NON-SIMULTANEOUS
QUENCHING IN A SYSTEM OF

HEAT EQUATIONS COUPLED AT
THE BOUNDARY

RAUL FERREIRA

Dep. de Matematica Aplicada, U. Complutense de Madrid,

Primer Encuentro de la Red de Ecuaciones
Parabdlicas y Elipticas No Lineales

Joint work with

ARTURO DE PABLO, UC3M, Leganés, Spain.
MAYTE PEREZ-LLANOS, UC3M, Leganés, Spain.
FERNANDO QUIROS, UAM, Madrid, Spain.
JULIO D. Rossi, UBA, Buenos Aires, Argentina.



e What is Quenching? We say that the solution of a non-linear
PDE quenches if

lui(-, T)lloc = 00 while  Ju(:, )| < 00.

Model problem [Kawarada'75]

( 1
Ut:vxx+1 : —L<r<L 0<t<T,
—v
Y o(-L,t)=v(L,t)=0, 0<t<T,
| v(z,0) = vo(x), —L <x < L.

Quenching happens when v reaches the level one and v; — o0.

Moreover, if vy is symmetric and decreasing for x > 0, then v
reaches the level one only at x = 0. We denote that single-point
quenching.

Other quenching problems:[Acker-Walter’78], [Levine’80-93], [Chan’96], [Galaktionov-Gerbi-

Véazquez'99], [Fila-Guo’02].



e Questions

(1) What? The solution develop a singularity?
(2) When? The singularity occurs at finite time 7" or not?
(3) Where? We can determinate the point where the singularity
happens?
Q(u) ={x: 3 (x,,t,) — (x,T) such that u(x,,t,) — 0}.

is the quenching set.

(4) How? Asymptotic behaviour.

e Quenching rate.
e Asymptotic profile.

(5) After singularity. If we consider problem the problem as limit

of approximated problems defined for every 0 < t < oo, we

can study the possible continuation of the solution beyond
t="1T.

(6) Numerical methods. We can find a numerical method which

reproduces the same properties of the continuous solution?



Problem

The initial data are C?[0, 1] functions, increasing, concave and they

satisfy the boundary condition.



e A Escalar Quenching Problem

i

Ut = Ugy
< uz(0,t) = uP(0,1),
uy(1,t) =0,
\ u(z,0) = up(z),
where p > 0.

O<ax<l,0<t<T,
0<t<T,
0<t<T,
0< o<1,

- This problem has quenching in finite time, T', for all initial data.
- The quenching set is always de origin, Q(u) = {0}.
- The minimum of the solution verifies

1

w(0,t) ~ (T — t)2+D)

- the behavior near the quenching time is given by a self-similar

solution.

- For t > T we can define the continuation of the solution as a

solution of

[Fila-Levine’93],[Christov-Deng’01],[Fila-Guo’02]

O<ax<1, t>T,
t>1T,

t>1T,
0<z<l,



What?

e (Quenching happens in finite time for every initial data.

Proof.
-u < M = |Jupl|eo and v < N = ||vg]| s
- By Integration in space

1
/ u(s, £)ds < M — V(0.
0

/11)(3,75) ds < N —U(0)t.
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What?

e (Quenching happens in finite time for every initial data.

Proof.
-u < M = |Jupl|eo and v < N = ||vg]| s
- By Integration in space

1 1
/ u(s, t)ds < M — V(0. / o(s,t)ds < N — U~(0)¢
0 0
[]
When?
o I' <min{MV?0), NU0)}

Where?

e The only quenching point is the origin.

Proof. Both variables are supersolution of the following problem

(W = Wy in (0,1) x (0,7
« w(0,t) =w(l,t) =0 in (0,7
| w(,0) = wo(z) < min{ug,ve}  in (0,1)



Preliminaries
e u(-, 1) is an increasing function.
e u(x,-) is a decreasing function.
e There exists a positive constant such that

U'(t) < —CUt), VI(t) < —CV7P(1).

* Therefore,

U(t) > C(T =)V« V() > (T — 1)/

e There exists a positive constant such that

U't) > -CV Yo i), V() > -CU TV ().

If u quenches while v remain positive then
U'(t) ~ =U""(1),

Ult) ~ (T — t)Y/(a+1),



Simultaneous vs Non-simultaneous

e If ¢ < 1 then for every vy there exists uy such that u quenches
while v does not.

Proof. From the representation formula

%V(t)z /O F(y,t)vo(y)dy+/0U(LS)%(—U—SWS

t
— [Urte - s ds
0
where ['(x,t) = (477t)—1/26—x2/4t

- by apriori lower estimate for U, we obtain

1—¢q

— Oy — T

q

V(t) > C, —Cy /OT(T — ) w

DO =

- From the upper estimate for T', we can choose U(0) small to

conclude that V(t) > Cy/2 for all 0 <t < T.
[]
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Simultaneous vs Non-simultaneous

e If ¢ < 1 then for every vy there exists uy such that u quenches
while v does not.

e If v does not quench then ¢ < 1.

Proof. From the representation formula

%V(t): /O F(y,t)vo(y)dy+/0U(LS)%(—U—SWS

_ /O Ut — ) ds

- In the non-simultaneous case we have that
Ut) ~ (T — )/ 1+,
- Therefore,

9

V(t) < (] — (05 /OT(T — S)_QH_ :

D=

But, the integral diverges if ¢ > 1. ]
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Simultaneous vs Non-simultaneous

e If ¢ < 1 then for every vy there exists uy such that u quenches
while v does not.

e If v does not quench then ¢ < 1.
e If p, ¢ > 1 then quenching is always simultaneous.

e [f 0 < p, g < 1 there exist there exist initial data which produce
simultaneous quenching.

Proof. Given (ug, vg), we consider initial data (Aug, v).
- From the representation formula and the lower estimates
T)\ 1 1—q
V)\(t) Z Cl — OQ/ (T)\ — S)_q+1_7 ds = Cl - CQT/\Q Hq),
0
1—

Ty 1P _
Ui(t) > 1A= C / (T — 5) 71 2ds = oA — T,
0

—~

- The estimate for the quenching time = T, < C'min{A\%, \}
- For A < 1,

1—
VA(t) > Oy — CoAa > ()
- For A > 1,
q(1-p)
U)\(t) > Cl>\ — 02)\2(1+p) > 0

12



Simultaneous vs Non-simultaneous

e If ¢ < 1 then for every vy there exists uy such that u quenches
while v does not.

e If v does not quench then ¢ < 1.
e If p, ¢ > 1 then quenching is always simultaneous.

e [f 0 < p, g < 1 there exist there exist initial data which produce
simultaneous quenching.
elfg<landp>p)=(1+q)/(1—q)then quenching is always
non-simultaneous.

Proof. Assume that quenching is simultaneous.
- From the representation formula for v,

O_/o F(y,T—t)v(y,t)dy+/t U(l,s)%(—l,T—s)ds—/t U 1(s)I'(0,T—s)ds

T
Then, V(t) < C’/ U 9s)(T — 5)_1/2 ds < C(T — t)(l—Q)/Z(lJrQ)
t

- We introduce this upper estimate in the representation formula

for u
! r or r _1_p(i=q)
0§/ [y, T)u(y,0) dy+/ u(l,s)%(—l,T—s) ds—C/ (T—s) 2 20+a) ds
0 0 0
[]
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Simultaneous vs Non-simultaneous

Summing up, we have that

e [f ¢ < 1 then for every vy there exists uy such that u quenches
while v does not.

e [f v does not quench then ¢ < 1.

e If p, ¢ > 1 then quenching is always simultaneous.

e [f 0 < p, ¢ < 1 there exist there exist initial data which produce
simultaneous quenching.

elfg<landp>p)=(1+q)/(1— q)then quenching is always

non-simultaneous.

We conjeture that py = 1.

14



Simultaneous vs Non-simultaneous

- Numerical experiment with ¢ = 1/3 and p = 1. Initial data

up(z) =14z, vo(x) =1+1z — 2%,

un(O,t)
v(0.0] ]

0.4 0.5
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After Quenching.

We consider the problem (P,)

( <un)t - (un)xx7 «
{ (Un)t = (Un)xx; o (07 1) <0’ T)’
(wn)o(0.) = fu0(0,8)),  (w)al1,6) =0,
< { (0n)2(0,t) = gn(u(0,1)), (vn)2(1,£) = 0, in (0,7),
(wn)(,0) = wo(w),
\ { (vn)(z,0) = vo(), (0. 1),
where
(571, if s> 1/n,
fuls) =% n?ls if 0<s<1/n,
(0 if s<0,
(577, if s>1/n,
gu(s) =< nPtls,  if 0<s<1/n,
(0 if s<0,

- The solution (u,,, v,) are defined for all ¢ > 0.

- A natural attempt to obtain a continuation of (u, v) after quench-
ing is to pass to the limit as n — 0o in (u,, v,).

- This problem DOES NOT HAVE a Comparison Principle.

16



After Quenching.

e (uy,v,) is uniformly bounded from above.

Proof. Both components are a subsolution of the problem

Wy = Wy, O<z<l1, t>0,
w.(0,t) = w,(1,t) =0, t >0,
w(z,0) = max([|volloc , [|uollec), 0 <2< 1.

17



After Quenching.

e (uy,v,) is uniformly bounded from above.

Proof. Both components are a subsolution of the problem

Wy = Wy, O<z<l1, t>0,
w.(0,t) = w,(1,t) =0, t >0,
w(z,0) = max([|volloc , [|uollec), 0 <2< 1.

o (uy,vy,) > (u,v) for (x,t) € [0,1] x [0,7T).

Proof. (u,,v,) is a supersolution to the original problem
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After Quenching.

e (uy,v,) is uniformly bounded from above.

Proof. Both components are a subsolution of the problem

Wy = Wy, O<z<l1, t>0,
w.(0,t) = w,(1,t) =0, t >0,
w(z,0) = max(||vg||eo s [[10]|00), 0 <z < 1.

o (uy,vy,) > (u,v) for (x,t) € [0,1] x [0,7T).

Proof. (u,,v,) is a supersolution to the original problem

- Therefore, for ¢t € [0, T) there exists
(Uoo, Voo) = HM (U, vy).

n—:o0

® (Uso, Voo) = (u,v) forall t <T.

19



After non-simultaneous quenching.

- Let 7, the first time at truncation take place. Observe that
T, — 1" as n — oo.

e /Key/ For each n sufficiently large, there exists a time T}, such
that

K < Vn(t) < K, for all t > 0,
Un(t) <0 forall t > T,

for some constants K; > 0 independent of n. Moreover, we have
the estimate

7o < T, < 7, + C/n’.

20



After non-simultaneous quenching.

- Let 7, the first time at truncation take place. Observe that
T, — 1" as n — oo.
e /Key/ For each n sufficiently large, there exists a time T}, such
that

K < Vn(t) < K, for all t > 0,

Un(t) <0 forall t > T,

for some constants K; > 0 independent of n. Moreover, we have
the estimate

7w < T, < 7+ C/n*

® 1, is a supersolution to the problem

)
W = Wy O<ax<l1, t>0,

w,(0,8) = K77, >0,
wo(1,8) =0,  t>0,
w(z,0) = up(x).

\

- Therefore (uy,,v,) are uniformly bounded in compact sets and
there exists

(Uoos Vo) = 1M (U, vy).
n—:oo

What problem verifies (oo, Uoo)?
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After non-simultaneous quenching.

- Now we just observe that, for n large, (u,, v,) is a solution to

(tn)r = (Up)zz, , (Vo) = (Vp)aw, O<ax <1, t>1T,,
(un)e(0,8) = (v,)7P(0,t),  (vn)2(0,8) =0, t>1T,,
(u)(1,t) =0, (Un)2(1,8) =0, t>1T,,

- Since 7, < T, < 1, + C/nQ, we have that 17,, — T
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After non-simultaneous quenching.

- Now we just observe that, for n large, (u,,v,) is a solution to

(un)r = () s 5 (vp)r = (v )m, O<a<l, t>1,,
(un>x<07t) - (vn)_p(oat)v ( ) ( t) t > 1T,
(un)z(lvt) =0, ( ) ( t) t>"1T,,

- Since 7, < T, < 1, + C/nQ, we have that 17,, — T
Passing to the limit in the v, component

- The integral version of the problem for v, is for ¢t > T,,,

_/i /Olvngpt+/olvn(t)gp(t)—/lvn // UniPaz— /Tnvngox\o

- Since Ky < v < Ky, we can pass to the limit in all the terms.
The only tricky point is to show that v, (x,T,) — v(x,T).
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After non-simultaneous quenching.

- Now we just observe that, for n large,

(un)t - (Un)m:; ) (Un)t -
(n)2(0,1) = (v)77(0, ),

(un)2(1,1) =0, (v

(
(v

(0n)(0,1) =
n)a(1,t) =0,

Up, Uy) 18 a solution to

O<ax<l, t>1T,,
t>1,,
t>"1T,,

)m«,

- Since 7, < T, < 1, + C/nQ, we have that 17,, — T
Passing to the limit in the v, component

- The integral version of the problem for v, is for ¢t > T,,,

-/ / ot / et

1
—/ v (T (T,
0

t 1 t .
— / / Un@m:_/ Ungpa:‘()
n 0 Ty

- Since Ky < v < Ky, we can pass to the limit in all the terms.

The only tricky point is to show that v, (x,T,) — v(x,T).

- Therefore, v, verifies the problem

24

[ (Uno)t = (Vo ) n (0,1) x (T, 00)
{8 (V00)2(0,1) = (V00)2(1,£) =0 in (T, 0)
| Vo2, T) = v(2,T) n (0, 1)



After non-simultaneous quenching.

o v,(z,T,) — v(x,T)as n — oo

Proof. Let G the Green function of the Neumann problem. Then,
for r,, <t <T,

vn(x,t)—/o G(a:—y,t)v(y,m)dy—k/ G(z,t—5)(v,).(0, ) ds

- The first integral converges uniformly to v(x,T)

- The second integral tends to zero

!
/ G(x,t—5)(v,).(0,5)ds < On?™(t—7,) < Cn®n 2 = Cn?! -0

[l
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After non-simultaneous quenching.

Passing to the limit in the u, component

- In this case the integral version reads for ¢t > 0

R U
//un%x—/ Vn%—/otun%\é

- Since v, > Ki, we can pass to the limit in all terms to obtain
that u., verifies the problem

[ (Uoo )t = (Uoo )z in (0,1) x (0, 00)
) (Uoo)z(0,t) = v P(0,t)  in (0, 00)
Uso)z(1,8) =0 in (0, 00)
| Uso(,0) = up(x) in (0,1)
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After non-simultaneous quenching.
e Proof of Lemma [Key/

- At time t = 7, the functions u,, and v,, are increasing and concave.
Therefore,

c < Un(xa Tn) < Un<0, Tn) +nile < C+nlx,

1 1 1

— <u,(z, 1) < — n) 20, 1) < —4+Cx.
n_u(a:T)_n+(v) ( T)a:_n+ T

27



After non-simultaneous quenching.
e Proof of Lemma [Key/

- At time t = 7, the functions u,, and v,, are increasing and concave.
Therefore,

< Un(xa Tn) < Un<07 Tn) +nile < C+nlx,

C
1< ( )<1+()wm ) <1+C

— < uplx, 1) < — 4 (v, L Th) < — X .
n n n

- We estimate the time 7,, at which v,, reaches the level ¢/2.

Denote by s(x,t) = v,(z,t + 7,), we have that s is super-
solution to the problem

fm:hm, D<r<l 0<t <o,
h.(0,t) = n9, 0<t< oo,

\ A1) =0, 0<t<oo,
\h(x,()):c, 0<z<1.

This problem vanish in finite time. Let 7y be the time such
that h(0,79) = ¢/2.
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After non-simultaneous quenching.

Rescaling h we take off the dependence on n in the boundary
condition. Let

U(y, 7) = h(y/nt, 7/n*).
which satisfies the problem

(%:%ya O<y<ng 0<71 <00,
Py (0,7) =1, 0<7 <00,

< Yy (n?,7) =0, 0<7 <00,

\ Y(y,0) = ¢, 0 <y <n.

Then, there exists a time 71 at which (0, 7) = ¢/2. We
have also that (0, 1) = h(0, 71 /n*?), thus,

~ 2
Tn > Tn+ 10 =Ty + 1/

29



After non-simultaneous quenching.

- We estimate the time 7,, at which wu,, reaches the level 0.

While f,,(V,(t)) = V.7P(t), the function

n

r(z,t) = uy(x,t + 1)
is a subsolution to the linear problem

"

Tt = Tyu, <<l 0<t <o,
ro(0,1) = K7, 0<t<oo

Y r(1,0) =0, 0<t< oo,

\ r(z,0) =u(z,m), 0<ax<l1,

where K = max V,,(t).
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After non-simultaneous quenching.

Tt = T, O<e<l, 0<t <00,
r:(0,t) = K7P, 0<t< oo

< r:(1,t) =0, 0<t<oo,

\ r(z,0) =u(z,m), 0<x<l1,

This problem vanish in finite time 75. Moreover,

r(0,t) <0, for all £ > 7.

w(y, ) =nr(y/n,7/n?), verifies

er:wW O<y<n, 0<71 <00,
wy(0,7) = K7P, 0 <7< o0,

) wy(n, ) =0, 0<7 < o0,

\ w(y,0) =nu(y/n, ), 0 <y <n,

There exist 7, such that
0 =w(0,77) = nr(0, 7 /n?)

and
w(0,7) <0, for 7 > 7.
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After non-simultaneous quenching.

- Summing up we have
i) The time 7,, at which v,, reaches the level ¢/2 verifies that

T, > T, + C’/an.

ii) the time T), at which r reaches the level 0 verifies that

T, < 1, +C/n?

iii) Since ¢ < 1, we have that T,, < 7,,.
iv) Therefore at time T;,, u,, vanishes while v,, remains positive.
v) v, > ¢/2 for times greater than T,,.
vi) As v, > ¢/2 for t > 0, we have that u,, < r for all time, and

u,(0,t) <0, for all t > 7, + C/n”.
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Numerical Approximations

- We consider uniform mesh and its associated standard approxi-
mation of the second derivative.

( _
%(U2 - Ul) - %U1 Y

(Up—1 — 2up, + upy1),
Uy g1 = %(UN — Un+11),
ur(0) = ug(xy), k=1,...,N+1,

uyp =

>

A
Uy =

| -

Ull - h2 (UQ - Ul) - %U’l—qa

) Up = 72 (gk—l — 2vp + Uk‘+1>7
Uni1 = 72(UN — Un),s
vi(0) = vo(zk), k=1,...,N+1.

\

e This method converges in set of the form [0, 1] x [0,T — 7] for
all 7> 0,

max max{|u(zy, t) — ur(t)|, |v(xg, t) —ve(t)|} < Ch
tel0,T—71] k

e Both functions, uj, and vy, are increasing in space and decreasing
in time. In fact, there exists a positive constant

uy(t) < =C, vy (t) < —C.
Then,
u(t) > (T, —t), vy > (T, —1t).
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Numerical Approximations

e This method quenches in finite time 7},. Moreover,

Ty, < (1 + h)min{v1(0),v2(0)}

and
Th — T.

e The only quenching point is the origin.

e Simultaneous vs Non-simultaneous

p
SIMULTANEOUS

SIMULTANEOUS

BOTH
SIMULTANEOUS

e In non-simultaneous case, the quenching rate is

ui(t) ~ (Th — 1)
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Numerical Approximations

- We consider and adaptative method. We impose that

/
c1 < —ufu] < e

which is equivalent to

2 2

c1 < R(t,h) = uf (Evfp — ﬁ(z@ — ul)) < ¢

- Let t; be the time at which R reaches the tolerance c;, at this
point we refine the mesh.

We move the point x5 to a new place z while the rest of the mesh
remain fixed, and we choose (u,,v,), that is, the value of (up,vy)
at that new point z, such that

'U/Q(tl) — Ul(tl) uz(tl) — ul(tl) Ug(tl) — Ul(tl) Uz(tl) — ’Ul(tl)

h z ’ h 2 ’
i.e., the points (0, u1(t1)) , (z,u-(t1)), (h,us(t1)) lay in the same
line joining (0, u1(t1)), (h, u2(t1)).

35



Numerical Approximations

- At this time,

R(z,t) = @Ulp(t) = %(uz(t) - m(t))) uy(t)
— % 20,(t) — %(uz(t) - m(t))) ur(t)
-1 Ezvlp@) () - u1<t>>) o
_ gR(h, f) > R(ht) = e

So, we apply again the method with the new mesh up to time %
at which R(z,ts) = ¢;. At this time we refine the mesh

36



