
Preliminaries The trace problem The method of auxiliary functions The integer Chebyshev problem Computational details

The Schur Siegel trace problem

J. Aguirre J.C. Peral

Universidad del País Vasco
Facultad de Ciencia y Tecnología

Departmento de Matemáticas

A celebration of the 60th birthday of Ireneo Peral
Salamanca, February 2007



Preliminaries The trace problem The method of auxiliary functions The integer Chebyshev problem Computational details

Apologies

In 1982 Ireneo and I were interested in the nonlinear
2-dimensional wave equation on [ 0, 2π ]× [ 0, 2π ]× [ 0,∞).

We studied the the operator

utt − (uxx + uyy) + ε2∆2u

It turned out that wether it had a compact inverse, depended
on number theoretic properties of the number ε.
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Algebraic integers

Definition
An algebraic integer is a complex number α that satisfies a
polynomial equation

xn + a1xn−1 + · · ·+ an−1x + an = 0, ak ∈ Z.
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Algebraic integers

Definition
An algebraic integer is a complex number α that satisfies a
polynomial equation

xn + a1xn−1 + · · ·+ an−1x + an = 0, ak ∈ Z.

Example
√

2 is an algebraic integer. Satisfies the equation

x2 − 2 = 0
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Algebraic integers

Definition
An algebraic integer is a complex number α that satisfies a
polynomial equation

xn + a1xn−1 + · · ·+ an−1x + an = 0, ak ∈ Z.

Example

1/
√

2 is not an algebraic integer. Satisfies the equation

2 x2 − 1 = 0
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Algebraic integers

Definition
An algebraic integer is a complex number α that satisfies a
polynomial equation

xn + a1xn−1 + · · ·+ an−1x + an = 0, ak ∈ Z.

The set A of all algebraic integers is a ring.

Given α ∈ A there is a unique monic irreducible P ∈ Z[x] of
minimal degree with P(α) = 0: the minimal polynomial of α.
Its degree is called the degree of α.

The roots of P are all different: the conjugates of α.

If all are positive, then α is said to be totally positive. The set
of all totally positive algebraic integers will be denoted by A+.
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Notation

α ∈ A+ of degree d

Its conjugates α1 < · · · < αd

Its minimal polynomial

P(x) = xd +

d∑
k=1

(−1)kak xd−k

=

d∏
k=1

(x − αk)

By Descartes rule of signs, ak > 0, 1 6 k 6 d.
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Trace, Norm & Discriminant

Associated with any α ∈ A, there are several quantities of
interest in algebraic number theory:

Trace(α) =

d∑
k=1

αk

Norm(α) =

d∏
k=1

αk

Dis(α) =
∏

16i<j6d

(αi − αj)
2

All of them are integers.
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The Resultant

Definition

The resultant of two polynomials P(x) = a0xn + · · ·+ an,
Q(x) = b0xm + · · ·+ bm of degree m is defined as

Resultant(P, Q) = am
0

∏
P(x)=0

Q(x).

Properties of the resultant

If P, Q ∈ Z[x], then Resultant(P, Q) ∈ Z.

Resultant(P, Q) = 0 if and only if P and Q have a common
root.

If P, Q ∈ Z[x] are coprime, then | Resultant(P, Q)| > 1.
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Measures

Definition
The p-th measure of α ∈ A is

Mp(α) =
(1

d

d∑
k=1

|αk|
p
)1/p

, p > 0.

The spectrum of the measure Mp is the set

Sp = { Mp(α) : α ∈ A+,α 6= 1 }.

Some facts about measures

α ∈ A+ =⇒ Trace(α) = d ·M1(α).

Mp(α) > | Norm(α)|1/d

If α ∈ A+, then Mp(α) > 1 unless α = 1.
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The Schur-Siegel trace problem

For n ∈ N, θn = 4 cos2
(
π
2 n

)
∈ A+.

If n is an odd prime, then M1(θn) = 2 n
n−1 .

If n is a power of 2, then M1(θn) = 2.

2 is a limit point of S1.

Is it the smallest limit point of S1?
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The Schur-Siegel trace problem

For n ∈ N, θn = 4 cos2
(
π
2 n

)
∈ A+.

If n is an odd prime, then M1(θn) = 2 n
n−1 .

If n is a power of 2, then M1(θn) = 2.

2 is a limit point of S1.

Is it the smallest limit point of S1?

The Schur-Siegel trace problem (restricted form)

Given any ε > 0, prove that the set{
α ∈ A+ : M1(α) < 2 − ε

}
is finite, and if possible, find all its elements.
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The Schur-Siegel trace problem

For n ∈ N, θn = 4 cos2
(
π
2 n

)
∈ A+.

If n is an odd prime, then M1(θn) = 2 n
n−1 .

If n is a power of 2, then M1(θn) = 2.

2 is a limit point of S1.

Is it the smallest limit point of S1?

The Schur-Siegel problem (general form)

What is the structure of the spectrum of M1, i.e., of the set

S1 =
{ 1

d

d∑
k=1

αk : α ∈ A+,α 6= 1
}

?
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The Schur-Siegel trace problem

For n ∈ N, θn = 4 cos2
(
π
2 n

)
∈ A+.

If n is an odd prime, then M1(θn) = 2 n
n−1 .

If n is a power of 2, then M1(θn) = 2.

2 is a limit point of S1.

Is it the smallest limit point of S1?

A more general problem

What is the structure of the spectrum of Mp, i.e., of the set

Sp =
{(1

d

d∑
k=1

α
p
k

)1/p
: α ∈ A+,α 6= 1

}
?
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The work of I. Schur, 1918

Theorem

Let 0 < γ <
√

e = 1.6487 . . . . The number of α ∈ A+ such that

α1 + · · ·+ αd 6 γ · d

is finite.
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The work of I. Schur, 1918

Theorem

Let 0 < γ <
√

e = 1.6487 . . . . The number of α ∈ A+ such that

α1 + · · ·+ αd 6 γ · d

is finite.

About the proof

Follows from an inequality for the discriminant, due also to Schur.
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The work of I. Schur, 1918

Theorem

Let 0 < γ <
√

e = 1.6487 . . . . The number of α ∈ A+ such that

α1 + · · ·+ αd 6 γ · d

is finite.

Theorem

max
x2

1+···+x2
d61

Dis(x1, . . . , xd) = (d2 − d)− 1
2 (d2−d)

d∏
k=2

kk

= O
(
d

1
2 (3d−d2)+ 1

12 e− 1
4 (2d−d2)

)
.
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The work of C.L. Siegel, 1945

Theorem
1 Let ϑ be the positive root of the transcendental equation

(1 + ϑ) log(1 + ϑ−1) +
log ϑ
1 + ϑ

= 1,

and λ0 = e(1 + ϑ−1)−ϑ = 1.7336 . . .. Then if λ < λ0

{α ∈ A+ : M1(α) < λ }

is finite.

2 The only α ∈ A+ such that M1(α) 6 3/2 are α = 1 and the
roots of the polynomial x2 − 3 x + 1.

3 The smallest point in S1 is 3/2, and it is an isolated point.
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The work of C.L. Siegel, 1945

About the proof

Is based on an improvement of the classical inequality between the
arithmetic and the geometric means involving the discriminant.
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The work of C.L. Siegel, 1945

Theorem
Let

P(t) =
1
d!

d−2∏
k=0

( t + k
d − k

)d−k−1
, Q(t) =

d−1∏
k=1

(
1 +

d − k
t + k − 1

)
,

x1, . . . , xd positive numbers with Dis(x1, . . . , xd) 6= 0,

µ > 0 solution of P(µ) =
(x1 . . . xd)

d−1

Dis(x1, . . . , xd)
.

Then (x1 + · · ·+ xd

d

)d
> Q(µ) x1 . . . xd.
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The work of C. Smyth

C. Smyth carries out in 1984 a detailed analysis, both
theoretical and numerical, of the the sets Sp for p > 0.

Based on the resultant, instead of the discriminant.

Theorem (p = 1)

1 For all totally positive algebraic integers α, with the exception
of the roots of the polynomials x2 − 3 x + 1, x3 − 5 x2 + 6 x − 1,
x4 − 7 x3 + 13 x3 − 7 x + 1 and x4 − 7 x3 + 14 x3 − 8 x + 1,

M1(α) > 1.7719 .

2

(1, 1.7719) ∩ S1 =
{ 3

2
,

5
3

,
7
4

}
.

3 S1 is dense in [ 2, +∞).
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J.C. Peral & J.A.

Theorem

1 For all totally positive algebraic integers α, with the same
exceptions as in Smyth’s result,

M1(α) > 1.7839 .

2 For all but 26 totally positive algebraic integers α and their
integer translates,

M1(α) > 1.66 + α1 .

Proof.
The method of auxiliary functions, developped by C. Smyth.
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Auxiliary functions

Definition
An auxiliary function is a function

F(x) = f (x) − c log |Q(x)|

where f : [ 0,∞)→ R, c > 0 and Q ∈ Z[x], Q 6= 0.

Remark
By decomposing Q as a product of irreducible factors we can
allways write an auxiliary function as

F(x) = F(x, c1, . . . , cN) = f (x) −

N∑
k=1

ck log |Qk(x)|,

where ck > 0 and Qk ∈ Z[x] is irreducible, 1 6 k 6 N.
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The method of auxiliary functions

Definition

Kp = sup
Q∈Z[x], Q6=0, c>0

{
inf
x>0

(
xp − c log |Q(x)|

)}
.

1 If γ < Kp, the there exist Q ∈ Z[x] and c > 0 such that

xp − c log |Q(x)| > γ ∀x > 0.

2 For α ∈ A+ average over the conjugates of α to get

1
d

∑d

k=1
α

p
k > γ+ c log

∣∣∣∏d

k=1
Q(αk)

∣∣∣
= γ+ c log | Resultant(P, Q)|.

3 If Q(α) 6= 0, then | Resultant(P, Q)| > 1 and Mp(α) > γ1/p.
4 (1,γ1/p) ∩ Sp ⊂ {α ∈ A+ : Q(α) = 0 } is finite.
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The method of auxiliary functions

Some facts about Kp

No exact value of Kp is known for any p > 0.

Estimates on the value of Kp provide
information on Sp.

Lower bounds are obtained by means of
explicit values of c and Q.

To prove K1 > 1.7839, 31 polynomials were
used.

To prove M1(α) > 1.66 + α1, the auxiliary
function is minimized on intervals (ξ,∞) with
ξ > 0. The polynomials used change with ξ.

d
1 3
2 3
3 3
4 2
5 4
6 3
7 5
8 1

10 4
12 3

31
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The limits of the method

Question
Is it possible to solve the trace problem with this method?

Answer

NO
C. Smyth proved that K1 < 2 .

J.P. Serre proved in a private letter to C. Smyth that in fact
K1 < 1.8984 .
To prove K1 > 1.89, the auxiliary function should include:

All 656 polynomials of degree 9 and trace 17.
All polynomials of degree 14 and trace 25 if any exists.

These are hard computational problems.
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C. Smyth proved that K1 < 2 .
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Estimates for K2

Theorem (J.C. Peral & J.A.)

1 5.2192 < K2 < 5.8735 .
2 For all α ∈ A+, with the exception of the roots of the

polynomials x − 1, x − 2, x2 − 3 x + 1 and x3 − 5 x2 + 6 x − 1,

M2(α) > 2.2845 .

3

(1, 2.2845) ∩ S2 =
{

2,

√
7
2

,

√
13
3

}
.
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Proof of the upper bound

1 Let Q ∈ Z[x], t > 0 satisfy

γ 6 x2 −
t
∂Q

log |Q(x)| ∀x > 0.

2 Q(x) = xm R(x), R(0) 6= 0, τ = m/∂Q.
3 R∗(x) = x∂R R(1/x)

4 Then for all x > 0

γ 6 x2 − t τ log x − t(1 − τ)
1
∂R

log |R(x)|,

γ 6 x−2 + t log x + t(1 − τ)
1
∂R∗

log |R∗(x)|.

5 Multiply by
1

π
√

(x − a)(b − x)
and integrate on [ a, b ].
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Proof of the upper bound

6 Then for all 0 < a < b

γ 6
3 a2 + 2 a b + 3 b2

8
− tτ log

(
√

a +
√

b)2

4
− t(1 − τ) log

b − a
4

,

γ 6
a + b

2(a b)3/2 + t log
(
√

a +
√

b)2

4
− t(1 − τ) log

b − a
4

.

7 Introduce new variables λ > 0 and z > 1 such that

a = λ(
√

z +
1√
z

− 2), b = λ(
√

z +
1√
z

+ 2).
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Proof of the upper bound

10 Then for all λ > 0 and z > 1

γ 6 λ(z +
1
z

+ 4) −
1
2

t log λ−
1
2

t τ log z,

γ 6
z + z2

(z − 1)3λ
+

1
2

t τ log λ+
1
2

t log z.

11 With the help of a CAS minimize the right hand sides to obtain

γ 6 min(φ(t, τ),ψ(t, τ)), t > 0, 0 6 τ 6 1,

where φ and ψ are some complicated functions.
12 Maximize the right hand side, again with the help of a CAS.
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The Integer Chebyshev Problem

Let I ⊂ R be a closed interval. The integer Chebyshev problem
asks for the polynomial of degree n with integer coefficients of
minimal uniform norm on I.

Definition

tn(I) = min
{

sup
x∈I

|P(x)|1/∂P : P ∈ Z[x], ∂P 6 n, P 6= 0
}

,

tZ(I) = inf{ tn(I) : n ∈ N }.

tZ(I) is known as the integer Chebyshev constant of I.

If |I| > 4 then tZ(I) = 1.

No exact value of tZ(I) is known if |I| < 4.

tZ([ 0, 1 ]) is related to the Prime Number Theorem.
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Farey intervals

Definition

A Farey interval is an interval [ p/q, r/s ] where p, q, r and s are
non-negative integers such that q r − p s = 1.

Given coprime integers 1 6 q 6 s, there is a unique Farey
interval

Iq,s = [ p/q, r/s ] ⊂ [ 0, 1 ].

The fractional linear transformation φ(x) = (p x + r)/(q x + s)
is a bijection between (0,∞) and (p/q, r/s).

The integer Chebyshev constant of a Farey interval

tZ(Iq,s) =
1
q
· inf

Q∈Z[x], Q 6=0
0<t<1

{
sup
x>0

(
x +

s
q

)−1
|Q(x)|t/∂Q

}
.
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The functions ρ and λ

Definition of ρ, λ : [ 1,∞)→ R

ρ(σ) = sup
Q∈Z[x], Q 6=0

0<t<1

{
inf
x>0

(
log(x + σ) −

t
∂Q

log |Q(x)|
)}

,

λ(σ) = eρ(σ) − σ.

tZ(Iq,s) in terms of ρ and λ

tZ(Iq,s) =
1
q

e−ρ(s/q) =
1

q λ(s/q) + s
.
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Relation with the trace problem

Theorem (J.C. Peral & J.A.)

1

1 6 λ(σ) 6 K1 ∀σ > 1.

2

lim
σ→∞ λ(σ) = K1.

3

1
K1 q + s

6 tZ(Iq,s) 6
1

q + s
.

4

lim
m→∞

( 1
tZ([ 0, 1/m])

− m
)

= K1.
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Estimates for the Function λ

• Upper bounds • Lower bounds

Conjecture

λ is increasing and concave.
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What to do in practice

Look for Q ∈ Z[x] and c > 0 that maximize

min
x>0

(
f (x) − c log |Q(x)|

)
.

How does one find Q and c?
1 Choose N irreducible polynomials Qk ∈ Z[x].
2 Solve the optimization problem

sup
ck>0

{
min
x>0

(
f (x) −

N∑
k=1

ck log |Qk(x)|
)}

. (∗)

To aply the method we must
1 Find appropriate polynomials Qk.
2 Find the coefficients ck that solve (∗).
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Where do the polynomials Qk come from?

They should have positive roots.

They should have small
coefficients.

They should have small trace.

Exhaustive search.

Transformations:

P→ x∂PP(x +
1
x

− 2)

d T M1

1 1 1.000 1
2 3 1.500 1
3 5 1.660 1
4 7 1.750 2
5 9 1.800 4
6 11 1.833 11
7 13 1.857 40
8 15 1.875 146
9 17 1.889 656

10 18 1.800 3
11 20 1.818 None?
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Minimizing F(x, c1, . . . , cN) with respect to x.

Minimization problem

Given ck > 0, Qk ∈ Z[x], 1 6 k 6 N, find

min
x>0

F(x, c1, . . . , cN) = min
x>0

(
f (x) −

N∑
k=1

ck log |Qk(x)|
)

.

The values of ck are entered as exact rational numbers.
Critical points of F are computed solving with high precision

f ′(x) −

N∑
k=1

ck
Q ′k
Qk

= 0

Depending on the nature of f , different algorithms can be
used.
The result can be checked, since the critical points are located
between the roots of the Qi.
infx>0 F(x, c1, . . . , cN) is calculated evaluating F at the critical
points.
This is the most time consuming part.
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Reme’s Algorithm

F(x, c1, . . . , cN) has M local minima ξi ∈ (0,∞), M > N.

The values F(ξi, c1, . . . , cN) are different in general.

For optimal { ck }N
k=1, N + 1 of them are equal.
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Reme’s Algorithm

1 Start with a set of coefficients { ck }N
k=1 and compute the

minima { ξj }
M
j=1 of F(x, c1, . . . , cN) on (0,∞), ordered so that

F(ξi, c1, . . . , cN) 6 F(ξj, c1, . . . , cN) if i 6 j.

2 Solve the linear system with N + 1 equations and N + 1
unknowns

F(ξi, c ′1, . . . , c ′N) = δ, 1 6 i 6 N + 1.

3 Update { ck }N
k=1 → { c ′k }N

k=1 and repeat until convergence.
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A different algorithm

1 Start with a set of coefficients { ck }N
k=1 and compute the

minima { ξj }
M
j=1 of F(x, c1, . . . , cN) on (0,∞), ordered so that

F(ξi, c1, . . . , cN) 6 F(ξj, c1, . . . , cN) if i 6 j.

2 Choose ` ∈ N, ` 6 N, ε > 0, and solve the 3` linear systems
of N equations in the variables c ′k

F(ξk, c ′1, . . . , c ′N) = F(ξk, c1, . . . , cN) + ε δk, 1 6 k 6 N

where δk = 1, 0 or −1 if 1 6 k 6 ` and 0 if k > `.
3 Select the solution that makes infx>0 F(x, c ′1, . . . , c ′N) largest.
4 Compare with F(ξ1, c1, . . . , cN).

If greater, update { ck }N
k=1 → { c ′k }N

k=1, increase ε and go to 1.
Otherwise decrease ε and go to 2.
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