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Introduction

Let Ω ⊂ R
2 be a convex set. The following are equivalent.

(a) Ω is calibrable, i.e., there is a vector field ξ ∈ L∞(Ω,R2), with
|ξ(x)| ≤ 1 a.e. in Ω , such that

−div ξ = λΩ :=
P (Ω)

|Ω|
in Ω,

ξ · νΩ = −1 in ∂Ω,

(b) Ω is a solution of the problem

min
X⊆Ω

P (X) − λΩ|X|.

(c) We have
ess sup

x∈∂Ω
κΩ(x) ≤ λΩ ,
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Introduction

Applications:
• Existence of solutions to the capillary problem in absence of

gravity for any contact angle γ ∈ [0, π
2 ] [Giusti, 78]
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Introduction

Applications:
• Existence of solutions to the capillary problem in absence of

gravity for any contact angle γ ∈ [0, π
2 ] [Giusti, 78]

• Description of the sets F ⊂ R
N such that the solution of

∂u

∂t
= div

(
Du

|Du|

)
in QT :=]0, T [×R

N ,

with u(0, x) = χΩ(x) is given by u(t) = (1 − λΩt)
+
χΩ and

evolution of any convex set of class C1,1.[Bellettini, Caselles,
Novaga, 02, 05].
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= div

(
Du

|Du|
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with u(0, x) = χΩ(x) is given by u(t) = (1 − λΩt)
+
χΩ and

evolution of any convex set of class C1,1.[Bellettini, Caselles,
Novaga, 02, 05].

• Cheeger sets and relations to landslides [Kawohl and
Lachand-Robert, 06]
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Introduction, anisotropic setting.

Let φ be an anisotropy in R
2 and let F ⊂ R

2 be a convex set. The
following are equivalent [Bellettini, Novaga, Paolini, 01].

(a) Ω is φ-calibrable, i.e., there is a vector field ξ ∈ L∞(Ω,R2), with
φ(ξ(x)) ≤ 1 a.e. in Ω (where φ is the dual norm of φ◦), such that

−div ξ = λφ
Ω :=

Pφ(Ω)

|Ω|
in Ω,

ξ · νΩ = −φ◦(νΩ) in ∂Ω,

(b) Ω is a solution of the problem

min
X⊆Ω

Pφ(X) − λφ
Ω|X|.

(c) We have
ess sup

x∈∂Ω
κφ

Ω(x) ≤ λφ
Ω ,
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Introduction. Problem view as a problem in c.v.

• Consider
(Pλ) : min

X⊆C
Pφ(X) − λ|X| , λ > 0
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Introduction. Problem view as a problem in c.v.

• Consider
(Pλ) : min

X⊆C
Pφ(X) − λ|X| , λ > 0

• Show existence, uniqueness and concavity of solutions of

(Q)µ : min
u∈BV (RN )∩L2(RN )

∫

RN

φ◦(Du)+
µ

2

∫

RN

(u−χC)2 dx, µ > 0.
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Plan of the talk

• Preliminaries
◦ Anisotropies, φ-regularity and the RWφ-condition.
◦ BV -functions, φ-total variation and Green’s formula.
◦ φ-calibrable sets.

• Properties of the solutions of (Qµ).

• Convexity of the anisotropic perimeter with fixed volume.
• Characterization of convex φ-calibrable sets by its anisotropic

mean curvature.
• Evolution of convex sets by the anisotropic total variation flow.
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Preliminaries. Anisotropies.

Definition: We say that φ : R
N → [0,∞[ is an anisotropy if

φ(tξ) = |t|φ(ξ) ∀ ξ ∈ R
N , ∀ t ∈ R,

and there is m > 0 such that m|ξ| ≤ φ(ξ) ∀ ξ ∈ R
N .
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N , ∀ t ∈ R,
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Wulff shape: Wφ := {ξ : φ(ξ) ≤ 1}

Surface tension: φ0(ξ) = sup{η · ξ : φ(η) ≤ 1}
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Preliminaries. Anisotropies.

Definition: We say that φ : R
N → [0,∞[ is an anisotropy if

φ(tξ) = |t|φ(ξ) ∀ ξ ∈ R
N , ∀ t ∈ R,

and there is m > 0 such that m|ξ| ≤ φ(ξ) ∀ ξ ∈ R
N .

Wulff shape: Wφ := {ξ : φ(ξ) ≤ 1}

Surface tension: φ0(ξ) = sup{η · ξ : φ(η) ≤ 1}

Given ∅ 6= E ⊆ R
N , we consider

dE
φ (x) := inf

y∈E
φ(x− y) − inf

y∈RN\E
φ(x− y), x ∈ R

N ,

dE
φ is a Lipschitz function. Where there exists ∇dE

φ (x), φ0(∇dE
φ (x)) = 1,

νE
φ (x) := ∇dE

φ (x) =
νE(x)

φ◦(νE(x))
on ∂E
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Preliminaries. Anisotropies.

Definition: T ◦(x) =
1

2
∂(φ◦)2(x), x ∈ R

N .

T ◦ is a maximal monotone operator mapping Wφ◦ onto Wφ.
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N .

T ◦ is a maximal monotone operator mapping Wφ◦ onto Wφ.

Definition: φ ∈ C1,1
+ (resp. C∞

+ ) if φ2 is C1,1(RN ) (resp. C∞(RN \ {0}))
and ∃ c > 0 such that ∇2(φ2) ≥ c Id a.e.
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Preliminaries. Anisotropies.

Definition: T ◦(x) =
1

2
∂(φ◦)2(x), x ∈ R

N .

T ◦ is a maximal monotone operator mapping Wφ◦ onto Wφ.

Definition: φ ∈ C1,1
+ (resp. C∞

+ ) if φ2 is C1,1(RN ) (resp. C∞(RN \ {0}))
and ∃ c > 0 such that ∇2(φ2) ≥ c Id a.e.

Definition: φ is crystalline if the unit ball Wφ of φ is a polytope.

Definition: Let E ⊂ R
N . E is φ-regular if ∂E is a compact Lipschitz

hypersurface and ∃ U ⊃ ∂E and n ∈ L∞(U ; RN ) s.t. divn ∈ L∞(U),
n ∈ ∂φ◦(∇dE

φ ) a.e. in U . E is Lipschitz φ-regular if E is φ-regular and

n ∈ Lip(U ; RN ).

A characterization of convex calibrable sets in R
N with respect to an anisotropy. – p. 8/26



Preliminaries. φ-regularity

Example: (Wφ, n), with n(x) := x/φ(x), is Lipschitz φ-regular, and
divn(x) = (N − 1)/φ(x) a.e. x ∈ R

N .
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Example: (Wφ, n), with n(x) := x/φ(x), is Lipschitz φ-regular, and
divn(x) = (N − 1)/φ(x) a.e. x ∈ R

N .

Example: φ1(ξ) = ‖ξ‖2 −→ φ◦1(ξ) = ‖ξ‖2 −→ ∂φ◦1(ξ) = ξ
‖ξ‖2

φ2(ξ) = ‖ξ‖∞ −→ φ◦2(ξ) = ‖ξ‖1 −→ ∂φ◦2(ξ) =
(

ξ1

|ξ1|
, . . . ξN

|ξN |

)
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Preliminaries. φ-regularity

Example: (Wφ, n), with n(x) := x/φ(x), is Lipschitz φ-regular, and
divn(x) = (N − 1)/φ(x) a.e. x ∈ R
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Preliminaries. φ-regularity

Definition: Let E ⊂ R
N be s.t. E◦ 6= ∅ and R > 0. E satisfies the

RWφ-condition (W) if ∀ x ∈ ∂E, there exists y ∈ R
N such that

RWφ + y ⊆ E and x ∈ ∂ (RWφ + y) .
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N be s.t. E◦ 6= ∅ and R > 0. E satisfies the

RWφ-condition (W) if ∀ x ∈ ∂E, there exists y ∈ R
N such that

RWφ + y ⊆ E and x ∈ ∂ (RWφ + y) .

Lemma: (i) If E is Lipschitz φ-regular, then E and R
N \ E satisfy (W).

(ii) A compact convex set satisfying the RWφ-condition is φ-regular.
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Preliminaries. φ-regularity

Definition: Let E ⊂ R
N be s.t. E◦ 6= ∅ and R > 0. E satisfies the

RWφ-condition (W) if ∀ x ∈ ∂E, there exists y ∈ R
N such that

RWφ + y ⊆ E and x ∈ ∂ (RWφ + y) .

Lemma: (i) If E is Lipschitz φ-regular, then E and R
N \ E satisfy (W).

(ii) A compact convex set satisfying the RWφ-condition is φ-regular.

Proposition: Assume that φ ∈ C1,1
+ . Then,

(a) E is Lipschitz φ-regular if and only if E is of class C1,1.

(b) A compact convex set which satisfies (W) is Lipschitz φ-regular.

(c) E is Lipschitz φ-regular if and only if E and R
N \ E satisfy (W).
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Preliminaries. Total Variation

Definition: Let Ω ⊆ R
N be an open set and consider u ∈ L1(Ω).

u ∈ BV (Ω) ⇔

∫

Ω

u
∂ϕ

∂xi

dx = −

∫

Ω

ϕdµi, ∀ϕ ∈ C∞
0 (Ω), ∀i = 1, . . . , N
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u ∈ BV (Ω) ⇔

∫

Ω

u
∂ϕ

∂xi

dx = −

∫

Ω

ϕdµi, ∀ϕ ∈ C∞
0 (Ω), ∀i = 1, . . . , N

|Du| := sup

{∫

Ω

u div(φ) dx : φ ∈ C∞
0 (Ω,RN ) |φ(x)| ≤ 1, x ∈ Ω

}
.

‖u‖BV := ‖u‖1 + |Du|
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N be an open set and consider u ∈ L1(Ω).

u ∈ BV (Ω) ⇔

∫

Ω

u
∂ϕ

∂xi

dx = −

∫

Ω

ϕdµi, ∀ϕ ∈ C∞
0 (Ω), ∀i = 1, . . . , N
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Ω

u div(φ) dx : φ ∈ C∞
0 (Ω,RN ) |φ(x)| ≤ 1, x ∈ Ω

}
.
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|Du| := sup

{∫

Ω

u div(φ) dx : φ ∈ C∞
0 (Ω,RN ) |φ(x)| ≤ 1, x ∈ Ω

}
.

‖u‖BV := ‖u‖1 + |Du|

χE ∈ BV (Ω) =⇒ P (E,Ω) := |DχE |.
∫

Ω

φ◦(Du) := sup

{∫

Ω

u divσ dx : σ ∈ C1
c (Ω; RN ), φ(σ(x)) ≤ 1 ∀x ∈ Ω

}
.
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N be an open set and consider u ∈ L1(Ω).
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u
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∂xi

dx = −
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ϕdµi, ∀ϕ ∈ C∞
0 (Ω), ∀i = 1, . . . , N

|Du| := sup

{∫

Ω

u div(φ) dx : φ ∈ C∞
0 (Ω,RN ) |φ(x)| ≤ 1, x ∈ Ω

}
.

‖u‖BV := ‖u‖1 + |Du|

χE ∈ BV (Ω) =⇒ P (E,Ω) := |DχE |.
∫

Ω

φ◦(Du) := sup

{∫

Ω

u divσ dx : σ ∈ C1
c (Ω; RN ), φ(σ(x)) ≤ 1 ∀x ∈ Ω

}
.

If E ⊆ R
N has finite perimeter in Ω, we set

Pφ(E,Ω) :=

∫

Ω

φ◦(DχE) =

∫

Ω∩∂∗E

φ◦(νE) dHN−1,
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Preliminaries. Total Variation.

Definition: X2(Ω) :=
{
z ∈ (L∞(Ω))N : div(z) ∈ L2(Ω)

}

Let u ∈ BV (Ω) ∩ L2(Ω), z ∈ X2(Ω), and define

〈(z,Du), ϕ〉 := −

∫

Ω

uϕ div(z) dx−

∫

Ω

uz · ∇ϕdx.
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Preliminaries. Total Variation.

Definition: X2(Ω) :=
{
z ∈ (L∞(Ω))N : div(z) ∈ L2(Ω)

}

Let u ∈ BV (Ω) ∩ L2(Ω), z ∈ X2(Ω), and define

〈(z,Du), ϕ〉 := −

∫

Ω

uϕ div(z) dx−

∫

Ω

uz · ∇ϕdx.

Theorem: (z,Du), |(z,Du)| << |Du|.

Green’s Formula:
∫

Ω

u div(z) dx+

∫

Ω

(z,Du) =

∫

∂Ω

[z, ν]u dHN−1.
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Preliminaries. φ-calibrable sets

Definition: Let E ⊂ R
N be bounded and of finite perimeter. E is

φ-calibrable if ∃ ξ ∈ L∞(RN ,RN ) with φ(ξ(x)) ≤ 1 a.e. such that
(ξ,DχE) = φ◦(DχE) as measures in RN , and

−div ξ = λE
χ

E in D′(RN ).
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Preliminaries. φ-calibrable sets

Definition: Let E ⊂ R
N be bounded and of finite perimeter. E is

φ-calibrable if ∃ ξ ∈ L∞(RN ,RN ) with φ(ξ(x)) ≤ 1 a.e. such that
(ξ,DχE) = φ◦(DχE) as measures in RN , and

−div ξ = λE
χ

E in D′(RN ).

Proposition: Let E be a bounded convex set of finite perimeter in R
N .

Then E is φ-calibrable iff E minimizes the functional

Pφ(X) − λE |X|

among the sets of finite perimeter X ⊆ E.
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Properties of the solutions of (Q)λ

Consider the energy functional Ψφ : L2(RN ) → [0,+∞]

Ψφ(u) :=





∫

RN

φ◦(Du) if u ∈ L2(RN ) ∩BV (RN )

+∞ if u ∈ L2(RN ) \BV (RN ).
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∫

RN

φ◦(Du) if u ∈ L2(RN ) ∩BV (RN )

+∞ if u ∈ L2(RN ) \BV (RN ).

Ψφ is convex, l.s.c. and proper, then ∂Ψφ is maximal monotone with
dense domain, generating a contraction semigroup in L2(RN ).
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Properties of the solutions of (Q)λ

Consider the energy functional Ψφ : L2(RN ) → [0,+∞]

Ψφ(u) :=





∫

RN

φ◦(Du) if u ∈ L2(RN ) ∩BV (RN )

+∞ if u ∈ L2(RN ) \BV (RN ).

Ψφ is convex, l.s.c. and proper, then ∂Ψφ is maximal monotone with
dense domain, generating a contraction semigroup in L2(RN ).

Lemma: Let u ∈ L2(RN ) ∩BV (RN ). Then v ∈ ∂Ψφ(u) iff v ∈ L2(RN )

and ∃ z ∈ X2(R
N ) , φ(z(x)) ≤ 1 a.e. such that v = −divz in D′(RN )

and

(1)

∫

RN

(z,Du) =

∫

RN

φ◦(Du).
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Properties of the solutions of (Q)λ

Definition: Given g ∈ L2(RN ),

‖g‖φ,∗ := sup

{∫

RN

g(x)u(x) dx : u ∈ L2(RN )∩BV (RN ),

∫

RN

φ◦(Du) ≤ 1

}
.
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Properties of the solutions of (Q)λ

Definition: Given g ∈ L2(RN ),

‖g‖φ,∗ := sup

{∫

RN

g(x)u(x) dx : u ∈ L2(RN )∩BV (RN ),

∫

RN

φ◦(Du) ≤ 1

}
.

Lemma: Let f ∈ L2(RN ) and λ > 0. Then,

(a) u is the solution of

(Q)λ : min
w∈L2(RN )∩BV (RN )

∫

RN

φ◦(Dw) +
λ

2

∫

RN

(w − f)2 dx

iff ∃ z ∈ X2(R
N ) satisfying (1) such that φ(z(x)) ≤ 1 a.e. and

divz = λ(u− f).

(b) u ≡ 0 is the solution of (Q)λ iff ‖f‖φ,∗ ≤ 1
λ

.

(c) We have ∂Ψφ(0) = {f ∈ L2(RN ) : ‖f‖φ,∗ ≤ 1}.
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Properties of the solutions of (Q)λ

Proposition: Let C be a bounded convex domain in R
N . Given λ > 0,

let uλ ∈ BV (RN ) ∩ L2(RN ) be the solution of

(Q)λ : min
u∈BV (RN )∩L2(RN )

{∫

RN

φ◦(Du) +
λ

2

∫

RN

(u− χ
C)2 dx

}
.
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(Q)λ : min
u∈BV (RN )∩L2(RN )

{∫

RN

φ◦(Du) +
λ

2

∫

RN

(u− χ
C)2 dx

}
.

(i) 0 ≤ u ≤ 1. Let Es := {u ≥ s}, s ∈ (0, 1]. Then Es ⊆ C, and

Pφ(Es) − λ(1 − s)|Es| ≤ Pφ(F ) − λ(1 − s)|F |, ∀F ⊆ C.
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(u− χ
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}
.

(i) 0 ≤ u ≤ 1. Let Es := {u ≥ s}, s ∈ (0, 1]. Then Es ⊆ C, and

Pφ(Es) − λ(1 − s)|Es| ≤ Pφ(F ) − λ(1 − s)|F |, ∀F ⊆ C.

(ii) uλ 6= χ
C for any λ > 0, and uλ → χ

C in L2(RN ) as λ→ ∞.
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Properties of the solutions of (Q)λ

Proposition: Let C be a bounded convex domain in R
N . Given λ > 0,

let uλ ∈ BV (RN ) ∩ L2(RN ) be the solution of

(Q)λ : min
u∈BV (RN )∩L2(RN )

{∫

RN

φ◦(Du) +
λ

2

∫

RN

(u− χ
C)2 dx

}
.

(i) 0 ≤ u ≤ 1. Let Es := {u ≥ s}, s ∈ (0, 1]. Then Es ⊆ C, and

Pφ(Es) − λ(1 − s)|Es| ≤ Pφ(F ) − λ(1 − s)|F |, ∀F ⊆ C.

(ii) uλ 6= χ
C for any λ > 0, and uλ → χ

C in L2(RN ) as λ→ ∞.

(iii) If C satisfies the RWφ-condition, then uλ ≥
(
1 − N

Rλ

)+ χ
C .
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(ii) uλ 6= χ
C for any λ > 0, and uλ → χ

C in L2(RN ) as λ→ ∞.

(iii) If C satisfies the RWφ-condition, then uλ ≥
(
1 − N

Rλ

)+ χ
C .

(iv) uλ 6= 0 if and only if λ > 1
‖χC‖φ,∗

.
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Properties of the solutions of (Q)λ

Proposition: Let C be a bounded convex domain in R
N . Given λ > 0,

let uλ ∈ BV (RN ) ∩ L2(RN ) be the solution of

(Q)λ : min
u∈BV (RN )∩L2(RN )

{∫

RN

φ◦(Du) +
λ

2

∫

RN

(u− χ
C)2 dx

}
.

(i) 0 ≤ u ≤ 1. Let Es := {u ≥ s}, s ∈ (0, 1]. Then Es ⊆ C, and

Pφ(Es) − λ(1 − s)|Es| ≤ Pφ(F ) − λ(1 − s)|F |, ∀F ⊆ C.

(ii) uλ 6= χ
C for any λ > 0, and uλ → χ

C in L2(RN ) as λ→ ∞.

(iii) If C satisfies the RWφ-condition, then uλ ≥
(
1 − N

Rλ

)+ χ
C .

(iv) uλ 6= 0 if and only if λ > 1
‖χC‖φ,∗

.

(v) If C is not φ-calibrable, for any λ > 1
‖χC‖φ,∗

uλ cannot be a

multiple of χC .
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Properties of the solutions of (Q)λ

Theorem: Let C be bounded, convex and satisfying (W). If λ ≥ 2N
R

,
then the solution uλ of (Q)λ is concave in C.
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Properties of the solutions of (Q)λ

Theorem: Let C be bounded, convex and satisfying (W). If λ ≥ 2N
R

,
then the solution uλ of (Q)λ is concave in C.

Lemma: Let φ be an anisotropy, and let C be a convex body in R
N .

Then ∃ {φǫ}, anisotropies and {Cǫ}, compact convex sets s.t.

(i) {φǫ} → φ uniformly on R
N as ǫ→ 0;

(ii) {Cǫ} → C in the Hausdorff distance as ǫ→ 0;

(iii) φǫ, φ◦ǫ ∈ C∞
+ and Cǫ is of class C∞

+ for any ǫ > 0.
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Properties of the solutions of (Q)λ

Theorem: Let C be bounded, convex and satisfying (W). If λ ≥ 2N
R

,
then the solution uλ of (Q)λ is concave in C.

Lemma: Let φ be an anisotropy, and let C be a convex body in R
N .

Then ∃ {φǫ}, anisotropies and {Cǫ}, compact convex sets s.t.

(i) {φǫ} → φ uniformly on R
N as ǫ→ 0;

(ii) {Cǫ} → C in the Hausdorff distance as ǫ→ 0;

(iii) φǫ, φ◦ǫ ∈ C∞
+ and Cǫ is of class C∞

+ for any ǫ > 0.

Theorem: Let φ ∈ C∞
+ and λ ≥ 2N

R
. Consider

(P )ǫ





u− λ−1div
( T ◦(Du)√

ǫ2 + φ◦(Du)2

)
= 1 in C

u = 0 on ∂C.

Then, there is a unique solution uǫ of (P )ǫ, 0 ≤ uǫ ≤ 1.
Moreover uǫ ≥ α > 0 in a neighborhood of ∂C for some α > 0.
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Convexity of the minima of the constrained anisotropic perimeter.

Proposition: Let C be a bounded convex domain in R
N satisfying the

RWφ-condition. Let uα be the solution of (Q)α. Let α, β ≥ 2N
R

. Then,

(i) If λ > α(1 − ‖uα‖∞), the unique solution of (P )λ is a convex set

(P )λ : min
F⊆C

Pφ(F ) − λ|F |.

(ii) {uα ≥ ‖uα‖∞} = {uβ ≥ ‖uβ‖∞}, and

λ∗ =
Pφ({uα ≥ ‖uα‖∞})

|{uα ≥ ‖uα‖∞}|
= α(1 − ‖uα‖∞) = β(1 − ‖uβ‖∞).
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Convexity of the minima of the constrained anisotropic perimeter.

Proposition: Let C be a bounded convex domain in R
N satisfying the

RWφ-condition. Let uα be the solution of (Q)α. Let α, β ≥ 2N
R

. Then,

(i) If λ > α(1 − ‖uα‖∞), the unique solution of (P )λ is a convex set

(P )λ : min
F⊆C

Pφ(F ) − λ|F |.

(ii) {uα ≥ ‖uα‖∞} = {uβ ≥ ‖uβ‖∞}, and

λ∗ =
Pφ({uα ≥ ‖uα‖∞})

|{uα ≥ ‖uα‖∞}|
= α(1 − ‖uα‖∞) = β(1 − ‖uβ‖∞).

Therefore, K := {uα ≥ ‖uα‖∞} is φ-calibrable.
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Convexity of the minima of the constrained anisotropic perimeter.

Definition: We define the Cheeger φ-constant of C as

(Ch) hφ(C) := min
F⊆C

Pφ(F )

|F |
.
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Convexity of the minima of the constrained anisotropic perimeter.

Definition: We define the Cheeger φ-constant of C as

(Ch) hφ(C) := min
F⊆C

Pφ(F )

|F |
.

Definition: A Cheeger φ-set of C is any set G which minimizes (Ch).
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Convexity of the minima of the constrained anisotropic perimeter.

Definition: We define the Cheeger φ-constant of C as

(Ch) hφ(C) := min
F⊆C

Pφ(F )

|F |
.

Definition: A Cheeger φ-set of C is any set G which minimizes (Ch).

Theorem: Let C be bounded and convex satisfying the ball condition.
Then ∃ K ⊆ C which is the largest Cheeger φ-set of C. K is convex,
calibrable and it minimizes Pφ(F ) − λφ

K |F | ∀ F ⊆ C.

∀ λ 6= λφ
K , λ > 0, ∃ ! Cλ minimizer of (P )λ, it is convex, λ→ Cλ is

increasing and continuous. Moreover, Cλ = ∅ ∀ λ ∈ (0, λφ
K).
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Convexity of the minima of the constrained anisotropic perimeter.

Remark: Assume φ being smooth and strictly convex. Then, if C is
uniformly convex and has C2 boundary, the Cheeger set is unique
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Convexity of the minima of the constrained anisotropic perimeter.

Remark: Assume φ being smooth and strictly convex. Then, if C is
uniformly convex and has C2 boundary, the Cheeger set is unique

Lemma: Let C be bounded and convex. Let µ ≥ 0 and let E be a
solution of

min
F⊆C

Pφ(F ) − µ|F |.

Let V = |E|. Then E is a solution of min
F⊆C,|F |=V

Pφ(F ).
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Convexity of the minima of the constrained anisotropic perimeter.

Remark: Assume φ being smooth and strictly convex. Then, if C is
uniformly convex and has C2 boundary, the Cheeger set is unique

Lemma: Let C be bounded and convex. Let µ ≥ 0 and let E be a
solution of

min
F⊆C

Pφ(F ) − µ|F |.

Let V = |E|. Then E is a solution of min
F⊆C,|F |=V

Pφ(F ).

Theorem: Let C be a bounded convex domain in R
N satisfying the

RWφ-condition for some R > 0. For any V ∈ [|K|, |C|] there is a unique
convex solution of the constrained isoperimetric problem.
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The anisotropic mean curvature

Let (E,U, n) be a φ-regular set. For any p ∈ [1,+∞], we define

H̃div,p
φ (U,RN ) := {N ∈ L∞(U ; RN ) : N ∈ T ◦(∇dE

φ ), divN ∈ Lp(U)}.
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The anisotropic mean curvature

Let (E,U, n) be a φ-regular set. For any p ∈ [1,+∞], we define

H̃div,p
φ (U,RN ) := {N ∈ L∞(U ; RN ) : N ∈ T ◦(∇dE

φ ), divN ∈ Lp(U)}.

Theorem: Let (E,U, n) be φ−regular, 0 < δ0 ≤ R such that
U0 := {|dE

φ | < δ0} ⊆ U , and let (uh, zh) be the solution of

uh − hdiv zh = dE
φ in R

N ,

where zh ∈ ∂φ◦(∇uh) and (zh, Duh) = φ(Duh) in D′(RN ). Then,

∃z̃ ∈ L∞(RN ,RN ) and hj → 0+ s.t. zhj
∗
⇀ z̃, with z̃ ∈ T ◦(∇dE

φ ) in U0,

‖div z̃‖Lq(Uδ) ≤ ‖divZ‖Lq(Uδ) ∀Z ∈ H̃div,∞
φ (Uδ,R

N ),

for all q ∈ [1,∞] and for all 0 < δ < δ0, where Uδ := {|dE
φ | < δ}.

Moreover, if E is convex, then div z̃ ≥ 0 in U0.
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The anisotropic mean curvature

Let (E,U, n) be a φ-regular set. For any p ∈ [1,+∞], we define

H̃div,p
φ (U,RN ) := {N ∈ L∞(U ; RN ) : N ∈ T ◦(∇dE

φ ), divN ∈ Lp(U)}.

Theorem: Let (E,U, n) be φ−regular, 0 < δ0 ≤ R such that
U0 := {|dE

φ | < δ0} ⊆ U , and let (uh, zh) be the solution of

uh − hdiv zh = dE
φ in R

N ,

where zh ∈ ∂φ◦(∇uh) and (zh, Duh) = φ(Duh) in D′(RN ). Then,

∃z̃ ∈ L∞(RN ,RN ) and hj → 0+ s.t. zhj
∗
⇀ z̃, with z̃ ∈ T ◦(∇dE

φ ) in U0,

‖div z̃‖Lq(Uδ) ≤ ‖divZ‖Lq(Uδ) ∀Z ∈ H̃div,∞
φ (Uδ,R

N ),

for all q ∈ [1,∞] and for all 0 < δ < δ0, where Uδ := {|dE
φ | < δ}.

Moreover, if E is convex, then div z̃ ≥ 0 in U0.

‖Hφ
E‖∞ := lim

t→0+
‖div z̃‖L∞(Ut).
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The Anisotropic Mean Curvature

Definition: (E, n) Lipschitz φ-regular, N ∈ Norφ(∂E), ψ ∈ Lip(∂E).

∫

∂E

div τN ψ φ◦(νE) =

∫

∂E

N·n ψ divτn φ
◦(νE)−

∫

∂E

[
(Id−n⊗n)∇τψ

]
·N φ◦(νE)
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The Anisotropic Mean Curvature

Definition: (E, n) Lipschitz φ-regular, N ∈ Norφ(∂E), ψ ∈ Lip(∂E).

∫

∂E

div τN ψ φ◦(νE) =

∫

∂E

N·n ψ divτn φ
◦(νE)−

∫

∂E

[
(Id−n⊗n)∇τψ

]
·N φ◦(νE)

H
div,p
φ (∂E,RN) := {N ∈ Norφ(∂E,RN ) : div τN ∈ Lp(∂E)} p ∈ [1,+∞],
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The Anisotropic Mean Curvature

Definition: (E, n) Lipschitz φ-regular, N ∈ Norφ(∂E), ψ ∈ Lip(∂E).

∫

∂E

div τN ψ φ◦(νE) =

∫

∂E

N·n ψ divτn φ
◦(νE)−

∫

∂E

[
(Id−n⊗n)∇τψ

]
·N φ◦(νE)

H
div,p
φ (∂E,RN) := {N ∈ Norφ(∂E,RN ) : div τN ∈ Lp(∂E)} p ∈ [1,+∞],

Nmin := argmin

∫

∂E

(divτ N)2 φ◦(νE) dHN−1 N ∈ Hdiv,2
φ (∂E,RN ).

A characterization of convex calibrable sets in R
N with respect to an anisotropy. – p. 23/26



The Anisotropic Mean Curvature

Definition: (E, n) Lipschitz φ-regular, N ∈ Norφ(∂E), ψ ∈ Lip(∂E).

∫

∂E

div τN ψ φ◦(νE) =

∫

∂E

N·n ψ divτn φ
◦(νE)−

∫

∂E

[
(Id−n⊗n)∇τψ

]
·N φ◦(νE)

H
div,p
φ (∂E,RN) := {N ∈ Norφ(∂E,RN ) : div τN ∈ Lp(∂E)} p ∈ [1,+∞],

Nmin := argmin

∫

∂E

(divτ N)2 φ◦(νE) dHN−1 N ∈ Hdiv,2
φ (∂E,RN ).

Then divτ Nmin ∈ L∞(∂E) and

‖divτ Nmin‖∞ = min{‖divτ N‖∞ : N ∈ Hdiv,∞
φ (∂E,RN )}.
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The Anisotropic Mean Curvature

Definition: (E, n) Lipschitz φ-regular, N ∈ Norφ(∂E), ψ ∈ Lip(∂E).

∫

∂E

div τN ψ φ◦(νE) =

∫

∂E

N·n ψ divτn φ
◦(νE)−

∫

∂E

[
(Id−n⊗n)∇τψ

]
·N φ◦(νE)

H
div,p
φ (∂E,RN) := {N ∈ Norφ(∂E,RN ) : div τN ∈ Lp(∂E)} p ∈ [1,+∞],

Nmin := argmin

∫

∂E

(divτ N)2 φ◦(νE) dHN−1 N ∈ Hdiv,2
φ (∂E,RN ).

Then divτ Nmin ∈ L∞(∂E) and

‖divτ Nmin‖∞ = min{‖divτ N‖∞ : N ∈ Hdiv,∞
φ (∂E,RN )}.

Proposition: If φ is crystalline (resp. φ ∈ C1,1
+ ) and let E ⊂ R

N be a
Lipschitz φ-regular polyhedron (resp. E is Lipschitz φ-regular ). Then

(N − 1)‖Hφ
E‖∞ = ‖divτNmin‖L∞(∂E) .
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Characterization of convex φ-calibrable sets

Theorem: Let C ⊂ R
N be bounded, convex and satisfying (W). Let

Λ := (N − 1)‖Hφ
C‖∞. Let Cµ be the solution of (P )µ, µ > 0. Then

Cµ = C iff µ ≥ max(λφ
C ,Λ).
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Characterization of convex φ-calibrable sets

Theorem: Let C ⊂ R
N be bounded, convex and satisfying (W). Let

Λ := (N − 1)‖Hφ
C‖∞. Let Cµ be the solution of (P )µ, µ > 0. Then

Cµ = C iff µ ≥ max(λφ
C ,Λ).

Corollary: Let C ⊆ R
N be bounded convex and satisfying (W). Then

E = C is a solution of

min
F⊆C

Pφ(F ) − λφ
C |F |.

iff (N − 1)‖Hφ
C‖∞ ≤ λφ

C .
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Evolution of a convex set by the anisotropic total variation flow

(ATV F )
∂u

∂t
= div ∂φ◦(Du) in QT := ]0, T [×R

N ,
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Evolution of a convex set by the anisotropic total variation flow

(ATV F )
∂u

∂t
= div ∂φ◦(Du) in QT := ]0, T [×R

N ,

Definition: u ∈ C([0, T ];L2(RN )) is a strong solution of (ATVF) if
u ∈W 1,2

loc (0, T ;L2(RN )) ∩ L1
w(0, T ;BV (RN )) and

∃ z ∈ L∞
(
]0, T [×R

N ; RN
)

with φ(z(x)) ≤ 1 a.e. s.t.

ut = div z in D′
(
]0, T [×R

N
)
,

∫

RN

(z(t), Du(t)) =

∫

RN

φ◦(Du(t)) t > 0 a.e..
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Evolution of a convex set by the anisotropic total variation flow

(ATV F )
∂u

∂t
= div ∂φ◦(Du) in QT := ]0, T [×R

N ,

Definition: u ∈ C([0, T ];L2(RN )) is a strong solution of (ATVF) if
u ∈W 1,2

loc (0, T ;L2(RN )) ∩ L1
w(0, T ;BV (RN )) and

∃ z ∈ L∞
(
]0, T [×R

N ; RN
)

with φ(z(x)) ≤ 1 a.e. s.t.

ut = div z in D′
(
]0, T [×R

N
)
,

∫

RN

(z(t), Du(t)) =

∫

RN

φ◦(Du(t)) t > 0 a.e..

Theorem: Let u0 ∈ L2(RN ). Then there exists a unique strong solution
u of (ATVF) in [0, T ] for every T > 0. If u and v are strong solutions of
(ATVF) corresponding to the initial conditions u0, v0 ∈ L2(RN ), then

‖u(t) − v(t)‖2 ≤ ‖u0 − v0‖2 for any t ≥ 0.
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Evolution of a convex set by the anisotropic total variation flow

Let Ω be of finite perimeter. We say that the set Ω decreases at
constant speed λ if

u(t, x) := (1 − λt)
+ χ

Ω(x)

is the strong solution of (ATVF) with initial condition u0 = χ
Ω.
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Evolution of a convex set by the anisotropic total variation flow

Let Ω be of finite perimeter. We say that the set Ω decreases at
constant speed λ if

u(t, x) := (1 − λt)
+ χ

Ω(x)

is the strong solution of (ATVF) with initial condition u0 = χ
Ω.

Theorem: Let C be bounded, convex and satisfying (W). TFAE:

(i) C decreases at constant speed;

(ii) C is φ-calibrable.
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Evolution of a convex set by the anisotropic total variation flow

Let Ω be of finite perimeter. We say that the set Ω decreases at
constant speed λ if

u(t, x) := (1 − λt)
+ χ

Ω(x)

is the strong solution of (ATVF) with initial condition u0 = χ
Ω.

Theorem: Let C be bounded, convex and satisfying (W). TFAE:

(i) C decreases at constant speed;

(ii) C is φ-calibrable.

For each λ > 0 let Cλ be the solution of (P )λ. Consider

HC(x) :=

{
− inf{λ : x ∈ Cλ} on x ∈ C

0 on R
N \ C .

A characterization of convex calibrable sets in R
N with respect to an anisotropy. – p. 26/26



Evolution of a convex set by the anisotropic total variation flow

Let Ω be of finite perimeter. We say that the set Ω decreases at
constant speed λ if

u(t, x) := (1 − λt)
+ χ

Ω(x)

is the strong solution of (ATVF) with initial condition u0 = χ
Ω.

Theorem: Let C be bounded, convex and satisfying (W). TFAE:

(i) C decreases at constant speed;

(ii) C is φ-calibrable.

For each λ > 0 let Cλ be the solution of (P )λ. Consider

HC(x) :=

{
− inf{λ : x ∈ Cλ} on x ∈ C

0 on R
N \ C .

Theorem: Let C be bounded convex and satisfying (W). Then,
u(t, x) = (1 +HC(x)t)+χC(x) is the solution of (ATVF) corresponding
to the initial condition u0 = χ

C .
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