Perturbations of singular solutions to Gelfand's problem

Juan Dávila (Universidad de Chile)

In celebration of the 60th birthday of Ireneo Peral

February 2007
collaboration with Louis Dupaigne (Université de Amiens)

The problem

Let $\Omega \subset \mathbb{R}^{N}$ be an open bounded set with smooth boundary, $\lambda>0$.

The problem

Let $\Omega \subset \mathbb{R}^{N}$ be an open bounded set with smooth boundary, $\lambda>0$.
Consider the equation

$$
\begin{aligned}
-\Delta u & =\lambda e^{u} & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

The problem

Let $\Omega \subset \mathbb{R}^{N}$ be an open bounded set with smooth boundary, $\lambda>0$.
Consider the equation

$$
\begin{aligned}
-\Delta u & =\lambda e^{u} & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

Some references:

- Gelfand (1963) Some problems in the theory of quasilinear equations. Section 15 due to Barenblatt.
- Liouville (1853) Sur l'équation aux différences partielles $\frac{d^{2} \log \lambda}{d u d v} \pm \frac{\lambda}{2 a^{2}}=0$.
- Chandrasekhar $(1939,1957)$ An introduction to the study of stellar structure. $(N=3)$
- Frank-Kamenetskii (1955) Diffusion and heat exchange in chemical kinetics.
- Bebernes et Eberly (1989) Mathematical problems from combustion theory. $(N=2,3)$

Basic properties

Proposition. There is $0<\lambda^{*}<+\infty$ such that:

- if $0 \leq \lambda<\lambda^{*}$ then there exists a classical solution,

Basic properties

Proposition. There is $0<\lambda^{*}<+\infty$ such that:

- if $0 \leq \lambda<\lambda^{*}$ then there exists a classical solution,
- if $\lambda=\lambda^{*}$ there exists a unique "weak" solution u^{*}

Basic properties

Proposition. There is $0<\lambda^{*}<+\infty$ such that:

- if $0 \leq \lambda<\lambda^{*}$ then there exists a classical solution,
- if $\lambda=\lambda^{*}$ there exists a unique "weak" solution u^{*}
- if $\lambda>\lambda^{*}$ no solution exists (even in the weak sense).

Basic properties

Proposition. There is $0<\lambda^{*}<+\infty$ such that:

- if $0 \leq \lambda<\lambda^{*}$ then there exists a classical solution,
- if $\lambda=\lambda^{*}$ there exists a unique "weak" solution u^{*}
- if $\lambda>\lambda^{*}$ no solution exists (even in the weak sense).

Moreover, if $0 \leq \lambda<\lambda^{*}$ there is a unique minimal solution u_{λ}, which is smooth and characterized by

$$
\lambda \int_{\Omega} e^{u_{\lambda}} \varphi^{2} \leq \int_{\Omega}|\nabla \varphi|^{2} \quad \forall \varphi \in C_{0}^{\infty}(\Omega)
$$

Basic properties

Definition: $u \in L^{1}(\Omega)$ is a weak solution if $\operatorname{dist}(x, \partial \Omega) e^{u} \in L^{1}(\Omega)$ and
$\int_{\Omega} u(-\Delta \zeta)=\lambda \int_{\Omega} e^{u} \zeta \quad \forall \zeta \in C^{2}(\bar{\Omega}),\left.\zeta\right|_{\partial \Omega}=0$.

Basic properties

Definition: $u \in L^{1}(\Omega)$ is a weak solution if $\operatorname{dist}(x, \partial \Omega) e^{u} \in L^{1}(\Omega)$ and
$\int_{\Omega} u(-\Delta \zeta)=\lambda \int_{\Omega} e^{u} \zeta \quad \forall \zeta \in C^{2}(\bar{\Omega}),\left.\zeta\right|_{\partial \Omega}=0$.
Other properties:

$$
u^{*}=\lim _{\lambda \uparrow \lambda^{*}} u_{\lambda}
$$

and

$$
\lambda^{*} \int_{\Omega} e^{u^{*}} \varphi^{2} \leq \int_{\Omega}|\nabla \varphi|^{2} \quad \forall \varphi \in C_{0}^{\infty}(\Omega) .
$$

The question

We know that there exist λ^{*} such that

- if $0 \leq \lambda<\lambda^{*}$ there is a classical solution,
- if $\lambda=\lambda^{*}$ there is a unique weak solution u^{*}
- if $\lambda>\lambda^{*}$ there is no solution.

The question

We know that there exist λ^{*} such that

- if $0 \leq \lambda<\lambda^{*}$ there is a classical solution,
- if $\lambda=\lambda^{*}$ there is a unique weak solution u^{*}
- if $\lambda>\lambda^{*}$ there is no solution.

Is u^{*} a classical solution?

Bifurcation diagram for $\Omega=B_{1}$

Joseph-Lundgren (72):

$1 \leq N \leq 2$

$2<N<10$

$N \geq 10$

Bifurcation diagram for $\Omega=B_{1}$

Joseph-Lundgren (72):

$1 \leq N \leq 2$

$2<N<10$

$N \geq 10$

In particular
Theorem. If $\Omega=B_{1}$ and $N \leq 9$ then u^{*} is classical, and if $N \geq 10$ then $u^{*}=-2 \log |x|, \lambda^{*}=2(N-2)$.

General domains

Theorem. (Crandall-Rabinowitz (75), Mignot-Puel (80)) If Ω is a smooth bounded domain in \mathbb{R}^{N} and $N \leq 9$ then u^{*} is classical.

Stability and Sobolev's inequalities
Let $u=u_{\lambda}$.
Multiplying the equation by $e^{2 j u}-1$ and integrating

$$
\begin{aligned}
\lambda \int_{\Omega} e^{u}\left(e^{2 j u}-1\right) & =\int_{\Omega} \nabla u \nabla e^{2 j u} \\
& =2 j \int_{\Omega} e^{2 j u}|\nabla u|^{2}=\frac{2}{j} \int_{\Omega}\left|\nabla\left(e^{j u}\right)\right|^{2} .
\end{aligned}
$$

Stability and Sobolev's inequalities
Let $u=u_{\lambda}$.
Multiplying the equation by $e^{2 j u}-1$ and integrating

$$
\begin{aligned}
\lambda \int_{\Omega} e^{u}\left(e^{2 j u}-1\right) & =\int_{\Omega} \nabla u \nabla e^{2 j u} \\
& =2 j \int_{\Omega} e^{2 j u}|\nabla u|^{2}=\frac{2}{j} \int_{\Omega}\left|\nabla\left(e^{j u}\right)\right|^{2} .
\end{aligned}
$$

From stability with $\varphi=e^{j u}-1$ we have

$$
\lambda \int_{\Omega} e^{u}\left(e^{j u}-1\right)^{2} \leq \int_{\Omega}\left|\nabla\left(e^{j u}-1\right)\right|^{2} .
$$

Hence

$$
\frac{2}{j} \int_{\Omega} e^{u}\left(e^{j u}-1\right)^{2} \leq \int_{\Omega} e^{u}\left(e^{2 j u}-1\right)
$$

Hence

$$
\begin{array}{r}
\frac{2}{j} \int_{\Omega} e^{u}\left(e^{j u}-1\right)^{2} \leq \int_{\Omega} e^{u}\left(e^{2 j u}-1\right) \\
\left(\frac{2}{j}-1\right) \int_{\Omega} e^{(2 j+1) u} \leq \text { lower order terms }
\end{array}
$$

Hence

$$
\begin{array}{r}
\frac{2}{j} \int_{\Omega} e^{u}\left(e^{j u}-1\right)^{2} \leq \int_{\Omega} e^{u}\left(e^{2 j u}-1\right) \\
\left(\frac{2}{j}-1\right) \int_{\Omega} e^{(2 j+1) u} \leq \text { lower order terms }
\end{array}
$$

Conclusion: if $j<2, q=2 j+1$ then

$$
\|\Delta u\|_{L^{q}} \leq C
$$

where C is independent of λ.

Hence

$$
\begin{aligned}
\frac{2}{j} \int_{\Omega} e^{u}\left(e^{j u}-1\right)^{2} & \leq \int_{\Omega} e^{u}\left(e^{2 j u}-1\right) \\
\left(\frac{2}{j}-1\right) \int_{\Omega} e^{(2 j+1) u} & \leq \text { lower order terms }
\end{aligned}
$$

Conclusion: if $j<2, q=2 j+1$ then

$$
\|\Delta u\|_{L^{q}} \leq C
$$

where C is independent of λ.
By elliptic estimates and Sobolev's inequality $u \in W^{2, q} \subset L^{\infty}$ if $q>N / 2$, which works if $N \leq 9$.

General nonlinearities

Let $g:[0, \infty) \rightarrow[0, \infty)$ be a C^{2}, positive, increasing function satisfying: $\lim _{s \rightarrow+\infty} g(u) / u=+\infty$. Consider

$$
\begin{aligned}
-\Delta u & =\lambda g(u) & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

General nonlinearities

Let $g:[0, \infty) \rightarrow[0, \infty)$ be a C^{2}, positive, increasing function satisfying: $\lim _{s \rightarrow+\infty} g(u) / u=+\infty$.
Consider

$$
\begin{aligned}
-\Delta u & =\lambda g(u) & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

Cabré (06) If $\Omega \subset \mathbb{R}^{N}$ is strictly convex and $N \leq 4$ then u^{*} is classical.
Cabré-Capella (06) If $\Omega=B_{1}$ and $N \leq 9$ then u^{*} is classical.
Nedev (00) If $\Omega \subset \mathbb{R}^{N}$ is any bounded domain and $N \leq 3$ then u^{*} is classical.

Other operators

$$
\left\{\begin{array}{clrl}
-\Delta_{p} u & =\lambda g(u) & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{array}\right.
$$

Other operators

$$
\left\{\begin{array}{clrl}
-\Delta_{p} u & =\lambda g(u) & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{array}\right.
$$

Clément-de Figueiredo-Mitidieri (96), Jacobsen and Schmitt (02) Considered the radial case with exponential and power nonlinearities.

Other operators

$$
\left\{\begin{array}{clrl}
-\Delta_{p} u & =\lambda g(u) & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{array}\right.
$$

Clément-de Figueiredo-Mitidieri (96), Jacobsen and Schmitt (02) Considered the radial case with exponential and power nonlinearities.
García-Azorero-Peral-Puel (94) In general domains, if $g(u)=e^{u}$ the extremal solution is bounded if $N<p+4 p /(p-1)$ and this condition is optimal.

Other operators

$$
\left\{\begin{array}{clrl}
-\Delta_{p} u & =\lambda g(u) & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{array}\right.
$$

Clément-de Figueiredo-Mitidieri (96), Jacobsen and Schmitt (02) Considered the radial case with exponential and power nonlinearities.
García-Azorero-Peral-Puel (94) In general domains, if $g(u)=e^{u}$ the extremal solution is bounded if $N<p+4 p /(p-1)$ and this condition is optimal.
Cabré-Sanchón (06) Consider general domains and power type nonlinearities.

The case $\Omega=B_{1}, N \geq 10$

Lemma. (Brezis-Vázquez (97)) If $u \in H_{0}^{1}(\Omega)$ is a solution $u \notin L^{\infty}(\Omega)$ for some λ which is stable, then $\lambda=\lambda^{*}$ and $u=u^{*}$.

The case $\Omega=B_{1}, N \geq 10$

Lemma. (Brezis-Vázquez (97)) If $u \in H_{0}^{1}(\Omega)$ is a solution $u \notin L^{\infty}(\Omega)$ for some λ which is stable, then $\lambda=\lambda^{*}$ and $u=u^{*}$.

Application to the case $\Omega=B_{1}$. Note that $u=-2 \log |x|, \lambda=2(N-2)$ is a singular solution.

The case $\Omega=B_{1}, N \geq 10$

Lemma. (Brezis-Vázquez (97)) If $u \in H_{0}^{1}(\Omega)$ is a solution $u \notin L^{\infty}(\Omega)$ for some λ which is stable, then $\lambda=\lambda^{*}$ and $u=u^{*}$.

Application to the case $\Omega=B_{1}$. Note that $u=-2 \log |x|, \lambda=2(N-2)$ is a singular solution. Let $\varphi \in C_{0}^{\infty}\left(B_{1}\right)$. Then

$$
\int_{B_{1}}|\nabla \varphi|^{2}-\lambda \int_{B_{1}} e^{u} \varphi^{2}=\int_{B_{1}}|\nabla \varphi|^{2}-\lambda \int_{B_{1}} \frac{\varphi^{2}}{|x|^{2}} .
$$

The case $\Omega=B_{1}, N \geq 10$

Lemma. (Brezis-Vázquez (97)) If $u \in H_{0}^{1}(\Omega)$ is a solution $u \notin L^{\infty}(\Omega)$ for some λ which is stable, then $\lambda=\lambda^{*}$ and $u=u^{*}$.

Application to the case $\Omega=B_{1}$. Note that $u=-2 \log |x|, \lambda=2(N-2)$ is a singular solution. Let $\varphi \in C_{0}^{\infty}\left(B_{1}\right)$. Then

$$
\int_{B_{1}}|\nabla \varphi|^{2}-\lambda \int_{B_{1}} e^{u} \varphi^{2}=\int_{B_{1}}|\nabla \varphi|^{2}-\lambda \int_{B_{1}} \frac{\varphi^{2}}{|x|^{2}} .
$$

Hardy's inequality: if $N \geq 3$

$$
\frac{(N-2)^{2}}{4} \int_{\mathbb{R}^{N}} \frac{\varphi^{2}}{|x|^{2}} \leq \int_{\mathbb{R}^{N}}|\nabla \varphi|^{2} \quad \forall \varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)
$$

The case $\Omega=B_{1}, N \geq 10$

By Hardy's inequality $u=-2 \log |x|$ is stable if

$$
2(N-2) \leq \frac{(N-2)^{2}}{4} \Longleftrightarrow N \geq 10
$$

More precise question

If $N \geq 10$ and Ω is a bounded smooth domain, is u^{*} singular?

More precise question

If $N \geq 10$ and Ω is a bounded smooth domain, is u^{*} singular?
Remark: if $\Omega=B_{1} \backslash B_{1 / 2}$ then u^{*} is always classical (any N).

More precise question

If $N \geq 10$ and Ω is a bounded smooth domain, is u^{*} singular?
Remark: if $\Omega=B_{1} \backslash B_{1 / 2}$ then u^{*} is always classical (any N).

Suppose $N \geq 10$ and Ω is a bounded smooth convex domain. Is u^{*} singular?

Perturbations of a ball

Let $\psi \in C^{2}\left(\bar{B} ; \mathbb{R}^{N}\right)$ and $\Omega_{t}=\{x+t \psi(x): x \in B\}$.

Perturbations of a ball

Let $\psi \in C^{2}\left(\bar{B} ; \mathbb{R}^{N}\right)$ and $\Omega_{t}=\{x+t \psi(x): x \in B\}$. Consider

$$
\begin{aligned}
-\Delta u & =\lambda e^{u} & & \text { in } \Omega_{t} \\
u & =0 & & \text { on } \partial \Omega_{t}
\end{aligned}
$$

Perturbations of a ball

Let $\psi \in C^{2}\left(\bar{B} ; \mathbb{R}^{N}\right)$ and $\Omega_{t}=\{x+t \psi(x): x \in B\}$. Consider

$$
\begin{aligned}
-\Delta u & =\lambda e^{u} & & \text { in } \Omega_{t} \\
u & =0 & & \text { on } \partial \Omega_{t}
\end{aligned}
$$

Theorem. (D.-Dupaigne) If $N \geq 4$ there exists $\delta>0$ such that if $|t|<\delta$ then there is a singular solution $\lambda(t), u(t)$ such that

$$
\left\|u(t)-\log \frac{1}{\left|x-\xi_{t}\right|^{2}}\right\|_{L^{\infty}}+|\lambda(t)-2(N-2)| \rightarrow 0
$$

as $t \rightarrow 0$, where $\xi_{t} \in B$.

Corollary. If $N \geq 11$ and t is small then u^{*} is singular. Moreover there is $\xi_{t} \in B$ such that

$$
\begin{aligned}
& \left\|u^{*}(t)-\log \frac{1}{\left|x-\xi_{t}\right|^{2}}\right\|_{L^{\infty}}+\left|\lambda^{*}(t)-2(N-2)\right| \rightarrow 0 \\
& \text { as } t \rightarrow 0 \text {. }
\end{aligned}
$$

There is a singular solution $(\lambda(t), u(t))$ such that

$$
\left\|u(t)-\log \frac{1}{\left|x-\xi_{t}\right|^{2}}\right\|_{L^{\infty}}+|\lambda(t)-2(N-2)| \rightarrow 0
$$

There is a singular solution $(\lambda(t), u(t))$ such that

$$
\left\|u(t)-\log \frac{1}{\left|x-\xi_{t}\right|^{2}}\right\|_{L^{\infty}}+|\lambda(t)-2(N-2)| \rightarrow 0
$$

Since $N \geq 11$ we have $2(N-2)<\frac{(N-2)^{2}}{4}$. Then for

There is a singular solution $(\lambda(t), u(t))$ such that

$$
\left\|u(t)-\log \frac{1}{\left|x-\xi_{t}\right|^{2}}\right\|_{L^{\infty}}+|\lambda(t)-2(N-2)| \rightarrow 0
$$

Since $N \geq 11$ we have $2(N-2)<\frac{(N-2)^{2}}{4}$. Then for small $t \lambda(t) e^{\left\|u(t)-2 \log \frac{1}{\mid x-\xi_{t}}\right\|_{L^{\infty}} \leq \frac{(N-2)^{2}}{4} \text {. }}$
For $\varphi \in C_{0}^{\infty}\left(\Omega_{t}\right)$, by Hardy's inequality:

$$
\lambda(t) \int_{\Omega_{t}} e^{u(t)} \varphi^{2} \leq \frac{(N-2)^{2}}{4} \int_{\mathbb{R}^{N}} \frac{\varphi^{2}}{|x|^{2}} \leq \int_{\mathbb{R}^{N}}|\nabla \varphi|^{2} .
$$

There is a singular solution $(\lambda(t), u(t))$ such that

$$
\left\|u(t)-\log \frac{1}{\left|x-\xi_{t}\right|^{2}}\right\|_{L^{\infty}}+|\lambda(t)-2(N-2)| \rightarrow 0
$$

Since $N \geq 11$ we have $2(N-2)<\frac{(N-2)^{2}}{4}$. Then for small $t \lambda(t) e^{\left\|u(t)-2 \log \frac{1}{\mid x-\xi_{t}}\right\|_{L^{\infty}} \leq \frac{(N-2)^{2}}{4} \text {. }}$ For $\varphi \in C_{0}^{\infty}\left(\Omega_{t}\right)$, by Hardy's inequality:

$$
\lambda(t) \int_{\Omega_{t}} e^{u(t)} \varphi^{2} \leq \frac{(N-2)^{2}}{4} \int_{\mathbb{R}^{N}} \frac{\varphi^{2}}{|x|^{2}} \leq \int_{\mathbb{R}^{N}}|\nabla \varphi|^{2} .
$$

By the lemma of Brezis-Vázquez we conclude $u^{*}(t)=u(t), \lambda^{*}(t)=\lambda(t)$.

Consider

$$
\begin{gathered}
-\Delta u=\lambda(1+u)^{p} \quad \text { in } \Omega_{t} \\
u=0 \quad \text { on } \partial \Omega_{t}
\end{gathered}
$$

where Ω_{t} is a C^{2} perturbation of the ball, $p>1$.

Consider

$$
\begin{gathered}
-\Delta u=\lambda(1+u)^{p} \quad \text { in } \Omega_{t} \\
u=0 \quad \text { on } \partial \Omega_{t}
\end{gathered}
$$

where Ω_{t} is a C^{2} perturbation of the ball, $p>1$.
Theorem. If $N \geq 11$ and $p>6+\frac{4}{p-1}+4 \sqrt{\frac{p}{p-1}}$ then
for t small the extremal solution is singular.

Consider

$$
\begin{gathered}
-\Delta u=\lambda(1+u)^{p} \quad \text { in } \Omega_{t} \\
u=0 \quad \text { on } \partial \Omega_{t}
\end{gathered}
$$

where Ω_{t} is a C^{2} perturbation of the ball, $p>1$.
Theorem. If $N \geq 11$ and $p>6+\frac{4}{p-1}+4 \sqrt{\frac{p}{p-1}}$ then for t small the extremal solution is singular.
It is known that for any domain, if $N \leq 10$, or $N \geq 11$ and $p<6+\frac{4}{p-1}+4 \sqrt{\frac{p}{p-1}}$ then u^{*} is classical.

Linearization

The proof is by linearization around the singular solution $-2 \log |x|, \lambda=2(N-2)$.

Linearization

The proof is by linearization around the singular solution $-2 \log |x|, \lambda=2(N-2)$. We change variables $y=x+t \psi(x), x \in B_{1}$ and define

$$
v(x)=u(x+t \psi(x)) .
$$

Then

$$
\Delta_{y} u=\Delta_{x} v+L_{t} v
$$

where L_{t} is a small second order operator.

Linearization

We look for a solution of the form

$$
v(x)=\log \frac{1}{|x-\xi|^{2}}+\phi, \quad \lambda=c^{*}+\mu,
$$

where $c^{*}=2(N-2)$.

Linearization

We look for a solution of the form

$$
v(x)=\log \frac{1}{|x-\xi|^{2}}+\phi, \quad \lambda=c^{*}+\mu
$$

where $c^{*}=2(N-2)$.
Then we need to solve

$$
\begin{aligned}
-\Delta \phi-L_{t} \phi-\frac{c^{*}}{|x-\xi|^{2}} \phi= & \frac{c^{*}}{|x-\xi|^{2}}\left(e^{\phi}-1-\phi\right)+\frac{\mu}{|x-\xi|^{2}} e^{\phi} \\
& +L_{t}\left(\log \frac{1}{|x-\xi|^{2}}\right) \quad \text { in } B \\
\phi=- & \log \frac{1}{|x-\xi|^{2}} \quad \text { on } \partial B .
\end{aligned}
$$

A simple case

Ω_{t} is an ellipsoid, $v(x)=u\left(x^{\prime},(1-t) x_{N}\right)$,
$x=\left(x^{\prime}, x_{N}\right)$, and then $\xi=0$.

A simple case

Ω_{t} is an ellipsoid, $v(x)=u\left(x^{\prime},(1-t) x_{N}\right)$,
$x=\left(x^{\prime}, x_{N}\right)$, and then $\xi=0$.
Then the equation becomes

$$
\begin{aligned}
& -\Delta \phi-t^{2} \frac{\partial^{2} \phi}{\partial x_{N}^{2}}-\frac{c^{*}}{|x|^{2}} \phi=\frac{c^{*}}{|x|^{2}}\left(e^{\phi}-1-\phi\right) \\
& \quad+\frac{\mu}{|x|^{2}} e^{\phi}+t^{2} \frac{\partial^{2} u_{0}}{\partial x_{N}^{2}} \quad \text { in } B \\
& \phi=0 \quad \text { on } \partial B .
\end{aligned}
$$

where $u_{0}(x)=-2 \log |x|$.

Comments

Consider the linear operator $-\Delta-\frac{c^{*}}{|x-\xi|^{2}}$

Comments

Consider the linear operator $-\Delta-\frac{c^{*}}{|x-\xi|^{2}}$

- If $N \leq 9$ the operator is not coercive in H_{0}^{1}.

Comments

Consider the linear operator $-\Delta-\frac{c^{*}}{|x-\xi|^{2}}$

- If $N \leq 9$ the operator is not coercive in H_{0}^{1}.
- If $c^{*} \leq \frac{(N-2)^{2}}{4}$, which holds if $N \geq 10$, this operator is coercive.

Comments

Consider the linear operator $-\Delta-\frac{c^{*}}{|x-\xi|^{2}}$

- If $N \leq 9$ the operator is not coercive in H_{0}^{1}.
- If $c^{*} \leq \frac{(N-2)^{2}}{4}$, which holds if $N \geq 10$, this operator is coercive.
- Typically solutions are singular at ξ, with a behavior $|x-\xi|^{-\alpha}$ for some $\alpha>0$.

Comments

Consider the linear operator $-\Delta-\frac{c^{*}}{|x-\xi|^{2}}$

- If $N \leq 9$ the operator is not coercive in H_{0}^{1}.
- If $c^{*} \leq \frac{(N-2)^{2}}{4}$, which holds if $N \geq 10$, this operator is coercive.
- Typically solutions are singular at ξ, with a behavior $|x-\xi|^{-\alpha}$ for some $\alpha>0$.
- This functional setting is not useful since the nonlinear term that appears in the right hand side, namely $\frac{c^{*}}{|x-\xi|^{2}}\left(e^{\phi}-1-\phi\right)$, is too strong.

Right inverse for the linear operator

Lemma. Let $N \geq 4, h, g$ be such that
$|x-\xi|^{2} h,|x-\xi|^{2} g \in L^{\infty}(B), h>0, w$ smooth

Right inverse for the linear operator

Lemma. Let $N \geq 4, h, g$ be such that $|x-\xi|^{2} h,|x-\xi|^{2} g \in L^{\infty}(B), h>0, w$ smooth Consider

$$
\left\{\begin{aligned}
-\Delta \phi-\frac{c^{*}}{|x-\xi|^{2}} \phi & =g+\mu_{0} h+\sum_{i=1}^{N} \mu_{i} V_{i, \xi} \quad \text { in } B \\
\phi & =w \quad \text { on } \partial B
\end{aligned}\right.
$$

where $V_{i, \xi}$ are "explicit".

Right inverse for the linear operator

Lemma. Let $N \geq 4, h, g$ be such that $|x-\xi|^{2} h,|x-\xi|^{2} g \in L^{\infty}(B), h>0, w$ smooth Consider

$$
\left\{\begin{aligned}
-\Delta \phi-\frac{c^{*}}{|x-\xi|^{2}} \phi & =g+\mu_{0} h+\sum_{i=1}^{N} \mu_{i} V_{i, \xi} \quad \text { in } B \\
\phi & =w \quad \text { on } \partial B
\end{aligned}\right.
$$

where $V_{i, \xi}$ are "explicit".
If $|\xi|$ is small enough there is a solution $\phi, \mu_{0}, \ldots, \mu_{N}$ such that

$$
\|\phi\|_{L^{\infty}}+\left|\mu_{i}\right| \leq C_{h}\left\||x-\xi|^{2} g\right\|_{L^{\infty}}
$$

Right inverse for the linear operator

The same result is true for the linear operator

$$
-\Delta \phi-\frac{c^{*}}{|x-\xi|^{2}} \phi-L_{t} \phi
$$

if $|\xi|$ and t are small enough.

The nonlinear problem

Using the linear lemma and the fixed point theorem we obtain $\phi, \mu_{0}, \ldots, \mu_{N}$ such that

The nonlinear problem

Using the linear lemma and the fixed point theorem we obtain $\phi, \mu_{0}, \ldots, \mu_{N}$ such that

$$
\left\{\begin{aligned}
-\Delta \phi-L_{t} \phi-\frac{c}{|x-\xi|^{2}} \phi & =\frac{c}{|x-\xi|^{2}}\left(e^{\phi}-1-\phi\right) \\
& +\mu_{0} \frac{1}{|x-\xi|^{2}} e^{\phi}+L_{t} u_{\xi}+\sum_{i=1}^{N} \mu_{i} V_{i, \xi} \\
\phi & =-u_{\xi} \quad \partial B
\end{aligned}\right.
$$

where $u_{\xi}=\log \frac{1}{|x-\xi|^{2}}$

Reduction

We have to show that there is a choice of ξ such that $\mu_{1}, \ldots, \mu_{N}=0$.

Reduction

We have to show that there is a choice of ξ such that $\mu_{1}, \ldots, \mu_{N}=0$.
Multiplying the equation by suitable test functions and integrating we reach a system of equations of the form

$$
F(\xi, t)=0
$$

Reduction

We have to show that there is a choice of ξ such that $\mu_{1}, \ldots, \mu_{N}=0$.
Multiplying the equation by suitable test functions and integrating we reach a system of equations of the form

$$
F(\xi, t)=0
$$

This can be solved by the implicit function theorem.

The linear lemma

We consider only the operator $-\Delta-\frac{c^{*}}{|x|^{2}}$.

The linear lemma

We consider only the operator $-\Delta-\frac{c^{*}}{|x|^{2}}$.
Let $N \geq 3, g \in C^{\infty}(B \backslash\{0\})$ be a radial function such that $|x|^{2} g \in L^{\infty}(B)$. Then the equation

$$
-\Delta \phi-\frac{c^{*}}{|x|^{2}} \phi=g \text { in } B \quad \phi=0 \text { on } \partial B
$$

has a solution in $L^{\infty}(B)$ if and only if $\int_{B} g W_{0}=0$

The linear lemma

We consider only the operator $-\Delta-\frac{c^{*}}{|x|^{2}}$.
Let $N \geq 3, g \in C^{\infty}(B \backslash\{0\})$ be a radial function such that $|x|^{2} g \in L^{\infty}(B)$. Then the equation

$$
-\Delta \phi-\frac{c^{*}}{|x|^{2}} \phi=g \text { in } B \quad \phi=0 \text { on } \partial B
$$

has a solution in $L^{\infty}(B)$ if and only if $\int_{B} g W_{0}=0$ where $W_{0}=r^{-\alpha^{+}}-r^{-\alpha^{-}}$and $\alpha^{ \pm}=\frac{N-2}{2} \pm \sqrt{\frac{(N-2)^{2}}{4}-c^{*}}$.

The linear lemma

We consider only the operator $-\Delta-\frac{c^{*}}{|x|^{2}}$.
Let $N \geq 3, g \in C^{\infty}(B \backslash\{0\})$ be a radial function such that $|x|^{2} g \in L^{\infty}(B)$. Then the equation

$$
-\Delta \phi-\frac{c^{*}}{|x|^{2}} \phi=g \text { in } B \quad \phi=0 \text { on } \partial B
$$

has a solution in $L^{\infty}(B)$ if and only if $\int_{B} g W_{0}=0$ where $W_{0}=r^{-\alpha^{+}}-r^{-\alpha^{-}}$and $\alpha^{ \pm}=\frac{N-2}{2} \pm \sqrt{\frac{(N-2)^{2}}{4}-c^{*}}$.
Moreover $\|\phi\|_{L^{\infty}} \leq C\left\||x|^{2} g\right\|_{L^{\infty}}$ and this solution is unique.

Idea of the proof: the condition is necessary

$W_{0}=r^{-\alpha^{+}}-r^{-\alpha^{-}}$is in the kernel of the linear operator

$$
\begin{aligned}
-\Delta W_{0}-\frac{c^{*}}{|x|^{2}} W_{0} & =0 \quad \text { in } B \\
W_{0} & =0 \text { on } \partial B
\end{aligned}
$$

Idea of the proof: the condition is necessary

$W_{0}=r^{-\alpha^{+}}-r^{-\alpha^{-}}$is in the kernel of the linear
operator

$$
\begin{aligned}
-\Delta W_{0}-\frac{c^{*}}{|x|^{2}} W_{0} & =0 \text { in } B \\
W_{0} & =0 \text { on } \partial B
\end{aligned}
$$

If ϕ is bounded one may justify the integration by parts

$$
\begin{aligned}
\int g W_{0}=\int\left(-\Delta \phi-\frac{c^{*}}{|x|^{2}} \phi\right) W_{0} & =\int_{0} \phi\left(-\Delta W_{0}-\frac{c^{*}}{|x|^{2}} W_{0}\right) \\
& =0
\end{aligned}
$$

Idea of the proof: the condition is sufficient

Construction of a solution: we seek $\phi(r)$ that solves
$-\Delta \phi-\frac{c^{*}}{|x|^{2}} \phi=g$:

$$
\phi^{\prime \prime}+\frac{N-1}{r} \phi^{\prime}+\frac{c^{*}}{r^{2}} \phi=-g
$$

Idea of the proof: the condition is sufficient

Construction of a solution: we seek $\phi(r)$ that solves
$-\Delta \phi-\frac{c^{*}}{|x|^{2}} \phi=g$:

$$
\phi^{\prime \prime}+\frac{N-1}{r} \phi^{\prime}+\frac{c^{*}}{r^{2}} \phi=-g
$$

Then

$$
\phi(r)=\frac{1}{\alpha^{-}-\alpha^{+}} \int_{0}^{r} s\left((s / r)^{\alpha^{-}}-(s / r)^{\alpha^{+}}\right) g(s) d s
$$

Idea of the proof: the condition is sufficient

Construction of a solution: we seek $\phi(r)$ that solves
$-\Delta \phi-\frac{c^{*}}{|x|^{2}} \phi=g$:

$$
\phi^{\prime \prime}+\frac{N-1}{r} \phi^{\prime}+\frac{c^{*}}{r^{2}} \phi=-g
$$

Then
$\phi(r)=\frac{1}{\alpha^{-}-\alpha^{+}} \int_{0}^{r} s\left((s / r)^{\alpha^{-}}-(s / r)^{\alpha^{+}}\right) g(s) d s$
$\phi(r)=\frac{r^{2}}{\left|S^{N-1}\right|} \int_{B} W_{0}(x) g(r x) d x$
Since $|g(x)| \leq C /|x|^{2}$ we have $\phi \in L^{\infty}$.
Since $\int_{B} W_{0} g=0$ we have $\phi(1)=0$.

Non radial case

We decompose ϕ in a Fourier series $\phi(x)=\sum_{k} \phi_{k}(r) \varphi_{k}(\theta)$ where $r>0, \theta \in S^{N-1}$, and φ_{k} are the eigenfunctions of $-\Delta$ on the sphere S^{N-1} :

$$
-\Delta_{S^{N-1}} \varphi_{k}=\lambda_{k} \varphi_{k}
$$

Non radial case

We decompose ϕ in a Fourier series $\phi(x)=\sum_{k} \phi_{k}(r) \varphi_{k}(\theta)$ where $r>0, \theta \in S^{N-1}$, and φ_{k} are the eigenfunctions of $-\Delta$ on the sphere S^{N-1} :

$$
-\Delta_{S^{N-1}} \varphi_{k}=\lambda_{k} \varphi_{k}
$$

Then $-\Delta \phi-\frac{c^{*}}{|x|^{2}} \phi=g$ in B is equivalent to

$$
-\phi_{k}^{\prime \prime}-\frac{N-1}{r} \phi_{k}^{\prime}-\frac{c^{*}-\lambda_{k}}{r^{2}} \phi_{k}=g_{k}
$$

Non radial case

We decompose ϕ in a Fourier series
$\phi(x)=\sum_{k} \phi_{k}(r) \varphi_{k}(\theta)$ where $r>0, \theta \in S^{N-1}$, and φ_{k} are the eigenfunctions of $-\Delta$ on the sphere S^{N-1} :

$$
-\Delta_{S^{N-1}} \varphi_{k}=\lambda_{k} \varphi_{k}
$$

Then $-\Delta \phi-\frac{c^{*}}{|x|^{2}} \phi=g$ in B is equivalent to

$$
-\phi_{k}^{\prime \prime}-\frac{N-1}{r} \phi_{k}^{\prime}-\frac{c^{*}-\lambda_{k}}{r^{2}} \phi_{k}=g_{k}
$$

If $c^{*}-\lambda_{k} \leq 0$ the equation has a bounded solution without requiring orthogonality conditions.
If $c^{*}-\lambda_{k}>0$ orthogonality conditions are required (with respect to "elements in the kernel").

$$
\begin{aligned}
& c^{*}=2(N-2) \\
& \lambda_{0}=0 \\
& \lambda_{1}=\ldots=\lambda_{N}=N-1 \\
& \lambda_{k} \geq 2 N, k \geq N+1 \\
& \text { and } N \geq 4 \text { yields }
\end{aligned}
$$

Numbers...

$$
\begin{aligned}
& c^{*}=2(N-2) \\
& \lambda_{0}=0 \\
& \lambda_{1}=\ldots=\lambda_{N}=N-1 \\
& \lambda_{k} \geq 2 N, k \geq N+1 \\
& \text { and } N \geq 4 \text { yields } \\
& c^{*}-\lambda_{k}>0 \text { for } k=0, \ldots, N \\
& c^{*}-\lambda_{k} \leq 0 \text { for } k \geq N+1
\end{aligned}
$$

So $N+1$ conditions are required to have a bounded solution.

Related work

- Caffarelli-Hardt-Simon (84) Construction of singular minimal surfaces which are not cones (by perturbation of minimal cones).

Related work

- Caffarelli-Hardt-Simon (84) Construction of singular minimal surfaces which are not cones (by perturbation of minimal cones).
- Pacard $(92,93)$ Existence of singular solutions to $-\Delta u=e^{u}$ and u^{p} (without boundary conditions)

Related work

- Caffarelli-Hardt-Simon (84) Construction of singular minimal surfaces which are not cones (by perturbation of minimal cones).
- Pacard $(92,93)$ Existence of singular solutions to $-\Delta u=e^{u}$ and u^{p} (without boundary conditions)
- Mazzeo-Pacard (96) construct solutions to $-\Delta u=u^{p}$ with singularities on points ($\frac{N}{N-2}<p<\frac{N+2}{N-2}$) or manifolds ($\frac{k}{k-2}<p<\frac{k+2}{k-2}$, k is de codimension).

Related work

- Caffarelli-Hardt-Simon (84) Construction of singular minimal surfaces which are not cones (by perturbation of minimal cones).
- Pacard $(92,93)$ Existence of singular solutions to $-\Delta u=e^{u}$ and u^{p} (without boundary conditions)
- Mazzeo-Pacard (96) construct solutions to $-\Delta u=u^{p}$ with singularities on points $\left(\frac{N}{N-2}<p<\frac{N+2}{N-2}\right)$ or manifolds $\left(\frac{k}{k-2}<p<\frac{k+2}{k-2}\right.$, k is de codimension).
- Rebai $(96,99)-\Delta u=e^{u}$ in a ball in dimension 3, also multiple singularities $N \geq 10$ (without boundary condition)

A variant

Consider

$$
\begin{gathered}
-\Delta u=\lambda e^{u} \quad \text { in } B \\
u=\psi \quad \text { on } \partial B
\end{gathered}
$$

where ψ is a smooth function.

A variant

Consider

$$
\begin{gathered}
-\Delta u=\lambda e^{u} \quad \text { in } B \\
u=\psi \quad \text { on } \partial B
\end{gathered}
$$

where ψ is a smooth function.
Theorem. (D.-Dupaigne) If $N \geq 4$ and ψ is small enough (in $C^{2, \alpha}$) then there exists $\xi \in B$ and a singular solution λ, u such that

$$
u-\log \frac{1}{|x-\xi|^{2}} \in L^{\infty}(B)
$$

A variant

Consider

$$
\begin{gathered}
-\Delta u=\lambda e^{u} \quad \text { in } B \\
u=\psi \quad \text { on } \partial B
\end{gathered}
$$

where ψ is a smooth function.
Theorem. (D.-Dupaigne) If $N \geq 4$ and ψ is small enough (in $C^{2, \alpha}$) then there exists $\xi \in B$ and a singular solution λ, u such that

$$
u-\log \frac{1}{|x-\xi|^{2}} \in L^{\infty}(B)
$$

Note that ξ depends on ψ.

The case $N=3$

Consider

$$
\begin{gathered}
-\Delta u=\lambda e^{u} \quad \text { in } B \\
u=\psi \quad \text { on } \partial B
\end{gathered}
$$

where ψ is a smooth function.

The case $N=3$

Consider

$$
\begin{gathered}
-\Delta u=\lambda e^{u} \quad \text { in } B \\
u=\psi \quad \text { on } \partial B
\end{gathered}
$$

where ψ is a smooth function.
Theorem. (Matano, Rebai (99)) If $N=3$ there is $\delta>0$ such that for any $\|\psi\|_{C^{2, \alpha}}<\delta$ and any $|\xi|<\delta$ there is a singular solution λ, u such that

$$
u-\log \frac{1}{|x-\xi|^{2}} \in L^{\infty}(B)
$$

Isolated singularities in dimension 3

The function
$u(r, \theta)=\log \left(1 / r^{2}\right)+\log (2 / \lambda)+2 \omega(\theta) \quad r>0, \theta \in S^{2}$
is a singular solution in \mathbb{R}^{3} if and only if
$\Delta_{S^{2}} \omega+e^{2 \omega}-1=0$ in S^{2}. Smooth solutions form a 3 dimensional manifold.

Isolated singularities in dimension 3

The function
$u(r, \theta)=\log \left(1 / r^{2}\right)+\log (2 / \lambda)+2 \omega(\theta) \quad r>0, \theta \in S^{2}$
is a singular solution in \mathbb{R}^{3} if and only if
$\Delta_{S^{2}} \omega+e^{2 \omega}-1=0$ in S^{2}. Smooth solutions form a 3 dimensional manifold.
Bidaut-Veron Veron (91) describe all possible behaviors of smooth solutions to $-\Delta u=\lambda e^{u}$ in $B_{1} \backslash\{0\}$ (with an isolated singularity) in dimension 3, such that

$$
e^{u} \leq \frac{C}{|x|^{2}}
$$

Isolated singularities in $N=3$

In dimension 3, if

$$
e^{u} \leq \frac{C}{|x|^{2}}
$$

Isolated singularities in $N=3$

In dimension 3, if

$$
e^{u} \leq \frac{C}{|x|^{2}}
$$

then either 0 is a removable singularity,

Isolated singularities in $N=3$

In dimension 3, if

$$
e^{u} \leq \frac{C}{|x|^{2}}
$$

then either 0 is a removable singularity, or $\lim _{|x| \rightarrow 0}\left(u(x)-\gamma|x|^{-1}\right)$ exists for some $\gamma<0$ and
$-\Delta u=\lambda e^{u}+4 \pi \gamma \delta_{0}$,

Isolated singularities in $N=3$

In dimension 3, if

$$
e^{u} \leq \frac{C}{|x|^{2}}
$$

then either 0 is a removable singularity, or $\lim _{|x| \rightarrow 0}\left(u(x)-\gamma|x|^{-1}\right)$ exists for some $\gamma<0$ and $-\Delta u=\lambda e^{u}+4 \pi \gamma \delta_{0}$,
or there exists ω solution to $\Delta_{S^{2}} \omega+e^{2 \omega}-1=0$ in S^{2} such that

$$
\lim _{r \rightarrow+\infty} u(r \theta)-\log \left(1 / r^{2}\right)=\omega(\theta), \quad \theta \in S^{2} .
$$

Is u^{*} singular for all Ω convex?

Let $\varepsilon>0, x=(y, z) \in \mathbb{R}^{N}, y \in \mathbb{R}^{N_{1}}, z \in \mathbb{R}^{N_{2}}$.

Is u^{*} singular for all Ω convex?

Let $\varepsilon>0, x=(y, z) \in \mathbb{R}^{N}, y \in \mathbb{R}^{N_{1}}, z \in \mathbb{R}^{N_{2}}$. $\Omega_{\varepsilon}=\left\{(y, \varepsilon z):(y, z) \in B_{1} \subset \mathbb{R}^{N}\right\}$.

Is u^{*} singular for all Ω convex?

$$
\begin{aligned}
& \text { Let } \varepsilon>0, x=(y, z) \in \mathbb{R}^{N}, y \in \mathbb{R}^{N_{1}}, z \in \mathbb{R}^{N_{2}} \\
& \Omega_{\varepsilon}=\left\{(y, \varepsilon z):(y, z) \in B_{1} \subset \mathbb{R}^{N}\right\} . \\
& \varepsilon \mathbb{R}^{N_{2}} \\
&
\end{aligned}
$$

Theorem. (Dancer (93)) Suppose $N_{2} \leq 9$. If ε is small then u_{ε}^{*} is classical. Note that $N=N_{1}+N_{2}$ may be larger than 10.

Is u^{*} singular for all Ω convex?

$$
\begin{aligned}
& \text { Let } \varepsilon>0, x=(y, z) \in \mathbb{R}^{N}, y \in \mathbb{R}^{N_{1}}, z \in \mathbb{R}^{N_{2}} \\
& \Omega_{\varepsilon}=\left\{(y, \varepsilon z):(y, z) \in B_{1} \subset \mathbb{R}^{N}\right\} . \\
& \varepsilon \mathbb{R}^{N_{2}} \\
&
\end{aligned}
$$

Theorem. (Dancer (93)) Suppose $N_{2} \leq 9$. If ε is small then u_{ε}^{*} is classical. Note that $N=N_{1}+N_{2}$ may be larger than 10.
The result is still true if Ω is a smooth bounded strictly convex.

What happens if $N_{2} \geq 10$?

Consider a torus Ω_{ε} in \mathbb{R}^{N}

with cross-section a ball of radius $\varepsilon>0$ in $\mathbb{R}^{N_{2}}$, $N=N_{1}+N_{2}, N_{1} \geq 1$.

What happens if $N_{2} \geq 10$?

Consider a torus Ω_{ε} in \mathbb{R}^{N}

with cross-section a ball of radius $\varepsilon>0$ in $\mathbb{R}^{N_{2}}$, $N=N_{1}+N_{2}, N_{1} \geq 1$.
If $N_{2} \geq 11$ then for ε small the extremal solution is singular.

Singularities at infinity

Consider

$$
\begin{gathered}
\Delta u+u^{p}=0, u>0 \quad \text { in } \Omega=\mathbb{R}^{N} \backslash \overline{\mathcal{D}}, \\
u=0 \text { on } \partial \mathcal{D}, \quad \lim _{|x| \rightarrow+\infty} u(x)=0
\end{gathered}
$$

where $p>\frac{N+2}{N-2}$ and \mathcal{D} is a smooth bounded open set such that Ω is connected.

Singularities at infinity

Consider

$$
\begin{gathered}
\Delta u+u^{p}=0, u>0 \quad \text { in } \Omega=\mathbb{R}^{N} \backslash \overline{\mathcal{D}}, \\
u=0 \text { on } \partial \mathcal{D}, \quad \lim _{|x| \rightarrow+\infty} u(x)=0
\end{gathered}
$$

where $p>\frac{N+2}{N-2}$ and \mathcal{D} is a smooth bounded open set such that Ω is connected.
Theorem. (D.-del Pino-Musso-Wei) If $N \geq 3$ and
$p>\frac{N+2}{N-2}$ then there are infinitely many solutions, that have slow decay

$$
u(x) \sim|x|^{-\frac{2}{p-1}} \quad \text { as }|x| \rightarrow+\infty
$$

If $\lambda>\lambda^{*}$ there is no solution.

If $\lambda>\lambda^{*}$ there is no solution.
If $\lambda=\lambda^{*}$ there is a unique solution.

If $\lambda>\lambda^{*}$ there is no solution.
If $\lambda=\lambda^{*}$ there is a unique solution.
Suppose $\lambda<\lambda^{*}$ and let u_{λ} be the minimal solution. Then

$$
\begin{aligned}
\int_{\Omega} \nabla u \nabla\left(u-u_{\lambda}\right) & =\lambda \int_{\Omega} e^{u}\left(u-u_{\lambda}\right) \\
\int_{\Omega} \nabla u_{\lambda} \nabla\left(u-u_{\lambda}\right) & =\lambda \int_{\Omega} e^{u_{\lambda}}\left(u-u_{\lambda}\right)
\end{aligned}
$$

If $\lambda>\lambda^{*}$ there is no solution.
If $\lambda=\lambda^{*}$ there is a unique solution.
Suppose $\lambda<\lambda^{*}$ and let u_{λ} be the minimal solution. Then

$$
\begin{aligned}
\int_{\Omega} \nabla u \nabla\left(u-u_{\lambda}\right) & =\lambda \int_{\Omega} e^{u}\left(u-u_{\lambda}\right) \\
\int_{\Omega} \nabla u_{\lambda} \nabla\left(u-u_{\lambda}\right) & =\lambda \int_{\Omega} e^{u_{\lambda}}\left(u-u_{\lambda}\right)
\end{aligned}
$$

Hence

$$
\int_{\Omega}\left|\nabla\left(u-u_{\lambda}\right)\right|^{2}=\lambda \int_{\Omega}\left(e^{u}-e^{u_{\lambda}}\right)\left(u-u_{\lambda}\right) .
$$

We have $\int_{\Omega}\left|\nabla\left(u-u_{\lambda}\right)\right|^{2}=\lambda \int_{\Omega}\left(e^{u}-e^{u_{\lambda}}\right)\left(u-u_{\lambda}\right)$

We have $\int_{\Omega}\left|\nabla\left(u-u_{\lambda}\right)\right|^{2}=\lambda \int_{\Omega}\left(e^{u}-e^{u_{\lambda}}\right)\left(u-u_{\lambda}\right)$ Since u is stable $\int_{\Omega}\left|\nabla\left(u-u_{\lambda}\right)\right|^{2} \geq \lambda \int_{\Omega} e^{u}\left(u-u_{\lambda}\right)^{2}$

We have $\int_{\Omega}\left|\nabla\left(u-u_{\lambda}\right)\right|^{2}=\lambda \int_{\Omega}\left(e^{u}-e^{u_{\lambda}}\right)\left(u-u_{\lambda}\right)$ Since u is stable $\int_{\Omega}\left|\nabla\left(u-u_{\lambda}\right)\right|^{2} \geq \lambda \int_{\Omega} e^{u}\left(u-u_{\lambda}\right)^{2}$ It follows that

$$
\int_{\Omega}\left(e^{u}+e^{u}\left(u_{\lambda}-u\right)-e^{u_{\lambda}}\right)\left(u-u_{\lambda}\right) \geq 0
$$

We have $\int_{\Omega}\left|\nabla\left(u-u_{\lambda}\right)\right|^{2}=\lambda \int_{\Omega}\left(e^{u}-e^{u_{\lambda}}\right)\left(u-u_{\lambda}\right)$ Since u is stable $\int_{\Omega}\left|\nabla\left(u-u_{\lambda}\right)\right|^{2} \geq \lambda \int_{\Omega} e^{u}\left(u-u_{\lambda}\right)^{2}$ It follows that

$$
\int_{\Omega}\left(e^{u}+e^{u}\left(u_{\lambda}-u\right)-e^{u_{\lambda}}\right)\left(u-u_{\lambda}\right) \geq 0
$$

By convexity the integrand is non-positive. This implies $u=u_{\lambda}$ but $u \notin L^{\infty}$ while u_{λ} is classical.

