{\Omega} (e^u - e^{u_{\lambda}})(u - u_{\lambda})$ Since u is stable $\int_{\Omega} |\nabla(u - u_{\lambda})|^2 \ge \lambda \int_{\Omega} e^u (u - u_{\lambda})^2$ It follows that

$$\int_{\Omega} (e^u + e^u (u_{\lambda} - u) - e^{u_{\lambda}}) (u - u_{\lambda}) \ge 0.$$

We have $\int_{\Omega} |\nabla(u - u_{\lambda})|^2 = \lambda \int_{\Omega} (e^u - e^{u_{\lambda}})(u - u_{\lambda})$ Since u is stable $\int_{\Omega} |\nabla(u - u_{\lambda})|^2 \ge \lambda \int_{\Omega} e^u (u - u_{\lambda})^2$ It follows that

$$\int_{\Omega} (e^u + e^u (u_\lambda - u) - e^{u_\lambda}) (u - u_\lambda) \ge 0.$$

By convexity the integrand is non-positive. This implies $u = u_{\lambda}$ but $u \notin L^{\infty}$ while u_{λ} is classical.