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Departamento de Análisis Matemático, Universidad de Granada, SPAIN

Salamanca 2007

60th Ireneo’s Birthday – p. 1/38



60th Ireneo’s Birthday – p. 2/38



The following results are in collaboration with:

Boumediene Abdellaoui

Ireneo Peral

B. Abdellauoi, E. C., I. Peral, Effect of the boundary conditions in the behavior of the
optimal constant of some Caffarelli-Kohn-Nirenberg inequalities. Application to some doubly
critical nonlinear elliptic problems.

Adv. Differential Equations 11 (2006), no. 6, 667-720.

60th Ireneo’s Birthday – p. 3/38



Scheme of the talk

Statement of the problem and functional framework.

60th Ireneo’s Birthday – p. 4/38



Scheme of the talk

Statement of the problem and functional framework.

Preliminary results.

60th Ireneo’s Birthday – p. 4/38



Scheme of the talk

Statement of the problem and functional framework.

Preliminary results.

Study of the Sobolev optimal constant.

60th Ireneo’s Birthday – p. 4/38



Scheme of the talk

Statement of the problem and functional framework.

Preliminary results.

Study of the Sobolev optimal constant.

1. Attainability.
-Movement of the boundary conditions, quantitative
properties.

2. Non attainability.
-Geometrical boundary conditions.

60th Ireneo’s Birthday – p. 4/38



Scheme of the talk

Statement of the problem and functional framework.

Preliminary results.

Study of the Sobolev optimal constant.

Study of the Hardy-Sobolev optimal constant.

60th Ireneo’s Birthday – p. 4/38



Scheme of the talk
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Preliminary results.

Study of the Sobolev optimal constant.

Study of the Hardy-Sobolev optimal constant.

1. Attainability.
-Movement of the boundary conditions, quantitative
properties.

2. Non attainability.
-Qualitative properties, geometrical boundary
conditions.
-Improvement term in the Hardy-Sobolev inequality.
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Scheme of the talk
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1. Double critical problems.

2. The space Hγ,ΣD
?

3. Uniform estimates in Hγ,ΣD
?

4. Some remarks on bifurcation?
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Statement of the problems and functional framework.

Sobolev constant .

S2
2,γ(Ω, ΣD) = inf

u∈E2,γ
ΣD

(Ω);u 6≡0

∫

Ω

|x|−2γ|∇u|2dx

(

∫

Ω

|x|−2∗γ|u|2
∗

dx
)

2
2∗

.
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Hardy-Sobolev constant

ΛN,γ(Ω, ΣD) = inf
u∈E2,γ

ΣD
(Ω),u 6≡0

∫

Ω

|x|−pγ|∇u|2dx

∫

Ω

|u|2

|x|2(γ+1)
dx

.
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Sobolev constant .

S2
2,γ(Ω, ΣD) = inf

u∈E2,γ
ΣD

(Ω);u 6≡0

∫

Ω

|x|−2γ|∇u|2dx

(

∫

Ω

|x|−2∗γ|u|2
∗

dx
)

2
2∗

.

Hardy-Sobolev constant

ΛN,γ(Ω, ΣD) = inf
u∈E2,γ

ΣD
(Ω),u 6≡0

∫

Ω

|x|−pγ|∇u|2dx

∫

Ω

|u|2

|x|2(γ+1)
dx

.

Ω ⊂ IRN, N ≥ 3, is bounded regular domain with 0 ∈ Ω,
−∞ < γ < N−2

2
, 2∗ = 2N

N−2
.
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Statement of the problems and functional framework.

D1,2
γ (Ω) denotes the completion of C∞(Ω) with respect to the norm

‖ϕ‖
D

1,2
γ

≡
(

∫

Ω
(|ϕ|2 + |∇ϕ|2)|x|−2γdx

)1/2

.

Define the energy space

E2,γ
ΣD

(Ω) = {v ∈ D1,2
γ (Ω) : v = 0 on ΣD}, (0.1)

also it could be defined as the closure of C1
c (Ω ∪ ΣN ) endowed with the norm ‖ · ‖2,γ , given

for ϕ ∈ C∞(Ω) as

‖ϕ‖2,γ =
(

∫

Ω
(|ϕ|2 + |∇ϕ|2)|x|−2γdx

) 1
2
.
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γ (Ω) denotes the completion of C∞(Ω) with respect to the norm

‖ϕ‖
D

1,2
γ

≡
(

∫

Ω
(|ϕ|2 + |∇ϕ|2)|x|−2γdx

)1/2

.

Define the energy space

E2,γ
ΣD

(Ω) = {v ∈ D1,2
γ (Ω) : v = 0 on ΣD}, (0.2)

also it could be defined as the closure of C1
c (Ω ∪ ΣN ) endowed with the norm ‖ · ‖2,γ , given

for ϕ ∈ C∞(Ω) as

‖ϕ‖2,γ =
(

∫

Ω
(|ϕ|2 + |∇ϕ|2)|x|−2γdx

) 1
2
.

Remark: If cap(ΣD) > 0 then

‖ϕ‖
E

2,γ
ΣD

(Ω)
= ‖∇ϕ‖L2(|x|−2γdx), ∀ϕ ∈ E2,γ

ΣD
(Ω)

i.e., ‖ · ‖
D

1,2
γ (Ω)

∼ ‖ · ‖
E

2,γ
ΣD

(Ω)
by the Poincaré inequality.
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Applications to the problems.

(P ) ≡



















−div(|x|−2γ∇u) = λ
uq

|x|2(γ+1)
+

ur

|x|(r+1)γ
in Ω,

u ≥ 0 in Ω,

B(u) = 0 on ∂Ω.

Hypotheses:

Ω ⊂ IRN bounded regular domain with N ≥ 3 and 0 ∈ Ω,

λ > 0, −∞ < γ < N−2
2

.

0 < q ≤ 1 < r + 1 ≤ 2∗ = 2N
N−2

.
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Boundary conditions.

Boundary conditions:

B(u) = |x|−2γuχΣD
+ |x|−2γ ∂u

∂ν
χΣN

,

ν normal exterior a ∂Ω.

60th Ireneo’s Birthday – p. 8/38



Boundary conditions.

Boundary conditions:

B(u) = |x|−2γuχΣD
+ |x|−2γ ∂u

∂ν
χΣN

,

ν normal exterior a ∂Ω.

ΣD, ΣN ⊂ ∂Ω, are smooth (N − 1)-dimensional
manifolds such that:

60th Ireneo’s Birthday – p. 8/38



Boundary conditions.

Boundary conditions:

B(u) = |x|−2γuχΣD
+ |x|−2γ ∂u

∂ν
χΣN

,

ν normal exterior a ∂Ω.

ΣD, ΣN ⊂ ∂Ω, are smooth (N − 1)-dimensional
manifolds such that:

1. ΣD ∪ ΣN = ∂Ω, ΣD ∩ ΣN = ∅.

2. ΣD ∩ ΣN = Γ, the “interphase” is a smooth
(N − 2)-dimensional manifold.

60th Ireneo’s Birthday – p. 8/38



Boundary conditions.

Boundary conditions:

B(u) = |x|−2γuχΣD
+ |x|−2γ ∂u

∂ν
χΣN

,

ν normal exterior a ∂Ω.

ΣD, ΣN ⊂ ∂Ω, are smooth (N − 1)-dimensional
manifolds such that:

1. ΣD ∪ ΣN = ∂Ω, ΣD ∩ ΣN = ∅.

2. ΣD ∩ ΣN = Γ, the “interphase” is a smooth
(N − 2)-dimensional manifold.

HN−1(ΣD(α)) = α ∈ (0,HN−1(∂Ω)), where HN−1(·) is
the (N − 1)-dimensional Hausdorff measure.
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Caffarelli-Kohn-Nirenberg inequalities

Theorem [CKN] Let p, q, r, α, β, σ and a real constants verifying

p, q ≥ 1, r > 0, 0 ≤ a ≤ 1,

and
1

p
+

α

N
,

1

q
+

β

N
,

1

r
+

m

N
> 0, where m = aσ + (1 − a)β.

Then ∃C > 0 such that ∀u ∈ C∞
0 (IRN),

‖|x|mu‖Lr(IRN) ≤ C‖|x|α|∇u|‖a
Lp(IRN)

‖|x|βu‖1−a
Lq(IRN)

,

if and only if a > 0 and moreover

(i)
1

r
+

m

N
= a

(

1

p
+

α − 1

N

)

+ (1 − a)

(

1

q
+

β

N

)

, if 0 ≤ α − σ.

(ii)
1

r
+

m

N
=

1

p
+

α − 1

N
, if α − σ ≤ 1.

[CKN] L. Caffarelli, R. Kohn, L. Nirenberg, Compositio Math. 1984.
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Two particular cases:

1.- Sobolev inequality
Theorem Let N ≥ 3 and −∞ < γ < N−2

2
. Then for all u ∈ D1,2

0,γ(Ω), we have

S2
γ

(
∫

Ω
|u|2∗ |x|−2∗γ dx

)2/2∗

≤
∫

Ω
|∇u|2|x|−2γ dx.
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Two particular cases:

1.- Sobolev inequality
Theorem Let N ≥ 3 and −∞ < γ < N−2

2
. Then for all u ∈ D1,2

0,γ(Ω), we have

S2
γ

(
∫

Ω
|u|2∗ |x|−2∗γ dx

)2/2∗

≤
∫

Ω
|∇u|2|x|−2γ dx.

2.- Hardy-Sobolev inequality
Theorem Let N ≥ 3 and −∞ < γ < N−2

2
. Then for all u ∈ D1,2

0,γ(Ω), we have

ΛN,γ

∫

Ω

|u|2
|x|2(γ+1)

dx ≤
∫

Ω
|∇u|2|x|−2γ dx.

Moreover, ΛN,γ =

(

N − 2(γ + 1)

2

)2

, is not achieved.
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Preliminary results

Theorem [Picone’s Inequality] Let v ∈ E2,γ
ΣD

(Ω) such that −div(|x|−2γ∇v) is a positive

Radon measure, v 	 0. Then for all u ∈ E2,γ
ΣD

(Ω) we get

∫

Ω
|∇u|2|x|−2γdx ≥

∫

Ω

u2

v

(

−div(|x|−2γ∇v)
)

dx

+

∫

ΣN

|x|−2γ u2

v

∂v

∂ν
dσ(x).

See B. Abdellaoui, I. Peral, Ann. di Mat. 2003
for a proof in the Dirichlet case.
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(Ω) we get

∫

Ω
|∇u|2|x|−2γdx ≥

∫

Ω

u2

v

(

−div(|x|−2γ∇v)
)

dx

+

∫

ΣN

|x|−2γ u2

v

∂v

∂ν
dσ(x).

See B. Abdellaoui, I. Peral, Ann. di Mat. 2003
for a proof in the Dirichlet case.

Theorem [Trace] Let Ω ⊂ IRN be a bounded regular domain with 0 ∈ Ω. Suppose that
−∞ < γ < N−2

2
, then the following continuous embedding holds E2,γ

ΣD
(Ω) →֒ W 1/2,2(∂Ω).

See
B. Abdellauoi, E. C., I. Peral, Advanced Nonlinear Studies, 2004

for a proof.
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Movement of the boundary conditions

Hypotheses:

(H) ΣD(α1) ⊂ ΣD(α2) for α1 < α2 and lim
α→0

ΣD(α) = C1 ⊂ ∂Ω with cap2,µ(C1) = 0.

where dµ = |x|−2γdx means the (2, µ)-capacity of the set E, defined by

cap2,µ(E) = inf

{
∫

Ω
|∇u|2|x|−2γdx

∣

∣

∣
u ∈ C∞

0 (Ω) u ≥ 1 in E

}

.
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(H) ΣD(α1) ⊂ ΣD(α2) for α1 < α2 and lim
α→0

ΣD(α) = C1 ⊂ ∂Ω with cap2,µ(C1) = 0.

where dµ = |x|−2γdx means the (2, µ)-capacity of the set E, defined by

cap2,µ(E) = inf

{
∫

Ω
|∇u|2|x|−2γdx

∣

∣

∣
u ∈ C∞

0 (Ω) u ≥ 1 in E

}

.

Related eigenvalue problems:







−div(|x|−2γ∇u) = λ|x|−2βu in Ω, β < γ + 1

Bα(u) ≡ uχ
ΣD(α)

+ |x|−2γ ∂u

∂ν
χ

ΣN (α)
= 0 on ∂Ω

Theorem Assume (H) and suppose that {uα}α is positive normalized
(‖uα‖L2(Ω;|x|−2β) = 1) eigenvalue sequence corresponding to the first eigenvalue
{λ1(α)}α. Then

1. uα → u0(≡ cte) as α ց 0 strongly in D1,2
γ (Ω), being u0 a positive eigenfunction to

the Neumann Problem.

2. λ1(α) ց 0 as α ց 0.
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Results related to Sobolev constant:

The Sobolev constant with Dirichlet boundary data, Sγ , defined by

S2
γ = inf

u∈D
1,2
0,γ

(Ω);u 6≡0

∫

Ω
|x|−2γ |∇u|2dx

(

∫

Ω
|x|−2∗γ |u|2∗dx

) 2
2∗

,

verifies:
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Results related to Sobolev constant:

The Sobolev constant with Dirichlet boundary data, Sγ , defined by

S2
γ = inf

u∈D
1,2
0,γ

(Ω);u 6≡0

∫

Ω
|x|−2γ |∇u|2dx

(

∫

Ω
|x|−2∗γ |u|2∗dx

) 2
2∗

,

verifies:

(i) does not depend on Ω and it is not achieved in any bounded domain,

(ii) if γ < 0, then Sγ is never achieved and coincide with S0, the classical Sobolev
constant,

(iii) if γ ≥ 0, then Sγ is achieved in IRN by a radial function (and its scaled), moreover we
have Sγ < S0 if γ > 0.

See F. Catrina, Z.Q. Wang, Comm. Pure Appl. Math., 2001.
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γ = inf
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(Ω);u 6≡0

∫

Ω
|x|−2γ |∇u|2dx

(

∫

Ω
|x|−2∗γ |u|2∗dx

) 2
2∗

,

verifies:

(i) does not depend on Ω and it is not achieved in any bounded domain,

(ii) if γ < 0, then Sγ is never achieved and coincide with S0, the classical Sobolev
constant,

(iii) if γ ≥ 0, then Sγ is achieved in IRN by a radial function (and its scaled), moreover we
have Sγ < S0 if γ > 0.

See F. Catrina, Z.Q. Wang, Comm. Pure Appl. Math., 2001.

S2
γ(Ω, ΣD) = inf

u∈E
2,γ
ΣD

(Ω),u 6≡0

∫

Ω
|x|−2γ |∇u|2dx

(

∫

Ω
|x|−2∗γ |u|2∗dx

)2/2∗
.

This constant depends on the domain and the boundary conditions. Moreover, under
suitable hypotheses, is achieved.
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Sobolev constant without weights.

The case γ = 0 has been studied by

[LPT] Lions-Pacella-Tricarico , Indiana Univ. Math. Jour., 1988.

Their ideas are to use some symmetrization arguments based on the classical isoperimetric
inequality , which permit to give conditions on the geometry of Ω and ΣN such that
S0(Ω, ΣD) is achieved.
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Their ideas are to use some symmetrization arguments based on the classical isoperimetric
inequality , which permit to give conditions on the geometry of Ω and ΣN such that
S0(Ω, ΣD) is achieved.

Theorem Assume that Ω ⊂ IRN is a bounded regular domain, then

S0(Ω, ΣD) ≤ 2−
1
N S0,

moreover, if ΣN is smooth and S0(Ω, ΣD) < 2−
1
N S0, then S0(Ω, ΣD) is achieved.
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Sobolev constant without weights.

The case γ = 0 has been studied by

[LPT] Lions-Pacella-Tricarico , Indiana Univ. Math. Jour., 1988.

Their ideas are to use some symmetrization arguments based on the classical isoperimetric
inequality , which permit to give conditions on the geometry of Ω and ΣN such that
S0(Ω, ΣD) is achieved.

Theorem Assume that Ω ⊂ IRN is a bounded regular domain, then

S0(Ω, ΣD) ≤ 2−
1
N S0,

moreover, if ΣN is smooth and S0(Ω, ΣD) < 2−
1
N S0, then S0(Ω, ΣD) is achieved.

Remark: Notice that in the case where γ 6= 0, a general isoperimetric inequality as in the
case γ = 0 is not known.
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Sγ(Ω, ΣD); γ ≤ 0

Lemma Assume that γ ≤ 0. Then
Sγ(Ω, ΣD) ≤ 2−1/NS0 ≡ 2−1/NSγ.
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Sγ(Ω, ΣD); γ ≤ 0

Lemma Assume that γ ≤ 0. Then
Sγ(Ω, ΣD) ≤ 2−1/NS0 ≡ 2−1/NSγ.

Lemma Assume that γ ≤ 0, let {un} ⊂ E
2,γ
ΣD

(Ω) be a bounded
minimizing sequence for Sγ(Ω, ΣD) with

∫

Ω
|x|−2∗γ|un|

2∗dx = 1.
If un ⇀ u0 weakly in E

2,γ
ΣD

(Ω), with u0 ≡ 0, then there exists
x0 ∈ ΣN such that

|x|−2γ|∇un|
2 ⇀ µ ≥ µ0δx0 , |x|−2∗γ|un|

2∗ ⇀ ν = ν0δx0

weakly in measure sense and Sγ(Ω, ΣD) ≡ 2−1/NS0.
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Sγ(Ω, ΣD); γ ≤ 0

Lemma Assume that γ ≤ 0. Then
Sγ(Ω, ΣD) ≤ 2−1/NS0 ≡ 2−1/NSγ.

Lemma Assume that γ ≤ 0, let {un} ⊂ E
2,γ
ΣD

(Ω) be a bounded
minimizing sequence for Sγ(Ω, ΣD) with

∫

Ω
|x|−2∗γ|un|

2∗dx = 1.
If un ⇀ u0 weakly in E

2,γ
ΣD

(Ω), with u0 ≡ 0, then there exists
x0 ∈ ΣN such that

|x|−2γ|∇un|
2 ⇀ µ ≥ µ0δx0 , |x|−2∗γ|un|

2∗ ⇀ ν = ν0δx0

weakly in measure sense and Sγ(Ω, ΣD) ≡ 2−1/NS0.

Theorem If γ ≤ 0 and Sγ(Ω, ΣD) < 2−1/NS0 ≡ 2−1/NSγ, then
Sγ(Ω, ΣD) is attained.
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Sγ(Ω, ΣD); γ > 0

Remember that if γ ≥ 0, Sγ is achieved in R
N in a radial

function (and its scaled) and moreover Sγ < S0 for all γ > 0.
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Sγ(Ω, ΣD); γ > 0

Remember that if γ ≥ 0, Sγ is achieved in R
N in a radial

function (and its scaled) and moreover Sγ < S0 for all γ > 0.

Lemma Assume that γ ≥ 0. Then
Sγ(Ω, ΣD) ≤ min{2−1/NS0, Sγ}.
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Sγ(Ω, ΣD); γ > 0

Remember that if γ ≥ 0, Sγ is achieved in R
N in a radial

function (and its scaled) and moreover Sγ < S0 for all γ > 0.

Lemma Assume that γ ≥ 0. Then
Sγ(Ω, ΣD) ≤ min{2−1/NS0, Sγ}.

Theorem If γ ≥ 0 and Sγ(Ω, ΣD) < min{2−1/NS0, Sγ}, then
Sγ(Ω, ΣD) is achieved.
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Attainability: a quantitative condition.

Theorem Given a family {ΣD(α) : 0 < α < HN−1(∂Ω)}
verifying hypothesis (H), then there exists a positive
constant α0 such that for all α = HN−1(ΣD(α)) < α0,
Sγ(Ω, ΣD(α)) is attained.
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Attainability: a quantitative condition.

Theorem Given a family {ΣD(α) : 0 < α < HN−1(∂Ω)}
verifying hypothesis (H), then there exists a positive
constant α0 such that for all α = HN−1(ΣD(α)) < α0,
Sγ(Ω, ΣD(α)) is attained.

Remark: Modulo a constant, we get the existence of a
positive solution to the associated critical problem















−div(|x|−2γ∇u) = |x|−2∗γu2∗
−1 in Ω,

|x|−2γu = 0 on ΣD,

|x|−2γ ∂u

∂n
= 0 on ΣN .

On the other hand, to get a domain Ω for which the constant
Sγ(Ω, ΣD) is not achieved we need show geometrical
properties.
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Non-attainability: Geometrical condition.

Theorem Let Ω ⊂ IRN be a bounded domain verifying
〈x, n〉 > 0 a.e. on ΣD and 〈x, n〉 = 0 a.e. on ΣN , then the
associated problem has not positive solution u ∈ E

2,γ
ΣD

(Ω). As
a consequence, Sγ(Ω, ΣD) is not achieved.
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Non-attainability: Geometrical condition.

Theorem Let Ω ⊂ IRN be a bounded domain verifying
〈x, n〉 > 0 a.e. on ΣD and 〈x, n〉 = 0 a.e. on ΣN , then the
associated problem has not positive solution u ∈ E

2,γ
ΣD

(Ω). As
a consequence, Sγ(Ω, ΣD) is not achieved.

Proof: Assume by contradiction that Sγ(Ω, ΣD) is achieved,
then we get the existence of 0 < u ∈ E

2,γ
ΣD

(Ω) solution to the
associated problem. Using 〈x,∇u〉 as a test function,......., we
get

1

2∗

∫

ΣN

〈x, n〉
u2∗

|x|2∗γ
dσ =

1

2

∫

ΣN

〈x, n〉
|∇u|2

|x|2γ
dσ−

1

2

∫

ΣD

〈x, n〉
|∇u|2

|x|2γ
dσ.
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a consequence, Sγ(Ω, ΣD) is not achieved.
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Results related to Hardy constant

ΛN,γ(Ω, ΣD) = inf
u∈E

2,γ
ΣD

(Ω),u 6≡0

∫

Ω
|x|−2γ |∇u|2dx

∫

Ω

|u|2
|x|2(γ+1)

dx

.

When the infimum is taken on D1,2
0,γ(Ω) or on D1,2

γ (IRN), the Hardy constant is

ΛN,γ ≡
(

N − 2(γ + 1)

2

)2

.
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In the Neumann problem (ΣD = ∅), ΛN,γ ≡ 0 and is achieved by constant functions.
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0,γ(Ω) or on D1,2

γ (IRN), the Hardy constant is

ΛN,γ ≡
(

N − 2(γ + 1)

2

)2

.

1. ΛN,γ is not achieved.

2. ΛN,γ(Ω, ΣD) is achieved under suitable hypothesis.

In the Neumann problem (ΣD = ∅), ΛN,γ ≡ 0 and is achieved by constant functions.

When cap2,µ(ΣD) > 0, one gets

0 < ΛN,γ(Ω, ΣD) ≤ ΛN,γ .

• The upper estimate is direct by the embedding D1,2
0,γ(Ω) ⊂ E2,γ

ΣD
(Ω).

• The positivity follows by applying the Picone inequality for suitable test function jointly with
the Trace Theorem.
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Results related to Hardy constant

To prove 0 < ΛN,γ(Ω, ΣD), we consider w(x) = |x|−
N−2(γ+1)

2

and v ∈ E
2,γ
ΣD

(Ω), by the Picone identity,
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Results related to Hardy constant

To prove 0 < ΛN,γ(Ω, ΣD), we consider w(x) = |x|−
N−2(γ+1)

2

and v ∈ E
2,γ
ΣD

(Ω), by the Picone identity,

∫

Ω
|∇v|2|x|−2γdx ≥

∫

Ω
〈∇

(

v2

w

)

,∇w〉|x|−2γdx

=

∫

Ω
(−div(|x|−2γ∇w)

v2

w
dx −

∫

ΣN

v2

w

∣

∣

∣

∣

∂w

∂ν

∣

∣

∣

∣

|x|−2γdσ(x)

≥ c(c0, α)

∫

Ω

v2

|x|2(γ+1)
dx − c(ΣN , c0, α)

∫

Ω
|∇v|2|x|−2γdx,
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∣

∣
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v2

|x|2(γ+1)
dx − c(ΣN , c0, α)
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|∇v|2|x|−2γdx,

where we have used the Trace Theorem in the last
inequality. Hence one gets the positivity of ΛN,γ(Ω, ΣD).
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Attainability of ΛN,γ(Ω, ΣD)

Theorem The infimum ΛN,γ(Ω, ΣD) is achieved if and only if

ΛN,γ(Ω, ΣD) < ΛN,γ .
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Attainability of ΛN,γ(Ω, ΣD)

Theorem The infimum ΛN,γ(Ω, ΣD) is achieved if and only if

ΛN,γ(Ω, ΣD) < ΛN,γ .

For the case γ = 0, see
Z.Q. Wang, M. Zhu, Electron. Jour. Diff. Eqns. (2003).

A different proof valid also for 1 < p < N and all −∞ < γ <
N − p

p
can be seen in

B. Abdellaoui, E. C., I. Peral, Adv. Nonlinear Stud., 2004.
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Attainability of ΛN,γ(Ω, ΣD)

Theorem The infimum ΛN,γ(Ω, ΣD) is achieved if and only if

ΛN,γ(Ω, ΣD) < ΛN,γ .

For the case γ = 0, see
Z.Q. Wang, M. Zhu, Electron. Jour. Diff. Eqns. (2003).

A different proof valid also for 1 < p < N and all −∞ < γ <
N − p

p
can be seen in

B. Abdellaoui, E. C., I. Peral, Adv. Nonlinear Stud., 2004.

Ideas of the proof:

1. (=⇒) follows by the improved Hardy inequality with mixed boundary data.

2. (⇐=) First one extend the concentration-compactness results by P.L. Lions to this
framework.
Next, for a minimizing sequence, one proves that is not possible weakly convergence
to zero, by using cut-off functions in Bε(0) we still have a minimizing sequence, hence
one arrives to ΛN,γ(Ω, ΣD) = ΛN,γ .
That fact allows to prove that the infimum ΛN,γ(Ω, ΣD) is achieved.
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Attainability of ΛN,γ(Ω, ΣD): a quantitative condition.

Theorem Let {ΣD(α) : 0 < α < HN−1(∂Ω)} be a family
verifying (H). Then there exists α0 > 0 such that for all
α = HN−1(ΣD(α)) < α0 we get ΛN,γ(Ω, ΣD(α)) < ΛN,γ.
As a consequence, ΛN,γ(Ω, ΣD(α)) is achieved.
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Non attainability of ΛN,γ(Ω, ΣD)

-A geometrical condition.

Theorem Let Ω ⊂ IRN be a bounded regular domain verifying 〈x, ν〉 ≤ 0 for a.e. x ∈ ΣN .
Then ΛN,γ(Ω, ΣD) = ΛN,γ .
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Non attainability of ΛN,γ(Ω, ΣD)

-A geometrical condition.

Theorem Let Ω ⊂ IRN be a bounded regular domain verifying 〈x, ν〉 ≤ 0 for a.e. x ∈ ΣN .
Then ΛN,γ(Ω, ΣD) = ΛN,γ .

Proof: Assume that ΛN,γ(Ω, ΣD) < ΛN,γ and let u be a solution to the corresponding

variational problem. Consider v(x) = |x|
N−2(γ+1)

2 u, then v ∈ E2,γ
ΣD

(Ω) and moreover

∫

Ω
|x|−(N−2)|∇v|2dx =

∫

Ω
|x|−2γ

∣

∣

∣

∣

∇u +
N − 2(γ + 1)

2

u

|x|2 x

∣

∣

∣

∣

2

dx

= (ΛN,γ(Ω, ΣD) − ΛN,γ)

∫

Ω

u2

|x|2(γ+1)
dx +

∫

ΣN

u2

|x|2(γ+1)
〈x, ν〉dσ.
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Theorem Let Ω ⊂ IRN be a bounded regular domain verifying 〈x, ν〉 ≤ 0 for a.e. x ∈ ΣN .
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Proof: Assume that ΛN,γ(Ω, ΣD) < ΛN,γ and let u be a solution to the corresponding
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(Ω) and moreover
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|x|−2γ

∣
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∣

∣

∇u +
N − 2(γ + 1)
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u

|x|2 x

∣

∣

∣

∣

2
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= (ΛN,γ(Ω, ΣD) − ΛN,γ)

∫

Ω

u2

|x|2(γ+1)
dx +

∫

ΣN

u2

|x|2(γ+1)
〈x, ν〉dσ.

-A quantitative condition.

Theorem There exists a constant ε > 0 such that if |ΣN | ≤ ε, then ΛN,γ(Ω, ΣD) = ΛN,γ .
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Double critical problems: relation with Sobolev constant

Consider the double critical problem














−div(|x|−2γ∇u) = λ
u

|x|2(γ+1)
+ |x|−2∗γu2∗

−1 in Ω,

u > 0 in Ω,

Bα(u) = 0, on ∂Ω.

The presence of the mixed boundary conditions makes the
problem to be different from the one in the whole Ω = IRN or
Ω a bounded domain with Dirichlet boundary conditions.
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Double critical problems: relation with Sobolev constant

Remarks: 1.- If Ω is a bounded star-shaped domain with
0 ∈ Ω, then problem























−div(|x|−2γ∇u) = λ
u

|x|2(γ+1)
+ |x|−2∗γu2∗

−1, in Ω,

u ≥ 0, in Ω,

u ∈ D1,2
0,γ(Ω)

has not positive solution.
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Double critical problems: relation with Sobolev constant

2.- If Ω = IRN, the previous problem is reduced to

−div(|x|−2γ∇u) = λ
u

|x|2(γ+1)
+ |x|−2∗γu2∗−1, u ≥ 0, D1,2

0,γ(IRN).
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Double critical problems: relation with Sobolev constant

2.- If Ω = IRN, the previous problem is reduced to

−div(|x|−2γ∇u) = λ
u

|x|2(γ+1)
+ |x|−2∗γu2∗−1, u ≥ 0, D1,2

0,γ(IRN).

We set

Tλ,γ = inf
v∈D

1,2
0,γ

(IRN),v 6≡0

∫

IRN
|∇v|2|x|−2γdx − λ

∫

IRN

v2

|x|2(γ+1)
dx

(

∫

IRN
|v|2∗ |x|−2∗γdx

)2/2∗
.

Claim. Tλ,γ is achieved if and only if N−2
2

−
√

ΛN,γ − λ ≥ 0.
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Double critical problems: relation with Sobolev constant

2.- If Ω = IRN, the previous problem is reduced to

−div(|x|−2γ∇u) = λ
u

|x|2(γ+1)
+ |x|−2∗γu2∗−1, u ≥ 0, D1,2

0,γ(IRN).

We set

Tλ,γ = inf
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∫

IRN
|∇v|2|x|−2γdx − λ

∫

IRN

v2

|x|2(γ+1)
dx

(

∫

IRN
|v|2∗ |x|−2∗γdx

)2/2∗
.

Claim. Tλ,γ is achieved if and only if N−2
2

−
√

ΛN,γ − λ ≥ 0.

If N−2
2

−
√

ΛN,γ − λ ≤ 0 we can prove that Tλ,γ = S0, the classical Sobolev constant.

This follows by setting w(x) = |x|θv with θ =
N−2(γ+1)

2
−

√

ΛN,γ − λ ≤ 0, then
∫

IRN
|∇v|2|x|−2γdx − λ

∫

IRN

v2

|x|2(γ+1)
dx

(

∫

IRN
|v|2∗ |x|2∗γdx

)2/2∗
=

∫

IRN
|∇w|2|x|−2αdx

(

∫

IRN
|w|2∗ |x|−2∗αdx

)2/2∗
,

where α = N−2
2

−
√

ΛN,γ − λ. Hence the claim follows using the result of Catrina-Wang
previously cited.
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Main existence result

We define

Qλ,γ(u) =

∫

Ω
|∇u|2|x|−2γdx − λ

∫

Ω

u2

|x|2(γ+1)
dx

and

Iλ,γ = inf
u∈E

2,γ
ΣD

(Ω),‖u‖
L2∗

γ
=1

Qλ,γ(u).

60th Ireneo’s Birthday – p. 25/38



Main existence result

We define

Qλ,γ(u) =

∫

Ω
|∇u|2|x|−2γdx − λ

∫

Ω

u2

|x|2(γ+1)
dx

and

Iλ,γ = inf
u∈E

2,γ
ΣD

(Ω),‖u‖
L2∗

γ
=1

Qλ,γ(u).

Theorem Assume that λ ∈ (0, ΛN,γ(Ω, ΣD)), then we have:

(a) If N−2
2

−
√

ΛN,γ − λ ≤ 0 and Iλ,γ(Ω) < 2−
1
N S0, then Iλ,γ(Ω) is achieved and as a

consequence, the DC problem has solution. Moreover, if Sγ(Ω, ΣD) is achieved then
Iλ,γ(Ω) is also achieved.

(b) If N−2
2

−
√

ΛN,γ − λ ≥ 0 and Iλ,γ(Ω) < min{Tλ,γ , 2−
1
N S0}, we obtain that Iλ,γ is

achieved.

(c) Given a family {ΣD(α) : 0 < α < HN−1(∂Ω)} verifying hypothesis (H), there exists
a positive constant α0 such that for all α = HN−1(ΣD(α)) < α0 and all
0 < λ < ΛN,γ(Ω, ΣD), then Iλ,γ is achieved.
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Main existence result

We define

Qλ,γ(u) =

∫
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∫
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|x|2(γ+1)
dx

and

Iλ,γ = inf
u∈E

2,γ
ΣD

(Ω),‖u‖
L2∗

γ
=1

Qλ,γ(u).

Theorem Assume that λ ∈ (0, ΛN,γ(Ω, ΣD)), then we have:

(a) If N−2
2

−
√

ΛN,γ − λ ≤ 0 and Iλ,γ(Ω) < 2−
1
N S0, then Iλ,γ(Ω) is achieved and as a

consequence, the DC problem has solution. Moreover, if Sγ(Ω, ΣD) is achieved then
Iλ,γ(Ω) is also achieved.

(b) If N−2
2

−
√

ΛN,γ − λ ≥ 0 and Iλ,γ(Ω) < min{Tλ,γ , 2−
1
N S0}, we obtain that Iλ,γ is

achieved.

(c) Given a family {ΣD(α) : 0 < α < HN−1(∂Ω)} verifying hypothesis (H), there exists
a positive constant α0 such that for all α = HN−1(ΣD(α)) < α0 and all
0 < λ < ΛN,γ(Ω, ΣD), then Iλ,γ is achieved.

The proof follows the same arguments as in the case of Sobolev and Hardy-Sobolev
constants.
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Non-existence of solution
As in the case of the Sobolev constant, we have the following non-existence result.

Theorem Assume that v is a positive solution to the DC problem, then we have

1

2

∫

ΣN

|x|−2γ |∂v

∂η
|2〈x, η〉dx − 1

2

∫

ΣD

|x|−2γ |∂v

∂η
|2〈x, η〉dx

=
λ

2

∫

ΣN

v2

|x|2(γ+1)
〈x, η〉dx +

1

2∗

∫

ΣN

|x|−2∗γv2∗ 〈x, η〉dx.

As a consequence, if 〈x, η〉 = 0 for x ∈ ΣN and 〈x, η〉 ≥ 0 for x ∈ ΣD , DC problem has not
positive solution.
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Non-existence of solution
As in the case of the Sobolev constant, we have the following non-existence result.

Theorem Assume that v is a positive solution to the DC problem, then we have

1

2

∫

ΣN

|x|−2γ |∂v

∂η
|2〈x, η〉dx − 1

2

∫

ΣD

|x|−2γ |∂v

∂η
|2〈x, η〉dx

=
λ

2

∫

ΣN

v2

|x|2(γ+1)
〈x, η〉dx +

1

2∗

∫

ΣN

|x|−2∗γv2∗ 〈x, η〉dx.

As a consequence, if 〈x, η〉 = 0 for x ∈ ΣN and 〈x, η〉 ≥ 0 for x ∈ ΣD , DC problem has not
positive solution.

Remark: Notice the difference between this case and the problem studied by Grossi in [G] .
In such a work, γ = 0 and without the critical Hardy potential, is proved that problem















−∆u = λu + u2∗−1 in Ω,

u > 0 in Ω,

B(u) = 0, on ∂Ω.

always has a positive solution if N > 4, at least for λ > 0 small.

[G] M. Grossi, Rend. Mat. Serie VII, 1990.
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Improvement term in the Hardy-Sobolev inequality:

(ΛN,γ(Ω, ΣD) = ΛN,γ)

Theorem Assume that:

Ω ⊂ IRN is a bounded regular domain with Ω ⊂ B R
2

(0),

ΛN,γ(Ω, ΣD) = ΛN,γ .

Then there exists C > 0 such that for all u ∈ E2,γ
ΣD

(Ω),

∫

Ω
|x|−2γ |∇u|2dx − ΛN,γ(Ω, ΣD)

∫

Ω

u2

|x|2(γ+1)
dx

≥ C

∫

Ω
|x|−2γ |∇u|2

(

log

(

R

|x|

))−2

dx.
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Improvement term in the Hardy-Sobolev inequality:

(ΛN,γ(Ω, ΣD) = ΛN,γ)

Theorem Assume that:

Ω ⊂ IRN is a bounded regular domain with Ω ⊂ B R
2

(0),

ΛN,γ(Ω, ΣD) = ΛN,γ .

Then there exists C > 0 such that for all u ∈ E2,γ
ΣD

(Ω),

∫

Ω
|x|−2γ |∇u|2dx − ΛN,γ(Ω, ΣD)

∫

Ω

u2

|x|2(γ+1)
dx

≥ C

∫

Ω
|x|−2γ |∇u|2

(

log

(

R

|x|

))−2

dx.

H. Brezis, J.L. Vázquez, Rev. Mat. Univ. Complut. Madrid, 1997.
J.L. Vázquez, E. Zuazua, J. Funct. Anal., 2000.
Z.Q. Wang, M. Willem, J. Funct. Anal., 2003.
B. Abdellaoui, E. C., I. Peral Cal. Var. P. D. E., 2005.
B. Abdellaoui, E. C., I. Peral Adv. Nonlinear Stud., 2004.
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The space Hγ,ΣD
.

Definition Assume that ΛN,γ(Ω, ΣD) = ΛN,γ.
We define Hγ,ΣD

(Ω) as the completion of

XΣD
= {u ∈ C1(Ω)| such that u = 0 on ΣD ⊂ ∂Ω}

with respect to the norm

‖u‖Hγ,ΣD
=

(
∫

Ω
|x|−2γ |∇u|2dx − ΛN,γ(Ω, ΣD)

∫

Ω

u2

|x|2(γ+1)
dx

)1/2

.

60th Ireneo’s Birthday – p. 28/38



The space Hγ,ΣD
.

Definition Assume that ΛN,γ(Ω, ΣD) = ΛN,γ.
We define Hγ,ΣD

(Ω) as the completion of

XΣD
= {u ∈ C1(Ω)| such that u = 0 on ΣD ⊂ ∂Ω}

with respect to the norm

‖u‖Hγ,ΣD
=

(
∫

Ω
|x|−2γ |∇u|2dx − ΛN,γ(Ω, ΣD)

∫

Ω

u2

|x|2(γ+1)
dx

)1/2

.

Remarks:

Hγ,ΣD
(Ω) is a Hilbert space.

Hγ,ΣD
(Ω) is a natural space to obtain uniform estimates which allow us to analyze the

initial problem (P ).

If 0 ≤ λ < ΛN,γ(Ω, ΣD) = ΛN,γ , the solutions are in E2,γ
ΣD

(Ω).

If 0 ≤ λ ≤ ΛN,γ(Ω, ΣD) = ΛN,γ , there exists solution in Hγ,ΣD
(Ω) and moreover are

uniformly bounded in Hγ,ΣD
(Ω).
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Uniform estimates
Let u be a solution to

(P ) ≡







−div(|x|−2γ∇u) − λ
u

|x|2(γ+1)
= |x|−(r+1)γur in Ω,

u > 0 in Ω, B(u) = 0 on ∂Ω.
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Uniform estimates
Let u be a solution to

(P ) ≡







−div(|x|−2γ∇u) − λ
u

|x|2(γ+1)
= |x|−(r+1)γur in Ω,

u > 0 in Ω, B(u) = 0 on ∂Ω.

The function w(x) = |x|
N−2(γ+1)

2 u(x) is w ≥ 0 and for λ < ΛN,γ satisfies:

u(x) ∼= |x|−
N−2(γ+1)

2
+
√

ΛN,γ−λ,

w(x) ∼= |x|
√

ΛN,γ−λ,
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N−2(γ+1)

2 u(x) is w ≥ 0 and for λ < ΛN,γ satisfies:

u(x) ∼= |x|−
N−2(γ+1)

2
+
√

ΛN,γ−λ,

w(x) ∼= |x|
√

ΛN,γ−λ,

(TP ) ≡











































−div(|x|−(N−2)∇w) +
(ΛN,γ − λ)w

|x|N
=

wr

|x|(r+1) N−2
2

in Ω,

w = 0 on ΣD,

|x|−2γ ∂

∂ν

(

|x|
N−2(γ+1)

2 w

)

= 0 on ΣN .
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Uniform estimates
Theorem There exists a constant C > 0 independent of λ such that
∀ 0 ≤ λ ≤ ΛN,γ(Ω, ΣD) = ΛN,γ and all solutions to (TP ) verify

‖w‖L∞(Ω) ≤ C.
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Uniform estimates
Sketch of the proof: One assumes by contradiction the there exist {Pk} ⊂ Ω and
{λk} ⊂ [0, ΛN,γ ] verifying

Mk = max
x∈Ω

uk(x) = uk(Pk) −→ ∞ as k → ∞,

for a subsequence one can suppose that Pk → P0 ∈ Ω and λk → ΛN,γ for k → ∞.
Making a scaling of type

vk(z) =
w(µkz + Pk)

Mk
,

there are the following alternatives taking into account the position of P0 in Ω:
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Mk = max
x∈Ω

uk(x) = uk(Pk) −→ ∞ as k → ∞,

for a subsequence one can suppose that Pk → P0 ∈ Ω and λk → ΛN,γ for k → ∞.
Making a scaling of type

vk(z) =
w(µkz + Pk)

Mk
,

there are the following alternatives taking into account the position of P0 in Ω:
1.- P0 ∈ Ω r {0} ∪ ΣD −→ Gidas-Spruck, Comm. in P.D.E. 1981.
2.- P0 ∈ ΣN −→ Lin-Ni-Takagi, J. Diff. Eqns. 1988.
3.- P0 ∈ Γ = ΣD ∩ ΣN −→ C.-Peral, J. Funct. Anal. 2003.
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{λk} ⊂ [0, ΛN,γ ] verifying

Mk = max
x∈Ω

uk(x) = uk(Pk) −→ ∞ as k → ∞,

for a subsequence one can suppose that Pk → P0 ∈ Ω and λk → ΛN,γ for k → ∞.
Making a scaling of type

vk(z) =
w(µkz + Pk)

Mk
,

there are the following alternatives taking into account the position of P0 in Ω:
1.- P0 ∈ Ω r {0} ∪ ΣD −→ Gidas-Spruck, Comm. in P.D.E. 1981.
2.- P0 ∈ ΣN −→ Lin-Ni-Takagi, J. Diff. Eqns. 1988.
3.- P0 ∈ Γ = ΣD ∩ ΣN −→ C.-Peral, J. Funct. Anal. 2003.
4.- P0 = 0, require a different analysis. One can perform the techniques and passing to the
limit in a suitable way, one arrives to a function

v0 ∈ C2(IRN r {0}) ∩ C0(IRN)

which is a nonnegative solution to equation

−div(|x|−(N−2)∇v0) =
vr
0

|x|(r+1) N−2
2

with v0(x) ≤ v0(0) = 1.

And finally one proves that the unique solution is v0 ≡ 0 which is a contradiction.
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Uniform estimates in Hγ,ΣD

As a consequence of the L∞-estimates for w we get.

Theorem Assume that ΛN,γ(Ω, ΣD) = ΛN,γ . Then ∃C > 0 such that ‖uλ‖Hγ,ΣD
≤ C for

all λ ∈ [0, ΛN,γ(Ω, ΣD)] and all solution uλ of problem (P ).
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Uniform estimates in Hγ,ΣD

As a consequence of the L∞-estimates for w we get.

Theorem Assume that ΛN,γ(Ω, ΣD) = ΛN,γ . Then ∃C > 0 such that ‖uλ‖Hγ,ΣD
≤ C for

all λ ∈ [0, ΛN,γ(Ω, ΣD)] and all solution uλ of problem (P ).

Proof: Let uλ be a solution to (P ). By the last estimate on L∞, ∃C > 0 such that

|x|
N−2(γ+1)

2 uλ ≤ C.
Multiplying in the equation by uλ and integrating,

‖uλ‖2
Hγ

≡
∫

Ω
|∇uλ|2|x|−2γdx − ΛN,γ

∫

Ω

u2
λ

|x|2(γ+1)
dx

≤
∫

Ω
|∇uλ|2|x|−2γdx − λ

∫

Ω

u2
λ

|x|2(γ+1)
dx

=

∫

Ω

ur+1
λ

|x|(r+1)γ
dx

≤ C

∫

Ω
|x|−

N−2
2

(r+1)dx ≤ C1 < ∞

because of r + 1 < 2∗. �

60th Ireneo’s Birthday – p. 31/38



60th Ireneo’s Birthday – p. 32/38



60th Ireneo’s Birthday – p. 33/38



60th Ireneo’s Birthday – p. 34/38



Some remarks on bifurcation
Remember the problem

(P ) ≡







−div(|x|−2γ∇u) − λ
u

|x|2(γ+1)
= |x|−(r+1)γur in Ω,

u > 0 in Ω, B(u) = 0 on ∂Ω.

We show some results on bifurcation in function on r sub or super-linear, and the attainability
or not of the Hardy-Sobolev constant.
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Happy 60
th Birthday Ireneo!!!
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