NON-SIMULTANEOUS

QUENCHING IN A SYSTEM OF HEAT EQUATIONS COUPLED AT THE BOUNDARY

Raúl Ferreira

Dep. de Matemática Aplicada, U. Complutense de Madrid,

Primer Encuentro de la Red de Ecuaciones Parabólicas y Elípticas No Lineales

Joint work with

Arturo de Pablo, UC3M, Leganés, Spain. Mayte Pérez-Llanos, UC3M, Leganés, Spain.

Fernando Quirós, UAM, Madrid, Spain.
Julio D. Rossi, UBA, Buenos Aires, Argentina.

- What is Quenching? We say that the solution of a non-linear PDE quenches if

$$
\left\|u_{t}(\cdot, T)\right\|_{\infty}=\infty \quad \text { while } \quad\|u(\cdot, T)\|_{\infty}<\infty .
$$

Model problem [Kawarada'75]

$$
\begin{cases}v_{t}=v_{x x}+\frac{1}{1-v}, & -L<x<L, 0<t<T, \\ v(-L, t)=v(L, t)=0, & 0<t<T, \\ v(x, 0)=v_{0}(x), & -L<x<L .\end{cases}
$$

Quenching happens when v reaches the level one and $v_{t} \rightarrow \infty$.
Moreover, if v_{0} is symmetric and decreasing for $x>0$, then v reaches the level one only at $x=0$. We denote that single-point quenching.

Other quenching problems:[Acker-Walter'78], [Levine'80-93], [Chan'96], [Galaktionov-GerbiVázquez'99], [Fila-Guo'02].

- Questions

(1) What? The solution develop a singularity?
(2) When? The singularity occurs at finite time T or not?
(3) Where? We can determinate the point where the singularity happens?

$$
Q(u)=\left\{x: \exists\left(x_{n}, t_{n}\right) \rightarrow(x, T) \text { such that } u\left(x_{n}, t_{n}\right) \rightarrow 0\right\} .
$$

is the quenching set.
(4) How? Asymptotic behaviour.

- Quenching rate.
- Asymptotic profile.
(5) After singularity. If we consider problem the problem as limit of approximated problems defined for every $0<t<\infty$, we can study the possible continuation of the solution beyond $t=T$.
(6) Numerical methods. We can find a numerical method which reproduces the same properties of the continuous solution?

Problem

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
u_{t}=u_{x x}, \quad \text { in }(0,1) \times(0, T), \\
v_{t}=v_{x x},
\end{array}\right. \\
\left\{\begin{array}{l}
u_{x}(0, t)=v^{-p}(0, t), \quad u_{x}(1, t)=0, \\
v_{x}(0, t)=u^{-q}(0, t), \quad v_{x}(1, t)=0,
\end{array} \quad \text { in }(0, T),\right. \\
\left\{\begin{array}{l}
u(x, 0)=u_{0}(x), \quad \text { in }(0,1), \\
v(x, 0)=v_{0}(x),
\end{array}\right.
\end{array}\right.
$$

The initial data are $C^{2}[0,1]$ functions, increasing, concave and they satisfy the boundary condition.

- A Escalar Quenching Problem

$$
\begin{cases}u_{t}=u_{x x}, & 0<x<1,0<t<T \\ u_{x}(0, t)=u^{-p}(0, t), & 0<t<T \\ u_{x}(1, t)=0, & 0<t<T \\ u(x, 0)=u_{0}(x), & 0<x<1\end{cases}
$$

where $p>0$.

- This problem has quenching in finite time, T, for all initial data.
- The quenching set is always de origin, $Q(u)=\{0\}$.
- The minimum of the solution verifies

$$
u(0, t) \sim(T-t)^{\frac{1}{2(p+1)}}
$$

- the behavior near the quenching time is given by a self-similar solution.
- For $t>T$ we can define the continuation of the solution as a solution of

$$
\begin{cases}\bar{u}_{t}=\bar{u}_{x x}, & 0<x<1, t>T \\ \bar{u}(0, t)=0, & t>T \\ \bar{u}_{x}(1, t)=0, & t>T \\ \bar{u}(x, T)=u(x, T), & 0<x<1\end{cases}
$$

[Fila-Levine'93],[Christov-Deng'01],[Fila-Guo'02]

What?

- Quenching happens in finite time for every initial data.

Proof.

- $u \leq M=\left\|u_{0}\right\|_{\infty}$ and $v \leq N=\left\|v_{0}\right\|_{\infty}$.
- By Integration in space

$$
\begin{aligned}
& \int_{0}^{1} u(s, t) d s \leq M-V^{-p}(0) t \\
& \int_{0}^{1} v(s, t) d s \leq N-U^{-q}(0) t .
\end{aligned}
$$

What?

- Quenching happens in finite time for every initial data.

Proof.

- $u \leq M=\left\|u_{0}\right\|_{\infty}$ and $v \leq N=\left\|v_{0}\right\|_{\infty}$.
- By Integration in space
$\int_{0}^{1} u(s, t) d s \leq M-V^{-p}(0) t, \quad \int_{0}^{1} v(s, t) d s \leq N-U^{-q}(0) t$

When?

- $T \leq \min \left\{M V^{p}(0), N U^{q}(0)\right\}$

What?

- Quenching happens in finite time for every initial data.

Proof.

- $u \leq M=\left\|u_{0}\right\|_{\infty}$ and $v \leq N=\left\|v_{0}\right\|_{\infty}$.
- By Integration in space

$$
\int_{0}^{1} u(s, t) d s \leq M-V^{-p}(0) t, \quad \int_{0}^{1} v(s, t) d s \leq N-U^{-q}(0) t
$$

When?

- $T \leq \min \left\{M V^{p}(0), N U^{q}(0)\right\}$

Where?

- The only quenching point is the origin.

Proof. Both variables are supersolution of the following problem

$$
\begin{cases}w_{t}=w_{x x} & \text { in }(0,1) \times(0, T) \\ w(0, t)=w(1, t)=0 & \text { in }(0, T) \\ w(x, 0)=w_{0}(x) \leq \min \left\{u_{0}, v_{0}\right\} & \text { in }(0,1)\end{cases}
$$

Preliminaries

- $u(\cdot, t)$ is an increasing function.
- $u(x, \cdot)$ is a decreasing function.
- There exists a positive constant such that

$$
U^{\prime}(t) \leq-C U^{-q}(t), \quad V^{\prime}(t) \leq-C V^{-p}(t)
$$

* Therefore,

$$
U(t) \geq C(T-t)^{1 /(q+1)} \quad V(t) \geq C(T-t)^{1 /(p+1)}
$$

- There exists a positive constant such that

$$
U^{\prime}(t) \geq-C V^{-p-1}(t) U^{-q}(t), \quad V^{\prime}(t) \geq-C U^{-q-1}(t) V^{-p}(t)
$$

If u quenches while v remain positive then

$$
\begin{aligned}
& U^{\prime}(t) \sim-U^{-q}(t) \\
& U(t) \sim(T-t)^{1 /(q+1)}
\end{aligned}
$$

Simultaneous vs Non-simultaneous

- If $q<1$ then for every v_{0} there exists u_{0} such that u quenches while v does not.

Proof. From the representation formula

$$
\begin{aligned}
\frac{1}{2} V(t) & =\int_{0}^{1} \Gamma(y, t) v_{0}(y) d y+\int_{0}^{t} v(1, s) \frac{\partial \Gamma}{\partial x}(-1, t-s) d s \\
& -\int_{0}^{t} U^{-q}(s) \Gamma(x, t-s) d s
\end{aligned}
$$

where $\Gamma(x, t)=(4 \pi t)^{-1 / 2} e^{-x^{2} / 4 t}$

- by apriori lower estimate for U, we obtain

$$
V(t) \geq C_{1}-C_{2} \int_{0}^{T}(T-s)^{-\frac{q}{q+1}-\frac{1}{2}}=C_{1}-C_{2} T^{\frac{1-q}{2(1+q)}}
$$

- From the upper estimate for T, we can choose $U(0)$ small to conclude that $V(t) \geq C_{1} / 2$ for all $0 \leq t \leq T$.

Simultaneous vs Non-simultaneous

- If $q<1$ then for every v_{0} there exists u_{0} such that u quenches while v does not.
- If v does not quench then $q<1$.

Proof. From the representation formula

$$
\begin{aligned}
\frac{1}{2} V(t) & =\int_{0}^{1} \Gamma(y, t) v_{0}(y) d y+\int_{0}^{t} v(1, s) \frac{\partial \Gamma}{\partial x}(-1, t-s) d s \\
& -\int_{0}^{t} U^{-q}(s) \Gamma(x, t-s) d s
\end{aligned}
$$

- In the non-simultaneous case we have that

$$
U(t) \sim(T-t)^{1 /(1+q)} .
$$

- Therefore,

$$
V(t) \leq C_{1}-C_{2} \int_{0}^{T}(T-s)^{-\frac{q}{q+1}-\frac{1}{2}}
$$

But, the integral diverges if $q \geq 1$.

Simultaneous vs Non-simultaneous

- If $q<1$ then for every v_{0} there exists u_{0} such that u quenches while v does not.
- If v does not quench then $q<1$.
- If $p, q \geq 1$ then quenching is always simultaneous.
- If $0<p, q<1$ there exist there exist initial data which produce simultaneous quenching.

Proof. Given $\left(u_{0}, v_{0}\right)$, we consider initial data $\left(\lambda u_{0}, v_{0}\right)$.

- From the representation formula and the lower estimates

$$
\begin{aligned}
& V_{\lambda}(t) \geq C_{1}-C_{2} \int_{0}^{T_{\lambda}}\left(T_{\lambda}-s\right)^{-\frac{q}{q+1}-\frac{1}{2}} d s=C_{1}-C_{2} T_{\lambda}^{\frac{1-q}{2(1+q)}} \\
& U_{\lambda}(t) \geq C_{1} \lambda-C_{2} \int_{0}^{T_{\lambda}}\left(T_{\lambda}-s\right)^{-\frac{p}{p+1}-\frac{1}{2}} d s=C_{1} \lambda-C_{2} T_{\lambda}^{\frac{1-p}{2(1+p)}},
\end{aligned}
$$

- The estimate for the quenching time $\Rightarrow T_{\lambda} \leq C \min \left\{\lambda^{q}, \lambda\right\}$
- For $\lambda \ll 1$,

$$
V_{\lambda}(t) \geq C_{1}-C_{2} \lambda^{\frac{1-q}{2(1+q)}}>0
$$

- For $\lambda \gg 1$,

$$
U_{\lambda}(t) \geq C_{1} \lambda-C_{2} \lambda^{\frac{q(1-p)}{(1+p)}}>0
$$

Simultaneous vs Non-simultaneous

- If $q<1$ then for every v_{0} there exists u_{0} such that u quenches while v does not.
- If v does not quench then $q<1$.
- If $p, q \geq 1$ then quenching is always simultaneous.
- If $0<p, q<1$ there exist there exist initial data which produce simultaneous quenching.
- If $q<1$ and $p \geq p_{0}=(1+q) /(1-q)$ then quenching is always non-simultaneous.

Proof. Assume that quenching is simultaneous.

- From the representation formula for v,
$0=\int_{0}^{1} \Gamma(y, T-t) v(y, t) d y+\int_{t}^{T} v(1, s) \frac{\partial \Gamma}{\partial x}(-1, T-s) d s-\int_{t}^{T} U^{-q}(s) \Gamma(0, T-s) d s$
Then, $V(t) \leq C \int_{t}^{T} U^{-q}(s)(T-s)^{-1 / 2} d s \leq C(T-t)^{(1-q) / 2(1+q)}$
- We introduce this upper estimate in the representation formula for u

$$
0 \leq \int_{0}^{1} \Gamma(y, T) u(y, 0) d y+\int_{0}^{T} u(1, s) \frac{\partial \Gamma}{\partial x}(-1, T-s) d s-C \int_{0}^{T}(T-s)^{-\frac{1}{2}-\frac{p(1-q)}{2(1+q)}} d s
$$

Simultaneous vs Non-simultaneous

Summing up, we have that

- If $q<1$ then for every v_{0} there exists u_{0} such that u quenches while v does not.
- If v does not quench then $q<1$.
- If $p, q \geq 1$ then quenching is always simultaneous.
- If $0<p, q<1$ there exist there exist initial data which produce simultaneous quenching.
- If $q<1$ and $p \geq p_{0}=(1+q) /(1-q)$ then quenching is always non-simultaneous.

We conjeture that $p_{0}=1$.

Simultaneous vs Non-simultaneous

- Numerical experiment with $q=1 / 3$ and $p=1$. Initial data

$$
u_{0}(x)=1+x, \quad v_{0}(x)=1+x-x^{2}
$$

After Quenching.

We consider the problem (P_{n})

$$
\left\{\begin{array}{l}
\left\{\begin{array} { l }
{ (u _ { n }) _ { t } = (u _ { n }) _ { x x } , \quad \text { in } (0 , 1) \times (0 , T) , } \\
{ (v _ { n }) _ { t } = (v _ { n }) _ { x x } , }
\end{array} \left\{\begin{array}{l}
\left(u_{n}\right)_{x}(0, t)=f_{n}(v(0, t)), \quad\left(u_{n}\right)_{x}(1, t)=0, \quad \text { in }(0, T), \\
\left(v_{n}\right)_{x}(0, t)=g_{n}(u(0, t)), \quad\left(v_{n}\right)_{x}(1, t)=0,
\end{array}\right.\right. \\
\left\{\begin{array}{l}
\left(u_{n}\right)(x, 0)=u_{0}(x), \quad \text { in }(0,1), \\
\left(v_{n}\right)(x, 0)=v_{0}(x),
\end{array}\right.
\end{array}\right.
$$

where

$$
\begin{aligned}
& f_{n}(s)= \begin{cases}s^{-q}, & \text { if } s>1 / n, \\
n^{q+1} s, & \text { if } 0<s \leq 1 / n, \\
0 & \text { if } s<0,\end{cases} \\
& g_{n}(s)= \begin{cases}s^{-p}, & \text { if } s>1 / n, \\
n^{p+1} s, & \text { if } 0<s \leq 1 / n, \\
0 & \text { if } s<0,\end{cases}
\end{aligned}
$$

- The solution $\left(u_{n}, v_{n}\right)$ are defined for all $t>0$.
- A natural attempt to obtain a continuation of (u, v) after quenching is to pass to the limit as $n \rightarrow \infty$ in $\left(u_{n}, v_{n}\right)$.
- This problem DOES NOT HAVE a Comparison Principle.

After Quenching.

- $\left(u_{n}, v_{n}\right)$ is uniformly bounded from above.

Proof. Both components are a subsolution of the problem

$$
\begin{cases}w_{t}=w_{x x}, & 0<x<1, t>0 \\ w_{x}(0, t)=w_{x}(1, t)=0, & t>0 \\ w(x, 0)=\max \left(\left\|v_{0}\right\|_{\infty},\left\|u_{0}\right\|_{\infty}\right), & 0 \leq x \leq 1\end{cases}
$$

After Quenching.

- $\left(u_{n}, v_{n}\right)$ is uniformly bounded from above.

Proof. Both components are a subsolution of the problem

$$
\begin{cases}w_{t}=w_{x x}, & 0<x<1, t>0 \\ w_{x}(0, t)=w_{x}(1, t)=0, & t>0 \\ w(x, 0)=\max \left(\left\|v_{0}\right\|_{\infty},\left\|u_{0}\right\|_{\infty}\right), & 0 \leq x \leq 1\end{cases}
$$

- $\left(u_{n}, v_{n}\right)>(u, v)$ for $(x, t) \in[0,1] \times[0, T)$.

Proof. $\left(u_{n}, v_{n}\right)$ is a supersolution to the original problem

After Quenching.

- $\left(u_{n}, v_{n}\right)$ is uniformly bounded from above.

Proof. Both components are a subsolution of the problem

$$
\begin{cases}w_{t}=w_{x x}, & 0<x<1, t>0 \\ w_{x}(0, t)=w_{x}(1, t)=0, & t>0 \\ w(x, 0)=\max \left(\left\|v_{0}\right\|_{\infty},\left\|u_{0}\right\|_{\infty}\right), & 0 \leq x \leq 1\end{cases}
$$

- $\left(u_{n}, v_{n}\right)>(u, v)$ for $(x, t) \in[0,1] \times[0, T)$.

Proof. $\left(u_{n}, v_{n}\right)$ is a supersolution to the original problem

- Therefore, for $t \in[0, T)$ there exists

$$
\left(u_{\infty}, v_{\infty}\right)=\lim _{n \rightarrow \infty}\left(u_{n}, v_{u}\right)
$$

- $\left(u_{\infty}, v_{\infty}\right)=(u, v)$ for all $t<T$.

After non-simultaneous quenching.

- Let τ_{n} the first time at truncation take place. Observe that $\tau_{n} \rightarrow T$ as $n \rightarrow \infty$.
- [Key] For each n sufficiently large, there exists a time T_{n}, such that

$$
\begin{gathered}
K_{1} \leq V_{n}(t) \leq K_{2} \text { for all } t>0 \\
U_{n}(t)<0 \text { for all } t>T_{n}
\end{gathered}
$$

for some constants $K_{i}>0$ independent of n. Moreover, we have the estimate

$$
\tau_{n}<T_{n}<\tau_{n}+C / n^{2}
$$

After non-simultaneous quenching.

- Let τ_{n} the first time at truncation take place. Observe that $\tau_{n} \rightarrow T$ as $n \rightarrow \infty$.
- [Key] For each n sufficiently large, there exists a time T_{n}, such that

$$
\begin{gathered}
K_{1} \leq V_{n}(t) \leq K_{2} \text { for all } t>0 \\
U_{n}(t)<0 \text { for all } t>T_{n}
\end{gathered}
$$

for some constants $K_{i}>0$ independent of n. Moreover, we have the estimate

$$
\tau_{n}<T_{n}<\tau_{n}+C / n^{2}
$$

- u_{n} is a supersolution to the problem

$$
\begin{cases}w_{t}=w_{x x} & 0<x<1, t>0 \\ w_{x}(0, t)=K_{1}^{-p}, & t>0 \\ w_{x}(1, t)=0, & t>0 \\ w(x, 0)=u_{0}(x) & \end{cases}
$$

- Therefore $\left(u_{n}, v_{n}\right)$ are uniformly bounded in compact sets and there exists

$$
\left(u_{\infty}, v_{\infty}\right)=\lim _{n \rightarrow \infty}\left(u_{n}, v_{u}\right)
$$

What problem verifies $\left(u_{\infty}, v_{\infty}\right)$?

After non-simultaneous quenching.

- Now we just observe that, for n large, $\left(u_{n}, v_{n}\right)$ is a solution to

$$
\left\{\begin{array}{lll}
\left(u_{n}\right)_{t}=\left(u_{n}\right)_{x x}, & \left(v_{n}\right)_{t}=\left(v_{n}\right)_{x x}, & 0<x<1, t>T_{n}, \\
\left(u_{n}\right)_{x}(0, t)=\left(v_{n}\right)^{-p}(0, t), & \left(v_{n}\right)_{x}(0, t)=0, & t>T_{n}, \\
\left(u_{n}\right)_{x}(1, t)=0, & \left(v_{n}\right)_{x}(1, t)=0, & t>T_{n},
\end{array}\right.
$$

- Since $\tau_{n}<T_{n}<\tau_{n}+C / n^{2}$, we have that $T_{n} \rightarrow T$

After non-simultaneous quenching.

- Now we just observe that, for n large, $\left(u_{n}, v_{n}\right)$ is a solution to

$$
\left\{\begin{array}{lll}
\left(u_{n}\right)_{t}=\left(u_{n}\right)_{x x},, & \left(v_{n}\right)_{t}=\left(v_{n}\right)_{x x}, & 0<x<1, t>T_{n} \\
\left(u_{n}\right)_{x}(0, t)=\left(v_{n}\right)^{-p}(0, t), & \left(v_{n}\right)_{x}(0, t)=0, & t>T_{n} \\
\left(u_{n}\right)_{x}(1, t)=0, & \left(v_{n}\right)_{x}(1, t)=0, & t>T_{n}
\end{array}\right.
$$

- Since $\tau_{n}<T_{n}<\tau_{n}+C / n^{2}$, we have that $T_{n} \rightarrow T$

Passing to the limit in the v_{n} component

- The integral version of the problem for v_{n} is for $t>T_{n}$,
$-\int_{T_{n}}^{t} \int_{0}^{1} v_{n} \varphi_{t}+\int_{0}^{1} v_{n}(t) \varphi(t)-\int_{0}^{1} v_{n}\left(T_{n}\right) \varphi\left(T_{n}\right)=\int_{T_{n}}^{t} \int_{0}^{1} v_{n} \varphi_{x x}-\left.\int_{T_{n}}^{t} v_{n} \varphi_{x}\right|_{0} ^{1}$
- Since $K_{1}<v<K_{2}$, we can pass to the limit in all the terms.

The only tricky point is to show that $v_{n}\left(x, T_{n}\right) \rightarrow v(x, T)$.

After non-simultaneous quenching.

- Now we just observe that, for n large, $\left(u_{n}, v_{n}\right)$ is a solution to

$$
\left\{\begin{array}{lll}
\left(u_{n}\right)_{t}=\left(u_{n}\right)_{x x},, & \left(v_{n}\right)_{t}=\left(v_{n}\right)_{x x}, & 0<x<1, t>T_{n} \\
\left(u_{n}\right)_{x}(0, t)=\left(v_{n}\right)^{-p}(0, t), & \left(v_{n}\right)_{x}(0, t)=0, & t>T_{n} \\
\left(u_{n}\right)_{x}(1, t)=0, & \left(v_{n}\right)_{x}(1, t)=0, & t>T_{n}
\end{array}\right.
$$

- Since $\tau_{n}<T_{n}<\tau_{n}+C / n^{2}$, we have that $T_{n} \rightarrow T$

Passing to the limit in the v_{n} component

- The integral version of the problem for v_{n} is for $t>T_{n}$,

$$
-\int_{T_{n}}^{t} \int_{0}^{1} v_{n} \varphi_{t}+\int_{0}^{1} v_{n}(t) \varphi(t)-\int_{0}^{1} v_{n}\left(T_{n}\right) \varphi\left(T_{n}\right)=\int_{T_{n}}^{t} \int_{0}^{1} v_{n} \varphi_{x x}-\left.\int_{T_{n}}^{t} v_{n} \varphi_{x}\right|_{0} ^{1}
$$

- Since $K_{1}<v<K_{2}$, we can pass to the limit in all the terms.

The only tricky point is to show that $v_{n}\left(x, T_{n}\right) \rightarrow v(x, T)$.

- Therefore, v_{∞} verifies the problem

$$
\begin{cases}\left(v_{\infty}\right)_{t}=\left(v_{\infty}\right)_{x x} & \text { in }(0,1) \times(T, \infty) \\ \left(v_{\infty}\right)_{x}(0, t)=\left(v_{\infty}\right)_{x}(1, t)=0 & \text { in }(T, \infty) \\ v_{\infty}(x, T)=v(x, T) & \text { in }(0,1)\end{cases}
$$

After non-simultaneous quenching.

- $v_{n}\left(x, T_{n}\right) \rightarrow v(x, T)$ as $n \rightarrow \infty$

Proof. Let G the Green function of the Neumann problem. Then, for $\tau_{n} \leq t \leq T_{n}$
$v_{n}(x, t)=\int_{0}^{1} G(x-y, t) v\left(y, \tau_{n}\right) d y+\int_{\tau_{n}}^{t} G(x, t-s)\left(v_{n}\right)_{x}(0, s) d s$

- The first integral converges uniformly to $v(x, T)$
- The second integral tends to zero
$\int_{\tau_{n}}^{t} G(x, t-s)\left(v_{n}\right)_{x}(0, s) d s \leq C n^{q+1}\left(t-\tau_{n}\right) \leq C n^{q+1} n^{-2}=C n^{q-1} \rightarrow 0$

After non-simultaneous quenching.

Passing to the limit in the u_{n} component

- In this case the integral version reads for $t>0$

$$
\begin{aligned}
-\int_{0}^{t} \int_{0}^{1} u_{n} \varphi_{t} & +\int_{0}^{1} u_{n}(t) \varphi(t)-\int_{0}^{1} u_{0} \varphi(0) \\
= & \int_{0}^{t} \int_{0}^{1} u_{n} \varphi_{x x}-\int_{0}^{t} V_{n}^{-p} \varphi-\left.\int_{0}^{t} u_{n} \varphi_{x}\right|_{0} ^{1}
\end{aligned}
$$

- Since $v_{n} \geq K_{1}$, we can pass to the limit in all terms to obtain that u_{∞} verifies the problem

$$
\begin{cases}\left(u_{\infty}\right)_{t}=\left(u_{\infty}\right)_{x x} & \text { in }(0,1) \times(0, \infty) \\ \left(u_{\infty}\right)_{x}(0, t)=v_{\infty}^{-p}(0, t) & \text { in }(0, \infty) \\ \left(u_{\infty}\right)_{x}(1, t)=0 & \text { in }(0, \infty) \\ u_{\infty}(x, 0)=u_{0}(x) & \text { in }(0,1)\end{cases}
$$

After non-simultaneous quenching.

- Proof of Lemma [Key]
- At time $t=\tau_{n}$ the functions u_{n} and v_{n} are increasing and concave. Therefore,

$$
\begin{aligned}
& c \leq v_{n}\left(x, \tau_{n}\right) \leq v_{n}\left(0, \tau_{n}\right)+n^{q} x \leq C+n^{q} x, \\
& \frac{1}{n} \leq u_{n}\left(x, \tau_{n}\right) \leq \frac{1}{n}+\left(v_{n}\right)^{-p}\left(0, \tau_{n}\right) x \leq \frac{1}{n}+C x .
\end{aligned}
$$

After non-simultaneous quenching.

- Proof of Lemma [Key]
- At time $t=\tau_{n}$ the functions u_{n} and v_{n} are increasing and concave. Therefore,

$$
\begin{aligned}
& c \leq v_{n}\left(x, \tau_{n}\right) \leq v_{n}\left(0, \tau_{n}\right)+n^{q} x \leq C+n^{q} x, \\
& \frac{1}{n} \leq u_{n}\left(x, \tau_{n}\right) \leq \frac{1}{n}+\left(v_{n}\right)^{-p}\left(0, \tau_{n}\right) x \leq \frac{1}{n}+C x .
\end{aligned}
$$

- We estimate the time $\widehat{\tau}_{n}$ at which v_{n} reaches the level $c / 2$.

Denote by $s(x, t)=v_{n}\left(x, t+\tau_{n}\right)$, we have that s is supersolution to the problem

$$
\begin{cases}h_{t}=h_{x x}, & 0<x<1,0<t<\infty, \\ h_{x}(0, t)=n^{q}, & 0 \leq t<\infty, \\ h_{x}(1, t)=0, & 0 \leq t<\infty, \\ h(x, 0)=c, & 0 \leq x \leq 1 .\end{cases}
$$

This problem vanish in finite time. Let τ_{0} be the time such that $h\left(0, \tau_{0}\right)=c / 2$.

After non-simultaneous quenching.

Rescaling h we take off the dependence on n in the boundary condition. Let

$$
\psi(y, \tau)=h\left(y / n^{q}, \tau / n^{2 q}\right)
$$

which satisfies the problem

$$
\begin{cases}\psi_{\tau}=\psi_{y y}, & 0<y<n^{q}, 0<\tau<\infty \\ \psi_{y}(0, \tau)=1, & 0 \leq \tau<\infty \\ \psi_{y}\left(n^{q}, \tau\right)=0, & 0 \leq \tau<\infty \\ \psi(y, 0)=c, & 0 \leq y \leq n^{q}\end{cases}
$$

Then, there exists a time τ_{1} at which $\psi\left(0, \tau_{1}\right)=c / 2$. We have also that $\psi\left(0, \tau_{1}\right)=h\left(0, \tau_{1} / n^{2 q}\right)$, thus,

$$
\widehat{\tau}_{n} \geq \tau_{n}+\tau_{0}=\tau_{n}+\tau_{1} / n^{2 q}
$$

After non-simultaneous quenching.

- We estimate the time T_{n} at which u_{n} reaches the level 0 .

While $f_{n}\left(V_{n}(t)\right)=V_{n}^{-p}(t)$, the function

$$
r(x, t)=u_{n}\left(x, t+\tau_{n}\right)
$$

is a subsolution to the linear problem

$$
\begin{cases}r_{t}=r_{x x}, & 0<x<1,0<t<\infty \\ r_{x}(0, t)=K^{-p}, & 0<t \leq \infty \\ r_{x}(1, t)=0, & 0<t \leq \infty \\ r(x, 0)=u\left(x, \tau_{n}\right), & 0 \leq x \leq 1\end{cases}
$$

where $K=\max V_{n}(t)$.

After non-simultaneous quenching.

$$
\begin{cases}r_{t}=r_{x x}, & 0<x<1,0<t<\infty \\ r_{x}(0, t)=K^{-p}, & 0<t \leq \infty \\ r_{x}(1, t)=0, & 0<t \leq \infty \\ r(x, 0)=u\left(x, \tau_{n}\right), & 0 \leq x \leq 1\end{cases}
$$

This problem vanish in finite time τ_{0}. Moreover,

$$
\begin{gathered}
r(0, t) \leq 0, \\
\omega(y, \tau)=n r\left(y / n, \tau / n^{2}\right), \text { verifies all } t>\tau_{0} \\
\begin{cases}\omega_{\tau}=\omega_{y y}, & 0<y<n, 0<\tau<\infty, \\
\omega_{y}(0, \tau)=K^{-p}, & 0 \leq \tau<\infty, \\
\omega_{y}(n, \tau)=0, & 0 \leq \tau<\infty \\
\omega(y, 0)=n u\left(y / n, \tau_{n}\right), & 0 \leq y \leq n\end{cases}
\end{gathered}
$$

There exist τ_{1} such that

$$
0=\omega\left(0, \tau_{1}\right)=n r\left(0, \tau_{1} / n^{2}\right)
$$

and

$$
\omega(0, \tau) \leq 0, \text { for } \tau \geq \tau_{1}
$$

After non-simultaneous quenching.

- Summing up we have
i) The time $\widehat{\tau}_{n}$ at which v_{n} reaches the level $c / 2$ verifies that

$$
\widehat{\tau}_{n} \geq \tau_{n}+C / n^{2 q}
$$

ii) the time T_{n} at which r reaches the level 0 verifies that

$$
T_{n} \leq \tau_{n}+C / n^{2}
$$

iii) Since $q<1$, we have that $T_{n} \leq \widehat{\tau}_{n}$.
iv) Therefore at time T_{n}, u_{n} vanishes while v_{n} remains positive.
v) $v_{n}>c / 2$ for times greater than T_{n}.
vi) As $v_{n}>c / 2$ for $t>0$, we have that $u_{n}<r$ for all time, and

$$
u_{n}(0, t) \leq 0, \quad \text { for all } t>\tau_{n}+C / n^{2}
$$

Numerical Approximations

- We consider uniform mesh and its associated standard approximation of the second derivative.

$$
\begin{aligned}
& \left\{\begin{array}{l}
u_{1}^{\prime}=\frac{2}{h^{2}}\left(u_{2}-u_{1}\right)-\frac{2}{h} v_{1}^{-p}, \\
u_{k}^{\prime}=\frac{1}{h^{2}}\left(u_{k-1}-2 u_{k}+u_{k+1}\right), \\
u_{N+1}^{\prime}=\frac{2}{h^{2}}\left(u_{N}-u_{N+1}\right), \\
u_{k}(0)=u_{0}\left(x_{k}\right), \quad k=1, \ldots, N+1,
\end{array}\right. \\
& \left\{\begin{array}{l}
v_{1}^{\prime}=\frac{2}{h^{2}}\left(v_{2}-v_{1}\right)-\frac{2}{h} u_{1}^{-q}, \\
v_{k}^{\prime}=\frac{1}{h^{2}}\left(v_{k-1}-2 v_{k}+v_{k+1}\right), \\
v_{N+1}^{\prime}=\frac{2}{h^{2}}\left(v_{N}-v_{N+1}\right), \\
v_{k}(0)=v_{0}\left(x_{k}\right), \quad k=1, \ldots, N+1 .
\end{array}\right.
\end{aligned}
$$

- This method converges in set of the form $[0,1] \times[0, T-\tau]$ for all $\tau>0$,

$$
\max _{t \in[0, T-\tau]} \max _{k}\left\{\left|u\left(x_{k}, t\right)-u_{k}(t)\right|,\left|v\left(x_{k}, t\right)-v_{k}(t)\right|\right\} \leq C h
$$

- Both functions, u_{h} and v_{h}, are increasing in space and decreasing in time. In fact, there exists a positive constant

$$
u_{1}^{\prime}(t)<-C, \quad v_{1}^{\prime}(t)<-C .
$$

Then,

$$
u_{1}(t) \geq\left(T_{h}-t\right), \quad v_{1} \geq\left(T_{h}-t\right) .
$$

Numerical Approximations

- This method quenches in finite time T_{h}. Moreover,

$$
T_{h} \leq(1+h) \min \left\{v_{1}(0), v_{2}(0)\right\}
$$

and

$$
T_{h} \rightarrow T .
$$

- The only quenching point is the origin.
- Simultaneous vs Non-simultaneous

- In non-simultaneous case, the quenching rate is

$$
u_{1}(t) \sim\left(T_{h}-t\right)
$$

Numerical Approximations

- We consider and adaptative method. We impose that

$$
c_{1} \leq-u_{1}^{q} u_{1}^{\prime} \leq c_{2}
$$

which is equivalent to

$$
c_{1} \leq R(t, h):=u_{1}^{q}\left(\frac{2}{h} v_{1}^{-p}-\frac{2}{h^{2}}\left(u_{2}-u_{1}\right)\right) \leq c_{2}
$$

- Let t_{1} be the time at which R reaches the tolerance c_{1}, at this point we refine the mesh.

We move the point x_{2} to a new place z while the rest of the mesh remain fixed, and we choose $\left(u_{z}, v_{z}\right)$, that is, the value of $\left(u_{h}, v_{h}\right)$ at that new point z, such that
$\frac{u_{2}\left(t_{1}\right)-u_{1}\left(t_{1}\right)}{h}=\frac{u_{z}\left(t_{1}\right)-u_{1}\left(t_{1}\right)}{z}, \quad \frac{v_{2}\left(t_{1}\right)-v_{1}\left(t_{1}\right)}{h}=\frac{v_{z}\left(t_{1}\right)-v_{1}\left(t_{1}\right)}{z}$,
i.e., the points $\left(0, u_{1}\left(t_{1}\right)\right),\left(z, u_{z}\left(t_{1}\right)\right),\left(h, u_{2}\left(t_{1}\right)\right)$ lay in the same line joining $\left(0, u_{1}\left(t_{1}\right)\right),\left(h, u_{2}\left(t_{1}\right)\right)$.

Numerical Approximations

- At this time,

$$
\begin{aligned}
R\left(z, t_{1}\right) & =\left(\frac{2}{z} v_{1}^{-p}(t)-\frac{2}{z^{2}}\left(u_{z}(t)-u_{1}(t)\right)\right) u_{1}^{q}(t) \\
& =\frac{1}{z}\left(2 v_{1}^{-p}(t)-\frac{2}{z}\left(u_{z}(t)-u_{1}(t)\right)\right) u_{1}^{q}(t) \\
& =\frac{1}{z}\left(2 v_{1}^{-p}(t)-\frac{2}{h}\left(u_{2}(t)-u_{1}(t)\right)\right) u_{1}^{q}(t) \\
& =\frac{h}{z} R\left(h, t_{1}\right)>R\left(h, t_{1}\right)=c_{1} .
\end{aligned}
$$

So, we apply again the method with the new mesh up to time t_{2} at which $R\left(z, t_{2}\right)=c_{1}$. At this time we refine the mesh \ldots.

