The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

The Schur Siegel trace problem

J. Aguirre J.C. Peral

Universidad del País Vasco Facultad de Ciencia y Tecnología Departmento de Matemáticas

A celebration of the 60th birthday of Ireneo Peral Salamanca, February 2007

Universidad Euskal Herrik del País Vasco Unibertsitatea

Apolog	jies			
Preliminaries	The trace problem	The method of auxiliary functions	The integer Chebyshev problem	Computational details

In 1982 Ireneo and I were interested in the nonlinear
 2-dimensional wave equation on [0, 2π] × [0, 2π] × [0,∞).

Preliminaries	The trace problem	The method of auxiliary functions	The integer Chebyshev problem	Computational details	
Apologies					

- In 1982 Ireneo and I were interested in the nonlinear
 2-dimensional wave equation on [0, 2π] × [0, 2π] × [0,∞).
- We studied the the operator

$$u_{tt} - (u_{xx} + u_{yy}) + \varepsilon^2 \Delta^2 u$$

Preliminaries	The trace problem	The method of auxiliary functions	The integer Chebyshev problem	Computational details		
Apologies						

- In 1982 Ireneo and I were interested in the nonlinear
 2-dimensional wave equation on [0, 2π] × [0, 2π] × [0,∞).
- We studied the the operator

$$u_{tt} - (u_{xx} + u_{yy}) + \varepsilon^2 \Delta^2 u$$

 It turned out that wether it had a compact inverse, depended on number theoretic properties of the number ε. Preliminaries The trace problem The method of auxiliary functions The integer Chebyshev problem

Computational details

Outline

- 2 The Schur-Siegel trace problem
- The method of auxiliary functions
- The integer Chebyshev problem

The trace problem

The method of auxiliary function

The integer Chebyshev problem

Computational details

Algebraic integers

Definition

An algebraic integer is a complex number α that satisfies a polynomial equation

$$x^{n} + a_{1}x^{n-1} + \dots + a_{n-1}x + a_{n} = 0, \quad a_{k} \in \mathbb{Z}.$$

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Algebraic integers

Definition

An algebraic integer is a complex number α that satisfies a polynomial equation

$$x^{n} + a_{1}x^{n-1} + \dots + a_{n-1}x + a_{n} = 0, \quad a_{k} \in \mathbb{Z}.$$

Example

 $\sqrt{2}$ is an algebraic integer. Satisfies the equation

$$x^2 - 2 = 0$$

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Algebraic integers

Definition

An algebraic integer is a complex number α that satisfies a polynomial equation

$$x^{n} + a_{1}x^{n-1} + \dots + a_{n-1}x + a_{n} = 0, \quad a_{k} \in \mathbb{Z}.$$

Example

 $1/\sqrt{2}$ is not an algebraic integer. Satisfies the equation

$$2x^2 - 1 = 0$$

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Algebraic integers

Definition

An algebraic integer is a complex number α that satisfies a polynomial equation

$$x^{n} + a_{1}x^{n-1} + \dots + a_{n-1}x + a_{n} = 0, \quad a_{k} \in \mathbb{Z}.$$

- The set $\mathbb A$ of all algebraic integers is a ring.
- Given α ∈ A there is a unique monic irreducible P ∈ Z[x] of minimal degree with P(α) = 0: the minimal polynomial of α. Its degree is called the degree of α.
- The roots of *P* are all different: the conjugates of α .
- If all are positive, then α is said to be totally positive. The set of all totally positive algebraic integers will be denoted by A₊.

Preliminaries 0●000	The trace problem	The method of auxiliary functions	The integer Chebyshev problem	Computational details
Notatic	n			

- $\alpha \in \mathbb{A}_+$ of degree d
- Its conjugates $\alpha_1 < \cdots < \alpha_d$
- Its minimal polynomial

$$P(x) = x^d + \sum_{k=1}^d (-1)^k a_k x^{d-k}$$
$$= \prod_{k=1}^d (x - \alpha_k)$$

• By Descartes rule of signs, $a_k > 0, 1 \leq k \leq d$.

Preliminaries 00●00	The trace problem	The method of auxiliary functions	The integer Chebyshev problem	Computational details
Trace.	Norm & D	Discriminant		

 Associated with any α ∈ A, there are several quantities of interest in algebraic number theory:

$$\operatorname{Trace}(\alpha) = \sum_{k=1}^{d} \alpha_k$$
$$\operatorname{Norm}(\alpha) = \prod_{k=1}^{d} \alpha_k$$
$$\operatorname{Dis}(\alpha) = \prod_{1 \leq i < j \leq d} (\alpha_i - \alpha_j)^2$$

Preliminaries 00●00	The trace problem	The method of auxiliary functions	The integer Chebyshev problem	Computational details
Trace.	Norm & D	Discriminant		

 Associated with any α ∈ A, there are several quantities of interest in algebraic number theory:

$$\operatorname{Trace}(\alpha) = \sum_{k=1}^{d} \alpha_{k}$$
$$\operatorname{Norm}(\alpha) = \prod_{k=1}^{d} \alpha_{k}$$
$$\operatorname{Dis}(\alpha) = \prod_{1 \leq i < j \leq d} (\alpha_{i} - \alpha_{j})^{2}$$

• All of them are integers.

Preliminaries 00000	The trace problem	The method of auxiliary functions	The integer Chebyshev problem	Computational details
The Re	esultant			

Definition

The resultant of two polynomials $P(x) = a_0 x^n + \cdots + a_n$, $Q(x) = b_0 x^m + \cdots + b_m$ of degree *m* is defined as

Resultant(
$$P, Q$$
) = $a_0^m \prod_{P(x)=0} Q(x)$.

Preliminaries 000●0	The trace problem	The method of auxiliary functions	The integer Chebyshev problem	Computational details
The Re	esultant			

Definition

The resultant of two polynomials $P(x) = a_0 x^n + \cdots + a_n$, $Q(x) = b_0 x^m + \cdots + b_m$ of degree *m* is defined as

Resultant(
$$P, Q$$
) = $a_0^m \prod_{P(x)=0} Q(x)$.

Properties of the resultant

- If $P, Q \in \mathbb{Z}[x]$, then $\text{Resultant}(P, Q) \in \mathbb{Z}$.
- Resultant(*P*, *Q*) = 0 if and only if *P* and *Q* have a common root.
- If $P, Q \in \mathbb{Z}[x]$ are coprime, then $|\operatorname{Resultant}(P, Q)| \ge 1$.

The trace problem

The method of auxiliary function

The integer Chebyshev problem

Computational details

Measures

Definition

• The *p*-th measure of $\alpha \in \mathbb{A}$ is

$$M_p(\alpha) = \left(rac{1}{d} \sum_{k=1}^d |lpha_k|^p
ight)^{1/p}, \quad p>0.$$

• The spectrum of the measure M_p is the set

$$\mathbb{S}_p = \{ M_p(\alpha) : \alpha \in \mathbb{A}_+, \alpha \neq 1 \}.$$

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Measures

Definition

• The *p*-th measure of $\alpha \in \mathbb{A}$ is

$$M_p(\alpha) = \left(rac{1}{d} \sum_{k=1}^d |lpha_k|^p
ight)^{1/p}, \quad p>0.$$

• The spectrum of the measure M_p is the set

$$\mathbb{S}_p = \{ M_p(\alpha) : \alpha \in \mathbb{A}_+, \alpha \neq 1 \}.$$

Some facts about measures

- $\alpha \in \mathbb{A}_+ \implies \operatorname{Trace}(\alpha) = d \cdot M_1(\alpha).$
- $M_p(\alpha) \ge |\operatorname{Norm}(\alpha)|^{1/d}$
- If $\alpha \in \mathbb{A}_+$, then $M_p(\alpha) > 1$ unless $\alpha = 1$.

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

The Schur-Siegel trace problem

• For
$$n \in \mathbb{N}$$
, $\theta_n = 4\cos^2\left(rac{\pi}{2n}\right) \in \mathbb{A}_+$.

- If *n* is an odd prime, then $M_1(\theta_n) = \frac{2n}{n-1}$.
- If *n* is a power of 2, then $M_1(\theta_n) = 2$.

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

The Schur-Siegel trace problem

• For
$$n \in \mathbb{N}$$
, $\theta_n = 4\cos^2\left(rac{\pi}{2n}\right) \in \mathbb{A}_+$.

- If *n* is an odd prime, then $M_1(\theta_n) = \frac{2n}{n-1}$.
- If *n* is a power of 2, then $M_1(\theta_n) = 2$.
- 2 is a limit point of S₁.

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

The Schur-Siegel trace problem

• For
$$n \in \mathbb{N}$$
, $\theta_n = 4\cos^2\left(rac{\pi}{2n}\right) \in \mathbb{A}_+$.

- If *n* is an odd prime, then $M_1(\theta_n) = \frac{2n}{n-1}$.
- If *n* is a power of 2, then $M_1(\theta_n) = 2$.
- 2 is a limit point of S₁.
- Is it the smallest limit point of S₁?

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

The Schur-Siegel trace problem

• For
$$n \in \mathbb{N}$$
, $\theta_n = 4\cos^2\left(\frac{\pi}{2n}\right) \in \mathbb{A}_+$.

- If *n* is an odd prime, then $M_1(\theta_n) = \frac{2n}{n-1}$.
- If *n* is a power of 2, then $M_1(\theta_n) = 2$.
- 2 is a limit point of S₁.
- Is it the smallest limit point of S₁?

The Schur-Siegel trace problem (restricted form)

Given any $\varepsilon > 0$, prove that the set

$$\{ \alpha \in \mathbb{A}_+ : M_1(\alpha) < 2 - \varepsilon \}$$

is finite, and if possible, find all its elements.

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

The Schur-Siegel trace problem

• For
$$n \in \mathbb{N}$$
, $\theta_n = 4\cos^2\left(rac{\pi}{2n}\right) \in \mathbb{A}_+$.

- If *n* is an odd prime, then $M_1(\theta_n) = \frac{2n}{n-1}$.
- If *n* is a power of 2, then $M_1(\theta_n) = 2$.
- 2 is a limit point of S₁.
- Is it the smallest limit point of S₁?

The Schur-Siegel problem (general form)

What is the structure of the spectrum of M_1 , i.e., of the set

$$\mathbb{S}_1 = \Big\{ rac{1}{d} \, \sum_{k=1}^d lpha_k : lpha \in \mathbb{A}_+, lpha
eq 1 \Big\}$$
 ?

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

The Schur-Siegel trace problem

• For
$$n \in \mathbb{N}$$
, $\theta_n = 4\cos^2\left(\frac{\pi}{2n}\right) \in \mathbb{A}_+$.

- If *n* is an odd prime, then $M_1(\theta_n) = \frac{2n}{n-1}$.
- If *n* is a power of 2, then $M_1(\theta_n) = 2$.
- 2 is a limit point of S₁.
- Is it the smallest limit point of S₁?

A more general problem

What is the structure of the spectrum of M_p , i.e., of the set

$$\mathbb{S}_p = \left\{ \left(rac{1}{d} \, \sum_{k=1}^d lpha_k^p
ight)^{1/p} : lpha \in \mathbb{A}_+, lpha
eq 1
ight\}$$
?

The trace problem ○●○○○○ The method of auxiliary functions

The integer Chebyshev problem

Computational details

The work of I. Schur, 1918

Theorem

Let $0 < \gamma < \sqrt{e} = 1.6487\ldots$. The number of $\alpha \in \mathbb{A}_+$ such that

$$\alpha_1 + \cdots + \alpha_d \leqslant \gamma \cdot d$$

is finite.

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

The work of I. Schur, 1918

Theorem

Let $0 < \gamma < \sqrt{e} = 1.6487\ldots$. The number of $\alpha \in \mathbb{A}_+$ such that

$$\alpha_1 + \cdots + \alpha_d \leqslant \gamma \cdot d$$

is finite.

About the proof

Follows from an inequality for the discriminant, due also to Schur.

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

The work of I. Schur, 1918

Theorem

Let $0 < \gamma < \sqrt{e} = 1.6487\ldots$. The number of $\alpha \in \mathbb{A}_+$ such that

$$\alpha_1 + \cdots + \alpha_d \leqslant \gamma \cdot d$$

is finite.

Theorem

$$\max_{x_1^2 + \dots + x_d^2 \leqslant 1} \operatorname{Dis}(x_1, \dots, x_d) = (d^2 - d)^{-\frac{1}{2}(d^2 - d)} \prod_{k=2}^d k^k$$
$$= \mathcal{O}\left(d^{\frac{1}{2}(3d - d^2) + \frac{1}{12}} e^{-\frac{1}{4}(2d - d^2)}\right).$$

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

The work of C.L. Siegel, 1945

Theorem

() Let ϑ be the positive root of the transcendental equation

$$(1+\vartheta)\log(1+\vartheta^{-1}) + \frac{\log\vartheta}{1+\vartheta} = 1$$

and
$$\lambda_0 = e(1 + \vartheta^{-1})^{-\vartheta} = 1.7336\dots$$
 Then if $\lambda < \lambda_0$

$$\{\alpha \in \mathbb{A}_+ : M_1(\alpha) < \lambda\}$$

is finite.

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

The work of C.L. Siegel, 1945

Theorem

(1) Let ϑ be the positive root of the transcendental equation

$$(1+\vartheta)\log(1+\vartheta^{-1}) + \frac{\log\vartheta}{1+\vartheta} = 1$$

and
$$\lambda_0 = e(1 + \vartheta^{-1})^{-\vartheta} = 1.7336 \dots$$
 Then if $\lambda < \lambda_0$

$$\{\alpha \in \mathbb{A}_+ : M_1(\alpha) < \lambda\}$$

is finite.

2 The only $\alpha \in \mathbb{A}_+$ such that $M_1(\alpha) \leq 3/2$ are $\alpha = 1$ and the roots of the polynomial $x^2 - 3x + 1$.

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

The work of C.L. Siegel, 1945

Theorem

(1) Let ϑ be the positive root of the transcendental equation

$$(1+\vartheta)\log(1+\vartheta^{-1}) + \frac{\log\vartheta}{1+\vartheta} = 1$$

and
$$\lambda_0 = e(1 + \vartheta^{-1})^{-\vartheta} = 1.7336 \dots$$
 Then if $\lambda < \lambda_0$

$$\{\alpha \in \mathbb{A}_+ : M_1(\alpha) < \lambda\}$$

is finite.

- 2 The only $\alpha \in \mathbb{A}_+$ such that $M_1(\alpha) \leq 3/2$ are $\alpha = 1$ and the roots of the polynomial $x^2 3x + 1$.
- If the smallest point in S_1 is 3/2, and it is an isolated point.

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

The work of C.L. Siegel, 1945

About the proof

Is based on an improvement of the classical inequality between the arithmetic and the geometric means involving the discriminant.

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

The work of C.L. Siegel, 1945

Theorem

Let

$$P(t) = \frac{1}{d!} \prod_{k=0}^{d-2} \left(\frac{t+k}{d-k} \right)^{d-k-1}, \quad Q(t) = \prod_{k=1}^{d-1} \left(1 + \frac{d-k}{t+k-1} \right),$$

 x_1, \ldots, x_d positive numbers with $Dis(x_1, \ldots, x_d) \neq 0$,

$$\mu > 0$$
 solution of $P(\mu) = \frac{(x_1 \dots x_d)^{d-1}}{\text{Dis}(x_1, \dots, x_d)}$.

Then

$$\left(\frac{x_1+\cdots+x_d}{d}\right)^d \ge \mathbf{Q}(\mathbf{\mu})\,x_1\ldots x_d.$$

Preliminaries	The trace problem 000000	The method of auxiliary functions	The integer Chebyshev problem	Computational details	
The work of C. Smyth					

- C. Smyth carries out in 1984 a detailed analysis, both theoretical and numerical, of the the sets S_p for p > 0.
- Based on the resultant, instead of the discriminant.

Preliminaries	The trace problem 0000●0	The method of auxiliary functions	The integer Chebyshev problem	Computational details

The work of C. Smyth

- C. Smyth carries out in 1984 a detailed analysis, both theoretical and numerical, of the the sets S_p for p > 0.
- Based on the resultant, instead of the discriminant.

Theorem (p = 1)

2

• For all totally positive algebraic integers α , with the exception of the roots of the polynomials $x^2 - 3x + 1$, $x^3 - 5x^2 + 6x - 1$, $x^4 - 7x^3 + 13x^3 - 7x + 1$ and $x^4 - 7x^3 + 14x^3 - 8x + 1$,

 $M_1(\alpha) \geqslant 1.7719$.

$$(1, 1.7719) \cap S_1 = \left\{ \frac{3}{2}, \frac{5}{3}, \frac{7}{4} \right\}.$$

3 S_1 is dense in $[2, +\infty)$.

The trace problem

The method of auxiliary function

The integer Chebyshev problem

Computational details

J.C. Peral & J.A.

Theorem

Preliminaries	The trace problem	The method of auxiliary functions	The integer Chebyshev problem	Computational details
J.C. Pe	eral & J.A.			

Theorem

 For all totally positive algebraic integers α, with the same exceptions as in Smyth's result,

 $M_1(\alpha) \geqslant 1.7839$.

Preliminaries	The trace problem	The method of auxiliary functions	The integer Chebyshev problem	Computational details
J.C. Peral & J.A.				

Theorem

For all totally positive algebraic integers α, with the same exceptions as in Smyth's result,

 $M_1(\alpha) \geqslant 1.7839$.

Provide a state of the stat

 $M_1(\alpha) \geqslant 1.66 + \alpha_1$.
Preliminaries	The trace problem	The method of auxiliary functions	The integer Chebyshev problem	Computational details	
J.C. Peral & J.A.					

Theorem

For all totally positive algebraic integers α, with the same exceptions as in Smyth's result,

 $M_1(\alpha) \geqslant 1.7839$.

 For all but 26 totally positive algebraic integers α and their integer translates,

 $M_1(\alpha) \ge 1.66 + \alpha_1$.

Proof.

The method of auxiliary functions, developped by C. Smyth.

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Auxiliary functions

Definition

An auxiliary function is a function

$$\mathcal{F}(x) = f(x) - c \log |Q(x)|$$

where $f \colon [0, \infty) \to \mathbb{R}$, c > 0 and $Q \in \mathbb{Z}[x]$, $Q \neq 0$.

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Auxiliary functions

Definition

An auxiliary function is a function

$$\mathcal{F}(x) = f(x) - c \log |Q(x)|$$

where $f \colon [0,\infty) \to \mathbb{R}$, c > 0 and $Q \in \mathbb{Z}[x]$, $Q \neq 0$.

Remark

By decomposing Q as a product of irreducible factors we can allways write an auxiliary function as

$$\mathfrak{F}(x) = \mathfrak{F}(x, c_1, \dots, c_N) = f(x) - \sum_{k=1}^N c_k \log |Q_k(x)|,$$

where $c_k > 0$ and $Q_k \in \mathbb{Z}[x]$ is irreducible, $1 \leq k \leq N$.

he trace problem

The method of auxiliary functions

The integer Chebyshev problem 000000

Computational details

The method of auxiliary functions

Definition

$$\mathcal{K}_p = \sup_{Q \in \mathbb{Z}[x], \, Q \neq 0, \, c > 0} \Big\{ \inf_{x > 0} \Big(x^p - c \log |Q(x)| \Big) \Big\}.$$

he trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

The method of auxiliary functions

Definition

$$\mathcal{K}_p = \sup_{Q \in \mathbb{Z}[x], \, Q \neq 0, \, c > 0} \Big\{ \inf_{x > 0} \Big(x^p - c \log |Q(x)| \Big) \Big\}.$$

• If $\gamma < \mathcal{K}_p$, the there exist $Q \in \mathbb{Z}[x]$ and c > 0 such that

$$x^p - c \log |Q(x)| \ge \gamma \quad \forall x > 0.$$

The trace problem

The method of auxiliary functions

The integer Chebyshev problem 000000

Computational details

The method of auxiliary functions

Definition

$$\mathcal{K}_p = \sup_{Q \in \mathbb{Z}[x], \, Q \neq 0, \, c > 0} \Big\{ \inf_{x > 0} \Big(x^p - c \log |Q(x)| \Big) \Big\}.$$

• If $\gamma < \mathcal{K}_p$, the there exist $Q \in \mathbb{Z}[x]$ and c > 0 such that

$$x^p - c \log |Q(x)| \ge \gamma \quad \forall x > 0.$$

2 For $\alpha \in \mathbb{A}_+$ average over the conjugates of α to get

$$\frac{1}{d} \sum_{k=1}^{d} \alpha_{k}^{p} \ge \gamma + c \log \left| \prod_{k=1}^{d} Q(\alpha_{k}) \right|$$
$$= \gamma + c \log |\operatorname{Resultant}(P, Q)|.$$

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

The method of auxiliary functions

Definition

$$\mathcal{K}_p = \sup_{Q \in \mathbb{Z}[x], \, Q \neq 0, \, c > 0} \Big\{ \inf_{x > 0} \Big(x^p - c \log |Q(x)| \Big) \Big\}.$$

• If $\gamma < \mathcal{K}_p$, the there exist $Q \in \mathbb{Z}[x]$ and c > 0 such that

$$x^p - c \log |Q(x)| \ge \gamma \quad \forall x > 0.$$

2 For $\alpha \in \mathbb{A}_+$ average over the conjugates of α to get

$$\frac{1}{d} \sum_{k=1}^{d} \alpha_{k}^{p} \ge \gamma + c \log \left| \prod_{k=1}^{d} Q(\alpha_{k}) \right|$$
$$= \gamma + c \log |\operatorname{Resultant}(P, Q)|$$

If $Q(\alpha) \neq 0$, then $|\operatorname{Resultant}(P,Q)| \ge 1$ and $M_p(\alpha) \ge \gamma^{1/p}$.

The trace problem

The method of auxiliary functions

The integer Chebyshev problem 000000

Computational details

The method of auxiliary functions

Definition

$$\mathcal{K}_p = \sup_{Q \in \mathbb{Z}[x], \, Q \neq 0, \, c > 0} \Big\{ \inf_{x > 0} \Big(x^p - c \log |Q(x)| \Big) \Big\}.$$

• If $\gamma < \mathcal{K}_p$, the there exist $Q \in \mathbb{Z}[x]$ and c > 0 such that

$$x^p - c \log |Q(x)| \ge \gamma \quad \forall x > 0.$$

2 For $\alpha \in \mathbb{A}_+$ average over the conjugates of α to get

$$\frac{1}{d} \sum_{k=1}^{d} \alpha_{k}^{p} \ge \gamma + c \log \left| \prod_{k=1}^{d} Q(\alpha_{k}) \right|$$
$$= \gamma + c \log |\operatorname{Resultant}(P, Q)|$$

● If $Q(\alpha) \neq 0$, then $|\text{Resultant}(P, Q)| \ge 1$ and $M_p(\alpha) \ge \gamma^{1/p}$. ● $(1, \gamma^{1/p}) \cap \mathbb{S}_p \subset \{\alpha \in \mathbb{A}_+ : Q(\alpha) = 0\}$ is finite.

The trace problem

The method of auxiliary functions

The integer Chebyshev problem 000000

Computational details

The method of auxiliary functions

Some facts about \mathcal{K}_p

- No exact value of \mathcal{K}_p is known for any p > 0.
- Estimates on the value of \mathcal{K}_p provide information on S_p .
- Lower bounds are obtained by means of explicit values of *c* and *Q*.
- To prove $\mathcal{K}_1 > 1.7839$, 31 polynomials were used.
- To prove $M_1(\alpha) > 1.66 + \alpha_1$, the auxiliary function is minimized on intervals (ξ, ∞) with $\xi > 0$. The polynomials used change with ξ .

The trace problem

The method of auxiliary functions

The integer Chebyshev problem 000000

Computational details

The method of auxiliary functions

Some facts about \mathcal{K}_p

- No exact value of \mathcal{K}_p is known for any p > 0.
- Estimates on the value of \mathcal{K}_p provide information on S_p .
- Lower bounds are obtained by means of explicit values of *c* and *Q*.
- To prove $\mathcal{K}_1 > 1.7839$, 31 polynomials were used.
- To prove $M_1(\alpha) > 1.66 + \alpha_1$, the auxiliary function is minimized on intervals (ξ, ∞) with $\xi > 0$. The polynomials used change with ξ .

d	
1	3
2	3
3	3
4	2
5	4
6	3
7	5
8	1
10	4
12	3
	.31

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

The limits of the method

Question

Is it possible to solve the trace problem with this method?

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

The limits of the method

Question

Is it possible to solve the trace problem with this method?

Answer NO

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

The limits of the method

Question

Is it possible to solve the trace problem with this method?

Answer

NO

- $\bullet\,$ C. Smyth proved that ${\mathfrak K}_1<2$.
- J.P. Serre proved in a private letter to C. Smyth that in fact $\mathcal{K}_1 < 1.8984$.
- To prove $\mathcal{K}_1 > 1.89$, the auxiliary function should include:
 - All 656 polynomials of degree 9 and trace 17.
 - All polynomials of degree 14 and trace 25 if any exists.
- These are hard computational problems.

The trace problem

The method of auxiliary functions

The integer Chebyshev problem 000000

Computational details

Estimates for \mathcal{K}_2

Theorem (J.C. Peral & J.A.)

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Estimates for \mathcal{K}_2

Theorem (J.C. Peral & J.A.)

 $5.2192 < \mathfrak{K}_2 < 5.8735$.

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Estimates for \mathcal{K}_2

Theorem (J.C. Peral & J.A.)

 $5.2192 < \mathfrak{K}_2 < 5.8735$.

2 For all $\alpha \in \mathbb{A}_+$, with the exception of the roots of the polynomials x - 1, x - 2, $x^2 - 3x + 1$ and $x^3 - 5x^2 + 6x - 1$,

 $M_2(\alpha) \geqslant 2.2845$.

3

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Estimates for \mathcal{K}_2

Theorem (J.C. Peral & J.A.)

 $5.2192 < \mathfrak{K}_2 < 5.8735$.

2 For all $\alpha \in \mathbb{A}_+$, with the exception of the roots of the polynomials x - 1, x - 2, $x^2 - 3x + 1$ and $x^3 - 5x^2 + 6x - 1$,

 $M_2(\alpha) \geqslant 2.2845$.

$$(1, 2.2845) \cap \$_2 = \left\{ 2, \sqrt{\frac{7}{2}}, \sqrt{\frac{13}{3}} \right\}.$$

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Proof of the upper bound

• Let $Q \in \mathbb{Z}[x]$, t > 0 satisfy

$$\gamma \leqslant x^2 - \frac{t}{\partial Q} \log |Q(x)| \quad \forall x > 0.$$

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Proof of the upper bound

• Let $Q \in \mathbb{Z}[x]$, t > 0 satisfy

$$\gamma \leqslant x^2 - \frac{t}{\partial Q} \log |Q(x)| \quad \forall x > 0.$$

2
$$Q(x) = x^m R(x), R(0) \neq 0, \tau = m/\partial Q.$$

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Proof of the upper bound

• Let $Q \in \mathbb{Z}[x]$, t > 0 satisfy

$$\gamma \leqslant x^2 - \frac{t}{\partial Q} \log |Q(x)| \quad \forall x > 0.$$

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Proof of the upper bound

• Let
$$Q \in \mathbb{Z}[x]$$
, $t > 0$ satisfy

$$\gamma \leqslant x^2 - \frac{t}{\partial Q} \log |Q(x)| \quad \forall x > 0.$$

2
$$Q(x) = x^m R(x), R(0) \neq 0, \tau = m/\partial Q.$$

$$R^*(x) = x^{\partial R} R(1/x)$$

$$\begin{split} \gamma &\leqslant x^2 - t \tau \log x - t(1 - \tau) \frac{1}{\partial R} \log |R(x)|, \\ \gamma &\leqslant x^{-2} + t \log x + t(1 - \tau) \frac{1}{\partial R^*} \log |R^*(x)|. \end{split}$$

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Proof of the upper bound

• Let
$$Q \in \mathbb{Z}[x]$$
, $t > 0$ satisfy

$$\gamma \leqslant x^2 - \frac{t}{\partial Q} \log |Q(x)| \quad \forall x > 0.$$

2
$$Q(x) = x^m R(x), R(0) \neq 0, \tau = m/\partial Q.$$

$$R^*(x) = x^{\partial R} R(1/x)$$

$$\begin{split} \gamma &\leqslant x^2 - t \tau \log x - t(1 - \tau) \frac{1}{\partial R} \log |R(x)|, \\ \gamma &\leqslant x^{-2} + t \log x + t(1 - \tau) \frac{1}{\partial R^*} \log |R^*(x)|. \end{split}$$

• Multiply by $\frac{1}{\pi\sqrt{(x-a)(b-x)}}$ and integrate on [a,b].

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Proof of the upper bound

• Then for all
$$0 < a < b$$

$$\gamma \leqslant \frac{3a^2 + 2ab + 3b^2}{8} - t\tau \log \frac{(\sqrt{a} + \sqrt{b})^2}{4} - t(1 - \tau) \log \frac{b - a}{4}$$

$$\gamma \leqslant \frac{a+b}{2(a\,b)^{3/2}} + t\log\frac{(\sqrt{a}+\sqrt{b})^2}{4} - t(1-\tau)\log\frac{b-a}{4}.$$

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Proof of the upper bound

O Then for all
$$0 < a < b$$

$$\gamma \leqslant \frac{3a^2 + 2ab + 3b^2}{8} - t\tau \log \frac{(\sqrt{a} + \sqrt{b})^2}{4} - t(1 - \tau) \log \frac{b - a}{4},$$

$$\gamma \leqslant \frac{a+b}{2(a\,b)^{3/2}} + t\log\frac{(\sqrt{a}+\sqrt{b})^2}{4} - t(1-\tau)\log\frac{b-a}{4}.$$

(9) Introduce new variables $\lambda > 0$ and z > 1 such that

$$a = \lambda(\sqrt{z} + \frac{1}{\sqrt{z}} - 2), \quad b = \lambda(\sqrt{z} + \frac{1}{\sqrt{z}} + 2).$$

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Proof of the upper bound

() Then for all $\lambda > 0$ and z > 1

$$\begin{split} \gamma &\leqslant \lambda(z + \frac{1}{z} + 4) - \frac{1}{2} t \log \lambda - \frac{1}{2} t \tau \log z, \\ \gamma &\leqslant \frac{z + z^2}{(z - 1)^3 \lambda} + \frac{1}{2} t \tau \log \lambda + \frac{1}{2} t \log z. \end{split}$$

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Proof of the upper bound

() Then for all $\lambda > 0$ and z > 1

$$\begin{split} \gamma &\leqslant \lambda(z+\frac{1}{z}+4) - \frac{1}{2} t \log \lambda - \frac{1}{2} t \tau \log z, \\ \gamma &\leqslant \frac{z+z^2}{(z-1)^3 \lambda} + \frac{1}{2} t \tau \log \lambda + \frac{1}{2} t \log z. \end{split}$$

With the help of a CAS minimize the right hand sides to obtain

 $\gamma \leq \min(\phi(t,\tau),\psi(t,\tau)), \quad t > 0, \quad 0 \leq \tau \leq 1,$

where φ and ψ are some complicated functions.

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Proof of the upper bound

 $\textcircled{0} \quad \text{Then for all } \lambda > 0 \text{ and } z > 1$

$$\begin{split} \gamma &\leqslant \lambda(z+\frac{1}{z}+4) - \frac{1}{2}t\log\lambda - \frac{1}{2}t\tau\log z, \\ \gamma &\leqslant \frac{z+z^2}{(z-1)^3\lambda} + \frac{1}{2}t\tau\log\lambda + \frac{1}{2}t\log z. \end{split}$$

With the help of a CAS minimize the right hand sides to obtain

 $\gamma \leq \min(\phi(t,\tau),\psi(t,\tau)), \quad t > 0, \quad 0 \leq \tau \leq 1,$

where φ and ψ are some complicated functions.

Maximize the right hand side, again with the help of a CAS.

The method of auxiliary functions

The integer Chebyshev problem •••••• Computational details

The Integer Chebyshev Problem

Let $I \subset \mathbb{R}$ be a closed interval. The integer Chebyshev problem asks for the polynomial of degree n with integer coefficients of minimal uniform norm on I.

he method of auxiliary functions

The integer Chebyshev problem •••••• Computational details

The Integer Chebyshev Problem

Let $I \subset \mathbb{R}$ be a closed interval. The integer Chebyshev problem asks for the polynomial of degree n with integer coefficients of minimal uniform norm on I.

Definition

$$t_n(I) = \min\left\{\sup_{x \in I} |P(x)|^{1/\partial P} : P \in \mathbb{Z}[x], \ \partial P \leq n, \ P \neq 0\right\},\$$
$$t_{\mathbb{Z}}(I) = \inf\{t_n(I) : n \in \mathbb{N}\}.$$

The method of auxiliary functions

The integer Chebyshev problem •••••• Computational details

The Integer Chebyshev Problem

Let $I \subset \mathbb{R}$ be a closed interval. The integer Chebyshev problem asks for the polynomial of degree n with integer coefficients of minimal uniform norm on I.

Definition

$$t_n(I) = \min\left\{\sup_{x \in I} |P(x)|^{1/\partial P} : P \in \mathbb{Z}[x], \ \partial P \leq n, \ P \neq 0\right\},\$$
$$t_{\mathbb{Z}}(I) = \inf\{t_n(I) : n \in \mathbb{N}\}.$$

- $t_{\mathbb{Z}}(I)$ is known as the integer Chebyshev constant of *I*.
- If $|I| \ge 4$ then $t_{\mathbb{Z}}(I) = 1$.
- No exact value of $t_{\mathbb{Z}}(I)$ is known if |I| < 4.
- $t_{\mathbb{Z}}([0,1])$ is related to the Prime Number Theorem.

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Previous Work

Some names associated with the problem

- E. Aparicio (1981, 1988).
- D. Amoroso (1990).
- H. Montgommery (1994).
- V. Flammang (1995).
- P. Borwein and T. Erdélyi (1996).
- V. Flammang, G. Rhin and C. Smyth (1997).
- H. Habsieger and B. Salvy (1997).
- I. Pritsker (2005).

Preliminaries	The trace problem	The method of auxiliary functions	The integer Chebyshev problem	Computational details	
Farey intervals					

Definition

A Farey interval is an interval [p/q, r/s] where p, q, r and s are non-negative integers such that qr - ps = 1.

Preliminaries	The trace problem	The method of auxiliary functions	The integer Chebyshev problem ○○●○○○	Computational details
Farey i	ntervals			

Definition

A Farey interval is an interval [p/q, r/s] where p, q, r and s are non-negative integers such that qr - ps = 1.

Given coprime integers 1 ≤ q ≤ s, there is a unique Farey interval

$$I_{q,s} = [p/q, r/s] \subset [0, 1].$$

 The fractional linear transformation φ(x) = (p x + r)/(q x + s) is a bijection between (0,∞) and (p/q, r/s).

Preliminaries	The trace problem	The method of auxiliary functions	The integer Chebyshev problem ○○●○○○	Computational details
Farey i	ntervals			

Definition

A Farey interval is an interval [p/q, r/s] where p, q, r and s are non-negative integers such that qr - ps = 1.

• Given coprime integers $1 \leq q \leq s$, there is a unique Farey interval

$$I_{q,s} = [p/q, r/s] \subset [0, 1].$$

 The fractional linear transformation φ(x) = (p x + r)/(q x + s) is a bijection between (0,∞) and (p/q, r/s).

The integer Chebyshev constant of a Farey interval

$$t_{\mathbb{Z}}(I_{q,s}) = \frac{1}{q} \cdot \inf_{\substack{Q \in \mathbb{Z}[x], Q \neq 0 \\ 0 < t < 1}} \Big\{ \sup_{x > 0} \Big(x + \frac{s}{q} \Big)^{-1} |Q(x)|^{t/\partial Q} \Big\}.$$

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

The functions ρ and λ

Definition of $\rho, \lambda \colon [1, \infty) \to \mathbb{R}$

$$\rho(\sigma) = \sup_{\substack{Q \in \mathbb{Z}[x], Q \neq 0 \\ 0 < t < 1}} \left\{ \inf_{x > 0} \left(\log(x + \sigma) - \frac{t}{\partial Q} \log |Q(x)| \right) \right\},$$
$$\lambda(\sigma) = e^{\rho(\sigma)} - \sigma.$$

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

.

Computational details

The functions ρ and λ

Definition of $\rho, \lambda \colon [1, \infty) \to \mathbb{R}$

$$\rho(\sigma) = \sup_{\substack{Q \in \mathbb{Z}[x], Q \neq 0 \\ 0 < t < 1}} \Big\{ \inf_{x > 0} \Big(\log(x + \sigma) - \frac{t}{\partial Q} \log |Q(x)| \Big) \Big\},\$$

$$\boldsymbol{\lambda}(\boldsymbol{\sigma}) = e^{\boldsymbol{\rho}(\boldsymbol{\sigma})} - \boldsymbol{\sigma}.$$

$t_{\mathbb{Z}}(I_{q,s})$ in terms of ρ and λ

$$t_{\mathbb{Z}}(I_{q,s}) = \frac{1}{q} e^{-\rho(s/q)} = \frac{1}{q \lambda(s/q) + s}$$
The trace problem

The method of auxiliary functions

The integer Chebyshev problem 000000

Computational details

Relation with the trace problem

Theorem (J.C. Peral & J.A.)

The trace problem

he method of auxiliary functions

The integer Chebyshev problem

Computational details

Relation with the trace problem

Theorem (J.C. Peral & J.A.)

 $1 \leq \lambda(\sigma) \leq \mathfrak{K}_1 \qquad \forall \sigma \geq 1.$

0

2

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Relation with the trace problem

Theorem (J.C. Peral & J.A.)

$$1\leqslant\lambda(\sigma)\leqslant {\mathcal K}_1\qquad \forall\sigma\geqslant 1.$$

 $\lim_{\sigma\to\infty}\lambda(\sigma)=\mathcal{K}_1.$

0

2

3

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

•

Computational details

Relation with the trace problem

Theorem (J.C. Peral & J.A.)

$$1 \leqslant \lambda(\sigma) \leqslant \mathcal{K}_1 \qquad \forall \sigma \geqslant 1.$$

 $\lim_{\sigma\to\infty}\lambda(\sigma)=\mathcal{K}_1.$

$$\frac{1}{\mathcal{K}_1 q + s} \leqslant t_{\mathbb{Z}}(I_{q,s}) \leqslant \frac{1}{q + s}$$

0

2

3

4

The trace problem

The method of auxiliary functions

The integer Chebyshev problem 000000

Computational details

Relation with the trace problem

Ī

Theorem (J.C. Peral & J.A.)

$$1 \leqslant \lambda(\sigma) \leqslant \mathfrak{K}_1 \qquad \forall \sigma \geqslant 1$$

$$\lim_{\sigma\to\infty}\lambda(\sigma)=\mathcal{K}_1.$$

$$\frac{1}{\mathcal{K}_1 \, q + s} \leqslant t_{\mathbb{Z}}(I_{q,s}) \leqslant \frac{1}{q+s}$$

$$\lim_{m\to\infty} \left(\frac{1}{t_{\mathbb{Z}}([0,1/m])} - m\right) = \mathcal{K}_1.$$

The trace problem

The method of auxiliary functions

The integer Chebyshev problem $00000 \bullet$

Computational details

Estimates for the Function λ

Upper bounds
Lower bounds

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Estimates for the Function $\boldsymbol{\lambda}$

Upper bounds
Lower bounds

Conjecture

 $\boldsymbol{\lambda}$ is increasing and concave.

Preliminaries	The trace problem	The method of auxiliary functions	The integer Chebyshev problem	Computational details ●00000		
What to do in practice						

• Look for $Q \in \mathbb{Z}[x]$ and c > 0 that maximize

$$\min_{x>0} (f(x) - c \log |Q(x)|) .$$

Preliminaries	The trace problem	The method of auxiliary functions	The integer Chebyshev problem	Computational details ●00000	
What to do in practice					

• Look for $Q \in \mathbb{Z}[x]$ and c > 0 that maximize

$$\min_{x>0} (f(x) - c \log |Q(x)|) .$$

- How does one find *Q* and *c*?
 - Choose *N* irreducible polynomials $Q_k \in \mathbb{Z}[x]$.
 - 2 Solve the optimization problem

$$\sup_{c_k>0} \left\{ \min_{x>0} \left(f(x) - \sum_{k=1}^N c_k \log |Q_k(x)| \right) \right\}.$$
 (*)

Preliminaries	The trace problem	The method of auxiliary functions	The integer Chebyshev problem	Computational details ●00000	
What to do in practice					

• Look for $Q \in \mathbb{Z}[x]$ and c > 0 that maximize

$$\min_{x>0} (f(x) - c \log |Q(x)|) .$$

- How does one find *Q* and *c*?
 - O Choose N irreducible polynomials $Q_k \in \mathbb{Z}[x]$.
 - Solve the optimization problem

$$\sup_{c_k>0} \left\{ \min_{x>0} \left(f(x) - \sum_{k=1}^N c_k \log |Q_k(x)| \right) \right\}.$$
 (*)

To aply the method we must

- Find appropriate polynomials Q_k .
- **②** Find the coefficients c_k that solve (*).

The trace problem

The method of auxiliary functions

The integer Chebyshev problem 000000

Computational details

Where do the polynomials Q_k come from?

The method of auxiliary functions

The integer Chebyshev problem 000000

Computational details

Where do the polynomials Q_k come from?

- They should have positive roots.
- They should have small coefficients.
- They should have small trace.
- Exhaustive search.
- Transformations:

$$P \to x^{\partial P} P(x + \frac{1}{x} - 2)$$

The trace problem

The method of auxiliary functions

The integer Chebyshev problem 000000

Computational details

Where do the polynomials Q_k come from?

- They should have positive roots.
- They should have small coefficients.
- They should have small trace.
- Exhaustive search.
- Transformations:

$$P \to x^{\partial P} P(x + \frac{1}{x} - 2)$$

d	Т	M_1	
1	1	1.000	1
2	3	1.500	1
3	5	1.660	1
4	7	1.750	2
5	9	1.800	4
6	11	1.833	11
7	13	1.857	40
8	15	1.875	146
9	17	1.889	656
10	18	1.800	3
11	20	1.818	None?

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Minimizing $\mathcal{F}(x, c_1, \ldots, c_N)$ with respect to *x*.

Minimization problem

Given $c_k > 0$, $Q_k \in \mathbb{Z}[x]$, $1 \leq k \leq N$, find

$$\min_{x>0} \mathcal{F}(x, c_1, \dots, c_N) = \min_{x>0} \Big(f(x) - \sum_{k=1}^N c_k \log |Q_k(x)| \Big).$$

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

Minimizing $\mathcal{F}(x, c_1, \ldots, c_N)$ with respect to *x*.

• The values of *c*^{*k*} are entered as exact rational numbers.

Preliminaries The trace problem The method of auxiliary functions Computational details

Minimizing $\mathcal{F}(x, c_1, \dots, c_N)$ with respect to *x*.

- The values of *c_k* are entered as exact rational numbers.
- $\bullet\,$ Critical points of ${\mathfrak F}$ are computed solving with high precision

$$f'(x) - \sum_{k=1}^N c_k \frac{Q'_k}{Q_k} = 0$$

Minimizing $\mathcal{F}(x, c_1, \ldots, c_N)$ with respect to *x*.

- The values of *c_k* are entered as exact rational numbers.
- $\bullet\,$ Critical points of ${\mathfrak F}$ are computed solving with high precision

$$f'(x) - \sum_{k=1}^N c_k \frac{Q'_k}{Q_k} = 0$$

• Depending on the nature of *f*, different algorithms can be used.

Minimizing $\mathcal{F}(x, c_1, \ldots, c_N)$ with respect to *x*.

- The values of c_k are entered as exact rational numbers.
- $\bullet\,$ Critical points of ${\mathfrak F}$ are computed solving with high precision

$$f'(x) - \sum_{k=1}^N c_k \frac{Q'_k}{Q_k} = 0$$

- Depending on the nature of *f*, different algorithms can be used.
- The result can be checked, since the critical points are located between the roots of the *Q_i*.

Minimizing $\mathcal{F}(x, c_1, \ldots, c_N)$ with respect to *x*.

- The values of *c_k* are entered as exact rational numbers.
- $\bullet\,$ Critical points of ${\mathfrak F}$ are computed solving with high precision

$$f'(x) - \sum_{k=1}^N c_k \frac{Q'_k}{Q_k} = 0$$

- Depending on the nature of *f*, different algorithms can be used.
- The result can be checked, since the critical points are located between the roots of the *Q_i*.
- $\inf_{x>0} \mathcal{F}(x, c_1, \dots, c_N)$ is calculated evaluating \mathcal{F} at the critical points.

Minimizing $\mathcal{F}(x, c_1, \ldots, c_N)$ with respect to *x*.

- The values of *c_k* are entered as exact rational numbers.
- $\bullet\,$ Critical points of ${\mathfrak F}$ are computed solving with high precision

$$f'(x) - \sum_{k=1}^N c_k \frac{Q'_k}{Q_k} = 0$$

- Depending on the nature of *f*, different algorithms can be used.
- The result can be checked, since the critical points are located between the roots of the *Q_i*.
- $\inf_{x>0} \mathcal{F}(x, c_1, \dots, c_N)$ is calculated evaluating \mathcal{F} at the critical points.
- This is the most time consuming part.

Preliminaries	The trace problem	The method of auxiliary functions	The integer Chebyshev problem	Computational details	
Reme's Algorithm					

• $\mathfrak{F}(x, c_1, \ldots, c_N)$ has *M* local minima $\xi_i \in (0, \infty)$, M > N.

Preliminaries	The trace problem	The method of auxiliary functions	The integer Chebyshev problem	Computational details	
Reme's Algorithm					

- $\mathfrak{F}(x, c_1, \ldots, c_N)$ has M local minima $\xi_i \in (0, \infty), M > N$.
- The values $\mathfrak{F}(\xi_i, c_1, \ldots, c_N)$ are different in general.

Preliminaries	The trace problem	The method of auxiliary functions	The integer Chebyshev problem	Computational details

Reme's Algorithm

- $\mathfrak{F}(x, c_1, \ldots, c_N)$ has M local minima $\xi_i \in (0, \infty), M > N$.
- The values $\mathfrak{F}(\xi_i, c_1, \dots, c_N)$ are different in general.
- For optimal $\{c_k\}_{k=1}^N$, N + 1 of them are equal.

Preliminaries	The trace problem	The method of auxiliary functions	The integer Chebyshev problem	Computational details	
Reme's Algorithm					

• Start with a set of coefficients $\{c_k\}_{k=1}^N$ and compute the minima $\{\xi_j\}_{j=1}^M$ of $\mathcal{F}(x, c_1, \ldots, c_N)$ on $(0, \infty)$, ordered so that $\mathcal{F}(\xi_i, c_1, \ldots, c_N) \leq \mathcal{F}(\xi_j, c_1, \ldots, c_N)$ if $i \leq j$.

Preliminaries	The trace problem	The method of auxiliary functions	The integer Chebyshev problem	Computational details	
Reme's Algorithm					

- Start with a set of coefficients $\{c_k\}_{k=1}^N$ and compute the minima $\{\xi_j\}_{j=1}^M$ of $\mathcal{F}(x, c_1, \ldots, c_N)$ on $(0, \infty)$, ordered so that $\mathcal{F}(\xi_i, c_1, \ldots, c_N) \leq \mathcal{F}(\xi_j, c_1, \ldots, c_N)$ if $i \leq j$.
- **②** Solve the linear system with N + 1 equations and N + 1 unknowns

$$\mathfrak{F}(\xi_i, c'_1, \dots, c'_N) = \boldsymbol{\delta}, \quad 1 \leq i \leq N+1.$$

Preliminaries	The trace problem	The method of auxiliary functions	The integer Chebyshev problem	Computational details	
Reme's Algorithm					

- Start with a set of coefficients $\{c_i\}^N$ and
 - Start with a set of coefficients $\{c_k\}_{k=1}^N$ and compute the minima $\{\xi_j\}_{j=1}^M$ of $\mathfrak{F}(x, c_1, \ldots, c_N)$ on $(0, \infty)$, ordered so that $\mathfrak{F}(\xi_i, c_1, \ldots, c_N) \leq \mathfrak{F}(\xi_j, c_1, \ldots, c_N)$ if $i \leq j$.
 - **②** Solve the linear system with N + 1 equations and N + 1 unknowns

$$\mathfrak{F}(\xi_i,c_1',\ldots,c_N')=\boldsymbol{\delta},\quad 1\leqslant i\leqslant N+1.$$

③ Update $\{c_k\}_{k=1}^N \to \{c'_k\}_{k=1}^N$ and repeat until convergence.

Preliminaries	The trace problem	The method of auxiliary functions	The integer Chebyshev problem	Computational details 00000●	
A different algorithm					

• Start with a set of coefficients $\{c_k\}_{k=1}^N$ and compute the minima $\{\xi_j\}_{j=1}^M$ of $\mathcal{F}(x, c_1, \ldots, c_N)$ on $(0, \infty)$, ordered so that $\mathcal{F}(\xi_i, c_1, \ldots, c_N) \leq \mathcal{F}(\xi_j, c_1, \ldots, c_N)$ if $i \leq j$.

- Start with a set of coefficients $\{c_k\}_{k=1}^N$ and compute the minima $\{\xi_j\}_{j=1}^M$ of $\mathcal{F}(x, c_1, \dots, c_N)$ on $(0, \infty)$, ordered so that $\mathcal{F}(\xi_i, c_1, \dots, c_N) \leq \mathcal{F}(\xi_j, c_1, \dots, c_N)$ if $i \leq j$.
- Ochoose ℓ ∈ N, ℓ ≤ N, ε > 0, and solve the 3^ℓ linear systems of N equations in the variables c[']_k

$$\mathfrak{F}(\xi_k, c_1', \dots, c_N') = \mathfrak{F}(\xi_k, c_1, \dots, c_N) + \varepsilon \, \delta_k, \quad 1 \leqslant k \leqslant N$$

- Start with a set of coefficients $\{c_k\}_{k=1}^N$ and compute the minima $\{\xi_j\}_{j=1}^M$ of $\mathcal{F}(x, c_1, \dots, c_N)$ on $(0, \infty)$, ordered so that $\mathcal{F}(\xi_i, c_1, \dots, c_N) \leq \mathcal{F}(\xi_j, c_1, \dots, c_N)$ if $i \leq j$.
- Ochoose ℓ ∈ N, ℓ ≤ N, ε > 0, and solve the 3^ℓ linear systems of N equations in the variables c[']_k

$$\mathfrak{F}(\xi_k, c_1', \dots, c_N') = \mathfrak{F}(\xi_k, c_1, \dots, c_N) + \varepsilon \, \delta_k, \quad 1 \leqslant k \leqslant N$$

where $\delta_k = 1, 0$ or -1 if $1 \leq k \leq \ell$ and 0 if $k > \ell$.

Select the solution that makes $\inf_{x>0} \mathfrak{F}(x, c'_1, \dots, c'_N)$ largest.

- Start with a set of coefficients $\{c_k\}_{k=1}^N$ and compute the minima $\{\xi_j\}_{j=1}^M$ of $\mathcal{F}(x, c_1, \dots, c_N)$ on $(0, \infty)$, ordered so that $\mathcal{F}(\xi_i, c_1, \dots, c_N) \leq \mathcal{F}(\xi_j, c_1, \dots, c_N)$ if $i \leq j$.
- Ochoose ℓ ∈ N, ℓ ≤ N, ε > 0, and solve the 3^ℓ linear systems of N equations in the variables c[']_k

 $\mathfrak{F}(\xi_k, c_1', \ldots, c_N') = \mathfrak{F}(\xi_k, c_1, \ldots, c_N) + \varepsilon \, \boldsymbol{\delta}_k, \quad 1 \leqslant k \leqslant N$

- Select the solution that makes $\inf_{x>0} \mathfrak{F}(x, c'_1, \dots, c'_N)$ largest.
- Ompare with $\mathcal{F}(\xi_1, c_1, \ldots, c_N)$.

- Start with a set of coefficients $\{c_k\}_{k=1}^N$ and compute the minima $\{\xi_j\}_{j=1}^M$ of $\mathcal{F}(x, c_1, \dots, c_N)$ on $(0, \infty)$, ordered so that $\mathcal{F}(\xi_i, c_1, \dots, c_N) \leq \mathcal{F}(\xi_j, c_1, \dots, c_N)$ if $i \leq j$.
- Ochoose ℓ ∈ N, ℓ ≤ N, ε > 0, and solve the 3^ℓ linear systems of N equations in the variables c[']_k

$$\mathfrak{F}(\xi_k, c_1', \dots, c_N') = \mathfrak{F}(\xi_k, c_1, \dots, c_N) + \varepsilon \, \boldsymbol{\delta}_k, \quad 1 \leqslant k \leqslant N$$

- Select the solution that makes $\inf_{x>0} \mathfrak{F}(x, c'_1, \dots, c'_N)$ largest.
- Ompare with $\mathcal{F}(\xi_1, c_1, \ldots, c_N)$.
 - If greater, update $\{c_k\}_{k=1}^N \to \{c'_k\}_{k=1}^N$, increase ϵ and go to 1.

- Start with a set of coefficients $\{c_k\}_{k=1}^N$ and compute the minima $\{\xi_j\}_{j=1}^M$ of $\mathcal{F}(x, c_1, \dots, c_N)$ on $(0, \infty)$, ordered so that $\mathcal{F}(\xi_i, c_1, \dots, c_N) \leq \mathcal{F}(\xi_j, c_1, \dots, c_N)$ if $i \leq j$.
- Ochoose ℓ ∈ N, ℓ ≤ N, ε > 0, and solve the 3^ℓ linear systems of N equations in the variables c[']_k

$$\mathfrak{F}(\xi_k, c'_1, \dots, c'_N) = \mathfrak{F}(\xi_k, c_1, \dots, c_N) + \varepsilon \, \boldsymbol{\delta}_k, \quad 1 \leqslant k \leqslant N$$

- Select the solution that makes $\inf_{x>0} \mathfrak{F}(x, c'_1, \dots, c'_N)$ largest.
- Ompare with $\mathcal{F}(\xi_1, c_1, \ldots, c_N)$.
 - If greater, update $\{c_k\}_{k=1}^N \to \{c'_k\}_{k=1}^N$, increase ϵ and go to 1.
 - Otherwise decrease ε and go to 2.

00000	000000	0000000	000000	000000		
Last slide						

The trace problem

The method of auxiliary functions

The integer Chebyshev problem

Computational details

MUCHAS FELICIDADES, IRENEO