The Schur Siegel trace problem

J. Aguirre J.C. Peral

Universidad del País Vasco
Facultad de Ciencia y Tecnología
Departmento de Matemáticas

A celebration of the 60th birthday of Ireneo Peral Salamanca, February 2007

Apologies

Apologies

- In 1982 Ireneo and I were interested in the nonlinear

2-dimensional wave equation on $[0,2 \pi] \times[0,2 \pi] \times[0, \infty)$.

Apologies

- In 1982 Ireneo and I were interested in the nonlinear 2-dimensional wave equation on $[0,2 \pi] \times[0,2 \pi] \times[0, \infty)$.
- We studied the the operator

$$
u_{t t}-\left(u_{x x}+u_{y y}\right)+\varepsilon^{2} \Delta^{2} u
$$

Apologies

- In 1982 Ireneo and I were interested in the nonlinear 2-dimensional wave equation on $[0,2 \pi] \times[0,2 \pi] \times[0, \infty)$.
- We studied the the operator

$$
u_{t t}-\left(u_{x x}+u_{y y}\right)+\varepsilon^{2} \Delta^{2} u
$$

- It turned out that wether it had a compact inverse, depended on number theoretic properties of the number ε.

Outline

(9) Algebraic preliminaries
(2) The Schur-Siegel trace problem
(3) The method of auxiliary functions

4 The integer Chebyshev problem
(5) Computational details

Algebraic integers

Definition

An algebraic integer is a complex number α that satisfies a polynomial equation

$$
x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}=0, \quad a_{k} \in \mathbb{Z}
$$

Algebraic integers

Definition

An algebraic integer is a complex number α that satisfies a polynomial equation

$$
x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}=0, \quad a_{k} \in \mathbb{Z}
$$

Example

$\sqrt{2}$ is an algebraic integer. Satisfies the equation

$$
x^{2}-2=0
$$

Algebraic integers

Definition

An algebraic integer is a complex number α that satisfies a polynomial equation

$$
x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}=0, \quad a_{k} \in \mathbb{Z}
$$

Example

$1 / \sqrt{2}$ is not an algebraic integer. Satisfies the equation

$$
2 x^{2}-1=0
$$

Algebraic integers

Definition

An algebraic integer is a complex number α that satisfies a polynomial equation

$$
x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}=0, \quad a_{k} \in \mathbb{Z}
$$

- The set \mathbb{A} of all algebraic integers is a ring.
- Given $\alpha \in \mathbb{A}$ there is a unique monic irreducible $P \in \mathbb{Z}[x]$ of minimal degree with $P(\alpha)=0$: the minimal polynomial of α. Its degree is called the degree of α.
- The roots of P are all different: the conjugates of α.
- If all are positive, then α is said to be totally positive. The set of all totally positive algebraic integers will be denoted by \mathbb{A}_{+}.

Notation

- $\alpha \in \mathbb{A}_{+}$of degree d
- Its conjugates $\alpha_{1}<\cdots<\alpha_{d}$
- Its minimal polynomial

$$
\begin{aligned}
P(x) & =x^{d}+\sum_{k=1}^{d}(-1)^{k} a_{k} x^{d-k} \\
& =\prod_{k=1}^{d}\left(x-\alpha_{k}\right)
\end{aligned}
$$

- By Descartes rule of signs, $a_{k}>0,1 \leqslant k \leqslant d$.

Trace, Norm \& Discriminant

- Associated with any $\alpha \in \mathbb{A}$, there are several quantities of interest in algebraic number theory:

$$
\begin{aligned}
\operatorname{Trace}(\alpha) & =\sum_{k=1}^{d} \alpha_{k} \\
\operatorname{Norm}(\alpha) & =\prod_{k=1}^{d} \alpha_{k} \\
\operatorname{Dis}(\alpha) & =\prod_{1 \leqslant i<j \leqslant d}\left(\alpha_{i}-\alpha_{j}\right)^{2}
\end{aligned}
$$

Trace, Norm \& Discriminant

- Associated with any $\alpha \in \mathbb{A}$, there are several quantities of interest in algebraic number theory:

$$
\begin{aligned}
\operatorname{Trace}(\alpha) & =\sum_{k=1}^{d} \alpha_{k} \\
\operatorname{Norm}(\alpha) & =\prod_{k=1}^{d} \alpha_{k} \\
\operatorname{Dis}(\alpha) & =\prod_{1 \leqslant i<j \leqslant d}\left(\alpha_{i}-\alpha_{j}\right)^{2}
\end{aligned}
$$

- All of them are integers.

The Resultant

Definition

The resultant of two polynomials $P(x)=a_{0} x^{n}+\cdots+a_{n}$, $Q(x)=b_{0} x^{m}+\cdots+b_{m}$ of degree m is defined as

$$
\operatorname{Resultant}(P, Q)=a_{0}^{m} \prod_{P(x)=0} Q(x) .
$$

The Resultant

Definition

The resultant of two polynomials $P(x)=a_{0} x^{n}+\cdots+a_{n}$, $Q(x)=b_{0} x^{m}+\cdots+b_{m}$ of degree m is defined as

$$
\operatorname{Resultant}(P, Q)=a_{0}^{m} \prod_{P(x)=0} Q(x)
$$

Properties of the resultant

- If $P, Q \in \mathbb{Z}[x]$, then $\operatorname{Resultant}(P, Q) \in \mathbb{Z}$.
- Resultant $(P, Q)=0$ if and only if P and Q have a common root.
- If $P, Q \in \mathbb{Z}[x]$ are coprime, then $|\operatorname{Resultant}(P, Q)| \geqslant 1$.

Measures

Definition

- The p-th measure of $\alpha \in \mathbb{A}$ is

$$
M_{p}(\alpha)=\left(\frac{1}{d} \sum_{k=1}^{d}\left|\alpha_{k}\right|^{p}\right)^{1 / p}, \quad p>0
$$

- The spectrum of the measure M_{p} is the set

$$
\mathcal{S}_{p}=\left\{M_{p}(\alpha): \alpha \in \mathbb{A}_{+}, \alpha \neq 1\right\} .
$$

Measures

Definition

- The p-th measure of $\alpha \in \mathbb{A}$ is

$$
M_{p}(\alpha)=\left(\frac{1}{d} \sum_{k=1}^{d}\left|\alpha_{k}\right|^{p}\right)^{1 / p}, \quad p>0
$$

- The spectrum of the measure M_{p} is the set

$$
\mathcal{S}_{p}=\left\{M_{p}(\alpha): \alpha \in \mathbb{A}_{+}, \alpha \neq 1\right\} .
$$

Some facts about measures

- $\alpha \in \mathbb{A}_{+} \Longrightarrow \operatorname{Trace}(\alpha)=d \cdot M_{1}(\alpha)$.
- $M_{p}(\alpha) \geqslant|\operatorname{Norm}(\alpha)|^{1 / d}$
- If $\alpha \in \mathbb{A}_{+}$, then $M_{p}(\alpha)>1$ unless $\alpha=1$.

The Schur-Siegel trace problem

- For $n \in \mathbb{N}, \theta_{n}=4 \cos ^{2}\left(\frac{\pi}{2 n}\right) \in \mathbb{A}_{+}$.
- If n is an odd prime, then $M_{1}\left(\theta_{n}\right)=\frac{2 n}{n-1}$.
- If n is a power of 2 , then $M_{1}\left(\theta_{n}\right)=2$.

The Schur-Siegel trace problem

- For $n \in \mathbb{N}, \theta_{n}=4 \cos ^{2}\left(\frac{\pi}{2 n}\right) \in \mathbb{A}_{+}$.
- If n is an odd prime, then $M_{1}\left(\theta_{n}\right)=\frac{2 n}{n-1}$.
- If n is a power of 2 , then $M_{1}\left(\theta_{n}\right)=2$.
- 2 is a limit point of S_{1}.

The Schur-Siegel trace problem

- For $n \in \mathbb{N}, \theta_{n}=4 \cos ^{2}\left(\frac{\pi}{2 n}\right) \in \mathbb{A}_{+}$.
- If n is an odd prime, then $M_{1}\left(\theta_{n}\right)=\frac{2 n}{n-1}$.
- If n is a power of 2 , then $M_{1}\left(\theta_{n}\right)=2$.
- 2 is a limit point of S_{1}.
- Is it the smallest limit point of S_{1} ?

The Schur-Siegel trace problem

- For $n \in \mathbb{N}, \theta_{n}=4 \cos ^{2}\left(\frac{\pi}{2 n}\right) \in \mathbb{A}_{+}$.
- If n is an odd prime, then $M_{1}\left(\theta_{n}\right)=\frac{2 n}{n-1}$.
- If n is a power of 2 , then $M_{1}\left(\theta_{n}\right)=2$.
- 2 is a limit point of \mathcal{S}_{1}.
- Is it the smallest limit point of S_{1} ?

The Schur-Siegel trace problem (restricted form)

Given any $\varepsilon>0$, prove that the set

$$
\left\{\alpha \in \mathbb{A}_{+}: M_{1}(\alpha)<2-\varepsilon\right\}
$$

is finite, and if possible, find all its elements.

The Schur-Siegel trace problem

- For $n \in \mathbb{N}, \theta_{n}=4 \cos ^{2}\left(\frac{\pi}{2 n}\right) \in \mathbb{A}_{+}$.
- If n is an odd prime, then $M_{1}\left(\theta_{n}\right)=\frac{2 n}{n-1}$.
- If n is a power of 2 , then $M_{1}\left(\theta_{n}\right)=2$.
- 2 is a limit point of \mathcal{S}_{1}.
- Is it the smallest limit point of S_{1} ?

The Schur-Siegel problem (general form)

What is the structure of the spectrum of M_{1}, i.e., of the set

$$
\mathcal{S}_{1}=\left\{\frac{1}{d} \sum_{k=1}^{d} \alpha_{k}: \alpha \in \mathbb{A}_{+}, \alpha \neq 1\right\} ?
$$

The Schur-Siegel trace problem

- For $n \in \mathbb{N}, \theta_{n}=4 \cos ^{2}\left(\frac{\pi}{2 n}\right) \in \mathbb{A}_{+}$.
- If n is an odd prime, then $M_{1}\left(\theta_{n}\right)=\frac{2 n}{n-1}$.
- If n is a power of 2 , then $M_{1}\left(\theta_{n}\right)=2$.
- 2 is a limit point of \mathcal{S}_{1}.
- Is it the smallest limit point of S_{1} ?

A more general problem

What is the structure of the spectrum of M_{p}, i.e., of the set

$$
S_{p}=\left\{\left(\frac{1}{d} \sum_{k=1}^{d} \alpha_{k}^{p}\right)^{1 / p}: \alpha \in \mathbb{A}_{+}, \alpha \neq 1\right\} ?
$$

The work of I. Schur, 1918

Theorem

Let $0<\gamma<\sqrt{e}=1.6487 \ldots$ The number of $\alpha \in \mathbb{A}_{+}$such that

$$
\alpha_{1}+\cdots+\alpha_{d} \leqslant \gamma \cdot d
$$

is finite.

The work of I. Schur, 1918

Theorem

Let $0<\gamma<\sqrt{e}=1.6487 \ldots$. The number of $\alpha \in \mathbb{A}_{+}$such that

$$
\alpha_{1}+\cdots+\alpha_{d} \leqslant \gamma \cdot d
$$

is finite.

About the proof

Follows from an inequality for the discriminant, due also to Schur.

The work of I. Schur, 1918

Theorem

Let $0<\gamma<\sqrt{e}=1.6487 \ldots$. The number of $\alpha \in \mathbb{A}_{+}$such that

$$
\alpha_{1}+\cdots+\alpha_{d} \leqslant \gamma \cdot d
$$

is finite.

Theorem

$$
\begin{aligned}
\max _{x_{1}^{2}+\cdots+x_{d}^{2} \leqslant 1} \operatorname{Dis}\left(x_{1}, \ldots, x_{d}\right) & =\left(d^{2}-d\right)^{-\frac{1}{2}\left(d^{2}-d\right)} \prod_{k=2}^{d} k^{k} \\
& =\mathcal{O}\left(d^{\frac{1}{2}\left(3 d-d^{2}\right)+\frac{1}{12}} e^{-\frac{1}{4}\left(2 d-d^{2}\right)}\right)
\end{aligned}
$$

The work of C.L. Siegel, 1945

Theorem

(1) Let ϑ be the positive root of the transcendental equation

$$
\begin{gathered}
(1+\vartheta) \log \left(1+\vartheta^{-1}\right)+\frac{\log \vartheta}{1+\vartheta}=1, \\
\text { and } \lambda_{0}=e\left(1+\vartheta^{-1}\right)^{-\vartheta}=1.7336 \ldots \text { Then if } \lambda<\lambda_{0} \\
\left\{\alpha \in \mathbb{A}_{+}: M_{1}(\alpha)<\lambda\right\}
\end{gathered}
$$

is finite.

The work of C.L. Siegel, 1945

Theorem

(1) Let ϑ be the positive root of the transcendental equation

$$
\begin{gathered}
(1+\vartheta) \log \left(1+\vartheta^{-1}\right)+\frac{\log \vartheta}{1+\vartheta}=1, \\
\text { and } \lambda_{0}=e\left(1+\vartheta^{-1}\right)^{-\vartheta}=1.7336 \ldots \text { Then if } \lambda<\lambda_{0} \\
\left\{\alpha \in \mathbb{A}_{+}: M_{1}(\alpha)<\lambda\right\}
\end{gathered}
$$

is finite.
(2) The only $\alpha \in \mathbb{A}_{+}$such that $M_{1}(\alpha) \leqslant 3 / 2$ are $\alpha=1$ and the roots of the polynomial $x^{2}-3 x+1$.

The work of C.L. Siegel, 1945

Theorem

(1) Let ϑ be the positive root of the transcendental equation

$$
\begin{gathered}
(1+\vartheta) \log \left(1+\vartheta^{-1}\right)+\frac{\log \vartheta}{1+\vartheta}=1, \\
\text { and } \lambda_{0}=e\left(1+\vartheta^{-1}\right)^{-\vartheta}=1.7336 \ldots . \text { Then if } \lambda<\lambda_{0} \\
\left\{\alpha \in \mathbb{A}_{+}: M_{1}(\alpha)<\lambda\right\}
\end{gathered}
$$

is finite.
(2) The only $\alpha \in \mathbb{A}_{+}$such that $M_{1}(\alpha) \leqslant 3 / 2$ are $\alpha=1$ and the roots of the polynomial $x^{2}-3 x+1$.
(3) The smallest point in δ_{1} is $3 / 2$, and it is an isolated point.

The work of C.L. Siegel, 1945

About the proof

Is based on an improvement of the classical inequality between the arithmetic and the geometric means involving the discriminant.

The work of C.L. Siegel, 1945

Theorem

Let

$$
P(t)=\frac{1}{d!} \prod_{k=0}^{d-2}\left(\frac{t+k}{d-k}\right)^{d-k-1}, \quad Q(t)=\prod_{k=1}^{d-1}\left(1+\frac{d-k}{t+k-1}\right)
$$

x_{1}, \ldots, x_{d} positive numbers with $\operatorname{Dis}\left(x_{1}, \ldots, x_{d}\right) \neq 0$,

$$
\mu>0 \text { solution of } P(\mu)=\frac{\left(x_{1} \ldots x_{d}\right)^{d-1}}{\operatorname{Dis}\left(x_{1}, \ldots, x_{d}\right)} .
$$

Then

$$
\left(\frac{x_{1}+\cdots+x_{d}}{d}\right)^{d} \geqslant Q(\mu) x_{1} \ldots x_{d} .
$$

The work of C. Smyth

- C. Smyth carries out in 1984 a detailed analysis, both theoretical and numerical, of the the sets S_{p} for $p>0$.
- Based on the resultant, instead of the discriminant.

The work of C. Smyth

- C. Smyth carries out in 1984 a detailed analysis, both theoretical and numerical, of the the sets S_{p} for $p>0$.
- Based on the resultant, instead of the discriminant.

Theorem ($p=1$)

(1) For all totally positive algebraic integers α, with the exception of the roots of the polynomials $x^{2}-3 x+1, x^{3}-5 x^{2}+6 x-1$, $x^{4}-7 x^{3}+13 x^{3}-7 x+1$ and $x^{4}-7 x^{3}+14 x^{3}-8 x+1$,

$$
M_{1}(\alpha) \geqslant 1.7719
$$

(2)

$$
(1,1.7719) \cap S_{1}=\left\{\frac{3}{2}, \frac{5}{3}, \frac{7}{4}\right\} .
$$

(3) \mathcal{S}_{1} is dense in $[2,+\infty)$.

The trace problem

J.C. Peral \& J.A.

Theorem

J.C. Peral \& J.A.

Theorem

(1) For all totally positive algebraic integers α, with the same exceptions as in Smyth's result,

$$
M_{1}(\alpha) \geqslant 1.7839
$$

J.C. Peral \& J.A.

Theorem

(1) For all totally positive algebraic integers α, with the same exceptions as in Smyth's result,

$$
M_{1}(\alpha) \geqslant 1.7839
$$

(2) For all but 26 totally positive algebraic integers α and their integer translates,

$$
M_{1}(\alpha) \geqslant 1.66+\alpha_{1}
$$

J.C. Peral \& J.A.

Theorem

(1) For all totally positive algebraic integers α, with the same exceptions as in Smyth's result,

$$
M_{1}(\alpha) \geqslant 1.7839
$$

(2) For all but 26 totally positive algebraic integers α and their integer translates,

$$
M_{1}(\alpha) \geqslant 1.66+\alpha_{1}
$$

Proof.

The method of auxiliary functions, developped by C. Smyth.

Auxiliary functions

Definition

An auxiliary function is a function

$$
\mathcal{F}(x)=f(x)-c \log |Q(x)|
$$

where $f:[0, \infty) \rightarrow \mathbb{R}, c>0$ and $Q \in \mathbb{Z}[x], Q \neq 0$.

Auxiliary functions

Definition

An auxiliary function is a function

$$
\mathcal{F}(x)=f(x)-c \log |Q(x)|
$$

where $f:[0, \infty) \rightarrow \mathbb{R}, c>0$ and $Q \in \mathbb{Z}[x], Q \neq 0$.

Remark

By decomposing Q as a product of irreducible factors we can allways write an auxiliary function as

$$
\mathcal{F}(x)=\mathcal{F}\left(x, c_{1}, \ldots, c_{N}\right)=f(x)-\sum_{k=1}^{N} c_{k} \log \left|Q_{k}(x)\right|,
$$

where $c_{k}>0$ and $Q_{k} \in \mathbb{Z}[x]$ is irreducible, $1 \leqslant k \leqslant N$.

The method of auxiliary functions

Definition

$$
\mathcal{K}_{p}=\sup _{Q \in \mathbb{Z}[x], Q \neq 0, c>0}\left\{\inf _{x>0}\left(x^{p}-c \log |Q(x)|\right)\right\} .
$$

The method of auxiliary functions

Definition

$$
\mathcal{X}_{p}=\sup _{Q \in \mathbb{Z}(x], Q \neq 0, c>0}\left\{\inf _{x>0}\left(x^{p}-c \log |Q(x)|\right)\right\} .
$$

(1) If $\gamma<\mathcal{K}_{p}$, the there exist $Q \in \mathbb{Z}[x]$ and $c>0$ such that

$$
x^{p}-c \log |Q(x)| \geqslant \gamma \quad \forall x>0 .
$$

The method of auxiliary functions

Definition

$$
\mathcal{K}_{p}=\sup _{Q \in \mathbb{Z}[x], Q \neq 0, c>0}\left\{\inf _{x>0}\left(x^{p}-c \log |Q(x)|\right)\right\} .
$$

(1) If $\gamma<\mathcal{K}_{p}$, the there exist $Q \in \mathbb{Z}[x]$ and $c>0$ such that

$$
x^{p}-c \log |Q(x)| \geqslant \gamma \quad \forall x>0 .
$$

(2) For $\alpha \in \mathbb{A}_{+}$average over the conjugates of α to get

$$
\begin{aligned}
\frac{1}{d} \sum_{k=1}^{d} \alpha_{k}^{p} & \geqslant \gamma+c \log \left|\prod_{k=1}^{d} Q\left(\alpha_{k}\right)\right| \\
& =\gamma+c \log |\operatorname{Resultant}(P, Q)| .
\end{aligned}
$$

The method of auxiliary functions

Definition

$$
\mathcal{X}_{p}=\sup _{Q \in \mathbb{Z}[x], Q \neq 0, c>0}\left\{\inf _{x>0}\left(x^{p}-c \log |Q(x)|\right)\right\} .
$$

(1) If $\gamma<\mathcal{K}_{p}$, the there exist $Q \in \mathbb{Z}[x]$ and $c>0$ such that

$$
x^{p}-c \log |Q(x)| \geqslant \gamma \quad \forall x>0 .
$$

(2) For $\alpha \in \mathbb{A}_{+}$average over the conjugates of α to get

$$
\begin{aligned}
\frac{1}{d} \sum_{k=1}^{d} \alpha_{k}^{p} & \geqslant \gamma+c \log \left|\prod_{k=1}^{d} Q\left(\alpha_{k}\right)\right| \\
& =\gamma+c \log |\operatorname{Resultant}(P, Q)| .
\end{aligned}
$$

(0) If $Q(\alpha) \neq 0$, then $|\operatorname{Resultant}(P, Q)| \geqslant 1$ and $M_{p}(\alpha) \geqslant \gamma^{1 / p}$.

The method of auxiliary functions

Definition

$$
\mathcal{X}_{p}=\sup _{Q \in \mathbb{Z}[x], Q \neq 0, c>0}\left\{\inf _{x>0}\left(x^{p}-c \log |Q(x)|\right)\right\} .
$$

(1) If $\gamma<\mathcal{K}_{p}$, the there exist $Q \in \mathbb{Z}[x]$ and $c>0$ such that

$$
x^{p}-c \log |Q(x)| \geqslant \gamma \quad \forall x>0 .
$$

(2) For $\alpha \in \mathbb{A}_{+}$average over the conjugates of α to get

$$
\begin{aligned}
\frac{1}{d} \sum_{k=1}^{d} \alpha_{k}^{p} & \geqslant \gamma+c \log \left|\prod_{k=1}^{d} Q\left(\alpha_{k}\right)\right| \\
& =\gamma+c \log |\operatorname{Resultant}(P, Q)| .
\end{aligned}
$$

(0) If $Q(\alpha) \neq 0$, then $|\operatorname{Resultant}(P, Q)| \geqslant 1$ and $M_{p}(\alpha) \geqslant \gamma^{1 / p}$.
(-) $\left(1, \gamma^{1 / p}\right) \cap S_{p} \subset\left\{\alpha \in \mathbb{A}_{+}: Q(\alpha)=0\right\}$ is finite.

The method of auxiliary functions

Some facts about \mathcal{K}_{p}

- No exact value of \mathcal{K}_{p} is known for any $p>0$.
- Estimates on the value of \mathcal{K}_{p} provide information on \mathcal{S}_{p}.
- Lower bounds are obtained by means of explicit values of c and Q.
- To prove $\mathcal{K}_{1}>1.7839$, 31 polynomials were used.
- To prove $M_{1}(\alpha)>1.66+\alpha_{1}$, the auxiliary function is minimized on intervals (ξ, ∞) with $\xi>0$. The polynomials used change with ξ.

The method of auxiliary functions

Some facts about \mathcal{K}_{p}

- No exact value of \mathcal{K}_{p} is known for any $p>0$.
- Estimates on the value of \mathcal{K}_{p} provide information on S_{p}.

d	
1	3
2	3
3	3
4	2
5	4
6	3
7	5
8	1
10	4
12	3
	31

The limits of the method

Question

Is it possible to solve the trace problem with this method?

The limits of the method

Question

Is it possible to solve the trace problem with this method?

Answer

The limits of the method

Question

Is it possible to solve the trace problem with this method?

Answer

NO

- C. Smyth proved that $\mathcal{K}_{1}<2$.
- J.P. Serre proved in a private letter to C. Smyth that in fact $\mathcal{K}_{1}<1.8984$.
- To prove $\mathcal{K}_{1}>1.89$, the auxiliary function should include:
- All 656 polynomials of degree 9 and trace 17.
- All polynomials of degree 14 and trace 25 if any exists.
- These are hard computational problems.

Estimates for \mathcal{K}_{2}

Theorem (J.C. Peral \& J.A.)

Estimates for \mathcal{K}_{2}

Theorem (J.C. Peral \& J.A.)

(9)

$$
5.2192<\mathcal{K}_{2}<5.8735
$$

Estimates for \mathcal{K}_{2}

Theorem (J.C. Peral \& J.A.)

(1)

$$
5.2192<\mathcal{K}_{2}<5.8735
$$

(2) For all $\alpha \in \mathbb{A}_{+}$, with the exception of the roots of the polynomials $x-1, x-2, x^{2}-3 x+1$ and $x^{3}-5 x^{2}+6 x-1$,

$$
M_{2}(\alpha) \geqslant 2.2845
$$

Estimates for \mathcal{K}_{2}

Theorem (J.C. Peral \& J.A.)

(1)

$$
5.2192<\mathcal{K}_{2}<5.8735
$$

(2) For all $\alpha \in \mathbb{A}_{+}$, with the exception of the roots of the polynomials $x-1, x-2, x^{2}-3 x+1$ and $x^{3}-5 x^{2}+6 x-1$,

$$
M_{2}(\alpha) \geqslant 2.2845
$$

(3)

$$
(1,2.2845) \cap \delta_{2}=\left\{2, \sqrt{\frac{7}{2}}, \sqrt{\frac{13}{3}}\right\}
$$

Proof of the upper bound

(1) Let $Q \in \mathbb{Z}[x], t>0$ satisfy

$$
\gamma \leqslant x^{2}-\frac{t}{\partial Q} \log |Q(x)| \quad \forall x>0 .
$$

Proof of the upper bound

(1) Let $Q \in \mathbb{Z}[x], t>0$ satisfy

$$
\gamma \leqslant x^{2}-\frac{t}{\partial Q} \log |Q(x)| \quad \forall x>0 .
$$

(2) $Q(x)=x^{m} R(x), R(0) \neq 0, \tau=m / \partial Q$.

Proof of the upper bound

(1) Let $Q \in \mathbb{Z}[x], t>0$ satisfy

$$
\gamma \leqslant x^{2}-\frac{t}{\partial Q} \log |Q(x)| \quad \forall x>0 .
$$

(2) $Q(x)=x^{m} R(x), R(0) \neq 0, \tau=m / \partial Q$.
(0) $R^{*}(x)=x^{\partial R} R(1 / x)$

Proof of the upper bound

(1) Let $Q \in \mathbb{Z}[x], t>0$ satisfy

$$
\gamma \leqslant x^{2}-\frac{t}{\partial Q} \log |Q(x)| \quad \forall x>0
$$

(2) $Q(x)=x^{m} R(x), R(0) \neq 0, \tau=m / \partial Q$.
(3) $R^{*}(x)=x^{\partial R} R(1 / x)$
(4) Then for all $x>0$

$$
\begin{aligned}
& \gamma \leqslant x^{2}-t \tau \log x-t(1-\tau) \frac{1}{\partial R} \log |R(x)|, \\
& \gamma \leqslant x^{-2}+t \log x+t(1-\tau) \frac{1}{\partial R^{*}} \log \left|R^{*}(x)\right| .
\end{aligned}
$$

Proof of the upper bound

- Let $Q \in \mathbb{Z}[x], t>0$ satisfy

$$
\gamma \leqslant x^{2}-\frac{t}{\partial Q} \log |Q(x)| \quad \forall x>0 .
$$

(2) $Q(x)=x^{m} R(x), R(0) \neq 0, \tau=m / \partial Q$.
(0) $R^{*}(x)=x^{\partial R} R(1 / x)$
(1) Then for all $x>0$

$$
\begin{aligned}
& \gamma \leqslant x^{2}-t \tau \log x-t(1-\tau) \frac{1}{\partial R} \log |R(x)|, \\
& \gamma \leqslant x^{-2}+t \log x+t(1-\tau) \frac{1}{\partial R^{*}} \log \left|R^{*}(x)\right| .
\end{aligned}
$$

- Multiply by $\frac{1}{\pi \sqrt{(x-a)(b-x)}}$ and integrate on $[a, b]$.

Proof of the upper bound

(6) Then for all $0<a<b$

$$
\begin{aligned}
& \gamma \leqslant \frac{3 a^{2}+2 a b+3 b^{2}}{8}-t \tau \log \frac{(\sqrt{a}+\sqrt{b})^{2}}{4}-t(1-\tau) \log \frac{b-a}{4}, \\
& \gamma \leqslant \frac{a+b}{2(a b)^{3 / 2}}+t \log \frac{(\sqrt{a}+\sqrt{b})^{2}}{4}-t(1-\tau) \log \frac{b-a}{4} .
\end{aligned}
$$

Proof of the upper bound

(8) Then for all $0<a<b$

$$
\begin{aligned}
& \gamma \leqslant \frac{3 a^{2}+2 a b+3 b^{2}}{8}-t \tau \log \frac{(\sqrt{a}+\sqrt{b})^{2}}{4}-t(1-\tau) \log \frac{b-a}{4} \\
& \gamma \leqslant \frac{a+b}{2(a b)^{3 / 2}}+t \log \frac{(\sqrt{a}+\sqrt{b})^{2}}{4}-t(1-\tau) \log \frac{b-a}{4}
\end{aligned}
$$

(0) Introduce new variables $\lambda>0$ and $z>1$ such that

$$
a=\lambda\left(\sqrt{z}+\frac{1}{\sqrt{z}}-2\right), \quad b=\lambda\left(\sqrt{z}+\frac{1}{\sqrt{z}}+2\right)
$$

Proof of the upper bound

(10) Then for all $\lambda>0$ and $z>1$

$$
\begin{aligned}
& \gamma \leqslant \lambda\left(z+\frac{1}{z}+4\right)-\frac{1}{2} t \log \lambda-\frac{1}{2} t \tau \log z, \\
& \gamma \leqslant \frac{z+z^{2}}{(z-1)^{3} \lambda}+\frac{1}{2} t \tau \log \lambda+\frac{1}{2} t \log z .
\end{aligned}
$$

Proof of the upper bound

(10) Then for all $\lambda>0$ and $z>1$

$$
\begin{aligned}
& \gamma \leqslant \lambda\left(z+\frac{1}{z}+4\right)-\frac{1}{2} t \log \lambda-\frac{1}{2} t \tau \log z, \\
& \gamma \leqslant \frac{z+z^{2}}{(z-1)^{3} \lambda}+\frac{1}{2} t \tau \log \lambda+\frac{1}{2} t \log z .
\end{aligned}
$$

(1) With the help of a CAS minimize the right hand sides to obtain

$$
\gamma \leqslant \min (\phi(t, \tau), \psi(t, \tau)), \quad t>0, \quad 0 \leqslant \tau \leqslant 1,
$$

where ϕ and ψ are some complicated functions.

Proof of the upper bound

(10) Then for all $\lambda>0$ and $z>1$

$$
\begin{aligned}
& \gamma \leqslant \lambda\left(z+\frac{1}{z}+4\right)-\frac{1}{2} t \log \lambda-\frac{1}{2} t \tau \log z, \\
& \gamma \leqslant \frac{z+z^{2}}{(z-1)^{3} \lambda}+\frac{1}{2} t \tau \log \lambda+\frac{1}{2} t \log z .
\end{aligned}
$$

(1) With the help of a CAS minimize the right hand sides to obtain

$$
\gamma \leqslant \min (\phi(t, \tau), \psi(t, \tau)), \quad t>0, \quad 0 \leqslant \tau \leqslant 1,
$$

where ϕ and ψ are some complicated functions.
(1) Maximize the right hand side, again with the help of a CAS.

The Integer Chebyshev Problem

Let $I \subset \mathbb{R}$ be a closed interval. The integer Chebyshev problem asks for the polynomial of degree n with integer coefficients of minimal uniform norm on I.

The Integer Chebyshev Problem

Let $I \subset \mathbb{R}$ be a closed interval. The integer Chebyshev problem asks for the polynomial of degree n with integer coefficients of minimal uniform norm on I.

Definition

$$
\begin{aligned}
& t_{n}(I)=\min \left\{\sup _{x \in I}|P(x)|^{1 / \partial P}: P \in \mathbb{Z}[x], \partial P \leqslant n, P \neq 0\right\}, \\
& t_{\mathbb{Z}}(I)=\inf \left\{t_{n}(I): n \in \mathbb{N}\right\} .
\end{aligned}
$$

The Integer Chebyshev Problem

Let $I \subset \mathbb{R}$ be a closed interval. The integer Chebyshev problem asks for the polynomial of degree n with integer coefficients of minimal uniform norm on I.

Definition

$$
\begin{aligned}
& t_{n}(I)=\min \left\{\sup _{x \in I}|P(x)|^{1 / \partial P}: P \in \mathbb{Z}[x], \partial P \leqslant n, P \neq 0\right\}, \\
& t_{\mathbb{Z}}(I)=\inf \left\{t_{n}(I): n \in \mathbb{N}\right\} .
\end{aligned}
$$

- $t_{\mathbb{Z}}(I)$ is known as the integer Chebyshev constant of I.
- If $|I| \geqslant 4$ then $t_{\mathbb{Z}}(I)=1$.
- No exact value of $t_{\mathbb{Z}}(I)$ is known if $|I|<4$.
- $t_{\mathbb{Z}}([0,1])$ is related to the Prime Number Theorem.

Previous Work

Some names associated with the problem

- E. Aparicio $(1981,1988)$.
- D. Amoroso (1990).
- H. Montgommery (1994).
- V. Flammang (1995).
- P. Borwein and T. Erdélyi (1996).
- V. Flammang, G. Rhin and C. Smyth (1997).
- H. Habsieger and B. Salvy (1997).
- I. Pritsker (2005).

Farey intervals

Definition

A Farey interval is an interval $[p / q, r / s]$ where p, q, r and s are non-negative integers such that $q r-p s=1$.

Farey intervals

Definition

A Farey interval is an interval $[p / q, r / s]$ where p, q, r and s are non-negative integers such that $q r-p s=1$.

- Given coprime integers $1 \leqslant q \leqslant s$, there is a unique Farey interval

$$
I_{q, s}=[p / q, r / s] \subset[0,1] .
$$

- The fractional linear transformation $\phi(x)=(p x+r) /(q x+s)$ is a bijection between $(0, \infty)$ and $(p / q, r / s)$.

Farey intervals

Definition

A Farey interval is an interval $[p / q, r / s]$ where p, q, r and s are non-negative integers such that $q r-p s=1$.

- Given coprime integers $1 \leqslant q \leqslant s$, there is a unique Farey interval

$$
I_{q, s}=[p / q, r / s] \subset[0,1] .
$$

- The fractional linear transformation $\phi(x)=(p x+r) /(q x+s)$ is a bijection between $(0, \infty)$ and $(p / q, r / s)$.

The integer Chebyshev constant of a Farey interval

$$
t_{\mathbb{Z}}\left(I_{q, s}\right)=\frac{1}{q} \cdot \inf _{\substack{Q \in \mathbb{Z}[x], Q \neq 0 \\ 0<t<1}}\left\{\sup _{x>0}\left(x+\frac{s}{q}\right)^{-1}|Q(x)|^{t / \partial Q}\right\} .
$$

The functions ρ and λ

Definition of $\rho, \lambda:[1, \infty) \rightarrow \mathbb{R}$

$$
\begin{aligned}
& \rho(\sigma)=\sup _{\substack{Q \in \mathbb{Z}[x], Q \neq 0 \\
0<t<1}}\left\{\inf _{x>0}\left(\log (x+\sigma)-\frac{t}{\partial Q} \log |Q(x)|\right)\right\}, \\
& \lambda(\sigma)=e^{\rho(\sigma)}-\sigma .
\end{aligned}
$$

The functions ρ and λ

Definition of $\rho, \lambda:[1, \infty) \rightarrow \mathbb{R}$

$$
\begin{aligned}
& \rho(\sigma)=\sup _{\substack{Q \in \mathbb{Z}[x], Q \neq 0 \\
0<t<1}}\left\{\inf _{x>0}\left(\log (x+\sigma)-\frac{t}{\partial Q} \log |Q(x)|\right)\right\}, \\
& \lambda(\sigma)=e^{\rho(\sigma)}-\sigma .
\end{aligned}
$$

$t_{\mathbb{Z}}\left(I_{q, s}\right)$ in terms of ρ and λ

$$
t_{\mathbb{Z}}\left(I_{q, s}\right)=\frac{1}{q} e^{-\rho(s / q)}=\frac{1}{q \lambda(s / q)+s} .
$$

Relation with the trace problem

Theorem (J.C. Peral \& J.A.)

Relation with the trace problem

Theorem (J.C. Peral \& J.A.)
(1)

$$
1 \leqslant \lambda(\sigma) \leqslant \mathcal{K}_{1} \quad \forall \sigma \geqslant 1 .
$$

Relation with the trace problem

Theorem (J.C. Peral \& J.A.)
(9)

$$
1 \leqslant \lambda(\sigma) \leqslant \mathcal{K}_{1} \quad \forall \sigma \geqslant 1 .
$$

(2)

$$
\lim _{\sigma \rightarrow \infty} \lambda(\sigma)=\mathcal{K}_{1} .
$$

Relation with the trace problem

Theorem (J.C. Peral \& J.A.)
(9)

$$
1 \leqslant \lambda(\sigma) \leqslant \mathcal{K}_{1} \quad \forall \sigma \geqslant 1 .
$$

(2)

$$
\lim _{\sigma \rightarrow \infty} \lambda(\sigma)=\mathcal{K}_{1} .
$$

(3)

$$
\frac{1}{\mathcal{K}_{1} q+s} \leqslant t_{\mathbb{Z}}\left(I_{q, s}\right) \leqslant \frac{1}{q+s} .
$$

Relation with the trace problem

Theorem (J.C. Peral \& J.A.)

-

$$
1 \leqslant \lambda(\sigma) \leqslant \mathcal{K}_{1} \quad \forall \sigma \geqslant 1 .
$$

(2)

$$
\lim _{\sigma \rightarrow \infty} \lambda(\sigma)=\mathcal{K}_{1} .
$$

3

$$
\frac{1}{\mathcal{K}_{1} q+s} \leqslant t_{\mathbb{Z}}\left(I_{q, s}\right) \leqslant \frac{1}{q+s} .
$$

4

$$
\lim _{m \rightarrow \infty}\left(\frac{1}{t_{\mathbb{Z}}([0,1 / m])}-m\right)=\mathcal{K}_{1} .
$$

Estimates for the Function λ

- Upper bounds - Lower bounds

Estimates for the Function λ

- Upper bounds - Lower bounds

Conjecture

λ is increasing and concave.

What to do in practice

- Look for $Q \in \mathbb{Z}[x]$ and $c>0$ that maximize

$$
\min _{x>0}(f(x)-c \log |Q(x)|) .
$$

What to do in practice

- Look for $Q \in \mathbb{Z}[x]$ and $c>0$ that maximize

$$
\min _{x>0}(f(x)-c \log |Q(x)|) .
$$

- How does one find Q and c ?
(1) Choose N irreducible polynomials $Q_{k} \in \mathbb{Z}[x]$.
(2) Solve the optimization problem

$$
\begin{equation*}
\sup _{c_{k}>0}\left\{\min _{x>0}\left(f(x)-\sum_{k=1}^{N} c_{k} \log \left|Q_{k}(x)\right|\right)\right\} . \tag{*}
\end{equation*}
$$

What to do in practice

- Look for $Q \in \mathbb{Z}[x]$ and $c>0$ that maximize

$$
\min _{x>0}(f(x)-c \log |Q(x)|) .
$$

- How does one find Q and c ?
(1) Choose N irreducible polynomials $Q_{k} \in \mathbb{Z}[x]$.
(2) Solve the optimization problem

$$
\begin{equation*}
\sup _{c_{k}>0}\left\{\min _{x>0}\left(f(x)-\sum_{k=1}^{N} c_{k} \log \left|Q_{k}(x)\right|\right)\right\} . \tag{*}
\end{equation*}
$$

To aply the method we must

(1) Find appropriate polynomials Q_{k}.
(2) Find the coefficients c_{k} that solve $(*)$.

Where do the polynomials Q_{k} come from?

Where do the polynomials Q_{k} come from?

- They should have positive roots.
- They should have small coefficients.
- They should have small trace.
- Exhaustive search.
- Transformations:

$$
P \rightarrow x^{\partial P} P\left(x+\frac{1}{x}-2\right)
$$

Where do the polynomials Q_{k} come from?

- They should have positive roots.
- They should have small coefficients.
- They should have small trace.
- Exhaustive search.
- Transformations:

$$
P \rightarrow x^{\partial P} P\left(x+\frac{1}{x}-2\right)
$$

d	T	M_{1}	
1	1	1.000	1
2	3	1.500	1
3	5	1.660	1
4	7	1.750	2
5	9	1.800	4
6	11	1.833	11
7	13	1.857	40
8	15	1.875	146
9	17	1.889	656
10	18	1.800	3
11	20	1.818	None?

Minimizing $\mathcal{F}\left(x, c_{1}, \ldots, c_{N}\right)$ with respect to x.

Minimization problem

Given $c_{k}>0, Q_{k} \in \mathbb{Z}[x], 1 \leqslant k \leqslant N$, find

$$
\min _{x>0} \mathcal{F}\left(x, c_{1}, \ldots, c_{N}\right)=\min _{x>0}\left(f(x)-\sum_{k=1}^{N} c_{k} \log \left|Q_{k}(x)\right|\right)
$$

Minimizing $\mathcal{F}\left(x, c_{1}, \ldots, c_{N}\right)$ with respect to x.

- The values of c_{k} are entered as exact rational numbers.

Minimizing $\mathcal{F}\left(x, c_{1}, \ldots, c_{N}\right)$ with respect to x.

- The values of c_{k} are entered as exact rational numbers.
- Critical points of \mathcal{F} are computed solving with high precision

$$
f^{\prime}(x)-\sum_{k=1}^{N} c_{k} \frac{Q_{k}^{\prime}}{Q_{k}}=0
$$

Minimizing $\mathcal{F}\left(x, c_{1}, \ldots, c_{N}\right)$ with respect to x.

- The values of c_{k} are entered as exact rational numbers.
- Critical points of \mathcal{F} are computed solving with high precision

$$
f^{\prime}(x)-\sum_{k=1}^{N} c_{k} \frac{Q_{k}^{\prime}}{Q_{k}}=0
$$

- Depending on the nature of f, different algorithms can be used.

Minimizing $\mathcal{F}\left(x, c_{1}, \ldots, c_{N}\right)$ with respect to x.

- The values of c_{k} are entered as exact rational numbers.
- Critical points of \mathcal{F} are computed solving with high precision

$$
f^{\prime}(x)-\sum_{k=1}^{N} c_{k} \frac{Q_{k}^{\prime}}{Q_{k}}=0
$$

- Depending on the nature of f, different algorithms can be used.
- The result can be checked, since the critical points are located between the roots of the Q_{i}.

Minimizing $\mathcal{F}\left(x, c_{1}, \ldots, c_{N}\right)$ with respect to x.

- The values of c_{k} are entered as exact rational numbers.
- Critical points of \mathcal{F} are computed solving with high precision

$$
f^{\prime}(x)-\sum_{k=1}^{N} c_{k} \frac{Q_{k}^{\prime}}{Q_{k}}=0
$$

- Depending on the nature of f, different algorithms can be used.
- The result can be checked, since the critical points are located between the roots of the Q_{i}.
- $\inf _{x>0} \mathcal{F}\left(x, c_{1}, \ldots, c_{N}\right)$ is calculated evaluating \mathcal{F} at the critical points.

Minimizing $\mathcal{F}\left(x, c_{1}, \ldots, c_{N}\right)$ with respect to x.

- The values of c_{k} are entered as exact rational numbers.
- Critical points of \mathcal{F} are computed solving with high precision

$$
f^{\prime}(x)-\sum_{k=1}^{N} c_{k} \frac{Q_{k}^{\prime}}{Q_{k}}=0
$$

- Depending on the nature of f, different algorithms can be used.
- The result can be checked, since the critical points are located between the roots of the Q_{i}.
- $\inf _{x>0} \mathcal{F}\left(x, c_{1}, \ldots, c_{N}\right)$ is calculated evaluating \mathcal{F} at the critical points.
- This is the most time consuming part.

Reme's Algorithm

- $\mathcal{F}\left(x, c_{1}, \ldots, c_{N}\right)$ has M local minima $\xi_{i} \in(0, \infty), M>N$.

Reme's Algorithm

- $\mathcal{F}\left(x, c_{1}, \ldots, c_{N}\right)$ has M local minima $\xi_{i} \in(0, \infty), M>N$.
- The values $\mathcal{F}\left(\xi_{i}, c_{1}, \ldots, c_{N}\right)$ are different in general.

Reme's Algorithm

- $\mathcal{F}\left(x, c_{1}, \ldots, c_{N}\right)$ has M local minima $\xi_{i} \in(0, \infty), M>N$.
- The values $\mathcal{F}\left(\xi_{i}, c_{1}, \ldots, c_{N}\right)$ are different in general.
- For optimal $\left\{c_{k}\right\}_{k=1}^{N}, N+1$ of them are equal.

Reme's Algorithm

(1) Start with a set of coefficients $\left\{c_{k}\right\}_{k=1}^{N}$ and compute the minima $\left\{\xi_{j}\right\}_{j=1}^{M}$ of $\mathcal{F}\left(x, c_{1}, \ldots, c_{N}\right)$ on $(0, \infty)$, ordered so that $\mathcal{F}\left(\xi_{i}, c_{1}, \ldots, c_{N}\right) \leqslant \mathcal{F}\left(\xi_{j}, c_{1}, \ldots, c_{N}\right)$ if $i \leqslant j$.

Reme's Algorithm

(1) Start with a set of coefficients $\left\{c_{k}\right\}_{k=1}^{N}$ and compute the minima $\left\{\xi_{j}\right\}_{j=1}^{M}$ of $\mathcal{F}\left(x, c_{1}, \ldots, c_{N}\right)$ on ($0, \infty$), ordered so that $\mathcal{F}\left(\xi_{i}, c_{1}, \ldots, c_{N}\right) \leqslant \mathcal{F}\left(\xi_{j}, c_{1}, \ldots, c_{N}\right)$ if $i \leqslant j$.
(2) Solve the linear system with $N+1$ equations and $N+1$ unknowns

$$
\mathcal{F}\left(\xi_{i}, c_{1}^{\prime}, \ldots, c_{N}^{\prime}\right)=\delta, \quad 1 \leqslant i \leqslant N+1 .
$$

Reme's Algorithm

(1) Start with a set of coefficients $\left\{c_{k}\right\}_{k=1}^{N}$ and compute the minima $\left\{\xi_{j}\right\}_{j=1}^{M}$ of $\mathcal{F}\left(x, c_{1}, \ldots, c_{N}\right)$ on ($0, \infty$), ordered so that $\mathcal{F}\left(\xi_{i}, c_{1}, \ldots, c_{N}\right) \leqslant \mathcal{F}\left(\xi_{j}, c_{1}, \ldots, c_{N}\right)$ if $i \leqslant j$.
(2) Solve the linear system with $N+1$ equations and $N+1$ unknowns

$$
\mathcal{F}\left(\xi_{i}, c_{1}^{\prime}, \ldots, c_{N}^{\prime}\right)=\delta, \quad 1 \leqslant i \leqslant N+1 .
$$

(3) Update $\left\{c_{k}\right\}_{k=1}^{N} \rightarrow\left\{c_{k}^{\prime}\right\}_{k=1}^{N}$ and repeat until convergence.

A different algorithm

(1) Start with a set of coefficients $\left\{c_{k}\right\}_{k=1}^{N}$ and compute the minima $\left\{\xi_{j}\right\}_{j=1}^{M}$ of $\mathcal{F}\left(x, c_{1}, \ldots, c_{N}\right)$ on $(0, \infty)$, ordered so that $\mathcal{F}\left(\xi_{i}, c_{1}, \ldots, c_{N}\right) \leqslant \mathcal{F}\left(\xi_{j}, c_{1}, \ldots, c_{N}\right)$ if $i \leqslant j$.

A different algorithm

(1) Start with a set of coefficients $\left\{c_{k}\right\}_{k=1}^{N}$ and compute the minima $\left\{\xi_{j}\right\}_{j=1}^{M}$ of $\mathcal{F}\left(x, c_{1}, \ldots, c_{N}\right)$ on $(0, \infty)$, ordered so that $\mathcal{F}\left(\xi_{i}, c_{1}, \ldots, c_{N}\right) \leqslant \mathcal{F}\left(\xi_{j}, c_{1}, \ldots, c_{N}\right)$ if $i \leqslant j$.
(2) Choose $\ell \in \mathbb{N}, \ell \leqslant N, \varepsilon>0$, and solve the 3^{ℓ} linear systems of N equations in the variables c_{k}^{\prime}

$$
\mathcal{F}\left(\xi_{k}, c_{1}^{\prime}, \ldots, c_{N}^{\prime}\right)=\mathcal{F}\left(\xi_{k}, c_{1}, \ldots, c_{N}\right)+\varepsilon \delta_{k}, \quad 1 \leqslant k \leqslant N
$$

where $\delta_{k}=1,0$ or -1 if $1 \leqslant k \leqslant \ell$ and 0 if $k>\ell$.

A different algorithm

(1) Start with a set of coefficients $\left\{c_{k}\right\}_{k=1}^{N}$ and compute the minima $\left\{\xi_{j}\right\}_{j=1}^{M}$ of $\mathcal{F}\left(x, c_{1}, \ldots, c_{N}\right)$ on $(0, \infty)$, ordered so that $\mathcal{F}\left(\xi_{i}, c_{1}, \ldots, c_{N}\right) \leqslant \mathcal{F}\left(\xi_{j}, c_{1}, \ldots, c_{N}\right)$ if $i \leqslant j$.
(2) Choose $\ell \in \mathbb{N}, \ell \leqslant N, \varepsilon>0$, and solve the 3^{ℓ} linear systems of N equations in the variables c_{k}^{\prime}

$$
\mathcal{F}\left(\xi_{k}, c_{1}^{\prime}, \ldots, c_{N}^{\prime}\right)=\mathcal{F}\left(\xi_{k}, c_{1}, \ldots, c_{N}\right)+\varepsilon \delta_{k}, \quad 1 \leqslant k \leqslant N
$$

where $\delta_{k}=1,0$ or -1 if $1 \leqslant k \leqslant \ell$ and 0 if $k>\ell$.
(3) Select the solution that makes $\inf _{x>0} \mathcal{F}\left(x, c_{1}^{\prime}, \ldots, c_{N}^{\prime}\right)$ largest.

A different algorithm

(1) Start with a set of coefficients $\left\{c_{k}\right\}_{k=1}^{N}$ and compute the minima $\left\{\xi_{j}\right\}_{j=1}^{M}$ of $\mathcal{F}\left(x, c_{1}, \ldots, c_{N}\right)$ on $(0, \infty)$, ordered so that $\mathcal{F}\left(\xi_{i}, c_{1}, \ldots, c_{N}\right) \leqslant \mathcal{F}\left(\xi_{j}, c_{1}, \ldots, c_{N}\right)$ if $i \leqslant j$.
(2) Choose $\ell \in \mathbb{N}, \ell \leqslant N, \varepsilon>0$, and solve the 3^{ℓ} linear systems of N equations in the variables c_{k}^{\prime}

$$
\mathcal{F}\left(\xi_{k}, c_{1}^{\prime}, \ldots, c_{N}^{\prime}\right)=\mathcal{F}\left(\xi_{k}, c_{1}, \ldots, c_{N}\right)+\varepsilon \delta_{k}, \quad 1 \leqslant k \leqslant N
$$

where $\delta_{k}=1,0$ or -1 if $1 \leqslant k \leqslant \ell$ and 0 if $k>\ell$.
(3) Select the solution that makes $\inf _{x>0} \mathcal{F}\left(x, c_{1}^{\prime}, \ldots, c_{N}^{\prime}\right)$ largest.
(4) Compare with $\mathcal{F}\left(\xi_{1}, c_{1}, \ldots, c_{N}\right)$.

A different algorithm

(1) Start with a set of coefficients $\left\{c_{k}\right\}_{k=1}^{N}$ and compute the minima $\left\{\xi_{j}\right\}_{j=1}^{M}$ of $\mathcal{F}\left(x, c_{1}, \ldots, c_{N}\right)$ on $(0, \infty)$, ordered so that $\mathcal{F}\left(\xi_{i}, c_{1}, \ldots, c_{N}\right) \leqslant \mathcal{F}\left(\xi_{j}, c_{1}, \ldots, c_{N}\right)$ if $i \leqslant j$.
(2) Choose $\ell \in \mathbb{N}, \ell \leqslant N, \varepsilon>0$, and solve the 3^{ℓ} linear systems of N equations in the variables c_{k}^{\prime}

$$
\mathcal{F}\left(\xi_{k}, c_{1}^{\prime}, \ldots, c_{N}^{\prime}\right)=\mathcal{F}\left(\xi_{k}, c_{1}, \ldots, c_{N}\right)+\varepsilon \delta_{k}, \quad 1 \leqslant k \leqslant N
$$ where $\delta_{k}=1,0$ or -1 if $1 \leqslant k \leqslant \ell$ and 0 if $k>\ell$.

(3) Select the solution that makes $\inf _{x>0} \mathcal{F}\left(x, c_{1}^{\prime}, \ldots, c_{N}^{\prime}\right)$ largest.
(4) Compare with $\mathcal{F}\left(\xi_{1}, c_{1}, \ldots, c_{N}\right)$.

- If greater, update $\left\{c_{k}\right\}_{k=1}^{N} \rightarrow\left\{c_{k}^{\prime}\right\}_{k=1}^{N}$, increase ϵ and go to 1 .

A different algorithm

(1) Start with a set of coefficients $\left\{c_{k}\right\}_{k=1}^{N}$ and compute the minima $\left\{\xi_{j}\right\}_{j=1}^{M}$ of $\mathcal{F}\left(x, c_{1}, \ldots, c_{N}\right)$ on $(0, \infty)$, ordered so that $\mathcal{F}\left(\xi_{i}, c_{1}, \ldots, c_{N}\right) \leqslant \mathcal{F}\left(\xi_{j}, c_{1}, \ldots, c_{N}\right)$ if $i \leqslant j$.
(2) Choose $\ell \in \mathbb{N}, \ell \leqslant N, \varepsilon>0$, and solve the 3^{ℓ} linear systems of N equations in the variables c_{k}^{\prime}

$$
\mathcal{F}\left(\xi_{k}, c_{1}^{\prime}, \ldots, c_{N}^{\prime}\right)=\mathcal{F}\left(\xi_{k}, c_{1}, \ldots, c_{N}\right)+\varepsilon \delta_{k}, \quad 1 \leqslant k \leqslant N
$$ where $\delta_{k}=1,0$ or -1 if $1 \leqslant k \leqslant \ell$ and 0 if $k>\ell$.

(3) Select the solution that makes $\inf _{x>0} \mathcal{F}\left(x, c_{1}^{\prime}, \ldots, c_{N}^{\prime}\right)$ largest.
(9) Compare with $\mathcal{F}\left(\xi_{1}, c_{1}, \ldots, c_{N}\right)$.

- If greater, update $\left\{c_{k}\right\}_{k=1}^{N} \rightarrow\left\{c_{k}^{\prime}\right\}_{k=1}^{N}$, increase ϵ and go to 1 .
- Otherwise decrease ϵ and go to 2 .

Last slide

Last slide

MUCHAS FELICIDADES, IRENEO

