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• What is Quenching? We say that the solution of a non-linear

PDE quenches if

‖ut(·, T )‖∞ = ∞ while ‖u(·, T )‖∞ <∞.

Model problem [Kawarada’75]






vt = vxx +
1

1 − v
, −L < x < L, 0 < t < T,

v(−L, t) = v(L, t) = 0, 0 < t < T,

v(x, 0) = v0(x), −L < x < L.

Quenching happens when v reaches the level one and vt → ∞.

Moreover, if v0 is symmetric and decreasing for x > 0, then v

reaches the level one only at x = 0. We denote that single-point

quenching.

Other quenching problems:[Acker-Walter’78], [Levine’80–93], [Chan’96], [Galaktionov-Gerbi-

Vázquez’99], [Fila-Guo’02].
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• Questions

(1) What? The solution develop a singularity?

(2) When? The singularity occurs at finite time T or not?

(3) Where? We can determinate the point where the singularity

happens?

Q(u) = {x : ∃ (xn, tn) → (x, T ) such that u(xn, tn) → 0 }.

is the quenching set.

(4) How? Asymptotic behaviour.

• Quenching rate.

• Asymptotic profile.

(5) After singularity. If we consider problem the problem as limit

of approximated problems defined for every 0 < t < ∞, we

can study the possible continuation of the solution beyond

t = T .

(6) Numerical methods. We can find a numerical method which

reproduces the same properties of the continuous solution?
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Problem






{
ut = uxx,

vt = vxx,
in (0, 1) × (0, T ),

{
ux(0, t) = v−p(0, t), ux(1, t) = 0,

vx(0, t) = u−q(0, t), vx(1, t) = 0,
in (0, T ),

{
u(x, 0) = u0(x),

v(x, 0) = v0(x),
in (0, 1),

The initial data are C2[0, 1] functions, increasing, concave and they

satisfy the boundary condition.
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• A Escalar Quenching Problem





ut = uxx , 0 < x < 1, 0 < t < T,

ux(0, t) = u−p(0, t), 0 < t < T,

ux(1, t) = 0, 0 < t < T,

u(x, 0) = u0(x), 0 < x < 1,

where p > 0.

- This problem has quenching in finite time, T , for all initial data.

- The quenching set is always de origin, Q(u) = {0}.

- The minimum of the solution verifies

u(0, t) ∼ (T − t)
1

2(p+1)

- the behavior near the quenching time is given by a self-similar

solution.

- For t > T we can define the continuation of the solution as a

solution of





ut = uxx , 0 < x < 1, t > T,

u(0, t) = 0, t > T,

ux(1, t) = 0, t > T,

u(x, T ) = u(x, T ), 0 < x < 1,

[Fila-Levine’93],[Christov-Deng’01],[Fila-Guo’02]
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What?

• Quenching happens in finite time for every initial data.

Proof.

- u ≤M = ‖u0‖∞ and v ≤ N = ‖v0‖∞.

- By Integration in space
∫ 1

0

u(s, t) ds ≤M − V −p(0)t,

∫ 1

0

v(s, t) ds ≤ N − U−q(0)t.

�
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What?

• Quenching happens in finite time for every initial data.

Proof.

- u ≤M = ‖u0‖∞ and v ≤ N = ‖v0‖∞.

- By Integration in space
∫ 1

0

u(s, t) ds ≤M − V −p(0)t,

∫ 1

0

v(s, t) ds ≤ N − U−q(0)t

�

When?

• T ≤ min{MV p(0) , NU q(0)}
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What?

• Quenching happens in finite time for every initial data.

Proof.

- u ≤M = ‖u0‖∞ and v ≤ N = ‖v0‖∞.

- By Integration in space
∫ 1

0

u(s, t) ds ≤M − V −p(0)t,

∫ 1

0

v(s, t) ds ≤ N − U−q(0)t

�

When?

• T ≤ min{MV p(0) , NU q(0)}

Where?

• The only quenching point is the origin.

Proof. Both variables are supersolution of the following problem






wt = wxx in (0, 1) × (0, T )

w(0, t) = w(1, t) = 0 in (0, T )

w(x, 0) = w0(x) ≤ min{u0, v0} in (0, 1)

�
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Preliminaries

• u(·, t) is an increasing function.

• u(x, ·) is a decreasing function.

• There exists a positive constant such that

U ′(t) ≤ −CU−q(t), V ′(t) ≤ −CV −p(t).

* Therefore,

U(t) ≥ C(T − t)1/(q+1) V (t) ≥ C(T − t)1/(p+1)

• There exists a positive constant such that

U ′(t) ≥ −CV −p−1(t)U−q(t), V ′(t) ≥ −CU−q−1(t)V −p(t).

If u quenches while v remain positive then

U ′(t) ∼ −U−q(t),

U(t) ∼ (T − t)1/(q+1).
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Simultaneous vs Non-simultaneous

• If q < 1 then for every v0 there exists u0 such that u quenches

while v does not.

Proof. From the representation formula

1

2
V (t) =

∫ 1

0

Γ(y, t)v0(y) dy +

∫ t

0

v(1, s)
∂Γ

∂x
(−1, t− s) ds

−

∫ t

0

U−q(s)Γ(x, t− s) ds

where Γ(x, t) = (4πt)−1/2e−x
2/4t

- by apriori lower estimate for U , we obtain

V (t) ≥ C1 − C2

∫ T

0

(T − s)−
q

q+1−
1
2 = C1 − C2T

1−q
2(1+q)

- From the upper estimate for T , we can choose U(0) small to

conclude that V (t) ≥ C1/2 for all 0 ≤ t ≤ T .

�
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Simultaneous vs Non-simultaneous

• If q < 1 then for every v0 there exists u0 such that u quenches

while v does not.

• If v does not quench then q < 1.

Proof. From the representation formula

1

2
V (t) =

∫ 1

0

Γ(y, t)v0(y) dy +

∫ t

0

v(1, s)
∂Γ

∂x
(−1, t− s) ds

−

∫ t

0

U−q(s)Γ(x, t− s) ds

- In the non-simultaneous case we have that

U(t) ∼ (T − t)1/(1+q).

- Therefore,

V (t) ≤ C1 − C2

∫ T

0

(T − s)−
q

q+1−
1
2 .

But, the integral diverges if q ≥ 1. �
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Simultaneous vs Non-simultaneous

• If q < 1 then for every v0 there exists u0 such that u quenches

while v does not.

• If v does not quench then q < 1.

• If p, q ≥ 1 then quenching is always simultaneous.

• If 0 < p, q < 1 there exist there exist initial data which produce

simultaneous quenching.

Proof. Given (u0, v0), we consider initial data (λu0, v0).

- From the representation formula and the lower estimates

Vλ(t) ≥ C1 − C2

∫ Tλ

0

(Tλ − s)−
q

q+1−
1
2 ds = C1 − C2T

1−q
2(1+q)

λ ,

Uλ(t) ≥ C1λ− C2

∫ Tλ

0

(Tλ − s)−
p

p+1−
1
2 ds = C1λ− C2T

1−p
2(1+p)

λ ,

- The estimate for the quenching time ⇒ Tλ ≤ C min{λq, λ}

- For λ≪ 1,

Vλ(t) ≥ C1 − C2λ
1−q

2(1+q) > 0

- For λ≫ 1,

Uλ(t) ≥ C1λ− C2λ
q(1−p)
2(1+p) > 0

�
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Simultaneous vs Non-simultaneous

• If q < 1 then for every v0 there exists u0 such that u quenches

while v does not.

• If v does not quench then q < 1.

• If p, q ≥ 1 then quenching is always simultaneous.

• If 0 < p, q < 1 there exist there exist initial data which produce

simultaneous quenching.

• If q < 1 and p ≥ p0 = (1 + q)/(1 − q) then quenching is always

non-simultaneous.

Proof. Assume that quenching is simultaneous.

- From the representation formula for v,

0 =

∫ 1

0

Γ(y, T−t)v(y, t) dy+

∫ T

t

v(1, s)
∂Γ

∂x
(−1, T−s) ds−

∫ T

t

U−q(s)Γ(0, T−s) ds

Then, V (t) ≤ C

∫ T

t

U−q(s)(T − s)−1/2 ds ≤ C(T − t)(1−q)/2(1+q)

- We introduce this upper estimate in the representation formula

for u

0 ≤

∫ 1

0

Γ(y, T )u(y, 0) dy+

∫ T

0

u(1, s)
∂Γ

∂x
(−1, T−s) ds−C

∫ T

0

(T−s)
−1

2−
p(1−q)
2(1+q) ds

�
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Simultaneous vs Non-simultaneous

Summing up, we have that

• If q < 1 then for every v0 there exists u0 such that u quenches

while v does not.

• If v does not quench then q < 1.

• If p, q ≥ 1 then quenching is always simultaneous.

• If 0 < p, q < 1 there exist there exist initial data which produce

simultaneous quenching.

• If q < 1 and p ≥ p0 = (1 + q)/(1 − q) then quenching is always

non-simultaneous.

We conjeture that p0 = 1.
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Simultaneous vs Non-simultaneous

- Numerical experiment with q = 1/3 and p = 1. Initial data

u0(x) = 1 + x , v0(x) = 1 + x− x2 .

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1
u

n
(0,t)

v
n
(0,t)
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After Quenching.

We consider the problem (Pn)





{
(un)t = (un)xx,

(vn)t = (vn)xx,
in (0, 1) × (0, T ),

{
(un)x(0, t) = fn(v(0, t)), (un)x(1, t) = 0,

(vn)x(0, t) = gn(u(0, t)), (vn)x(1, t) = 0,
in (0, T ),

{
(un)(x, 0) = u0(x),

(vn)(x, 0) = v0(x),
in (0, 1),

where

fn(s) =






s−q, if s > 1/n,

nq+1s, if 0 < s ≤ 1/n,

0 if s < 0,

gn(s) =






s−p, if s > 1/n,

np+1s, if 0 < s ≤ 1/n,

0 if s < 0,

- The solution (un, vn) are defined for all t > 0.

- A natural attempt to obtain a continuation of (u, v) after quench-

ing is to pass to the limit as n→ ∞ in (un, vn).

- This problem DOES NOT HAVE a Comparison Principle.
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After Quenching.

• (un, vn) is uniformly bounded from above.

Proof. Both components are a subsolution of the problem





wt = wxx, 0 < x < 1, t > 0,

wx(0, t) = wx(1, t) = 0, t > 0,

w(x, 0) = max(‖v0‖∞ , ‖u0‖∞), 0 ≤ x ≤ 1.

�
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After Quenching.

• (un, vn) is uniformly bounded from above.

Proof. Both components are a subsolution of the problem





wt = wxx, 0 < x < 1, t > 0,

wx(0, t) = wx(1, t) = 0, t > 0,

w(x, 0) = max(‖v0‖∞ , ‖u0‖∞), 0 ≤ x ≤ 1.

�

• (un, vn) > (u, v) for (x, t) ∈ [0, 1] × [0, T ).

Proof. (un, vn) is a supersolution to the original problem

�
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After Quenching.

• (un, vn) is uniformly bounded from above.

Proof. Both components are a subsolution of the problem





wt = wxx, 0 < x < 1, t > 0,

wx(0, t) = wx(1, t) = 0, t > 0,

w(x, 0) = max(‖v0‖∞ , ‖u0‖∞), 0 ≤ x ≤ 1.

�

• (un, vn) > (u, v) for (x, t) ∈ [0, 1] × [0, T ).

Proof. (un, vn) is a supersolution to the original problem

�

- Therefore, for t ∈ [0, T ) there exists

(u∞, v∞) = lim
n→∞

(un, vu).

• (u∞, v∞) = (u, v) for all t < T .
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After non-simultaneous quenching.

- Let τn the first time at truncation take place. Observe that

τn → T as n→ ∞.

• [Key] For each n sufficiently large, there exists a time Tn, such

that

K1 ≤ Vn(t) ≤ K2 for all t > 0,

Un(t) < 0 for all t > Tn,

for some constants Ki > 0 independent of n. Moreover, we have

the estimate

τn < Tn < τn + C/n2.
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After non-simultaneous quenching.

- Let τn the first time at truncation take place. Observe that

τn → T as n→ ∞.

• [Key] For each n sufficiently large, there exists a time Tn, such

that

K1 ≤ Vn(t) ≤ K2 for all t > 0,

Un(t) < 0 for all t > Tn,

for some constants Ki > 0 independent of n. Moreover, we have

the estimate

τn < Tn < τn + C/n2.

• un is a supersolution to the problem





wt = wxx 0 < x < 1, t > 0,

wx(0, t) = K−p
1 , t > 0,

wx(1, t) = 0, t > 0,

w(x, 0) = u0(x).

- Therefore (un, vn) are uniformly bounded in compact sets and

there exists

(u∞, v∞) = lim
n→∞

(un, vu).

What problem verifies (u∞, v∞)?
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After non-simultaneous quenching.

- Now we just observe that, for n large, (un, vn) is a solution to





(un)t = (un)xx, ,

(un)x(0, t) = (vn)
−p(0, t),

(un)x(1, t) = 0,

(vn)t = (vn)xx, 0 < x < 1, t > Tn,

(vn)x(0, t) = 0, t > Tn,

(vn)x(1, t) = 0, t > Tn,

- Since τn < Tn < τn + C/n2, we have that Tn → T
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After non-simultaneous quenching.

- Now we just observe that, for n large, (un, vn) is a solution to





(un)t = (un)xx, ,

(un)x(0, t) = (vn)
−p(0, t),

(un)x(1, t) = 0,

(vn)t = (vn)xx, 0 < x < 1, t > Tn,

(vn)x(0, t) = 0, t > Tn,

(vn)x(1, t) = 0, t > Tn,

- Since τn < Tn < τn + C/n2, we have that Tn → T

Passing to the limit in the vn component

- The integral version of the problem for vn is for t > Tn,

−

∫ t

Tn

∫ 1

0

vnϕt+

∫ 1

0

vn(t)ϕ(t)−

∫ 1

0

vn(Tn)ϕ(Tn) =

∫ t

Tn

∫ 1

0

vnϕxx−

∫ t

Tn

vnϕx|
1
0

- Since K1 < v < K2, we can pass to the limit in all the terms.

The only tricky point is to show that vn(x, Tn) → v(x, T ).
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After non-simultaneous quenching.

- Now we just observe that, for n large, (un, vn) is a solution to





(un)t = (un)xx, ,

(un)x(0, t) = (vn)
−p(0, t),

(un)x(1, t) = 0,

(vn)t = (vn)xx, 0 < x < 1, t > Tn,

(vn)x(0, t) = 0, t > Tn,

(vn)x(1, t) = 0, t > Tn,

- Since τn < Tn < τn + C/n2, we have that Tn → T

Passing to the limit in the vn component

- The integral version of the problem for vn is for t > Tn,

−

∫ t

Tn

∫ 1

0

vnϕt+

∫ 1

0

vn(t)ϕ(t)−

∫ 1

0

vn(Tn)ϕ(Tn) =

∫ t

Tn

∫ 1

0

vnϕxx−

∫ t

Tn

vnϕx|
1
0

- Since K1 < v < K2, we can pass to the limit in all the terms.

The only tricky point is to show that vn(x, Tn) → v(x, T ).

- Therefore, v∞ verifies the problem






(v∞)t = (v∞)xx in (0, 1) × (T,∞)

(v∞)x(0, t) = (v∞)x(1, t) = 0 in (T,∞)

v∞(x, T ) = v(x, T ) in (0, 1)
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After non-simultaneous quenching.

• vn(x, Tn) → v(x, T ) as n→ ∞

Proof. Let G the Green function of the Neumann problem. Then,

for τn ≤ t ≤ Tn

vn(x, t) =

∫ 1

0

G(x−y, t)v(y, τn) dy+

∫ t

τn

G(x, t−s)(vn)x(0, s) ds

- The first integral converges uniformly to v(x, T )

- The second integral tends to zero

∫ t

τn

G(x, t−s)(vn)x(0, s) ds ≤ Cnq+1(t−τn) ≤ Cnq+1n−2 = Cnq−1 → 0

�
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After non-simultaneous quenching.

Passing to the limit in the un component

- In this case the integral version reads for t > 0

−

∫ t

0

∫ 1

0

unϕt+

∫ 1

0

un(t)ϕ(t) −

∫ 1

0

u0ϕ(0)

=

∫ t

0

∫ 1

0

unϕxx −

∫ t

0

V −p
n ϕ−

∫ t

0

unϕx|
1
0

- Since vn ≥ K1, we can pass to the limit in all terms to obtain

that u∞ verifies the problem






(u∞)t = (u∞)xx in (0, 1) × (0,∞)

(u∞)x(0, t) = v−p∞ (0, t) in (0,∞)

(u∞)x(1, t) = 0 in (0,∞)

u∞(x, 0) = u0(x) in (0, 1)
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After non-simultaneous quenching.

• Proof of Lemma [Key]

- At time t = τn the functions un and vn are increasing and concave.

Therefore,

c ≤ vn(x, τn) ≤ vn(0, τn) + nqx ≤ C + nqx ,

1

n
≤ un(x, τn) ≤

1

n
+ (vn)

−p(0, τn)x ≤
1

n
+ Cx .
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After non-simultaneous quenching.

• Proof of Lemma [Key]

- At time t = τn the functions un and vn are increasing and concave.

Therefore,

c ≤ vn(x, τn) ≤ vn(0, τn) + nqx ≤ C + nqx ,

1

n
≤ un(x, τn) ≤

1

n
+ (vn)

−p(0, τn)x ≤
1

n
+ Cx .

- We estimate the time τ̂n at which vn reaches the level c/2.

Denote by s(x, t) = vn(x, t + τn), we have that s is super-

solution to the problem






ht = hxx, 0 < x < 1, 0 < t <∞,

hx(0, t) = nq, 0 ≤ t <∞,

hx(1, t) = 0, 0 ≤ t <∞,

h(x, 0) = c, 0 ≤ x ≤ 1.

This problem vanish in finite time. Let τ0 be the time such

that h(0, τ0) = c/2.
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After non-simultaneous quenching.

Rescaling h we take off the dependence on n in the boundary

condition. Let

ψ(y, τ ) = h(y/nq, τ/n2q).

which satisfies the problem






ψτ = ψyy, 0 < y < nq, 0 < τ <∞,

ψy(0, τ ) = 1, 0 ≤ τ <∞,

ψy(n
q, τ ) = 0, 0 ≤ τ <∞,

ψ(y, 0) = c, 0 ≤ y ≤ nq.

Then, there exists a time τ1 at which ψ(0, τ1) = c/2. We

have also that ψ(0, τ1) = h(0, τ1/n
2q), thus,

τ̂n ≥ τn + τ0 = τn + τ1/n
2q.
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After non-simultaneous quenching.

- We estimate the time Tn at which un reaches the level 0.

While fn(Vn(t)) = V −p
n (t), the function

r(x, t) = un(x, t + τn)

is a subsolution to the linear problem






rt = rxx, 0 < x < 1, 0 < t <∞,

rx(0, t) = K−p, 0 < t ≤ ∞

rx(1, t) = 0, 0 < t ≤ ∞,

r(x, 0) = u(x, τn), 0 ≤ x ≤ 1,

where K = maxVn(t).
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After non-simultaneous quenching.






rt = rxx, 0 < x < 1, 0 < t <∞,

rx(0, t) = K−p, 0 < t ≤ ∞

rx(1, t) = 0, 0 < t ≤ ∞,

r(x, 0) = u(x, τn), 0 ≤ x ≤ 1,

This problem vanish in finite time τ0. Moreover,

r(0, t) ≤ 0, for all t > τ0.

ω(y, τ ) = n r(y/n, τ/n2), verifies






ωτ = ωyy, 0 < y < n, 0 < τ <∞,

ωy(0, τ ) = K−p, 0 ≤ τ <∞,

ωy(n, τ ) = 0, 0 ≤ τ <∞,

ω(y, 0) = nu(y/n, τn), 0 ≤ y ≤ n.

There exist τ1 such that

0 = ω(0, τ1) = nr(0, τ1/n
2)

and

ω(0, τ ) ≤ 0 , for τ ≥ τ1.
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After non-simultaneous quenching.

- Summing up we have

i) The time τ̂n at which vn reaches the level c/2 verifies that

τ̂n ≥ τn + C/n2q.

ii) the time Tn at which r reaches the level 0 verifies that

Tn ≤ τn + C/n2

iii) Since q < 1, we have that Tn ≤ τ̂n.

iv) Therefore at time Tn, un vanishes while vn remains positive.

v) vn > c/2 for times greater than Tn.

vi) As vn > c/2 for t > 0, we have that un < r for all time, and

un(0, t) ≤ 0, for all t > τn + C/n2.
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Numerical Approximations

- We consider uniform mesh and its associated standard approxi-

mation of the second derivative.






u′1 = 2
h2(u2 − u1) −

2
hv

−p
1 ,

u′k = 1
h2(uk−1 − 2uk + uk+1),

u′N+1 = 2
h2(uN − uN+1),

uk(0) = u0(xk), k = 1, . . . , N + 1,





v′1 = 2
h2(v2 − v1) −

2
hu

−q
1 ,

v′k = 1
h2(vk−1 − 2vk + vk+1),

v′N+1 = 2
h2(vN − vN+1),

vk(0) = v0(xk), k = 1, . . . , N + 1.

• This method converges in set of the form [0, 1] × [0, T − τ ] for

all τ > 0,

max
t∈[0,T−τ ]

max
k

{|u(xk, t) − uk(t)|, |v(xk, t) − vk(t)|} ≤ Ch

• Both functions, uh and vh, are increasing in space and decreasing

in time. In fact, there exists a positive constant

u′1(t) < −C , v′1(t) < −C.

Then,

u1(t) ≥ (Th − t) , v1 ≥ (Th − t) .
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Numerical Approximations

• This method quenches in finite time Th. Moreover,

Th ≤ (1 + h) min{v1(0), v2(0)}

and

Th → T.

• The only quenching point is the origin.

• Simultaneous vs Non-simultaneous

1

1

q

p

p =
1

1−q SIMULTANEOUS

BOTH

???

???

SIMULTANEOUS

SIMULTANEOUS

• In non-simultaneous case, the quenching rate is

u1(t) ∼ (Th − t)
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Numerical Approximations

- We consider and adaptative method. We impose that

c1 ≤ −uq1u
′
1 ≤ c2

which is equivalent to

c1 ≤ R(t, h) := uq1

(
2

h
v−p1 −

2

h2
(u2 − u1)

)
≤ c2

- Let t1 be the time at which R reaches the tolerance c1, at this

point we refine the mesh.

We move the point x2 to a new place z while the rest of the mesh

remain fixed, and we choose (uz, vz), that is, the value of (uh, vh)

at that new point z, such that

u2(t1) − u1(t1)

h
=
uz(t1) − u1(t1)

z
,

v2(t1) − v1(t1)

h
=
vz(t1) − v1(t1)

z
,

i.e., the points (0, u1(t1)) , (z, uz(t1)), (h, u2(t1)) lay in the same

line joining (0, u1(t1)), (h, u2(t1)).
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Numerical Approximations

- At this time,

R(z, t1) =

(
2

z
v−p1 (t) −

2

z2
(uz(t) − u1(t))

)
uq1(t)

=
1

z

(
2v−p1 (t) −

2

z
(uz(t) − u1(t))

)
uq1(t)

=
1

z

(
2v−p1 (t) −

2

h
(u2(t) − u1(t))

)
uq1(t)

=
h

z
R(h, t1) > R(h, t1) = c1.

So, we apply again the method with the new mesh up to time t2
at which R(z, t2) = c1. At this time we refine the mesh .....
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