On the attainability of the optimal constants of some Caffarelli-Kohn-Nirenberg inequalities with mixed boundary conditions. Applications.

Eduardo Colorado

Departamento de Análisis Matemático, Universidad de Granada, SPAIN

Salamanca 2007

The following results are in collaboration with:

- Boumediene Abdellaoui
- Ireneo Peral
B. Abdellauoi, E. C., I. Peral, Effect of the boundary conditions in the behavior of the optimal constant of some Caffarelli-Kohn-Nirenberg inequalities. Application to some doubly critical nonlinear elliptic problems.

Adv. Differential Equations 11 (2006), no. 6, 667-720.

Scheme of the talk

- Statement of the problem and functional framework.

Scheme of the talk

- Statement of the problem and functional framework.
- Preliminary results.

Scheme of the talk

- Statement of the problem and functional framework.
- Preliminary results.
- Study of the Sobolev optimal constant.

Scheme of the talk

- Statement of the problem and functional framework.
- Preliminary results.
- Study of the Sobolev optimal constant.

1. Attainability.
-Movement of the boundary conditions, quantitative properties.
2. Non attainability.
-Geometrical boundary conditions.

Scheme of the talk

- Statement of the problem and functional framework.
- Preliminary results.
- Study of the Sobolev optimal constant.
- Study of the Hardy-Sobolev optimal constant.

Scheme of the talk

- Statement of the problem and functional framework.
- Preliminary results.
- Study of the Sobolev optimal constant.
- Study of the Hardy-Sobolev optimal constant.

1. Attainability. -Movement of the boundary conditions, quantitative properties.
2. Non attainability.
-Qualitative properties, geometrical boundary conditions.
-Improvement term in the Hardy-Sobolev inequality.

Scheme of the talk

- Statement of the problem and functional framework.
- Preliminary results.
- Study of the Sobolev optimal constant.
- Study of the Hardy-Sobolev optimal constant.
- Applications.

Scheme of the talk

- Statement of the problem and functional framework.
- Preliminary results.
- Study of the Sobolev optimal constant.
- Study of the Hardy-Sobolev optimal constant.
- Applications.

1. Double critical problems.
2. The space $H_{\gamma, \Sigma_{D}}$?
3. Uniform estimates in $H_{\gamma, \Sigma_{D}}$?
4. Some remarks on bifurcation?

Scheme of the talk

- Statement of the problem and functional framework.
- Preliminary results.
- Study of the Sobolev optimal constant.
- Study of the Hardy-Sobolev optimal constant.
- Applications.

Statement of the problems and functional framework.

- Sobolev constant.

$$
S_{2, \gamma}^{2}\left(\Omega, \Sigma_{D}\right)=\inf _{u \in E_{\Sigma_{D}^{2}}^{2, \gamma}(\Omega) ; u \neq 0} \frac{\int_{\Omega}|x|^{-2 \gamma}|\nabla u|^{2} d x}{\left(\int_{\Omega}|x|^{-2^{*} \gamma}|u|^{2^{*}} d x\right)^{\frac{2}{2^{*}}}} .
$$

Statement of the problems and functional framework.

- Sobolev constant.

$$
S_{2, \gamma}^{2}\left(\Omega, \Sigma_{D}\right)=\inf _{u \in E_{\Sigma_{D}^{2}}^{2, \gamma}(\Omega) ; u \neq 0} \frac{\int_{\Omega}|x|^{-2 \gamma}|\nabla u|^{2} d x}{\left(\int_{\Omega}|x|^{-2^{*} \gamma}|u|^{2^{*}} d x\right)^{\frac{2}{2^{*}}}} .
$$

- Hardy-Sobolev constant

$$
\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)=\inf _{u \in E_{\Sigma_{D}^{2, \gamma}}^{2, \gamma}(\Omega), u \neq 0} \frac{\int_{\Omega}|x|^{-p \gamma}|\nabla u|^{2} d x}{\int_{\Omega} \frac{|u|^{2}}{|x|^{2(\gamma+1)}} d x}
$$

Statement of the problems and functional framework.

- Sobolev constant.

$$
S_{2, \gamma}^{2}\left(\Omega, \Sigma_{D}\right)=\inf _{u \in E_{\Sigma_{D}^{2}}^{2, \gamma}(\Omega) ; u \neq 0} \frac{\int_{\Omega}|x|^{-2 \gamma}|\nabla u|^{2} d x}{\left(\int_{\Omega}|x|^{-2^{*} \gamma}|u|^{2^{*}} d x\right)^{\frac{2}{2^{*}}}} .
$$

- Hardy-Sobolev constant

$$
\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)=\inf _{u \in E_{\Sigma_{D}^{2}}^{2}(\Omega), u \neq 0} \frac{\int_{\Omega}|x|^{-p \gamma}|\nabla u|^{2} d x}{\int_{\Omega} \frac{|u|^{2}}{|x|^{2(\gamma+1)}} d x} .
$$

- $\Omega \subset \mathbb{R}^{\mathrm{N}}, N \geq 3$, is bounded regular domain with $0 \in \Omega$,

$$
-\infty<\gamma<\frac{N-2}{2}, 2^{*}=\frac{2 N}{N-2} .
$$

Statement of the problems and functional framework.

$\mathcal{D}_{\gamma}^{1,2}(\Omega)$ denotes the completion of $\mathcal{C}^{\infty}(\Omega)$ with respect to the norm

$$
\|\varphi\|_{\mathcal{D}_{\gamma}^{1,2}} \equiv\left(\int_{\Omega}\left(|\varphi|^{2}+|\nabla \varphi|^{2}\right)|x|^{-2 \gamma} d x\right)^{1 / 2}
$$

Define the energy space

$$
\begin{equation*}
E_{\Sigma_{D}}^{2, \gamma}(\Omega)=\left\{v \in \mathcal{D}_{\gamma}^{1,2}(\Omega): v=0 \quad \text { on } \quad \Sigma_{D}\right\} \tag{0.1}
\end{equation*}
$$

also it could be defined as the closure of $\mathcal{C}_{c}^{1}\left(\Omega \cup \Sigma_{N}\right)$ endowed with the norm $\|\cdot\|_{2, \gamma}$, given for $\varphi \in \mathcal{C}^{\infty}(\Omega)$ as

$$
\|\varphi\|_{2, \gamma}=\left(\int_{\Omega}\left(|\varphi|^{2}+|\nabla \varphi|^{2}\right)|x|^{-2 \gamma} d x\right)^{\frac{1}{2}}
$$

Statement of the problems and functional framework.

$\mathcal{D}_{\gamma}^{1,2}(\Omega)$ denotes the completion of $\mathcal{C}^{\infty}(\Omega)$ with respect to the norm

$$
\|\varphi\|_{\mathcal{D}_{\gamma}^{1,2}} \equiv\left(\int_{\Omega}\left(|\varphi|^{2}+|\nabla \varphi|^{2}\right)|x|^{-2 \gamma} d x\right)^{1 / 2}
$$

Define the energy space

$$
\begin{equation*}
E_{\Sigma_{D}}^{2, \gamma}(\Omega)=\left\{v \in \mathcal{D}_{\gamma}^{1,2}(\Omega): v=0 \quad \text { on } \quad \Sigma_{D}\right\} \tag{0.2}
\end{equation*}
$$

also it could be defined as the closure of $\mathcal{C}_{c}^{1}\left(\Omega \cup \Sigma_{N}\right)$ endowed with the norm $\|\cdot\|_{2, \gamma}$, given for $\varphi \in \mathcal{C}^{\infty}(\Omega)$ as

$$
\|\varphi\|_{2, \gamma}=\left(\int_{\Omega}\left(|\varphi|^{2}+|\nabla \varphi|^{2}\right)|x|^{-2 \gamma} d x\right)^{\frac{1}{2}} .
$$

Remark: If $\operatorname{cap}\left(\Sigma_{D}\right)>0$ then

$$
\|\varphi\|_{E_{\Sigma_{D}}^{2, \gamma}(\Omega)}=\|\nabla \varphi\|_{L^{2}\left(|x|^{-2 \gamma} d x\right)}, \forall \varphi \in E_{\Sigma_{D}}^{2, \gamma}(\Omega)
$$

i.e., $\|\cdot\|_{\mathcal{D}_{\gamma}^{1,2}(\Omega)} \sim\|\cdot\|_{E_{\Sigma_{D}^{2, \gamma}}^{2, \gamma}(\Omega)}$ by the Poincaré inequality.

Applications to the problems.

$$
(P) \equiv\left\{\begin{aligned}
-\operatorname{div}\left(|x|^{-2 \gamma} \nabla u\right) & =\lambda \frac{u^{q}}{|x|^{2(\gamma+1)}}+\frac{u^{r}}{|x|^{(r+1) \gamma}} \text { in } \Omega, \\
u & \geq 0 \text { in } \Omega, \\
B(u) & =0 \text { on } \partial \Omega .
\end{aligned}\right.
$$

Hypotheses:

- $\Omega \subset \mathbb{R}^{N}$ bounded regular domain with $N \geq 3$ and $0 \in \Omega$,
- $\lambda>0,-\infty<\gamma<\frac{N-2}{2}$.
- $0<q \leq 1<r+1 \leq 2^{*}=\frac{2 N}{N-2}$.

Boundary conditions.

- Boundary conditions:

$$
B(u)=|x|^{-2 \gamma} u \chi_{\Sigma_{D}}+|x|^{-2 \gamma} \frac{\partial u}{\partial \nu} \chi_{\Sigma_{N}}
$$

ν normal exterior a $\partial \Omega$.

Boundary conditions.

- Boundary conditions:

$$
B(u)=|x|^{-2 \gamma} u \chi_{\Sigma_{D}}+|x|^{-2 \gamma} \frac{\partial u}{\partial \nu} \chi_{\Sigma_{N}},
$$

ν normal exterior a $\partial \Omega$.

- $\Sigma_{D}, \Sigma_{N} \subset \partial \Omega$, are smooth ($N-1$)-dimensional manifolds such that:

Boundary conditions.

- Boundary conditions:

$$
B(u)=|x|^{-2 \gamma} u \chi_{\Sigma_{D}}+|x|^{-2 \gamma} \frac{\partial u}{\partial \nu} \chi_{\Sigma_{N}},
$$

ν normal exterior a $\partial \Omega$.

- $\Sigma_{D}, \Sigma_{N} \subset \partial \Omega$, are smooth ($N-1$)-dimensional manifolds such that:

1. $\bar{\Sigma}_{D} \cup \bar{\Sigma}_{N}=\partial \Omega, \Sigma_{D} \cap \Sigma_{N}=\emptyset$.
2. $\bar{\Sigma}_{D} \cap \bar{\Sigma}_{N}=\Gamma$, the "interphase" is a smooth ($N-2$)-dimensional manifold.

Boundary conditions.

- Boundary conditions:

$$
B(u)=|x|^{-2 \gamma} u \chi_{\Sigma_{D}}+|x|^{-2 \gamma} \frac{\partial u}{\partial \nu} \chi_{\Sigma_{N}},
$$

ν normal exterior a $\partial \Omega$.

- $\Sigma_{D}, \Sigma_{N} \subset \partial \Omega$, are smooth ($N-1$)-dimensional manifolds such that:

1. $\bar{\Sigma}_{D} \cup \bar{\Sigma}_{N}=\partial \Omega, \Sigma_{D} \cap \Sigma_{N}=\emptyset$.
2. $\bar{\Sigma}_{D} \cap \bar{\Sigma}_{N}=\Gamma$, the "interphase" is a smooth ($N-2$)-dimensional manifold.

- $\mathcal{H}_{N-1}\left(\Sigma_{D}(\alpha)\right)=\alpha \in\left(0, \mathcal{H}_{N-1}(\partial \Omega)\right)$, where $\mathcal{H}_{N-1}(\cdot)$ is the ($N-1$)-dimensional Hausdorff measure.

Caffarelli-Kohn-Nirenberg inequalities

Theorem [CKN] Let $p, q, r, \alpha, \beta, \sigma$ and a real constants verifying

$$
p, q \geq 1, r>0,0 \leq a \leq 1,
$$

and

$$
\frac{1}{p}+\frac{\alpha}{N}, \frac{1}{q}+\frac{\beta}{N}, \frac{1}{r}+\frac{m}{N}>0, \text { where } m=a \sigma+(1-a) \beta
$$

Then $\exists C>0$ such that $\forall u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right)$,

$$
\left\||x|^{m} u\right\|_{L^{r}\left(\mathbb{R}^{\mathrm{N}}\right)} \leq C\left\||x|^{\alpha}|\nabla u|\right\|_{L^{p}\left(\mathbb{R}^{\mathrm{N}}\right)}^{a}\left\||x|^{\beta} u\right\|_{L^{q}\left(\mathbb{R}^{\mathrm{N}}\right)}^{1-a}
$$

if and only if $a>0$ and moreover
(i) $\frac{1}{r}+\frac{m}{N}=a\left(\frac{1}{p}+\frac{\alpha-1}{N}\right)+(1-a)\left(\frac{1}{q}+\frac{\beta}{N}\right)$, if $0 \leq \alpha-\sigma$.
(ii) $\frac{1}{r}+\frac{m}{N}=\frac{1}{p}+\frac{\alpha-1}{N}$, if $\alpha-\sigma \leq 1$.
[CKN] L. Caffarelli, R. Kohn, L. Nirenberg, Compositio Math. 1984.

Two particular cases:

1.- Sobolev inequality

Theorem Let $N \geq 3$ and $-\infty<\gamma<\frac{N-2}{2}$. Then for all $u \in \mathcal{D}_{0, \gamma}^{1,2}(\Omega)$, we have

$$
S_{\gamma}^{2}\left(\int_{\Omega}|u|^{2^{*}}|x|^{-2^{*} \gamma} d x\right)^{2 / 2^{*}} \leq \int_{\Omega}|\nabla u|^{2}|x|^{-2 \gamma} d x
$$

Two particular cases:

1.- Sobolev inequality

Theorem Let $N \geq 3$ and $-\infty<\gamma<\frac{N-2}{2}$. Then for all $u \in \mathcal{D}_{0, \gamma}^{1,2}(\Omega)$, we have

$$
S_{\gamma}^{2}\left(\int_{\Omega}|u|^{2^{*}}|x|^{-2^{*} \gamma} d x\right)^{2 / 2^{*}} \leq \int_{\Omega}|\nabla u|^{2}|x|^{-2 \gamma} d x
$$

2.- Hardy-Sobolev inequality

Theorem Let $N \geq 3$ and $-\infty<\gamma<\frac{N-2}{2}$. Then for all $u \in \mathcal{D}_{0, \gamma}^{1,2}(\Omega)$, we have

$$
\Lambda_{N, \gamma} \int_{\Omega} \frac{|u|^{2}}{|x|^{2(\gamma+1)}} d x \leq \int_{\Omega}|\nabla u|^{2}|x|^{-2 \gamma} d x .
$$

Moreover, $\Lambda_{N, \gamma}=\left(\frac{N-2(\gamma+1)}{2}\right)^{2}$, is not achieved.

Preliminary results

Theorem [Picone's Inequality] Let $v \in E_{\Sigma_{D}}^{2, \gamma}(\Omega)$ such that $-\operatorname{div}\left(|x|^{-2 \gamma} \nabla v\right)$ is a positive Radon measure, $v \nsupseteq 0$. Then for all $u \in E_{\Sigma_{D}^{2, \gamma}}^{2}(\Omega)$ we get

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{2}|x|^{-2 \gamma} d x \geq & \int_{\Omega} \frac{u^{2}}{v}\left(-\operatorname{div}\left(|x|^{-2 \gamma} \nabla v\right)\right) d x \\
& +\int_{\Sigma_{N}}|x|^{-2 \gamma} \frac{u^{2}}{v} \frac{\partial v}{\partial \nu} d \sigma(x)
\end{aligned}
$$

See B. Abdellaoui, I. Peral, Ann. di Mat. 2003 for a proof in the Dirichlet case.

Preliminary results

Theorem [Picone's Inequality] Let $v \in E_{\Sigma_{D}}^{2, \gamma}(\Omega)$ such that $-\operatorname{div}\left(|x|^{-2 \gamma} \nabla v\right)$ is a positive Radon measure, $v \nsupseteq 0$. Then for all $u \in E_{\Sigma_{D}^{2, \gamma}}^{2}(\Omega)$ we get

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{2}|x|^{-2 \gamma} d x \geq & \int_{\Omega} \frac{u^{2}}{v}\left(-\operatorname{div}\left(|x|^{-2 \gamma} \nabla v\right)\right) d x \\
& +\int_{\Sigma_{N}}|x|^{-2 \gamma} \frac{u^{2}}{v} \frac{\partial v}{\partial \nu} d \sigma(x)
\end{aligned}
$$

See B. Abdellaoui, I. Peral, Ann. di Mat. 2003 for a proof in the Dirichlet case.

Theorem [Trace] Let $\Omega \subset \mathbb{R}^{N}$ be a bounded regular domain with $0 \in \Omega$. Suppose that $-\infty<\gamma<\frac{N-2}{2}$, then the following continuous embedding holds $E_{\Sigma_{D}^{2, \gamma}}^{2}(\Omega) \hookrightarrow W^{1 / 2,2}(\partial \Omega)$.

See
B. Abdellauoi, E. C., I. Peral, Advanced Nonlinear Studies, 2004
for a proof.

Movement of the boundary conditions

Hypotheses:

(H) $\Sigma_{D}\left(\alpha_{1}\right) \subset \Sigma_{D}\left(\alpha_{2}\right)$ for $\alpha_{1}<\alpha_{2}$ and $\lim _{\alpha \rightarrow 0} \Sigma_{D}(\alpha)=\mathcal{C}_{1} \subset \partial \Omega$ with $\operatorname{cap}_{2, \mu}\left(\mathcal{C}_{1}\right)=0$.
where $d \mu=|x|^{-2 \gamma} d x$ means the $(2, \mu)$-capacity of the set E, defined by

$$
\operatorname{cap}_{2, \mu}(E)=\inf \left\{\int_{\Omega}|\nabla u|^{2}|x|^{-2 \gamma} d x \mid u \in \mathcal{C}_{0}^{\infty}(\Omega) u \geq 1 \text { in } E\right\} .
$$

Movement of the boundary conditions

Hypotheses:

(H) $\Sigma_{D}\left(\alpha_{1}\right) \subset \Sigma_{D}\left(\alpha_{2}\right)$ for $\alpha_{1}<\alpha_{2}$ and $\lim _{\alpha \rightarrow 0} \Sigma_{D}(\alpha)=\mathcal{C}_{1} \subset \partial \Omega$ with $\operatorname{cap}_{2, \mu}\left(\mathcal{C}_{1}\right)=0$.
where $d \mu=|x|^{-2 \gamma} d x$ means the $(2, \mu)$-capacity of the set E, defined by

$$
\operatorname{cap}_{2, \mu}(E)=\inf \left\{\int_{\Omega}|\nabla u|^{2}|x|^{-2 \gamma} d x \mid u \in \mathcal{C}_{0}^{\infty}(\Omega) u \geq 1 \text { in } E\right\} .
$$

Related eigenvalue problems:

$$
\left\{\begin{aligned}
-\operatorname{div}\left(|x|^{-2 \gamma} \nabla u\right) & =\lambda|x|^{-2 \beta} u \text { in } \Omega, \beta<\gamma+1 \\
B_{\alpha}(u) \equiv u \chi_{\Sigma_{D}(\alpha)} & +|x|^{-2 \gamma} \frac{\partial u}{\partial \nu} \chi_{\Sigma_{N}(\alpha)}=0 \quad \text { on } \quad \partial \Omega
\end{aligned}\right.
$$

Theorem Assume (H) and suppose that $\left\{u_{\alpha}\right\}_{\alpha}$ is positive normalized
$\left(\left\|u_{\alpha}\right\|_{L^{2}\left(\Omega ;|x|^{-2 \beta}\right)}=1\right)$ eigenvalue sequence corresponding to the first eigenvalue $\left\{\lambda_{1}(\alpha)\right\}_{\alpha}$. Then

1. $u_{\alpha} \rightarrow u_{0}\left(\equiv\right.$ cte) as $\alpha \searrow 0$ strongly in $\mathcal{D}_{\gamma}^{1,2}(\Omega)$, being u_{0} a positive eigenfunction to the Neumann Problem.
2. $\lambda_{1}(\alpha) \searrow 0$ as $\alpha \searrow 0$.

Results related to Sobolev constant:

The Sobolev constant with Dirichlet boundary data, S_{γ}, defined by

$$
S_{\gamma}^{2}=\inf _{u \in \mathcal{D}_{0, \gamma}^{1,2}(\Omega) ; u \neq 0} \frac{\int_{\Omega}|x|^{-2 \gamma}|\nabla u|^{2} d x}{\left(\int_{\Omega}|x|^{-2^{*} \gamma}|u|^{2^{*}} d x\right)^{\frac{2}{2^{*}}}},
$$

verifies:

Results related to Sobolev constant:

The Sobolev constant with Dirichlet boundary data, S_{γ}, defined by

$$
S_{\gamma}^{2}=\inf _{u \in \mathcal{D}_{0, \gamma}^{1,2}(\Omega) ; u \neq 0} \frac{\int_{\Omega}|x|^{-2 \gamma}|\nabla u|^{2} d x}{\left(\int_{\Omega}|x|^{-2^{*} \gamma}|u|^{2^{*}} d x\right)^{\frac{2}{2^{*}}}}
$$

verifies:
(i) does not depend on Ω and it is not achieved in any bounded domain,
(ii) if $\gamma<0$, then S_{γ} is never achieved and coincide with S_{0}, the classical Sobolev constant,
(iii) if $\gamma \geq 0$, then S_{γ} is achieved in \mathbb{R}^{N} by a radial function (and its scaled), moreover we have $S_{\gamma}<S_{0}$ if $\gamma>0$.

See F. Catrina, Z.Q. Wang, Comm. Pure Appl. Math., 2001.

Results related to Sobolev constant:

The Sobolev constant with Dirichlet boundary data, S_{γ}, defined by

$$
S_{\gamma}^{2}=\inf _{u \in \mathcal{D}_{0, \gamma}^{1,2}(\Omega) ; u \neq 0} \frac{\int_{\Omega}|x|^{-2 \gamma}|\nabla u|^{2} d x}{\left(\int_{\Omega}|x|^{-2^{*} \gamma}|u|^{2^{*}} d x\right)^{\frac{2}{2^{*}}}}
$$

verifies:
(i) does not depend on Ω and it is not achieved in any bounded domain,
(ii) if $\gamma<0$, then S_{γ} is never achieved and coincide with S_{0}, the classical Sobolev constant,
(iii) if $\gamma \geq 0$, then S_{γ} is achieved in \mathbb{R}^{N} by a radial function (and its scaled), moreover we have $S_{\gamma}<S_{0}$ if $\gamma>0$.

See F. Catrina, Z.Q. Wang, Comm. Pure Appl. Math., 2001.

$$
S_{\gamma}^{2}\left(\Omega, \Sigma_{D}\right)=\inf _{u \in E_{\Sigma_{D}, \gamma}^{2, \gamma}(\Omega), u \not \equiv 0} \frac{\int_{\Omega}|x|^{-2 \gamma}|\nabla u|^{2} d x}{\left(\int_{\Omega}|x|^{-2^{*} \gamma}|u|^{2^{*}} d x\right)^{2 / 2^{*}}} .
$$

This constant depends on the domain and the boundary conditions. Moreover, under suitable hypotheses, is achieved.

Sobolev constant without weights.

The case $\gamma=0$ has been studied by
[LPT] Lions-Pacella-Tricarico, Indiana Univ. Math. Jour., 1988.
Their ideas are to use some symmetrization arguments based on the classical isoperimetric inequality, which permit to give conditions on the geometry of Ω and Σ_{N} such that $S_{0}\left(\Omega, \Sigma_{D}\right)$ is achieved.

Sobolev constant without weights.

The case $\gamma=0$ has been studied by
[LPT] Lions-Pacella-Tricarico, Indiana Univ. Math. Jour., 1988.
Their ideas are to use some symmetrization arguments based on the classical isoperimetric inequality, which permit to give conditions on the geometry of Ω and Σ_{N} such that $S_{0}\left(\Omega, \Sigma_{D}\right)$ is achieved.

Theorem Assume that $\Omega \subset \mathbb{R}^{N}$ is a bounded regular domain, then

$$
S_{0}\left(\Omega, \Sigma_{D}\right) \leq 2^{-\frac{1}{N}} S_{0},
$$

moreover, if Σ_{N} is smooth and $S_{0}\left(\Omega, \Sigma_{D}\right)<2^{-\frac{1}{N}} S_{0}$, then $S_{0}\left(\Omega, \Sigma_{D}\right)$ is achieved.

Sobolev constant without weights.

The case $\gamma=0$ has been studied by
[LPT] Lions-Pacella-Tricarico, Indiana Univ. Math. Jour., 1988.
Their ideas are to use some symmetrization arguments based on the classical isoperimetric inequality, which permit to give conditions on the geometry of Ω and Σ_{N} such that $S_{0}\left(\Omega, \Sigma_{D}\right)$ is achieved.

Theorem Assume that $\Omega \subset \mathbb{R}^{N}$ is a bounded regular domain, then

$$
S_{0}\left(\Omega, \Sigma_{D}\right) \leq 2^{-\frac{1}{N}} S_{0},
$$

moreover, if Σ_{N} is smooth and $S_{0}\left(\Omega, \Sigma_{D}\right)<2^{-\frac{1}{N}} S_{0}$, then $S_{0}\left(\Omega, \Sigma_{D}\right)$ is achieved.

Remark: Notice that in the case where $\gamma \neq 0$, a general isoperimetric inequality as in the case $\gamma=0$ is not known.

$$
S_{\gamma}\left(\Omega, \Sigma_{D}\right) ; \gamma \leq 0
$$

Lemma Assume that $\gamma \leq 0$. Then
$S_{\gamma}\left(\Omega, \Sigma_{D}\right) \leq 2^{-1 / N} S_{0} \equiv 2^{-1 / N} S_{\gamma}$.

$$
S_{\gamma}\left(\Omega, \Sigma_{D}\right) ; \gamma \leq 0
$$

Lemma Assume that $\gamma \leq 0$. Then
$S_{\gamma}\left(\Omega, \Sigma_{D}\right) \leq 2^{-1 / N} S_{0} \equiv 2^{-1 / N} S_{\gamma}$.
Lemma Assume that $\gamma \leq 0$, let $\left\{u_{n}\right\} \subset E_{\Sigma_{D}}^{2, \gamma}(\Omega)$ be a bounded minimizing sequence for $S_{\gamma}\left(\Omega, \Sigma_{D}\right)$ with $\int_{\Omega}|x|^{-2^{*} \gamma}\left|u_{n}\right|^{2^{*}} d x=1$. If $u_{n} \rightharpoonup u_{0}$ weakly in $E_{\Sigma_{D}}^{2, \gamma}(\Omega)$, with $u_{0} \equiv 0$, then there exists $x_{0} \in \bar{\Sigma}_{N}$ such that

$$
|x|^{-2 \gamma}\left|\nabla u_{n}\right|^{2} \rightharpoonup \mu \geq \mu_{0} \delta_{x_{0}}, \quad|x|^{-2^{*} \gamma}\left|u_{n}\right|^{2^{*}} \rightharpoonup \nu=\nu_{0} \delta_{x_{0}}
$$

weakly in measure sense and $S_{\gamma}\left(\Omega, \Sigma_{D}\right) \equiv 2^{-1 / N} S_{0}$.

$$
S_{\gamma}\left(\Omega, \Sigma_{D}\right) ; \gamma \leq 0
$$

Lemma Assume that $\gamma \leq 0$. Then
$S_{\gamma}\left(\Omega, \Sigma_{D}\right) \leq 2^{-1 / N} S_{0} \equiv 2^{-1 / N} S_{\gamma}$.
Lemma Assume that $\gamma \leq 0$, let $\left\{u_{n}\right\} \subset E_{\Sigma_{D}}^{2, \gamma}(\Omega)$ be a bounded minimizing sequence for $S_{\gamma}\left(\Omega, \Sigma_{D}\right)$ with $\int_{\Omega}|x|^{-2^{*} \gamma}\left|u_{n}\right|^{2^{*}} d x=1$. If $u_{n} \rightharpoonup u_{0}$ weakly in $E_{\Sigma_{D}}^{2, \gamma}(\Omega)$, with $u_{0} \equiv 0$, then there exists $x_{0} \in \bar{\Sigma}_{N}$ such that

$$
|x|^{-2 \gamma}\left|\nabla u_{n}\right|^{2} \rightharpoonup \mu \geq \mu_{0} \delta_{x_{0}}, \quad|x|^{-2^{*} \gamma}\left|u_{n}\right|^{2^{*}} \rightharpoonup \nu=\nu_{0} \delta_{x_{0}}
$$

weakly in measure sense and $S_{\gamma}\left(\Omega, \Sigma_{D}\right) \equiv 2^{-1 / N} S_{0}$.
Theorem If $\gamma \leq 0$ and $S_{\gamma}\left(\Omega, \Sigma_{D}\right)<2^{-1 / N} S_{0} \equiv 2^{-1 / N} S_{\gamma}$, then $S_{\gamma}\left(\Omega, \Sigma_{D}\right)$ is attained.

$$
S_{\gamma}\left(\Omega, \Sigma_{D}\right) ; \gamma>0
$$

Remember that if $\gamma \geq 0, S_{\gamma}$ is achieved in \mathbb{R}^{N} in a radial function (and its scaled) and moreover $S_{\gamma}<S_{0}$ for all $\gamma>0$.

$$
S_{\gamma}\left(\Omega, \Sigma_{D}\right) ; \gamma>0
$$

Remember that if $\gamma \geq 0, S_{\gamma}$ is achieved in \mathbb{R}^{N} in a radial function (and its scaled) and moreover $S_{\gamma}<S_{0}$ for all $\gamma>0$.

Lemma Assume that $\gamma \geq 0$. Then
$S_{\gamma}\left(\Omega, \Sigma_{D}\right) \leq \min \left\{2^{-1 / N} S_{0}, S_{\gamma}\right\}$.

$$
S_{\gamma}\left(\Omega, \Sigma_{D}\right) ; \gamma>0
$$

Remember that if $\gamma \geq 0, S_{\gamma}$ is achieved in \mathbb{R}^{N} in a radial function (and its scaled) and moreover $S_{\gamma}<S_{0}$ for all $\gamma>0$.

Lemma Assume that $\gamma \geq 0$. Then
$S_{\gamma}\left(\Omega, \Sigma_{D}\right) \leq \min \left\{2^{-1 / N} S_{0}, S_{\gamma}\right\}$.
Theorem If $\gamma \geq 0$ and $S_{\gamma}\left(\Omega, \Sigma_{D}\right)<\min \left\{2^{-1 / N} S_{0}, S_{\gamma}\right\}$, then $S_{\gamma}\left(\Omega, \Sigma_{D}\right)$ is achieved.

Attainability: a quantitative condition.

Theorem Given a family $\left\{\Sigma_{D}(\alpha): 0<\alpha<\mathcal{H}_{N-1}(\partial \Omega)\right\}$ verifying hypothesis (H), then there exists a positive constant α_{0} such that for all $\alpha=\mathcal{H}_{N-1}\left(\Sigma_{D}(\alpha)\right)<\alpha_{0}$, $S_{\gamma}\left(\Omega, \Sigma_{D}(\alpha)\right)$ is attained.

Attainability: a quantitative condition.

Theorem Given a family $\left\{\Sigma_{D}(\alpha): 0<\alpha<\mathcal{H}_{N-1}(\partial \Omega)\right\}$ verifying hypothesis (H), then there exists a positive constant α_{0} such that for all $\alpha=\mathcal{H}_{N-1}\left(\Sigma_{D}(\alpha)\right)<\alpha_{0}$, $S_{\gamma}\left(\Omega, \Sigma_{D}(\alpha)\right)$ is attained.

Remark: Modulo a constant, we get the existence of a positive solution to the associated critical problem

$$
\left\{\begin{aligned}
-\operatorname{div}\left(|x|^{-2 \gamma} \nabla u\right) & =|x|^{-2^{*} \gamma} u^{2^{*}-1} \text { in } \Omega, \\
|x|^{-2 \gamma} u & =0 \text { on } \Sigma_{D}, \\
|x|^{-2 \gamma} \frac{\partial u}{\partial n} & =0 \text { on } \Sigma_{N} .
\end{aligned}\right.
$$

On the other hand, to get a domain Ω for which the constant $S_{\gamma}\left(\Omega, \Sigma_{D}\right)$ is not achieved we need show geometrical properties.

Non-attainability: Geometrical condition.

Theorem Let $\Omega \subset \mathbb{R}^{\mathrm{N}}$ be a bounded domain verifying $\langle x, n\rangle>0$ a.e. on Σ_{D} and $\langle x, n\rangle=0$ a.e. on Σ_{N}, then the associated problem has not positive solution $u \in E_{\Sigma_{D}}^{2, \gamma}(\Omega)$. As a consequence, $S_{\gamma}\left(\Omega, \Sigma_{D}\right)$ is not achieved.

Non-attainability: Geometrical condition.

Theorem Let $\Omega \subset \mathbb{R}^{\mathrm{N}}$ be a bounded domain verifying $\langle x, n\rangle>0$ a.e. on Σ_{D} and $\langle x, n\rangle=0$ a.e. on Σ_{N}, then the associated problem has not positive solution $u \in E_{\Sigma_{D}}^{2, \gamma}(\Omega)$. As a consequence, $S_{\gamma}\left(\Omega, \Sigma_{D}\right)$ is not achieved.

Proof: Assume by contradiction that $S_{\gamma}\left(\Omega, \Sigma_{D}\right)$ is achieved, then we get the existence of $0<u \in E_{\Sigma_{D}}^{2, \gamma}(\Omega)$ solution to the associated problem. Using $\langle x, \nabla u\rangle$ as a test function,......., we get

$$
\frac{1}{2^{*}} \int_{\Sigma_{N}}\langle x, n\rangle \frac{u^{2^{*}}}{|x|^{2^{* \gamma}}} d \sigma=\frac{1}{2} \int_{\Sigma_{N}}\langle x, n\rangle \frac{|\nabla u|^{2}}{|x|^{2 \gamma}} d \sigma-\frac{1}{2} \int_{\Sigma_{D}}\langle x, n\rangle \frac{|\nabla u|^{2}}{\left.|x|\right|^{2 \gamma}} d \sigma .
$$

Non-attainability: Geometrical condition.

Theorem Let $\Omega \subset \mathbb{R}^{\mathrm{N}}$ be a bounded domain verifying $\langle x, n\rangle>0$ a.e. on Σ_{D} and $\langle x, n\rangle=0$ a.e. on Σ_{N}, then the associated problem has not positive solution $u \in E_{\Sigma_{D}}^{2, \gamma}(\Omega)$. As a consequence, $S_{\gamma}\left(\Omega, \Sigma_{D}\right)$ is not achieved.

Results related to Hardy constant

$$
\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)=\inf _{u \in E_{\Sigma_{D}}^{2, \gamma}(\Omega), u \neq 0} \frac{\int_{\Omega}|x|^{-2 \gamma}|\nabla u|^{2} d x}{\int_{\Omega} \frac{|u|^{2}}{|x|^{2(\gamma+1)}} d x}
$$

When the infimum is taken on $\mathcal{D}_{0, \gamma}^{1,2}(\Omega)$ or on $\mathcal{D}_{\gamma}^{1,2}\left(\mathbb{R}^{\mathrm{N}}\right)$, the Hardy constant is $\Lambda_{N, \gamma} \equiv\left(\frac{N-2(\gamma+1)}{2}\right)^{2}$.

Results related to Hardy constant

$$
\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)=\inf _{u \in E_{\Sigma_{D}}^{2, \gamma}(\Omega), u \neq 0} \frac{\int_{\Omega}|x|^{-2 \gamma}|\nabla u|^{2} d x}{\int_{\Omega} \frac{|u|^{2}}{|x|^{2(\gamma+1)}} d x}
$$

When the infimum is taken on $\mathcal{D}_{0, \gamma}^{1,2}(\Omega)$ or on $\mathcal{D}_{\gamma}^{1,2}\left(\mathbb{R}^{\mathrm{N}}\right)$, the Hardy constant is $\Lambda_{N, \gamma} \equiv\left(\frac{N-2(\gamma+1)}{2}\right)^{2}$.

1. $\Lambda_{N, \gamma}$ is not achieved.
2. $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)$ is achieved under suitable hypothesis.

Results related to Hardy constant

$$
\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)=\inf _{u \in E_{\Sigma_{D}}^{2, \gamma}(\Omega), u \neq 0} \frac{\int_{\Omega}|x|^{-2 \gamma}|\nabla u|^{2} d x}{\int_{\Omega} \frac{|u|^{2}}{|x|^{2(\gamma+1)}} d x}
$$

When the infimum is taken on $\mathcal{D}_{0, \gamma}^{1,2}(\Omega)$ or on $\mathcal{D}_{\gamma}^{1,2}\left(\mathbb{R}^{\mathrm{N}}\right)$, the Hardy constant is $\Lambda_{N, \gamma} \equiv\left(\frac{N-2(\gamma+1)}{2}\right)^{2}$.

1. $\Lambda_{N, \gamma}$ is not achieved.
2. $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)$ is achieved under suitable hypothesis.

In the Neumann problem $\left(\Sigma_{D}=\emptyset\right), \Lambda_{N, \gamma} \equiv 0$ and is achieved by constant functions.

Results related to Hardy constant

$$
\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)=\inf _{u \in E_{\Sigma_{D}}^{2, \gamma}(\Omega), u \neq 0} \frac{\int_{\Omega}|x|^{-2 \gamma}|\nabla u|^{2} d x}{\int_{\Omega} \frac{|u|^{2}}{|x|^{2(\gamma+1)}} d x}
$$

When the infimum is taken on $\mathcal{D}_{0, \gamma}^{1,2}(\Omega)$ or on $\mathcal{D}_{\gamma}^{1,2}\left(\mathbb{R}^{\mathrm{N}}\right)$, the Hardy constant is
$\Lambda_{N, \gamma} \equiv\left(\frac{N-2(\gamma+1)}{2}\right)^{2}$.

1. $\Lambda_{N, \gamma}$ is not achieved.
2. $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)$ is achieved under suitable hypothesis.

In the Neumann problem $\left(\Sigma_{D}=\emptyset\right), \Lambda_{N, \gamma} \equiv 0$ and is achieved by constant functions.
When $\operatorname{cap}_{2, \mu}\left(\Sigma_{D}\right)>0$, one gets

$$
0<\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right) \leq \Lambda_{N, \gamma} .
$$

- The upper estimate is direct by the embedding $\mathcal{D}_{0, \gamma}^{1,2}(\Omega) \subset E_{\Sigma_{D}}^{2, \gamma}(\Omega)$.
- The positivity follows by applying the Picone inequality for suitable test function jointly with the Trace Theorem.

Results related to Hardy constant

To prove $0<\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)$, we consider $w(x)=|x|^{-\frac{N-2(\gamma+1)}{2}}$ and $v \in E_{\Sigma_{D}}^{2, \gamma}(\Omega)$, by the Picone identity,

Results related to Hardy constant

To prove $0<\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)$, we consider $w(x)=|x|^{-\frac{N-2(\gamma+1)}{2}}$ and $v \in E_{\Sigma_{D}}^{2, \gamma}(\Omega)$, by the Picone identity,

$$
\begin{aligned}
& \int_{\Omega}|\nabla v|^{2}|x|^{-2 \gamma} d x \geq \int_{\Omega}\left\langle\nabla\left(\frac{v^{2}}{w}\right), \nabla w\right\rangle|x|^{-2 \gamma} d x \\
& =\int_{\Omega}\left(-\operatorname{div}\left(|x|^{-2 \gamma} \nabla w\right) \frac{v^{2}}{w} d x-\int_{\Sigma_{N}} \frac{v^{2}}{w}\left|\frac{\partial w}{\partial \nu}\right||x|^{-2 \gamma} d \sigma(x)\right. \\
& \geq c\left(c_{0}, \alpha\right) \int_{\Omega} \frac{v^{2}}{|x|^{2(\gamma+1)}} d x-c\left(\Sigma_{N}, c_{0}, \alpha\right) \int_{\Omega}|\nabla v|^{2}|x|^{-2 \gamma} d x,
\end{aligned}
$$

Results related to Hardy constant

To prove $0<\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)$, we consider $w(x)=|x|^{-\frac{N-2(\gamma+1)}{2}}$ and $v \in E_{\Sigma_{D}}^{2, \gamma}(\Omega)$, by the Picone identity,

$$
\begin{aligned}
& \int_{\Omega}|\nabla v|^{2}|x|^{-2 \gamma} d x \geq \int_{\Omega}\left\langle\nabla\left(\frac{v^{2}}{w}\right), \nabla w\right\rangle|x|^{-2 \gamma} d x \\
& =\int_{\Omega}\left(-\operatorname{div}\left(|x|^{-2 \gamma} \nabla w\right) \frac{v^{2}}{w} d x-\int_{\Sigma_{N}} \frac{v^{2}}{w}\left|\frac{\partial w}{\partial \nu}\right||x|^{-2 \gamma} d \sigma(x)\right. \\
& \geq c\left(c_{0}, \alpha\right) \int_{\Omega} \frac{v^{2}}{|x|^{2(\gamma+1)}} d x-c\left(\Sigma_{N}, c_{0}, \alpha\right) \int_{\Omega}|\nabla v|^{2}|x|^{-2 \gamma} d x
\end{aligned}
$$

where we have used the Trace Theorem in the last inequality. Hence one gets the positivity of $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)$.

Attainability of $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)$

Theorem The infimum $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)$ is achieved if and only if

$$
\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)<\Lambda_{N, \gamma}
$$

Attainability of $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)$

Theorem The infimum $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)$ is achieved if and only if

$$
\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)<\Lambda_{N, \gamma}
$$

For the case $\gamma=0$, see
Z.Q. Wang, M. Zhu, Electron. Jour. Diff. Eqns. (2003).

A different proof valid also for $1<p<N$ and all $-\infty<\gamma<\frac{N-p}{p}$ can be seen in
B. Abdellaoui, E. C., I. Peral, Adv. Nonlinear Stud., 2004.

Attainability of $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)$

Theorem The infimum $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)$ is achieved if and only if

$$
\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)<\Lambda_{N, \gamma}
$$

For the case $\gamma=0$, see
Z.Q. Wang, M. Zhu, Electron. Jour. Diff. Eqns. (2003).

A different proof valid also for $1<p<N$ and all $-\infty<\gamma<\frac{N-p}{p}$ can be seen in
B. Abdellaoui, E. C., I. Peral, Adv. Nonlinear Stud., 2004.

Ideas of the proof:

1. (\Longrightarrow) follows by the improved Hardy inequality with mixed boundary data.
2. (\Longleftarrow) First one extend the concentration-compactness results by P.L. Lions to this framework.
Next, for a minimizing sequence, one proves that is not possible weakly convergence to zero, by using cut-off functions in $B_{\varepsilon}(0)$ we still have a minimizing sequence, hence one arrives to $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)=\Lambda_{N, \gamma}$.
That fact allows to prove that the infimum $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)$ is achieved.

Attainability of $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)$: a quantitative condition.

Theorem Let $\left\{\Sigma_{D}(\alpha): 0<\alpha<\mathcal{H}_{N-1}(\partial \Omega)\right\}$ be a family verifying (H). Then there exists $\alpha_{0}>0$ such that for all $\alpha=\mathcal{H}_{N-1}\left(\Sigma_{D}(\alpha)\right)<\alpha_{0}$ we get $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}(\alpha)\right)<\Lambda_{N, \gamma}$. As a consequence, $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}(\alpha)\right)$ is achieved.

Non attainability of $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)$

-A geometrical condition.
Theorem Let $\Omega \subset \mathbb{R}^{N}$ be a bounded regular domain verifying $\langle x, \nu\rangle \leq 0$ for a.e. $x \in \Sigma_{N}$.
Then $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)=\Lambda_{N, \gamma}$.

Non attainability of $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)$

-A geometrical condition.
Theorem Let $\Omega \subset \mathbb{R}^{N}$ be a bounded regular domain verifying $\langle x, \nu\rangle \leq 0$ for a.e. $x \in \Sigma_{N}$. Then $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)=\Lambda_{N, \gamma}$.
Proof: Assume that $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)<\Lambda_{N, \gamma}$ and let u be a solution to the corresponding variational problem. Consider $v(x)=|x|^{\frac{N-2(\gamma+1)}{2}} u$, then $\left.v \in E_{\Sigma_{D}^{2, \gamma}}^{2, ~} \Omega\right)$ and moreover

$$
\begin{aligned}
& \int_{\Omega}|x|^{-(N-2)}|\nabla v|^{2} d x=\int_{\Omega}|x|^{-2 \gamma}\left|\nabla u+\frac{N-2(\gamma+1)}{2} \frac{u}{|x|^{2}} x\right|^{2} d x \\
& =\left(\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)-\Lambda_{N, \gamma}\right) \int_{\Omega} \frac{u^{2}}{|x|^{2(\gamma+1)}} d x+\int_{\Sigma_{N}} \frac{u^{2}}{|x|^{2(\gamma+1)}}\langle x, \nu\rangle d \sigma .
\end{aligned}
$$

Non attainability of $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)$

-A geometrical condition.

Theorem Let $\Omega \subset \mathbb{R}^{N}$ be a bounded regular domain verifying $\langle x, \nu\rangle \leq 0$ for a.e. $x \in \Sigma_{N}$. Then $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)=\Lambda_{N, \gamma}$.

Proof: Assume that $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)<\Lambda_{N, \gamma}$ and let u be a solution to the corresponding variational problem. Consider $v(x)=|x|^{\frac{N-2(\gamma+1)}{2}} u$, then $v \in E_{\Sigma_{D}}^{2, \gamma}(\Omega)$ and moreover

$$
\begin{aligned}
& \int_{\Omega}|x|^{-(N-2)}|\nabla v|^{2} d x=\int_{\Omega}|x|^{-2 \gamma}\left|\nabla u+\frac{N-2(\gamma+1)}{2} \frac{u}{|x|^{2}} x\right|^{2} d x \\
& =\left(\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)-\Lambda_{N, \gamma}\right) \int_{\Omega} \frac{u^{2}}{|x|^{2(\gamma+1)}} d x+\int_{\Sigma_{N}} \frac{u^{2}}{|x|^{2(\gamma+1)}}\langle x, \nu\rangle d \sigma .
\end{aligned}
$$

In $\Omega_{1},\langle x, \nu\rangle=0$ on $\Sigma_{N} . \quad$ In $\Omega_{2},\langle x, \nu\rangle<0$ on Σ_{N}.

Non attainability of $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)$

-A geometrical condition.

Theorem Let $\Omega \subset \mathbb{R}^{N}$ be a bounded regular domain verifying $\langle x, \nu\rangle \leq 0$ for a.e. $x \in \Sigma_{N}$.
Then $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)=\Lambda_{N, \gamma}$.
Proof: Assume that $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)<\Lambda_{N, \gamma}$ and let u be a solution to the corresponding variational problem. Consider $v(x)=|x|^{\frac{N-2(\gamma+1)}{2}} u$, then $v \in E_{\Sigma_{D}}^{2, \gamma}(\Omega)$ and moreover

$$
\begin{aligned}
& \int_{\Omega}|x|^{-(N-2)}|\nabla v|^{2} d x=\int_{\Omega}|x|^{-2 \gamma}\left|\nabla u+\frac{N-2(\gamma+1)}{2} \frac{u}{|x|^{2}} x\right|^{2} d x \\
& =\left(\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)-\Lambda_{N, \gamma}\right) \int_{\Omega} \frac{u^{2}}{|x|^{2(\gamma+1)}} d x+\int_{\Sigma_{N}} \frac{u^{2}}{|x|^{2(\gamma+1)}}\langle x, \nu\rangle d \sigma .
\end{aligned}
$$

-A quantitative condition.

Theorem There exists a constant $\varepsilon>0$ such that if $\left|\Sigma_{N}\right| \leq \varepsilon$, then $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)=\Lambda_{N, \gamma}$.

Double critical problems: relation with Sobolev constant

Consider the double critical problem

$$
\left\{\begin{aligned}
-\operatorname{div}\left(|x|^{-2 \gamma} \nabla u\right) & =\lambda \frac{u}{|x|^{2(\gamma+1)}}+|x|^{-2^{*} \gamma} u^{2^{*}-1} \text { in } \Omega, \\
u & >0 \text { in } \Omega, \\
B_{\alpha}(u) & =0, \text { on } \partial \Omega .
\end{aligned}\right.
$$

The presence of the mixed boundary conditions makes the problem to be different from the one in the whole $\Omega=\mathbb{R}^{\mathrm{N}}$ or Ω a bounded domain with Dirichlet boundary conditions.

Double critical problems: relation with Sobolev constant

Remarks: 1.- If Ω is a bounded star-shaped domain with $0 \in \Omega$, then problem

$$
\left\{\begin{aligned}
-\operatorname{div}\left(|x|^{-2 \gamma} \nabla u\right) & =\lambda \frac{u}{|x|^{2(\gamma+1)}}+|x|^{-2^{*} \gamma} u^{2^{*}-1}, \quad \text { in } \Omega, \\
u & \geq 0, \text { in } \Omega, \\
u & \in \mathcal{D}_{0, \gamma}^{1,2}(\Omega)
\end{aligned}\right.
$$

has not positive solution.

Double critical problems: relation with Sobolev constant

2.- If $\Omega=\mathbb{R}^{\mathrm{N}}$, the previous problem is reduced to

$$
-\operatorname{div}\left(|x|^{-2 \gamma} \nabla u\right)=\lambda \frac{u}{|x|^{2(\gamma+1)}}+|x|^{-2^{*} \gamma} u^{2^{*}-1}, u \geq 0, \quad \mathcal{D}_{0, \gamma}^{1,2}\left(\mathbb{R}^{\mathrm{N}}\right) .
$$

Double critical problems: relation with Sobolev constant

2.- If $\Omega=\mathbb{R}^{N}$, the previous problem is reduced to

$$
-\operatorname{div}\left(|x|^{-2 \gamma} \nabla u\right)=\lambda \frac{u}{|x|^{2(\gamma+1)}}+|x|^{-2^{*} \gamma} u^{2^{*}-1}, u \geq 0, \quad \mathcal{D}_{0, \gamma}^{1,2}\left(\mathbb{R}^{\mathrm{N}}\right) .
$$

We set

$$
T_{\lambda, \gamma}=\inf _{v \in \mathcal{D}_{0, \gamma}^{1,2}\left(\mathbb{R}^{\mathrm{N}}\right), v \neq 0} \frac{\int_{\mathbb{R}^{\mathrm{N}}}|\nabla v|^{2}|x|^{-2 \gamma} d x-\lambda \int_{\mathbb{R}^{\mathrm{N}}} \frac{v^{2}}{|x|^{2(\gamma+1)}} d x}{\left(\int_{\mathbb{R}^{\mathrm{N}}}|v|^{2^{*}}|x|^{-2^{*} \gamma} d x\right)^{2 / 2^{*}}} .
$$

Claim. $T_{\lambda, \gamma}$ is achieved if and only if $\frac{N-2}{2}-\sqrt{\Lambda_{N, \gamma}-\lambda} \geq 0$.

Double critical problems: relation with Sobolev constant

2.- If $\Omega=\mathbb{R}^{\mathrm{N}}$, the previous problem is reduced to

$$
-\operatorname{div}\left(|x|^{-2 \gamma} \nabla u\right)=\lambda \frac{u}{|x|^{2(\gamma+1)}}+|x|^{-2^{*} \gamma} u^{2^{*}-1}, u \geq 0, \quad \mathcal{D}_{0, \gamma}^{1,2}\left(\mathbb{R}^{\mathrm{N}}\right)
$$

We set

$$
T_{\lambda, \gamma}=\inf _{v \in \mathcal{D}_{0, \gamma}^{1,2}\left(\mathbb{R}^{\mathrm{N}}\right), v \neq 0} \frac{\int_{\mathbb{R}^{\mathrm{N}}}|\nabla v|^{2}|x|^{-2 \gamma} d x-\lambda \int_{\mathbb{R}^{\mathrm{N}}} \frac{v^{2}}{|x|^{2(\gamma+1)}} d x}{\left(\int_{\mathbb{R}^{\mathrm{N}}}|v|^{2^{*}}|x|^{-2^{*} \gamma} d x\right)^{2 / 2^{*}}}
$$

Claim. $T_{\lambda, \gamma}$ is achieved if and only if $\frac{N-2}{2}-\sqrt{\Lambda_{N, \gamma}-\lambda} \geq 0$.
If $\frac{N-2}{2}-\sqrt{\Lambda_{N, \gamma}-\lambda} \leq 0$ we can prove that $T_{\lambda, \gamma}=S_{0}$, the classical Sobolev constant.
This follows by setting $w(x)=|x|^{\theta} v$ with $\theta=\frac{N-2(\gamma+1)}{2}-\sqrt{\Lambda_{N, \gamma}-\lambda} \leq 0$, then

$$
\frac{\int_{\mathbb{R}^{\mathrm{N}}}|\nabla v|^{2}|x|^{-2 \gamma} d x-\lambda \int_{\mathbb{R}^{\mathrm{N}}} \frac{v^{2}}{|x|^{2(\gamma+1)}} d x}{\left(\int_{\mathbb{R}^{\mathrm{N}}}|v|^{2^{*}}|x|^{2^{*} \gamma} d x\right)^{2 / 2^{*}}}=\frac{\int_{\mathbb{R}^{\mathrm{N}}}|\nabla w|^{2}|x|^{-2 \alpha} d x}{\left(\int_{\mathbb{R}^{\mathrm{N}}}|w|^{2^{*}}|x|^{-2^{*} \alpha} d x\right)^{2 / 2^{*}}},
$$

where $\alpha=\frac{N-2}{2}-\sqrt{\Lambda_{N, \gamma}-\lambda}$. Hence the claim follows using the result of Catrina-Wang previously cited.

Main existence result

We define

$$
Q_{\lambda, \gamma}(u)=\int_{\Omega}|\nabla u|^{2}|x|^{-2 \gamma} d x-\lambda \int_{\Omega} \frac{u^{2}}{|x|^{2(\gamma+1)}} d x
$$

and

$$
I_{\lambda, \gamma}=\inf _{u \in E_{\Sigma_{D}}^{2, \gamma}(\Omega),\|u\|_{L_{\gamma}^{2 *}}=1} Q_{\lambda, \gamma}(u) .
$$

Main existence result

We define

$$
Q_{\lambda, \gamma}(u)=\int_{\Omega}|\nabla u|^{2}|x|^{-2 \gamma} d x-\lambda \int_{\Omega} \frac{u^{2}}{|x|^{2(\gamma+1)}} d x
$$

and

$$
I_{\lambda, \gamma}=\inf _{u \in E_{\Sigma_{D}}^{2, \gamma}(\Omega),\|u\|_{L_{\gamma}^{2 *}}=1} Q_{\lambda, \gamma}(u) .
$$

Theorem Assume that $\lambda \in\left(0, \Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)\right)$, then we have:
(a) If $\frac{N-2}{2}-\sqrt{\Lambda_{N, \gamma}-\lambda} \leq 0$ and $I_{\lambda, \gamma}(\Omega)<2^{-\frac{1}{N}} S_{0}$, then $I_{\lambda, \gamma}(\Omega)$ is achieved and as a consequence, the DC problem has solution. Moreover, if $S_{\gamma}\left(\Omega, \Sigma_{D}\right)$ is achieved then $I_{\lambda, \gamma}(\Omega)$ is also achieved.
(b) If $\frac{N-2}{2}-\sqrt{\Lambda_{N, \gamma}-\lambda} \geq 0$ and $I_{\lambda, \gamma}(\Omega)<\min \left\{T_{\lambda, \gamma}, 2^{-\frac{1}{N}} S_{0}\right\}$, we obtain that $I_{\lambda, \gamma}$ is achieved.
(c) Given a family $\left\{\Sigma_{D}(\alpha): 0<\alpha<\mathcal{H}_{N-1}(\partial \Omega)\right\}$ verifying hypothesis (\mathbf{H}), there exists a positive constant α_{0} such that for all $\alpha=\mathcal{H}_{N-1}\left(\Sigma_{D}(\alpha)\right)<\alpha_{0}$ and all $0<\lambda<\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)$, then $I_{\lambda, \gamma}$ is achieved.

Main existence result

We define

$$
Q_{\lambda, \gamma}(u)=\int_{\Omega}|\nabla u|^{2}|x|^{-2 \gamma} d x-\lambda \int_{\Omega} \frac{u^{2}}{|x|^{2(\gamma+1)}} d x
$$

and

$$
I_{\lambda, \gamma}=\inf _{u \in E_{\Sigma_{D}}^{2, \gamma}(\Omega),\|u\|_{L_{\gamma}^{2 *}}=1} Q_{\lambda, \gamma}(u) .
$$

Theorem Assume that $\lambda \in\left(0, \Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)\right)$, then we have:
(a) If $\frac{N-2}{2}-\sqrt{\Lambda_{N, \gamma}-\lambda} \leq 0$ and $I_{\lambda, \gamma}(\Omega)<2^{-\frac{1}{N}} S_{0}$, then $I_{\lambda, \gamma}(\Omega)$ is achieved and as a consequence, the DC problem has solution. Moreover, if $S_{\gamma}\left(\Omega, \Sigma_{D}\right)$ is achieved then $I_{\lambda, \gamma}(\Omega)$ is also achieved.
(b) If $\frac{N-2}{2}-\sqrt{\Lambda_{N, \gamma}-\lambda} \geq 0$ and $I_{\lambda, \gamma}(\Omega)<\min \left\{T_{\lambda, \gamma}, 2^{-\frac{1}{N}} S_{0}\right\}$, we obtain that $I_{\lambda, \gamma}$ is achieved.
(c) Given a family $\left\{\Sigma_{D}(\alpha): 0<\alpha<\mathcal{H}_{N-1}(\partial \Omega)\right\}$ verifying hypothesis (\mathbf{H}), there exists a positive constant α_{0} such that for all $\alpha=\mathcal{H}_{N-1}\left(\Sigma_{D}(\alpha)\right)<\alpha_{0}$ and all $0<\lambda<\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)$, then $I_{\lambda, \gamma}$ is achieved.
The proof follows the same arguments as in the case of Sobolev and Hardy-Sobolev constants.

Non-existence of solution

As in the case of the Sobolev constant, we have the following non-existence result.
Theorem Assume that v is a positive solution to the DC problem, then we have

$$
\begin{aligned}
& \frac{1}{2} \int_{\Sigma_{N}}|x|^{-2 \gamma}\left|\frac{\partial v}{\partial \eta}\right|^{2}\langle x, \eta\rangle d x-\frac{1}{2} \int_{\Sigma_{D}}|x|^{-2 \gamma}\left|\frac{\partial v}{\partial \eta}\right|^{2}\langle x, \eta\rangle d x \\
= & \frac{\lambda}{2} \int_{\Sigma_{N}} \frac{v^{2}}{|x|^{2(\gamma+1)}}\langle x, \eta\rangle d x+\frac{1}{2^{*}} \int_{\Sigma_{N}}|x|^{-2^{*} \gamma} v^{2^{*}}\langle x, \eta\rangle d x .
\end{aligned}
$$

As a consequence, if $\langle x, \eta\rangle=0$ for $x \in \Sigma_{N}$ and $\langle x, \eta\rangle \geq 0$ for $x \in \Sigma_{D}$, DC problem has not positive solution.

Non-existence of solution

As in the case of the Sobolev constant, we have the following non-existence result.
Theorem Assume that v is a positive solution to the DC problem, then we have

$$
\begin{aligned}
& \frac{1}{2} \int_{\Sigma_{N}}|x|^{-2 \gamma}\left|\frac{\partial v}{\partial \eta}\right|^{2}\langle x, \eta\rangle d x-\frac{1}{2} \int_{\Sigma_{D}}|x|^{-2 \gamma}\left|\frac{\partial v}{\partial \eta}\right|^{2}\langle x, \eta\rangle d x \\
= & \frac{\lambda}{2} \int_{\Sigma_{N}} \frac{v^{2}}{|x|^{2(\gamma+1)}}\langle x, \eta\rangle d x+\frac{1}{2^{*}} \int_{\Sigma_{N}}|x|^{-2^{*} \gamma} v^{2^{*}}\langle x, \eta\rangle d x .
\end{aligned}
$$

As a consequence, if $\langle x, \eta\rangle=0$ for $x \in \Sigma_{N}$ and $\langle x, \eta\rangle \geq 0$ for $x \in \Sigma_{D}$, DC problem has not positive solution.

Remark: Notice the difference between this case and the problem studied by Grossi in [G]. In such a work, $\gamma=0$ and without the critical Hardy potential, is proved that problem

$$
\left\{\begin{aligned}
-\Delta u & =\lambda u+u^{2^{*}-1} \text { in } \Omega \\
u & >0 \text { in } \Omega \\
B(u) & =0, \text { on } \partial \Omega
\end{aligned}\right.
$$

always has a positive solution if $N>4$, at least for $\lambda>0$ small.
[G] M. Grossi, Rend. Mat. Serie VII, 1990.

Improvement term in the Hardy-Sobolev inequality:

$$
\left(\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)=\Lambda_{N, \gamma}\right)
$$

Theorem Assume that:

- $\Omega \subset \mathbb{R}^{\mathrm{N}}$ is a bounded regular domain with $\Omega \subset B_{\frac{R}{2}}(0)$,
- $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)=\Lambda_{N, \gamma}$.

Then there exists $C>0$ such that for all $u \in E_{\Sigma_{D}}^{2, \gamma}(\Omega)$,

$$
\begin{aligned}
\int_{\Omega}|x|^{-2 \gamma}|\nabla u|^{2} d x & -\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right) \int_{\Omega} \frac{u^{2}}{|x|^{2(\gamma+1)}} d x \\
& \geq C \int_{\Omega}|x|^{-2 \gamma}|\nabla u|^{2}\left(\log \left(\frac{R}{|x|}\right)\right)^{-2} d x
\end{aligned}
$$

Improvement term in the Hardy-Sobolev inequality:

$$
\left(\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)=\Lambda_{N, \gamma}\right)
$$

Theorem Assume that:

- $\Omega \subset \mathbb{R}^{\mathrm{N}}$ is a bounded regular domain with $\Omega \subset B_{\frac{R}{2}}(0)$,
- $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)=\Lambda_{N, \gamma}$.

Then there exists $C>0$ such that for all $u \in E_{\Sigma_{D}}^{2, \gamma}(\Omega)$,

$$
\begin{aligned}
\int_{\Omega}|x|^{-2 \gamma}|\nabla u|^{2} d x & -\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right) \int_{\Omega} \frac{u^{2}}{|x|^{2(\gamma+1)}} d x \\
& \geq C \int_{\Omega}|x|^{-2 \gamma}|\nabla u|^{2}\left(\log \left(\frac{R}{|x|}\right)\right)^{-2} d x
\end{aligned}
$$

H. Brezis, J.L. Vázquez, Rev. Mat. Univ. Complut. Madrid, 1997.
J.L. Vázquez, E. Zuazua, J. Funct. Anal., 2000.
Z.Q. Wang, M. Willem, J. Funct. Anal., 2003.
B. Abdellaoui, E. C., I. Peral Cal. Var. P. D. E., 2005.
B. Abdellaoui, E. C., I. Peral Adv. Nonlinear Stud., 2004.

The space $H_{\gamma, \Sigma_{D}}$.

Definition Assume that $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)=\Lambda_{N, \gamma}$.
We define $H_{\gamma, \Sigma_{D}}(\Omega)$ as the completion of

$$
X_{\Sigma_{D}}=\left\{u \in \mathcal{C}^{1}(\bar{\Omega}) \mid \text { such that } u=0 \text { on } \Sigma_{D} \subset \partial \Omega\right\}
$$

with respect to the norm

$$
\|u\|_{H_{\gamma, \Sigma_{D}}}=\left(\int_{\Omega}|x|^{-2 \gamma}|\nabla u|^{2} d x-\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right) \int_{\Omega} \frac{u^{2}}{|x|^{2(\gamma+1)}} d x\right)^{1 / 2}
$$

The space $H_{\gamma, \Sigma_{D}}$.

Definition Assume that $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)=\Lambda_{N, \gamma}$.

We define $H_{\gamma, \Sigma_{D}}(\Omega)$ as the completion of

$$
X_{\Sigma_{D}}=\left\{u \in \mathcal{C}^{1}(\bar{\Omega}) \mid \text { such that } u=0 \text { on } \Sigma_{D} \subset \partial \Omega\right\}
$$

with respect to the norm
$\|u\|_{H_{\gamma, \Sigma_{D}}}=\left(\int_{\Omega}|x|^{-2 \gamma}|\nabla u|^{2} d x-\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right) \int_{\Omega} \frac{u^{2}}{|x|^{2(\gamma+1)}} d x\right)^{1 / 2}$.
Remarks:

- $H_{\gamma, \Sigma_{D}}(\Omega)$ is a Hilbert space.
- $H_{\gamma, \Sigma_{D}}(\Omega)$ is a natural space to obtain uniform estimates which allow us to analyze the initial problem (P).
- If $0 \leq \lambda<\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)=\Lambda_{N, \gamma}$, the solutions are in $E_{\Sigma_{D}}^{2, \gamma}(\Omega)$.
- If $0 \leq \lambda \leq \Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)=\Lambda_{N, \gamma}$, there exists solution in $H_{\gamma, \Sigma_{D}}(\Omega)$ and moreover are uniformly bounded in $H_{\gamma, \Sigma_{D}}(\Omega)$.

Uniform estimates

Let u be a solution to

$$
(P) \equiv\left\{\begin{array}{l}
-\operatorname{div}\left(|x|^{-2 \gamma} \nabla u\right)-\lambda \frac{u}{|x|^{2(\gamma+1)}}=|x|^{-(r+1) \gamma} u^{r} \text { in } \Omega \\
u>0 \quad \text { in } \Omega, \quad B(u)=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Uniform estimates

Let u be a solution to

$$
(P) \equiv\left\{\begin{array}{l}
-\operatorname{div}\left(|x|^{-2 \gamma} \nabla u\right)-\lambda \frac{u}{|x|^{2(\gamma+1)}}=|x|^{-(r+1) \gamma} u^{r} \text { in } \Omega, \\
u>0 \quad \text { in } \Omega, \quad B(u)=0 \text { on } \partial \Omega .
\end{array}\right.
$$

The function $w(x)=|x|^{\frac{N-2(\gamma+1)}{2}} u(x)$ is $w \geq 0$ and for $\lambda<\Lambda_{N, \gamma}$ satisfies:

$$
\begin{aligned}
& u(x) \cong|x|^{-\frac{N-2(\gamma+1)}{2}}+\sqrt{\Lambda_{N, \gamma}-\lambda} \\
& w(x) \cong|x|^{\sqrt{\Lambda_{N, \gamma}-\lambda}}
\end{aligned}
$$

Uniform estimates

Let u be a solution to

$$
(P) \equiv\left\{\begin{array}{l}
-\operatorname{div}\left(|x|^{-2 \gamma} \nabla u\right)-\lambda \frac{u}{|x|^{2(\gamma+1)}}=|x|^{-(r+1) \gamma} u^{r} \text { in } \Omega \\
u>0 \quad \text { in } \Omega, \quad B(u)=0 \text { on } \partial \Omega .
\end{array}\right.
$$

The function $w(x)=|x|^{\frac{N-2(\gamma+1)}{2}} u(x)$ is $w \geq 0$ and for $\lambda<\Lambda_{N, \gamma}$ satisfies:

$$
\begin{aligned}
& u(x) \cong|x|^{-\frac{N-2(\gamma+1)}{2}}+\sqrt{\Lambda_{N, \gamma}-\lambda} \\
& w(x) \cong|x|^{\sqrt{\Lambda_{N, \gamma}-\lambda}}
\end{aligned}
$$

$$
(T P) \equiv\left\{\begin{aligned}
-\operatorname{div}\left(|x|^{-(N-2)} \nabla w\right) & +\frac{\left(\Lambda_{N, \gamma}-\lambda\right) w}{|x|^{N}} \\
& =\frac{w^{r}}{|x|^{(r+1) \frac{N-2}{2}}} \text { in } \Omega, \\
w & =0 \text { on } \Sigma_{D}, \\
|x|^{-2 \gamma} \frac{\partial}{\partial \nu}\left(|x|^{\frac{N-2(\gamma+1)}{2}} w\right) & =0 \text { on } \Sigma_{N} .
\end{aligned}\right.
$$

Uniform estimates

Theorem There exists a constant $C>0$ independent of λ such that $\forall 0 \leq \lambda \leq \Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)=\Lambda_{N, \gamma}$ and all solutions to (TP) verify

$$
\|w\|_{L^{\infty}(\Omega)} \leq C .
$$

Uniform estimates

Sketch of the proof: One assumes by contradiction the there exist $\left\{P_{k}\right\} \subset \bar{\Omega}$ and $\left\{\lambda_{k}\right\} \subset\left[0, \Lambda_{N, \gamma}\right]$ verifying

$$
M_{k}=\max _{x \in \Omega} u_{k}(x)=u_{k}\left(P_{k}\right) \longrightarrow \infty \text { as } k \rightarrow \infty
$$

for a subsequence one can suppose that $P_{k} \rightarrow P_{0} \in \bar{\Omega}$ and $\lambda_{k} \rightarrow \Lambda_{N, \gamma}$ for $k \rightarrow \infty$. Making a scaling of type

$$
v_{k}(z)=\frac{w\left(\mu_{k} z+P_{k}\right)}{M_{k}}
$$

there are the following alternatives taking into account the position of P_{0} in $\bar{\Omega}$:

Uniform estimates

Sketch of the proof: One assumes by contradiction the there exist $\left\{P_{k}\right\} \subset \bar{\Omega}$ and $\left\{\lambda_{k}\right\} \subset\left[0, \Lambda_{N, \gamma}\right]$ verifying

$$
M_{k}=\max _{x \in \Omega} u_{k}(x)=u_{k}\left(P_{k}\right) \longrightarrow \infty \text { as } k \rightarrow \infty
$$

for a subsequence one can suppose that $P_{k} \rightarrow P_{0} \in \bar{\Omega}$ and $\lambda_{k} \rightarrow \Lambda_{N, \gamma}$ for $k \rightarrow \infty$. Making a scaling of type

$$
v_{k}(z)=\frac{w\left(\mu_{k} z+P_{k}\right)}{M_{k}}
$$

there are the following alternatives taking into account the position of P_{0} in $\bar{\Omega}$:
1.- $P_{0} \in \Omega \backslash\{0\} \cup \Sigma_{D} \longrightarrow$ Gidas-Spruck, Comm. in P.D.E. 1981.
2.- $P_{0} \in \Sigma_{N} \longrightarrow$ Lin-Ni-Takagi, J. Diff. Eqns. 1988.
3.- $P_{0} \in \Gamma=\overline{\Sigma_{D}} \cap \overline{\Sigma_{N}} \longrightarrow$ C.-Peral, J. Funct. Anal. 2003.

Uniform estimates

Sketch of the proof: One assumes by contradiction the there exist $\left\{P_{k}\right\} \subset \bar{\Omega}$ and $\left\{\lambda_{k}\right\} \subset\left[0, \Lambda_{N, \gamma}\right]$ verifying

$$
M_{k}=\max _{x \in \Omega} u_{k}(x)=u_{k}\left(P_{k}\right) \longrightarrow \infty \text { as } k \rightarrow \infty,
$$

for a subsequence one can suppose that $P_{k} \rightarrow P_{0} \in \bar{\Omega}$ and $\lambda_{k} \rightarrow \Lambda_{N, \gamma}$ for $k \rightarrow \infty$. Making a scaling of type

$$
v_{k}(z)=\frac{w\left(\mu_{k} z+P_{k}\right)}{M_{k}}
$$

there are the following alternatives taking into account the position of P_{0} in $\bar{\Omega}$:
1.- $P_{0} \in \Omega \backslash\{0\} \cup \Sigma_{D} \longrightarrow$ Gidas-Spruck, Comm. in P.D.E. 1981.
2.- $P_{0} \in \Sigma_{N} \longrightarrow$ Lin-Ni-Takagi, J. Diff. Eqns. 1988.
3.- $P_{0} \in \Gamma=\overline{\Sigma_{D}} \cap \overline{\Sigma_{N}} \longrightarrow$ C.-Peral, J. Funct. Anal. 2003.
4.- $P_{0}=0$, require a different analysis. One can perform the techniques and passing to the limit in a suitable way, one arrives to a function

$$
v_{0} \in \mathcal{C}^{2}\left(\mathbb{R}^{\mathrm{N}} \backslash\{0\}\right) \cap \mathcal{C}^{0}\left(\mathbb{R}^{\mathrm{N}}\right)
$$

which is a nonnegative solution to equation

$$
-\operatorname{div}\left(|x|^{-(N-2)} \nabla v_{0}\right)=\frac{v_{0}^{r}}{|x|^{(r+1) \frac{N-2}{2}}} \quad \text { with } v_{0}(x) \leq v_{0}(0)=1
$$

And finally one proves that the unique solution is $v_{0} \equiv 0$ which is a contradiction.

Uniform estimates in $H_{\gamma, \Sigma_{D}}$

As a consequence of the L^{∞}-estimates for w we get.
Theorem Assume that $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)=\Lambda_{N, \gamma}$. Then $\exists C>0$ such that $\left\|u_{\lambda}\right\|_{H_{\gamma, \Sigma_{D}}} \leq C$ for all $\lambda \in\left[0, \Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)\right]$ and all solution u_{λ} of problem (P).

Uniform estimates in $H_{\gamma, \Sigma_{D}}$

As a consequence of the L^{∞}-estimates for w we get.
Theorem Assume that $\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)=\Lambda_{N, \gamma}$. Then $\exists C>0$ such that $\left\|u_{\lambda}\right\|_{H_{\gamma, \Sigma_{D}}} \leq C$ for all $\lambda \in\left[0, \Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)\right]$ and all solution u_{λ} of problem (P).

Proof: Let u_{λ} be a solution to (P). By the last estimate on $L^{\infty}, \exists C>0$ such that $|x|^{\frac{N-2(\gamma+1)}{2}} u_{\lambda} \leq C$.
Multiplying in the equation by u_{λ} and integrating,

$$
\begin{aligned}
\left\|u_{\lambda}\right\|_{H_{\gamma}}^{2} & \equiv \int_{\Omega}\left|\nabla u_{\lambda}\right|^{2}|x|^{-2 \gamma} d x-\Lambda_{N, \gamma} \int_{\Omega} \frac{u_{\lambda}^{2}}{|x|^{2(\gamma+1)}} d x \\
& \leq \int_{\Omega}\left|\nabla u_{\lambda}\right|^{2}|x|^{-2 \gamma} d x-\lambda \int_{\Omega} \frac{u_{\lambda}^{2}}{|x|^{2(\gamma+1)}} d x \\
& =\int_{\Omega} \frac{u_{\lambda}^{r+1}}{|x|^{(r+1) \gamma}} d x \\
& \leq C \int_{\Omega}|x|^{-\frac{N-2}{2}(r+1)} d x \leq C_{1}<\infty
\end{aligned}
$$

because of $r+1<2^{*}$.

Some remarks on bifurcation

Remember the problem

$$
(P) \equiv\left\{\begin{array}{l}
-\operatorname{div}\left(|x|^{-2 \gamma} \nabla u\right)-\lambda \frac{u}{|x|^{2(\gamma+1)}}=|x|^{-(r+1) \gamma} u^{r} \text { in } \Omega, \\
u>0 \quad \text { in } \Omega, \quad B(u)=0 \text { on } \partial \Omega .
\end{array}\right.
$$

We show some results on bifurcation in function on r sub or super-linear, and the attainability or not of the Hardy-Sobolev constant.

Some remarks on bifurcation

Remember the problem

$$
(P) \equiv\left\{\begin{array}{l}
-\operatorname{div}\left(|x|^{-2 \gamma} \nabla u\right)-\lambda \frac{u}{|x|^{2(\gamma+1)}}=|x|^{-(r+1) \gamma} u^{r} \text { in } \Omega \\
u>0 \quad \text { in } \Omega, \quad B(u)=0 \text { on } \partial \Omega
\end{array}\right.
$$

We show some results on bifurcation in function on r sub or super-linear, and the attainability or not of the Hardy-Sobolev constant.

Some remarks on bifurcation

Remember the problem

$$
(P) \equiv\left\{\begin{array}{l}
-\operatorname{div}\left(|x|^{-2 \gamma} \nabla u\right)-\lambda \frac{u}{|x|^{2(\gamma+1)}}=|x|^{-(r+1) \gamma} u^{r} \text { in } \Omega \\
u>0 \quad \text { in } \quad \Omega, \quad B(u)=0 \text { on } \partial \Omega .
\end{array}\right.
$$

We show some results on bifurcation in function on r sub or super-linear, and the attainability or not of the Hardy-Sobolev constant.

Some remarks on bifurcation

Remember the problem

$$
(P) \equiv\left\{\begin{array}{l}
-\operatorname{div}\left(|x|^{-2 \gamma} \nabla u\right)-\lambda \frac{u}{|x|^{2(\gamma+1)}}=|x|^{-(r+1) \gamma} u^{r} \text { in } \Omega \\
u>0 \quad \text { in } \quad \Omega, \quad B(u)=0 \text { on } \partial \Omega .
\end{array}\right.
$$

We show some results on bifurcation in function on r sub or super-linear, and the attainability or not of the Hardy-Sobolev constant.

$$
\frac{\|\cdot\|_{L^{r+1}(\Omega ;|x|-2 \gamma d x)}^{\left(\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)-\lambda\right)^{\frac{\alpha}{r+1}}} \uparrow \underbrace{r>1}_{\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)<\Lambda_{N, \gamma}}}{\substack{\Lambda_{N, \gamma}\left(\Omega, \Sigma_{D}\right)}}>\lambda
$$

Happy $60^{\text {th }}$ Birthday Ireneo!!!

