VISCOSITY SUPERSOLUTIONS OF THE EVOLUTIONARY *p*-LAPLACE EQUATION

JUAN J. MANFREDI

Consider the parabolic p-Laplacian equation

$$\frac{\partial v}{\partial t} = \nabla \cdot (|\nabla v|^{p-2} \nabla v)$$

We study the regularity of the viscosity supersolutions and their spatial gradients. We give a new proof of the existence of ∇v in Sobolev's sense and of the validity of the equation

$$\iint_{\Omega} \left(-v \frac{\partial \varphi}{\partial t} + \langle |\nabla v|^{p-2} \nabla v, \ \nabla \varphi \rangle \right) dx \ dt \ge 0$$

for all test functions $\varphi \geq 0$. Here Ω is the underlying domain in \mathbb{R}^{n+1} and v is a bounded viscosity supersolution in Ω . The first step of our proof is to establish (1.2) for the socalled infimal convolution v_{ϵ} . The function v_{ϵ} has the advantage of being differentiable with respect to all its variables x_1, x_2, \dots, x_n , and t, while the original v is merely lower semicontinuous to begin with. The second step is to pass to the limit as $\epsilon \to 0$. It is clear that $v_{\epsilon} \to v$ but it is delicate to establish a sufficiently good convergence of the ∇v_{ϵ} 's.

This is joint work with Peter Lindqvist at Trondheim.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PITTSBURGH, PITTSBURGH, PA 15260,USA E-mail address: manfredi@pitt.edu URL: http://www.pitt.edu/~manfredi