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Introduction

I present a result contained in a joint paper with A. Porretta:

The boundary behavior of blow-up solutions related to a
stochastic control problem with state constraint

to appear in SIAM Journal on Mathematical Analysis.
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Introduction

We consider the following equation:

−∆u + u + |∇u|q = f (x) in Ω

equipped with the boundary condition

u(x)→ +∞ as x → ∂Ω .

Here Ω is a bounded domain of RN , N ≥ 2 and we assume
1 < q ≤ 2 and f (x) smooth (namely W 1,∞(Ω)).

Solutions that satisfy the explosive boundary condition are
known as large solutions.
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Motivations: a stochastic control problem

Let us consider the stochastic differential equation{
dXt = atdt + dBt

X0 = x ∈ Ω

where Bt is the Brownian motion and at = a(Xt ) is a feedback
control.
We consider the class A of all (feedback) controls that keep the
process Xt inside the domain Ω for any time t > 0 a.s..
The criterion for optimality is given by the cost functional
(E is the expected value, Cq > 0 and 1

q′ + 1
q = 1):

J(x ,a) = E
∫ ∞

0

 f (Xt )︸ ︷︷ ︸
assigned cost

+ Cq |a(Xt )|q
′︸ ︷︷ ︸

cost of the control

 e−t dt︸ ︷︷ ︸
discount factor
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Motivations: a stochastic control problem

Hence
inf

a∈A
J(x ,a) ,

where

A = {a ∈ C0(Ω,RN) : Xt ∈ Ω ,∀t > 0 a.s.} ,

is achieved and defines the value function

u(x) = inf
a∈A

J(x ,a) ,

that solves the problem
−∆u + u + |∇u|q = f (x) in Ω

u(x)→ +∞ as d(x)→ 0 ,

where d(x) =dist(x , ∂Ω).
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Known results

In the paper
“J.-M. Lasry, P.-L. Lions, Nonlinear elliptic equations with singular
boundary conditions and stochastic control with state constraints. I.
The model problem, Math. Ann. 283 (1989), n. 4, 583–630 ”
it has been proved:

existence and uniquenes of the solution u ∈W 2,p
loc (Ω),

∀p > 1;
asymptotic estimates u(x), i.e. as d(x)→ 0:

u(x) ∼ C∗d(x)
− 2−q

q−1 if 1 < q < 2, C∗ =
(q − 1)

− 2−q
q−1

2− q
,

u(x) ∼ − log(d(x)) if q = 2;

the unique optimal control is a(x) = −q|∇u(x)|q−2∇u(x) .
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First order estimates on the gradient

More recently in

“A. Porretta, L. Veron, Asymptotic behaviour for the gradient of
large solutions to some nonlinear elliptic equations, Adv.
Nonlinear Stud., 6 (2006), pp. 351–378.”

It has been proved a first order estimate on ∇u near the
boundary,

namely
lim

x→x0∈∂Ω
d(x)

1
q−1∇u(x) = (q − 1)

− 1
q−1 ν(x0) ,

∂u
∂τ

= o
(
∂u
∂ν

)
where ν(x) = −∇d(x) is the outer normal.

Such result has been proved via scaling and blow-up.
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Summary

The results on the first order, in particular, say that the solution
and the gradient (and consequently the control) depend only on
the distance to the boundary.

Thus

u(x) ∼ ψ(d(x)) and ∇u ∼ −ψ′(d(x)) ν(x)

where ψ(s) is the solution of the ODE−ψ
′′(s) + |ψ′(s)|q = 0 s ∈ (0,1) ,

lim
s→0+

ψ(s) = +∞ .

Note that such solution exits since 1 < q ≤ 2!!
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Goal

The aim of our work is:

to give a more precise picture of the behavior of the
gradient (and consequently of the control) near ∂Ω;
to study second order effects;
look at the role played by the geometry of the domain.
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Main result

Theorem (L.-Porretta)

Let Ω be a regular open subset of RN , and let H(ς) be the mean
curvature of ∂Ω computed at ς and x the projection of x ∈ Ω on
∂Ω.

Then ∀1 < q ≤ 2 , as d(x)→ 0,

∂u(x)

∂ν
=

(q − 1)
− 1

q−1

d(x)
1

q−1

[
1 +

(N − 1)H(x)

2
d(x) + o(d(x))

]
and 

∂u(x)
∂τ ∈ L∞(Ω) if 3

2 < q ≤ 2,
∂u(x)
∂τ = O (| log d |) if q = 3

2 ,
∂u(x)
∂τ = O

(
d

2q−3
q−1

)
if 1 < q < 3

2 .
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Consequence (Representation of the optimal control)

Recalling that, by [LL], a = −q|∇u|q−2∇u,

we deduce, as
d(x)→ 0:

if 1 < q < 2

a(x) = − q′

d(x)
ν(x)− q′(N − 1)

2
H(x)ν(x) + o(1) ;

if q = 2

a(x) = − 2
d(x)

ν(x)− (N − 1)[H(x) + o(1)]ν(x) +ψ(x)τ(x) ,

where τ(x) ∈ RN , |τ | = 1 , τ · ν = 0 , ψ ∈ L∞(Ω).
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Remark

The (unique) optimal control:
1 it is singular at the boundary;

2 it is mainly directed in the normal direction, pointing inside;
3 in the tangential directions, it vanishes as d(x)→ 0, if

1 < q < 2 while it is bounded if q = 2;
4 it has maximum intensity in those points close to the

boundary where the boundary is more “curved”
(i.e. on the hypersurfaces parallel to ∂Ω, it achives its
maximum in those points in which the mean curvature is
maximum).
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Idea of the proof.

Let us assume 1 < q < 2, the case q = 2 is a bit different
(easier).
We introduce a corrector term, (a formal expansion of u)

S = d−
2−q
q−1 (x)

m∑
k=0

σk (x)dk (x) ,m > 0 , σ0 = C∗ =
(q − 1)

− 2−q
q−1

2− q
.

Then we define z = u − S and we look at the equation solved
by z, i.e.

−∆z + z + |∇z +∇S|q − |∇S|q = f (x) + g(x)

where g(x) = ∆S − S − |∇S|q.

We observe that from the result of Porretta and Veron we
deduce that

|∇z +∇S|q − |∇S|q ∼ − q
q − 1

∇z · ∇d
d

+ O(d
2−q
q−1 |∇z|2) .
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Idea of the proof

The nonlinear term generate a transport term, singular at the
boundary, that has a regularizing effect.

Thus we deal with an equation of the type

−∆z + z− q
q − 1

∇z · ∇d
d

+ d
2−q
q−1 |∇z|2(1 + o(1)) = f (x) + g(x) .

We would like to prove (via scaling) ∇u → ∇S.
However we do not know the behavior of z = u − S on ∂Ω so
that this approach fails.

In fact, for our aim, it is enough to prove |∇u −∇S| ∈ L∞(Ω),
i.e. z ∈W 1,∞(Ω).
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Idea of the proof

Our approach uses a weighted version of

Bernstein Method

Bernstein 1910, Serrin ’60, P.-L. Lions ’80.

It is a technique to obtain Lipschitz estimates:

let v be a solution of an elliptic equation
you show that |∇v |2 is a subsolution of an equation of the same
type,
you prove that it is bounded using the strong maximum
principle (SMP).
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Idea of the proof

Several version of this method are known.

In order to prove
global Lipschitz estimates we need to approximate the problem
with a sequence that satisfies a Neumann boundary condition.
We set −∆un + un + |∇un|q = f (x) in Ω

∂un

∂ν
=
∂Sn

∂ν
on ∂Ω

where

Sn = d
− 2−q

q−1
n (x)

m∑
k=0

σk (x)dk
n (x) ,m > 0 , dn = d(x) +

1
n

and we prove first order estimates, i.e.:

un ∼ C∗d
− 2−q

q−1
n (via sub and supersolutions)

∇un ∼ 2−q
q−1C∗d

− 1
q−1

n ν (via scaling and blow-up)
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Idea of the proof

Then we consider the equation solved by zn = un − Sn−∆zn + zn + |∇zn +∇Sn|q − |∇Sn|q = f (x) + gn(x) in Ω
∂zn

∂ν
= 0 on ∂Ω

with
gn(x) = ∆Sn − Sn − |∇Sn|q ,

Now, fix the coefficients σk such that the right hand side is
smooth.
As before, the equation solved by zn is similar to

−∆zn+zn−
q

q − 1
∇zn · ∇d

dn
+d

2−q
q−1

n |∇zn|2(1+o(1)) = f (x) + gn(x)︸ ︷︷ ︸
smooth

.

Now we have a boundary condition!
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Idea of the proof
Then, in order to apply a “weighted ” version of the Bernstein’s
method,

we we look at the equation solved by wn = Φ(dn)|∇zn|2.

On ∂Ω, we have:

∂zn

∂ν
= 0⇒ ∂Φ(dn)|∇zn|2

∂ν
≤
[
CΩ −

Φ′(dn)

Φ(dn)

]
︸ ︷︷ ︸

≤0

Φ(dn)|∇zn|2︸ ︷︷ ︸
wn

.

Thus the maximum of wn is not achieved on the boundary.
Step 1.Φ(t) = t2β , 0 < β < 1 , Bernstein + SMP
wn bounded ⇒ estimate for zn in C0,1−β(Ω)
Step 2. Φ(t) = eλt , λ >> 1 , Bernstein + SMP
wn bounded ⇒ estimate for zn in W 1,∞(Ω) .

Hence:

|∇un −∇Sn| uniformly bounded in L∞(Ω) .
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Actually we have characterized any singular term of ∇u,

i.e.
α = 2−q

q−1

∂u(x)

∂ν
− αC∗

dα+1 +

[α]+1∑
k=1

[
(k − α)σk (x)

dα−k+1(x)
− ∇σk−1(x) · ν

dα−k+1(x)

]
∈ L∞(Ω)

and
∂u(x)

∂τ
−

[α]∑
k=1

∇σk (x) · τ
dα−k ∈ L∞(Ω)

that is a stronger result than the one stated.
By computations we have that

σ1 =
(q − 1)

− 2−q
q−1

3− 2q
∆d(x)

2

and noting that ∆d(x)
∣∣∣
∂Ω

= (N − 1)H(x) we deduce the thesis.
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dα−k+1(x)
− ∇σk−1(x) · ν

dα−k+1(x)

]
∈ L∞(Ω)

and
∂u(x)

∂τ
−

[α]∑
k=1

∇σk (x) · τ
dα−k ∈ L∞(Ω)

that is a stronger result than the one stated.
By computations we have that

σ1 =
(q − 1)

− 2−q
q−1

3− 2q
∆d(x)

2

and noting that ∆d(x)
∣∣∣
∂Ω

= (N − 1)H(x) we deduce the thesis.
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