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Introduction

We deal with the asymptotic behaviour of the solutions of the
parabolic p-Laplacian equation in an exterior domain. More
precisely, let G ⊂ RN be a bounded open set with smooth
boundary (of class C2,α) and let Ω = RN \G. We think of G as
the “holes”. We assume moreover that Ω is connected, which
implies no essential loss of generality. We consider the following
problem: 

ut = ∆pu, (x, t) ∈ Ω× (0,∞),
u(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞),
u(x, 0) = u0(x), x ∈ Ω,

(1)

where p > 2. On the initial data we make the assumptions that
u0 ∈ L1(Ω) and it is nonnegative in Ω. For most of this work we
also assume that u0 has compact support in Ω.
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We perform two different steps in the analysis: first, the outer
analysis gives the asymptotic rates and profiles of the solutions in
the far field near infinity. Afterwards, one has to perform the inner
analysis of the problem, which means studying what happens in
the region near the holes (more precisely in bounded subdomains)
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Case of large dimensions N > p: Outer analysis

Given by the profile of a particular Barenblatt solution of the form

BC(x, t) = t−αFc(η), η = xt−β,

where

FC(y) = (C−k|y|
p

p−1 )
p−1
p−2

+ , α =
N

N(p− 2) + p
, β =

1
N(p− 2) + p

with a precise constant C.
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Case of large dimensions N > p. Inner analysis

We prove that v(x, t) converges to a stationary state, which is
related to the unique solution Hp of the following exterior Dirichlet
problem: 

∆pH = 0 in Ω,
H = 0 on ∂Ω,
H → 1 uniformly as |x| → ∞,

by multiplying it by a constant C > 0. To find this constant we
use the technique of matched asymptotics
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Critical case N = p: Outer analysis

Logarithmic corrections appear. We get a profile of the form

U(x, t) = t−α

(
C(t)− k

(
|x|
tβ

) p
p−1

) p−1
p−2

+

,

where

α =
1

p− 1
, β =

1
p(p− 1)

,

and the dependence of the ”free parameter” and of the mass in
time are given by

C(t) = C0(log t)
− p−2

(p−1)2 , M(t) =
C

log(t)
.

The solution decays in time like C1(t log t)−1/(p−1) and its support
expands like |x| ∼ C2t

β(log t)−(p−2)/p(p−1).
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Critical case N = p: Inner analysis

Uses again the general idea of matched asymptotics and the profile
is a quasi-stationary state of the form

C
(p−1)/(p−2)
0 Hp(x)

β log t
,

where C0 and β have the same significance as before and Hp is the
solution of 

∆pH = 0 in Ω,
H = 0 on ∂Ω,
lim
|x|→∞

Hp(x)/(log |x|) = 1 uniformly.
(2)
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Case of low dimension N < p: Outer analysis

Given by a special self-similar solution introduced in [4], which we
call dipole solution. Properties of the dipole solution: it has
general form

D(x, t) = t−α2F (xt−β2),

where the self-similarity exponents satisfy the relation:

(p− 2)α2 + pβ2 = 1, α2 > 0, β2 > 0,

Scaling: all the members of the family given by the formula:

Fλ(η) = λpF (λ2−pη), ∀λ > 0,

Behaviour near the origin:

F (η) ∼ η(p−N)/(p−1), as η ∼ 0,
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The most interesting property is that these dipole solutions are
anomalous, i.e. their self-similarity exponents α2 and β2 are not
the result of some algebraic formula in terms of m and N , even in
dimension N = 1, as it results from a paper of Bernis, Hulshof and
Vázquez, 1993.
Main outer analysis result for N < p:

Theorem

Let 1 ≤ N < p. Then there exists a constant λ > 0, depending on
N , p and the initial data u0, such that

lim
t→∞

t−α|u(x, t)−Dλ(x, t)| = 0,

with uniform convergence in sets of the form {x ∈ Ω : |x| ≥ δtβ},
δ > 0.

Very nice geometric idea of proof, using the technique of optimal
barriers, that we will explain at its place.
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The low dimension case N < p: Inner analysis

Uses again the general idea of matched asymptotics. Consider

Cλ = lim
η→0

Fλ(η)
η(p−N)/(p−1)

The main result says:

Theorem

For any ε > 0, there exists δ = δ(ε) > 0 and a sufficiently large
time tin = tin(ε, δ) such that∣∣∣tαu(x, t)− Cλ0Hp(x)

tβ2(p−N)/(p−1)

∣∣∣ ≤ ε,
for all t ≥ tin and x ∈ Ω with |x| ≤ δtβ.

where Hp has the same significance as before.

Razvan Gabriel Iagar Asymptotic p-Laplace



logo

Proof of outer analysis for N > p

General ideas: comparison with sub- and supersolutions and
scaling. Follows the ideas of Brandle, Quirós and Vázquez from
[2]. We prove:

Theorem

For N > p, if u is a weak solution of the problem (1), there exists
a constant C0 > 0 such that

lim
t→∞

tα|u(x, t)−BC0(x, t)| = 0

uniformly on sets of the form {|x| ≥ δtβ}, where δ > 0 is
sufficiently small.
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Supersolutions

Consider the Barenblatt functions BC already defined, with a
certain delay in time

UC,τ (x, t) = BC(x, t+ τ), τ > 0.
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Subsolutions

”Combine” the Barenblatt solution with a subsolution which
vanishes near the holes. Set

Uτ (x, t) = C(t)(t+ τ)−α
(

1−
(
R

|x|

)N−p
p−1

− a
(|x| − r)4

+

(t+ τ)l

)
+

,

BC0,τ (x, t) = (t+ τ)−α
(
C0 − k

(
|x|

(t+ τ)β

) p
p−1

) p−1
p−2

+

and mix them to get the following:

VC0,τ (x, t) =


0, if |x| < R or |x| > R2(t),
Uτ (x, t) if R ≤ |x| ≤ r∗(t),
BC0,τ if r∗(t) ≤ |x| ≤ R2(t).

Here r∗(t) is the spatial intersection point at time t and R2(t) is
the radius of the free boundary of BC0 . Free parameters: R, r,
a, C0 and l, which may be chosen such that VC0,τ (x, t) ≤ u(x, t)
for t > t0 sufficiently large.
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Scaling and identification

From a solution u, we define the family of solutions

uλ(x, t) = λαu(λβx, λt).

By compactness estimates, there exists a limit point U of uλ.
From the comparison and the fact that the singularity at x = 0 is
removable, we find that U is sandwiched between two Barenblatt
solutions. By the uniqueness theorem of Kamin and Vázquez,
see [2], U equals BC0(x, t) for some C0 > 0. Last step: mass
analysis-we prove that the limit point is unique.
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Inner analysis for N > p

Using the notations introduced in Section 1, the inner behaviour of
u is the following:

Theorem

For any ε > 0, there exists δ = δ(ε) > 0 and a sufficiently large
time tin = tin(ε, δ) such that

|tαu(x, t)− C
p−1
p−2

0 Hp(x)| ≤ ε,

for all t ≥ tin and for all x ∈ Ω with |x| ≤ δtβ.
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Main ideas of proof

We use an optimal elliptic apriori bound and the method of
matched asymptotics. The apriori bound has also interest for
itself.
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An elliptic apriori bound.

Proposition

Let Ω ⊂ RN be a bounded domain, f ∈ C(Ω) ∩ L∞(Ω) and
u ∈ C1(Ω) ∩ C(Ω) be the solution of the Dirichlet problem:{

∆pu = f in Ω,
u = 0 on ∂Ω.

Then there exists a constant C > 0, independent on the diameter
d of Ω, such that

|u| ≤ Cd
p

p−1 (sup
Ω
|f |)

1
p−1 in Ω.

This proposition is optimal in the sense that the power of d is the
lower possible and improves a result from the classical book of
Gilbarg and Trudinger.
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Ideas of proof of the elliptic apriori bound

Rescale in order to pass to a domain with diameter one, by setting

û(y) = u(dy), y ∈ Ω1,

where Ω1 = 1
dΩ. Then we use the following comparison principle

of Abdellaoui and Peral (see [1]):

Lemma

Let g be a nonnegative continuous function such that g(u)/up−1 is
a decreasing function. If u, v ∈ C1(Ω) ∩ C(Ω) are such that{

−∆pv ≥ g(v), v > 0 in Ω, v ≥ 0 on ∂Ω,
−∆pu ≤ g(u), u ≥ 0 in Ω, u = 0 on ∂Ω,

then u ≤ v in Ω,

and we apply it for û and the function v defined by

v(x) = (eK − eKx1)(sup
Ω1

|f̂ |)
1

p−1 .
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A consequence

Proposition

If u ∈ C1(Ω) ∩ C(Ω) satisfies{
|∆pu| ≤ ε in Ω,
|u| ≤ ε on ∂Ω,

then |u| ≤ Cdp/(p−1)ε1/(p−1) + ε in Ω, where d is the diameter of
Ω and C > 0 is a constant independent on the diameter of Ω.
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Another rescaling

We start with a different scaling. We set v := tαu, hence v solves:

∆pv = t−pβ(tvt − αv),

and the asymptotic limit of v is (heuristically) expected to be a
solution of the following problem:{

∆pv = 0 in Ω,
v = 0 on ∂Ω,

hence it has the general form CHp, with C > 0.
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Matched asymptotics

Is the technique that allows for the identification of the precise
constant C. We compare the outer result

lim
t→∞
|tαu(x, t)− tαBC0(x, t)| = 0, ∀x ∈ Ω

with the expected inner behaviour

lim
t→∞
|tαu(x, t)− CHp(x)| = 0 ∀x ∈ Ω

and derive that C = C
(p−1)/(p−2)
0 .
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Rigourous proof-using Steklov averages

We introduce the Steklov averages

WT (x, τ) =
1
T

τ+T∫
τ

w(x, s)ds.

and we prove that

Proposition

For any ε > 0 and T > 0, there exists a constant δ = δ(ε, T ) > 0
and a large time τin = τin(ε, δ, T ) such that for any τ ≥ τin we
have

|WT (x, τ)− C
p−1
p−2

0 Hp(x)| ≤ ε,

for all x with |x| ≤ δeβτ .

The proof is technical and based on estimates on WT and the
elliptic apriori bound. Passing from time averages to the function
itself and finishing the proof of Theorem 4 is very simple.
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Outer analysis for N = p. The correct profile.

Consider the modified Barenblatt profile

UT (x, t;C) = [(t+ T ) log(t+ T )]−
1

p−1

×
(
C − k

( |x|
(t+ T )β

) p
p−1 log(t+ T )

p−2

(p−1)2

) p−1
p−2

+

where T > 0 and C > 0 are free parameters.
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Outer analysis for N = p. Main result

Theorem

Let u(x, t) be the unique weak solution of (1) with initial data
u0 ∈ L1(Ω), nonnegative and compactly supported, in dimension
N = p. Then there exists a constant C0 depending on u0 and a
delay in time T such that

lim
t→∞

(t log t)
1

p−1 |u(t)− UT (·, t;C)| = 0,

with uniform convergence in any set of the form {|x| ≥ δλ(t)},
where δ > 0 is sufficiently small and

λ(t) = tβ(log t)−
p−2

p(p−1) , β =
1

p(p− 1)
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Formal derivation of the logarithmic correction

We perform a formal calculation based on an idea of Gilding and
Gonzerkiewicz from [1]. The idea is to evaluate the weighted
integral in radial variables:

Z : [1,∞)× (0,∞)→ R, Z(r, t) =

∞∫
r

k(x, r)BC(x, t)dx

where the kernel k is given by the fundamental solution:

k(x, r) =


xp−1rp−N (xN−p − rN−p)/(N − p), if N > p,

x log(x/r), if N = p.

as r →∞.
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Outer analysis for N = p. Main ideas of proof

Comparison with sub- and supersolutions, a time-adapted
rescaling and the S-theorem of Galaktionov and Vázquez (see
[2]) about the ω-limits of dynamical systems.
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Subsolutions

We construct subsolutions by ”combining” two different functions.
We consider

HT (x, t) = A(t+ T )((T + t) log(T + t))−
1

p−1

×
(

log(|x| − r0)− a(|x| − r1)+

(T + t)l

)
+

and

UT (x, t;C) = [(t+ T ) log(t+ T )]−
1

p−1

×
(
C − k

( |x|
(t+ T )β

) p
p−1 log(t+ T )

p−2

(p−1)2

) p−1
p−2

+

,

We define the subsolution by choosing the free parameters as in
N > p:

VT (x, t;C) =


0, if |x| < 1 + r0 or |x| > R2(t),
HT (x, t), if 1 + r0 ≤ |x| ≤ r∗(t),
UT (x, t;C), if r∗(t) ≤ |x| ≤ R2(t).
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Continuous rescaling

The main conceptual step of the proof. We rescale the solution u
in such manner that the zoom factor change continuously with
time. We set:

η = x(t+ T )−β log(t+ T )
p−2

p(p−1) , τ = log(t+ T ),

v(η, τ) = ((t+ T ) log(t+ T ))
1

p−1u(x, t).

and obtain the perturbed equation satisfied by v:

vτ = ∆pv + βη · ∇v + αv − p− 2
p(p− 1)τ

η · ∇v +
1

p− 1
τ
− p−2

p−1 v,

We associate its autonomous counterpart,

vτ = ∆pv + βη · ∇v + αv, (3)

which is called the limit equation. Remark that the rescaled
profiles

FC(η) =
(
C − k|η|

p
p−1
) p−1

p−2 ,

are stationary solutions of the limit equation.
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Construction of a supersolution

Proposition

For any C > 0 sufficiently large, there exists a choice of the free
parameters γ, d, b and q < 0 such that the following profile:

UT (x, t;C) = ((T + t) log(T + t))−
1

p−1

(
C − k

( |x|
(T + t)β

× log(t+ T )
p−2

p(p−1) +
d

log(t+ T )γ
) p

p−1

(
1 +

b

log(t+ T )γ

) pq
p−1 ) p−1

p−2

+

is a supersolution for the p-Laplacian equation in Ω.

Based on this construction and standard comparison arguments,
we have that for any solution u, there exist C and T such that
u(x, t) ≤ UT (x, t;C)
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Identify ω-limits of the orbits (v(τ))τ∈R

We use the S-theorem from [2] and obtain that the ω-limits of
the orbits (v(τ))τ∈R as τ →∞ are stationary solutions of the
limit equation. On the other hand, we prove:

Lemma

The profiles FC can be characterized as the unique nonnegative
stationary solutions of the equation (3) such that f ∈ L1(RN ) and
f ∈W 1,p(RN ),

hence all the limit points are among the profiles UT .
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End of the proof.

By regularity results (uniform Hölder continuity out of the hole)
and the Arzela-Ascoli theorem, the convergence of v(·, τ) to the
ω-limit is uniform. Then we perform a mass analysis in order to
prove that the ω-limit contain only one element. The idea of this
analysis is that the mass M(t) of u can not oscillate after a time.
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Inner analysis for N = p-main result

Theorem

For any ε > 0, there exists δ = δ(ε) > 0 and a time tin = tin(ε, δ)
sufficiently large, such that

∣∣∣(t log t)
1

p−1u(x, t)− C
(p−1)/(p−2)
0 Hp(x)

β log t

∣∣∣ ≤ ε,
for all t ≥ tin and for all x ∈ Ω with |x| ≤ δtβ(log t)−(p−2)/p(p−1).
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Matched asymptotics

As in the first case, we rescale the solution u and define

w̄(x, t) = t1/(p−1)(log t)p/(p−1)u(x, t),

which satisfies the equation

∆pw̄ = t
− 1

p−1 (log t)
p(p−2)

p−1
(
tw̄t −

p+ log t
(p− 1) log t

w̄
)
.

By formal considerations we expect w̄ to tend to CHp, where Hp

is the solution of (2). We use the technique of matched
asymptotics to find the constant

C =
1
β
C

p−1
p−2

0 .

The rigourous proof uses again the same strategy as in the other
case: use the elliptic estimate for the Steklov averages of v.
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Outer analysis for N < p: ideas of proof

We prove the theorem using a mainly geometric method, known in
literature as the optimal barrier technique. The general idea is,
after finding appropriate sub- and supersolution, to construct the
optimal barrier from above and proof, by maximum and
comparison principles, that the asymptotic limit is exactly this
optimal barrier. In our case, as supersolution we take a big dipole.
As subsolution, we find again a combination between a small
dipole and esentially the fundamental solution in dimension N , in
the same way as in the other cases.
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The optimal barrier

Consider the rescaling

uγ(x, t) = γα2u(γβ2x, γt).

which preserves the property of solution. Consider then ω(u), the
ω-limit of the family uγ , which exists, due to the classical
compactness estimates, [1]. Consider now the optimal scaling
parameter:

λ∗ = inf{λ > 0 : ∃U ∈ ω(u), U(x, t) ≤ Dλ(x, t) in Q = RN×(0,∞)}

The optimal barrier will be Dλ∗ . It remains to show that this is the
unique element of ω(u).
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Technical facts

One can prove the following technical result transferring
information from U to the actual solution u:

Lemma

Let U ∈ ω(u) be such that U(x, t) ≤ Dλ(x, t+ σ) in
Q = RN × (0,∞), for some σ > 0. Then, for any ε > 0, there
exists τ = τ(σ, ε) > 0 such that

u(x, t) ≤ Dλ+ε(x, t+ τ), ∀t ≥ t1 > 0, x ∈ Ω,

with t1 sufficiently large.

From this, it follows easily that

Lemma

Let U ∈ ω(u). Then U(x, t) ≤ Dλ∗(x, t), for all (x, t) ∈ Q.

which is the first crucial step of the proof.
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Main argument: analysis of contact points

We argue by contradiction and suppose that U ∈ ω(u) and
U 6= Dλ∗ . Then U ≤ Dλ∗ and there could be three types of
isolated contact points between U and Dλ∗ . These are:
(a) Contact at a point P = (x, t) which is not critical for Dλ∗ ;
(b) Contact on the free boundary of the two functions;
(c) Contact in the spatial maximum point (hot spot) of Dλ∗ .
The contact of type (a) is easily eliminated due to the SMP.
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Contact of type (c)

To eliminate the possibility of such a contact, we use a fine
Harnack inequality for degenerate parabolic PDEs due to F.
Chiarenza and R. Serapioni. This holds for equations of the form

ut = div (a(x, t)∇u).

having a boundedness property:

ω(x, t)|ξ|2 ≤
N∑

i,j=1

ai,j(x, t)ξiξj ≤ Γω(x, t)|ξ|2,

where the weight ω(x, t) satisfies some conditions of type Ap
weights of Muckenhoupt in space and time( 1
|B|

∫
B

ω(x, t) dx
)( 1
|B|

∫
B

ω(x, t)−n/2dx
)2/n

≤ c0, ∀t > 0,

( 1
|I|

∫
I

ω(x, t) dt
)( 1
|I|

∫
I

ω(x, t)−1dt
)
≤ c0, ∀x.
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Contact of type (c)

Consider the function w = U −Dλ∗ , which is a solution of the
linearized equation

wt = div (a(x, t)∇w),

where the matrix a(x, t) is given by

aij(x, t) =

1∫
0

|∇v(s)|p−4((p− 2)∂iv(s)∂jv(s) + |∇v(s)|2IN )ds

in a parabolic neighbourhood C centered at (x0, t0), where we
denote

v(s;x, t) = ∇Dλ∗ + s(∇U −∇Dλ∗)

It is easy to prove that the degeneracy weight is:

ω(x, t) =

1∫
0

|∇v(s)|p−2ds, and Γ = p− 1.
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Contact of type (c)

Using a worse case strategy, we show that

1∫
0

|∇Dλ∗ + s(∇U −∇Dλ∗)|p−2ds = |∇Dλ∗ |p−2

1∫
0

|a+ sb|p−2ds,

where

a =
∇Dλ∗

|∇Dλ∗ |
, b =

∇U −∇Dλ∗

|∇Dλ∗ |
,

and it follows that the maximal possible degeneracy is given by the
solution Dλ∗ , hence the Muckenhoupt estimates are true and the
Harnack inequality applies. Since the cylinders where it holds
depend on the point, we can only conclude that on a dense set of
times there is no contact of type (c).
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Contact of type (c): the final barrier argument

Take t0 > 0 where we do not have contact of type (c). There
exists an annulus r0

1 < |x| < r0
2, containing the maximum points of

Dλ∗ at t0 (i.e. with |x| = |x0|), such that in this annulus we have
a uniformly strict inequality U(x, t0) < Dλ∗(x, t0). Consider
t ∈ [t0, T ], with T <∞ arbitrary and denote by r(t) = r0 (t/t0)β

the absolute value of the spatial maximum points of Dλ∗(·, t). Let
0 < r1(t) < r(t) < r2(t) be such that r1(t0) = r0

1, r2(t0) = r0
2 and

ri(t) continuous for t0 ≤ t ≤ T . Since there is no contact of type
(a), for |x| = r1(t) or |x| = r2(t), we have U(x, t) < Dλ∗(x, t)
uniformly. Since the application ε 7→ Dλ∗−ε is uniformly
continuous, we find ε > 0 (depending on T ) sufficiently small such
that

Dλ∗−ε(x, t) > U(x, t),

for |x| = ri(t), i = 1, 2, t0 < t ≤ T , and for t = t0, r0
1 < |x| < r0

2,
i.e., in a whole parabolic boundary of a domain in RN+1. Hence,
this inequality extends to the interior at any time t ∈ (t0, T ).
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Reaching a contradiction

We eliminate a possible contact on the free boundary by giving a
small delay to the optimal barrier:

Lemma

There exists τ > 0 such that Dλ∗(x, t+ τ) ≥ U(x, t), for all
x ∈ RN and t ≥ t0 > 0. In fact, we have either
Dλ∗(x, t+ τ) ≡ U(x, t), or the inequality is strict at points
different from the origin.

If they are not equal, we reach rapidly a contradiction with the
definition of Dλ∗ :

Lemma

If no contact of types (a), (b), (c) occurs, then there exists ε > 0
and σ > 0 such that U(x, t) ≤ Dλ∗−ε(x, t+ σ), for all t > t0
sufficiently large.

The last step is to transfer this information into u.
Razvan Gabriel Iagar Asymptotic p-Laplace
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Global approximation result for N > p

Theorem

Let u be the solution of problem (1) and let

U(x, t) = (BC0(x, t)− t−αC
p−1
p−2

0 (1−Hp(x)))+,

where C0 is the constant that appears in the previous sections.
Then,

lim
t→∞

tα|u(x, t)− U(x, t)| = 0 (4)

uniformly for x ∈ Ω. Moreover, we have:

lim
t→∞
‖u(x, t)− U(x, t)‖L1(Ω) = 0 (5)

Both (4) and (5) can be extended to the whole class of solutions
with initial data u0 ∈ L1(Ω).
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Global approximation result for N = p

Theorem

Let u be the unique solution of the problem (1) in dimension
N = p, Ψ(x, t) = Hp(x)/β log t and

V (x, t) = (UT (x, t;C0)− (t log t)−
1

p−1C
p−1
p−2

0 (1−Ψ(x, t)))+,

where C0 and T are the constants that appear in the outer
analysis. Then

lim
t→∞

(t log t)
1

p−1 |u(x, t)− V (x, t)| = 0, (6)

uniformly for x ∈ Ω. Moreover, we have:

lim
t→∞

log t‖u(x, t)− V (x, t)‖L1(Ω) = 0. (7)

Both (6) and (7) hold for solutions with initial data u0 ∈ L1(Ω).
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Global formulation for N < p

Theorem

Let u be the unique solution of the problem (1) in dimension
N < p and

V (x, t) = Dλ0(x, t) + t−α
Cλ0Ψ(x, t)
tβ(p−N)/(p−1)

,

where λ0 and Cλ0 are as in Section 1. Then

lim
t→∞

tα|u(x, t)− V (x, t)| = 0, (8)

uniformly for x ∈ Ω. Moreover, we have

lim
t→∞

t(k2−N)β‖u(x, t)− V (x, t)‖L1(Ω) = 0, (9)

where, as usual, k2 = α/β. Both (8) and (9) can be extended to
the whole class of solutions with initial data u0 ∈ L1(Ω).
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Ideas of proofs

The qualitative result is immediate from the already proved outer
and inner convergence results. In order to pass to the case of L1

data, we need to use the L1 − L∞ smoothing effect (see [1],
chapter 11), which transforms small L1 norms into small L∞

norms, together with a standard density argument. We also prove
the convergence of supports and interfaces to the
correspondent ones of the outer profiles. For N < p, the proof of
the convergence of supports and interfaces to those of Dλ∗

requires an argument of comparison with well chosen travelling
waves, unnecessary in the other cases.

Razvan Gabriel Iagar Asymptotic p-Laplace



logo

References

B. Abdellaoui, I. Peral, Existence and nonexistence results
for quasilinear elliptic equations involving the p-Laplacian with
a critical potential, Ann. Mat. Pura Appl., 182 (2003), no. 3,
247-270.

C. Brandle, F. Quirós, J. L. Vázquez, Asymptotic
behaviour of the porous media equation in domains with holes,
Interfaces and Free Boundaries, 9 (2007), 211-233.

E. DiBenedetto, Degenerate Parabolic Equation, Springer,
New York, 1993.

V. Galaktionov, J. L. Vázquez, “A Stability Technique for
Evolution Partial Differential Equations. A Dynamical System
Approach”, Progress in Nonlinear Differential Equations and
Their Applications, vol. 56, Birkhauser, 2004.

Razvan Gabriel Iagar Asymptotic p-Laplace



logo

References

B. Gilding, J. Gonzerkiewicz, Large time behaviour of
solutions of the exterior-domain Cauchy-Dirichlet problem for
the porous media equation with homogeneous boundary data,
Preprint, 2005.

S. Kamin, J. L. Vázquez, Fundamental Solutions and
Asymptotic Behaviour for the p-Laplacian Equation, Revista
Matem. Iberoamericana, 4 (1988), no. 2, 339-354.

R. Iagar, J. L. Vázquez, Asymptotic Analysis of the
p-Laplacian Flow in an Exterior Domain, submitted, 2007.

R. Iagar, A. Sánchez, J. L. Vázquez, Radial equivalence for
the two basic nonlinear degenerate diffusion equations,
submitted, 2007.

Razvan Gabriel Iagar Asymptotic p-Laplace



logo

References

R. Iagar, J. L. Vázquez, Asymptotic behaviour for the
p-Laplacian flow in an exterior domain: the low dimensions
case, in preparation, 2007.

F. Quirós, J. L. Vázquez, Asymptotic behaviour of the
porous medium equation in an exterior domain, Ann. Scuola
Norm. Superiore Pisa Cl. Scienze, 28 (1999), no. 4, 183-227.

J. L. Vázquez, “Smoothing and Decay Estimates for
Nonlinear Diffusion Equations. Equations of Porous Medium
Type”, Oxford University Press, Oxford, 2006.

Razvan Gabriel Iagar Asymptotic p-Laplace


