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The problem

Let Ω ⊂ R
N be an open bounded set with smooth

boundary, λ > 0.

Consider the equation

−∆u = λeu in Ω

u = 0 on ∂Ω

Some references:
Gelfand (1963) Some problems in the theory of
quasilinear equations. Section 15 due to
Barenblatt.
Liouville (1853) Sur l’équation aux différences
partielles d2 log λ

dudv ±
λ
2a2 = 0.
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Chandrasekhar (1939, 1957) An introduction to
the study of stellar structure. (N = 3)
Frank-Kamenetskii (1955) Diffusion and heat
exchange in chemical kinetics.
Bebernes et Eberly (1989) Mathematical
problems from combustion theory. (N = 2, 3)
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Basic properties
Proposition. There is 0 < λ∗ < +∞ such that:

if 0 ≤ λ < λ∗ then there exists a classical
solution,

if λ = λ∗ there exists a unique “weak” solution u∗

if λ > λ∗ no solution exists (even in the weak
sense).

Moreover, if 0 ≤ λ < λ∗ there is a unique minimal
solution uλ, which is smooth and characterized by

λ

∫

Ω

euλϕ2 ≤

∫

Ω

|∇ϕ|2 ∀ϕ ∈ C∞0 (Ω).
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Basic properties

Definition: u ∈ L1(Ω) is a weak solution if
dist(x, ∂Ω)eu ∈ L1(Ω) and
∫

Ω u(−∆ζ) = λ
∫

Ω e
uζ ∀ζ ∈ C2(Ω), ζ|∂Ω = 0.

Other properties:

u∗ = lim
λ↑λ∗

uλ

and

λ∗
∫

Ω

eu
∗

ϕ2 ≤

∫

Ω

|∇ϕ|2 ∀ϕ ∈ C∞0 (Ω).
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The question
We know that there exist λ∗ such that

if 0 ≤ λ < λ∗ there is a classical solution,
if λ = λ∗ there is a unique weak solution u∗

if λ > λ∗ there is no solution.

Is u∗ a classical solution?
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Bifurcation diagram for Ω = B1

Joseph-Lundgren (72):

FIG. 1. Global continua for (4) depend on N :

In particular
Theorem. If Ω = B1 and N ≤ 9 then u∗ is classical,
and if N ≥ 10 then u∗ = −2 log |x|, λ∗ = 2(N − 2).

Perturbations of singular solutions to Gelfand’s problem – p.7



Bifurcation diagram for Ω = B1

Joseph-Lundgren (72):

FIG. 1. Global continua for (4) depend on N :In particular
Theorem. If Ω = B1 and N ≤ 9 then u∗ is classical,
and if N ≥ 10 then u∗ = −2 log |x|, λ∗ = 2(N − 2).

Perturbations of singular solutions to Gelfand’s problem – p.7



General domains
Theorem. (Crandall-Rabinowitz (75), Mignot-Puel
(80)) If Ω is a smooth bounded domain in R

N and
N ≤ 9 then u∗ is classical.
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Stability and Sobolev’s inequalities
Let u = uλ.
Multiplying the equation by e2ju − 1 and integrating

λ

∫

Ω

eu(e2ju − 1) =

∫

Ω

∇u∇e2ju

= 2j

∫

Ω

e2ju|∇u|2 =
2

j

∫

Ω

|∇(eju)|2.

From stability with ϕ = eju − 1 we have

λ

∫

Ω

eu(eju − 1)2 ≤

∫

Ω

|∇(eju − 1)|2.
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Hence

2

j

∫

Ω

eu(eju − 1)2 ≤

∫

Ω

eu(e2ju − 1)

(

2

j
− 1

)
∫

Ω

e(2j+1)u ≤ lower order terms

Conclusion: if j < 2, q = 2j + 1 then

‖∆u‖Lq ≤ C

where C is independent of λ.
By elliptic estimates and Sobolev’s inequality
u ∈ W 2,q ⊂ L∞ if q > N/2, which works if N ≤ 9.
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General nonlinearities
Let g : [0,∞)→ [0,∞) be a C2, positive, increasing
function satisfying: lims→+∞ g(u)/u = +∞.
Consider

−∆u = λg(u) in Ω

u = 0 on ∂Ω

Cabré (06) If Ω ⊂ R
N is strictly convex and N ≤ 4

then u∗ is classical.
Cabré-Capella (06) If Ω = B1 and N ≤ 9 then u∗ is
classical.
Nedev (00) If Ω ⊂ R

N is any bounded domain and
N ≤ 3 then u∗ is classical.
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Other operators

{

−∆pu = λg(u) in Ω

u = 0 on ∂Ω

Clément-de Figueiredo-Mitidieri (96), Jacobsen and
Schmitt (02) Considered the radial case with
exponential and power nonlinearities.
García-Azorero-Peral-Puel (94) In general domains, if
g(u) = eu the extremal solution is bounded if
N < p+ 4p/(p− 1) and this condition is optimal.

Cabré-Sanchón (06) Consider general domains and
power type nonlinearities.
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The case Ω = B1, N ≥ 10

Lemma. (Brezis-Vázquez (97)) If u ∈ H1
0(Ω) is a

solution u 6∈ L∞(Ω) for some λ which is stable, then
λ = λ∗ and u = u∗.

Application to the case Ω = B1. Note that
u = −2 log |x|, λ = 2(N − 2) is a singular solution.

Let ϕ ∈ C∞0 (B1). Then
∫

B1

|∇ϕ|2 − λ

∫

B1

euϕ2 =

∫

B1

|∇ϕ|2 − λ

∫

B1

ϕ2

|x|2
.

Hardy’s inequality: if N ≥ 3

(N − 2)2

4

∫

RN

ϕ2

|x|2
≤

∫

RN

|∇ϕ|2 ∀ϕ ∈ C∞0 (RN).
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The case Ω = B1, N ≥ 10

By Hardy’s inequality u = −2 log |x| is stable if

2(N − 2) ≤
(N − 2)2

4
⇐⇒ N ≥ 10.
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More precise question
If N ≥ 10 and Ω is a bounded smooth domain, is u∗
singular?

Remark: if Ω = B1 \B1/2 then u∗ is always classical
(any N ).

Suppose N ≥ 10 and Ω is a bounded smooth convex
domain. Is u∗ singular?

Perturbations of singular solutions to Gelfand’s problem – p.15



More precise question
If N ≥ 10 and Ω is a bounded smooth domain, is u∗
singular?

Remark: if Ω = B1 \B1/2 then u∗ is always classical
(any N ).

Suppose N ≥ 10 and Ω is a bounded smooth convex
domain. Is u∗ singular?

Perturbations of singular solutions to Gelfand’s problem – p.15



More precise question
If N ≥ 10 and Ω is a bounded smooth domain, is u∗
singular?

Remark: if Ω = B1 \B1/2 then u∗ is always classical
(any N ).

Suppose N ≥ 10 and Ω is a bounded smooth convex
domain. Is u∗ singular?

Perturbations of singular solutions to Gelfand’s problem – p.15



Perturbations of a ball

Let ψ ∈ C2(B;RN) and Ωt = {x+ tψ(x) : x ∈ B}.

Consider

−∆u = λeu in Ωt

u = 0 on ∂Ωt

Theorem. (D.-Dupaigne) If N ≥ 4 there exists δ > 0
such that if |t| < δ then there is a singular solution
λ(t), u(t) such that
∥

∥

∥

∥

u(t)− log
1

|x− ξt|2

∥

∥

∥

∥

L∞

+ |λ(t)− 2(N − 2)| → 0

as t→ 0, where ξt ∈ B.
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Corollary. If N ≥ 11 and t is small then u∗ is
singular. Moreover there is ξt ∈ B such that
∥

∥

∥

∥

u∗(t)− log
1

|x− ξt|2

∥

∥

∥

∥

L∞

+ |λ∗(t)− 2(N − 2)| → 0

as t→ 0.
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There is a singular solution (λ(t), u(t)) such that
∥

∥

∥

∥

u(t)− log
1

|x− ξt|2

∥

∥

∥

∥

L∞

+ |λ(t)− 2(N − 2)| → 0

Since N ≥ 11 we have 2(N − 2) < (N−2)2

4 . Then for

small t λ(t)e‖u(t)−2 log
1

|x−ξt|
‖
L∞ ≤ (N−2)2

4 .
For ϕ ∈ C∞0 (Ωt), by Hardy’s inequality:

λ(t)

∫

Ωt

eu(t)ϕ2 ≤
(N − 2)2

4

∫

RN

ϕ2

|x|2
≤

∫

RN

|∇ϕ|2.

By the lemma of Brezis-Vázquez we conclude
u∗(t) = u(t), λ∗(t) = λ(t).
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Consider
−∆u = λ(1 + u)p in Ωt

u = 0 on ∂Ωt

where Ωt is a C2 perturbation of the ball, p > 1.

Theorem. If N ≥ 11 and p > 6 + 4
p−1 + 4

√

p
p−1 then

for t small the extremal solution is singular.
It is known that for any domain, if N ≤ 10, or N ≥ 11

and p < 6 + 4
p−1 + 4

√

p
p−1 then u∗ is classical.
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Linearization
The proof is by linearization around the singular
solution −2 log |x|, λ = 2(N − 2).

We change variables y = x+ tψ(x), x ∈ B1 and
define

v(x) = u(x+ tψ(x)).

Then

∆yu = ∆xv + Ltv

where Lt is a small second order operator.
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Linearization
We look for a solution of the form

v(x) = log
1

|x− ξ|2
+ φ, λ = c∗ + µ,

where c∗ = 2(N − 2).

Then we need to solve

−∆φ− Ltφ−
c∗

|x− ξ|2
φ =

c∗

|x− ξ|2
(eφ − 1− φ) +

µ

|x− ξ|2
eφ

+ Lt

(

log
1

|x− ξ|2

)

in B

φ = − log
1

|x− ξ|2
on ∂B.
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A simple case

Ωt is an ellipsoid, v(x) = u(x′, (1− t)xN),
x = (x′, xN), and then ξ = 0.

Then the equation becomes

−∆φ− t2
∂2φ

∂x2N
−

c∗

|x|2
φ =

c∗

|x|2
(eφ − 1− φ)

+
µ

|x|2
eφ + t2

∂2u0
∂x2N

in B

φ = 0 on ∂B.

where u0(x) = −2 log |x|.
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Comments

Consider the linear operator −∆− c∗

|x−ξ|2

If N ≤ 9 the operator is not coercive in H1
0 .

If c∗ ≤ (N−2)2

4 , which holds if N ≥ 10, this
operator is coercive.
Typically solutions are singular at ξ, with a
behavior |x− ξ|−α for some α > 0.
This functional setting is not useful since the
nonlinear term that appears in the right hand side,
namely c∗

|x−ξ|2 (e
φ − 1− φ), is too strong.
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Right inverse for the linear operator
Lemma. Let N ≥ 4, h,g be such that
|x− ξ|2h, |x− ξ|2g ∈ L∞(B), h > 0, w smooth

Consider














−∆φ−
c∗

|x− ξ|2
φ = g + µ0h+

N
∑

i=1

µiVi,ξ in B

φ = w on ∂B

where Vi,ξ are “explicit”.
If |ξ| is small enough there is a solution φ, µ0, . . . , µN
such that

‖φ‖L∞ + |µi| ≤ Ch‖ |x− ξ|2g‖L∞
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Right inverse for the linear operator
The same result is true for the linear operator

−∆φ−
c∗

|x− ξ|2
φ− Ltφ

if |ξ| and t are small enough.

Perturbations of singular solutions to Gelfand’s problem – p.25



The nonlinear problem
Using the linear lemma and the fixed point theorem
we obtain φ, µ0, . . . , µN such that































−∆φ− Ltφ−
c

|x− ξ|2
φ =

c

|x− ξ|2
(eφ − 1− φ)

+ µ0
1

|x− ξ|2
eφ + Ltuξ +

N
∑

i=1

µiVi,ξ

φ = −uξ ∂B

where uξ = log 1
|x−ξ|2
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Reduction
We have to show that there is a choice of ξ such that
µ1, . . . , µN = 0.

Multiplying the equation by suitable test functions and
integrating we reach a system of equations of the form

F (ξ, t) = 0

This can be solved by the implicit function theorem.
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The linear lemma

We consider only the operator −∆− c∗

|x|2 .

Let N ≥ 3, g ∈ C∞(B \ {0}) be a radial function
such that |x|2g ∈ L∞(B). Then the equation

−∆φ−
c∗

|x|2
φ = g in B φ = 0 on ∂B

has a solution in L∞(B) if and only if
∫

B gW0 = 0

where W0 = r−α
+

− r−α
−

and

α± = N−2
2 ±

√

(N−2)2

4 − c∗.
Moreover ‖φ‖L∞ ≤ C‖ |x|2g‖L∞ and this solution is
unique.
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Idea of the proof: the condition is necessary

W0 = r−α
+

− r−α
−

is in the kernel of the linear
operator

−∆W0 −
c∗

|x|2
W0 = 0 in B

W0 = 0 on ∂B

If φ is bounded one may justify the integration by
parts
∫

gW0 =

∫
(

−∆φ−
c∗

|x|2
φ

)

W0 =

∫

φ

(

−∆W0 −
c∗

|x|2
W0

)

= 0
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Idea of the proof: the condition is sufficient

Construction of a solution: we seek φ(r) that solves
−∆φ− c∗

|x|2φ = g:

φ′′ +
N − 1

r
φ′ +

c∗

r2
φ = −g

Then
φ(r) = 1

α−−α+

∫ r

0 s((s/r)
α− − (s/r)α

+

)g(s) ds

φ(r) = r2

|SN−1|

∫

BW0(x)g(rx) dx

Since |g(x)| ≤ C/|x|2 we have φ ∈ L∞.
Since

∫

BW0g = 0 we have φ(1) = 0.
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Non radial case
We decompose φ in a Fourier series
φ(x) =

∑

k φk(r)ϕk(θ) where r > 0, θ ∈ SN−1, and
ϕk are the eigenfunctions of −∆ on the sphere SN−1:

−∆SN−1ϕk = λkϕk.

Then −∆φ− c∗

|x|2φ = g in B is equivalent to

−φ′′k −
N − 1

r
φ′k −

c∗ − λk
r2

φk = gk

If c∗ − λk ≤ 0 the equation has a bounded solution
without requiring orthogonality conditions.
If c∗ − λk > 0 orthogonality conditions are required
(with respect to “elements in the kernel”).

Perturbations of singular solutions to Gelfand’s problem – p.31



Non radial case
We decompose φ in a Fourier series
φ(x) =

∑

k φk(r)ϕk(θ) where r > 0, θ ∈ SN−1, and
ϕk are the eigenfunctions of −∆ on the sphere SN−1:

−∆SN−1ϕk = λkϕk.

Then −∆φ− c∗

|x|2φ = g in B is equivalent to

−φ′′k −
N − 1

r
φ′k −

c∗ − λk
r2

φk = gk

If c∗ − λk ≤ 0 the equation has a bounded solution
without requiring orthogonality conditions.
If c∗ − λk > 0 orthogonality conditions are required
(with respect to “elements in the kernel”).

Perturbations of singular solutions to Gelfand’s problem – p.31



Non radial case
We decompose φ in a Fourier series
φ(x) =

∑

k φk(r)ϕk(θ) where r > 0, θ ∈ SN−1, and
ϕk are the eigenfunctions of −∆ on the sphere SN−1:

−∆SN−1ϕk = λkϕk.

Then −∆φ− c∗

|x|2φ = g in B is equivalent to

−φ′′k −
N − 1

r
φ′k −

c∗ − λk
r2

φk = gk

If c∗ − λk ≤ 0 the equation has a bounded solution
without requiring orthogonality conditions.
If c∗ − λk > 0 orthogonality conditions are required
(with respect to “elements in the kernel”).

Perturbations of singular solutions to Gelfand’s problem – p.31



Numbers...
c∗ = 2(N − 2)

λ0 = 0

λ1 = . . . = λN = N − 1

λk ≥ 2N , k ≥ N + 1

and N ≥ 4 yields

c∗ − λk > 0 for k = 0, . . . , N

c∗ − λk ≤ 0 for k ≥ N + 1

So N + 1 conditions are required to have a bounded
solution.
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Related work
Caffarelli-Hardt-Simon (84) Construction of
singular minimal surfaces which are not cones
(by perturbation of minimal cones).

Pacard (92,93) Existence of singular solutions to
−∆u = eu and up (without boundary conditions)
Mazzeo-Pacard (96) construct solutions to
−∆u = up with singularities on points
( N
N−2 < p < N+2

N−2) or manifolds ( k
k−2 < p < k+2

k−2 ,
k is de codimension).
Rebai (96,99) −∆u = eu in a ball in dimension
3, also multiple singularities N ≥ 10 (without
boundary condition)
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A variant
Consider

−∆u = λeu in B

u = ψ on ∂B

where ψ is a smooth function.

Theorem. (D.-Dupaigne) If N ≥ 4 and ψ is small
enough (in C2,α) then there exists ξ ∈ B and a
singular solution λ, u such that

u− log
1

|x− ξ|2
∈ L∞(B).

Note that ξ depends on ψ.
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The case N = 3

Consider
−∆u = λeu in B

u = ψ on ∂B

where ψ is a smooth function.

Theorem. (Matano, Rebai (99)) If N = 3 there is
δ > 0 such that for any ‖ψ‖C2,α < δ and any |ξ| < δ
there is a singular solution λ, u such that

u− log
1

|x− ξ|2
∈ L∞(B).
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Isolated singularities in dimension 3
The function

u(r, θ) = log(1/r2)+log(2/λ)+2ω(θ) r > 0, θ ∈ S2

is a singular solution in R
3 if and only if

∆S2ω + e2ω − 1 = 0 in S2. Smooth solutions form a 3
dimensional manifold.

Bidaut-Veron Veron (91) describe all possible
behaviors of smooth solutions to −∆u = λeu in
B1 \ {0} (with an isolated singularity) in dimension 3,
such that

eu ≤
C

|x|2
.
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Bidaut-Veron Veron (91) describe all possible
behaviors of smooth solutions to −∆u = λeu in
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Is u∗ singular for all Ω convex?

Let ε > 0, x = (y, z) ∈ R
N , y ∈ R

N1, z ∈ R
N2.

Ωε = {(y, εz) : (y, z) ∈ B1 ⊂ R
N}.

ε
R
N2

R
N1

Theorem. (Dancer (93)) Suppose N2 ≤ 9. If ε is
small then u∗ε is classical. Note that N = N1 +N2
may be larger than 10.
The result is still true if Ω is a smooth bounded strictly
convex.
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What happens if N2 ≥ 10?

Consider a torus Ωε in R
N

with cross-section a ball of radius ε > 0 in R
N2,

N = N1 +N2, N1 ≥ 1.

If N2 ≥ 11 then for ε small the extremal solution is
singular.
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Singularities at infinity
Consider

∆u+ up = 0 , u > 0 in Ω = R
N \ D̄ ,

u = 0 on ∂D , lim
|x|→+∞

u(x) = 0

where p > N+2
N−2 and D is a smooth bounded open set

such that Ω is connected.

Theorem. (D.-del Pino-Musso-Wei) If N ≥ 3 and
p > N+2

N−2 then there are infinitely many solutions, that
have slow decay

u(x) ∼ |x|−
2

p−1 as |x| → +∞.

For p > N+2
N−2 close to N+2

N−2 there is also a fast decay
solution

u(x) ∼ |x|2−N as |x| → +∞.

Perturbations of singular solutions to Gelfand’s problem – p.40



Singularities at infinity
Consider

∆u+ up = 0 , u > 0 in Ω = R
N \ D̄ ,

u = 0 on ∂D , lim
|x|→+∞

u(x) = 0

where p > N+2
N−2 and D is a smooth bounded open set

such that Ω is connected.
Theorem. (D.-del Pino-Musso-Wei) If N ≥ 3 and
p > N+2

N−2 then there are infinitely many solutions, that
have slow decay

u(x) ∼ |x|−
2

p−1 as |x| → +∞.

For p > N+2
N−2 close to N+2

N−2 there is also a fast decay
solution

u(x) ∼ |x|2−N as |x| → +∞.

Perturbations of singular solutions to Gelfand’s problem – p.40



If λ > λ∗ there is no solution.

If λ = λ∗ there is a unique solution.
Suppose λ < λ∗ and let uλ be the minimal solution.
Then

∫

Ω

∇u∇(u− uλ) = λ

∫

Ω

eu(u− uλ)

∫

Ω

∇uλ∇(u− uλ) = λ

∫

Ω

euλ(u− uλ)

Hence
∫

Ω

|∇(u− uλ)|
2 = λ

∫

Ω

(eu − euλ)(u− uλ).
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We have
∫

Ω |∇(u− uλ)|
2 = λ

∫

Ω(e
u − euλ)(u− uλ)

Since u is stable
∫

Ω |∇(u− uλ)|
2 ≥ λ

∫

Ω e
u(u− uλ)

2

It follows that
∫

Ω

(eu + eu(uλ − u)− euλ)(u− uλ) ≥ 0.

By convexity the integrand is non-positive.
This implies u = uλ but u 6∈ L∞ while uλ is classical.
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