Non-trivial compact blow-up sets of smaller DIMENSION
 Mayte Pérez-Llanos
 Universidad Carlos III de Madrid

in collaboration with Julio D. Rossi
U. de Buenos Aires (Argentine)

Singularities in nonlinear parabolic problems

The solutions of nonlinear parabolic problems can give rise to singularities, even from smooth initial data, for which we can develop a theory of existence, uniqueness and continuous dependence in small intervals of time.

Singularities in nonlinear parabolic problems

The solutions of nonlinear parabolic problems can give rise to singularities, even from smooth initial data, for which we can develop a theory of existence, uniqueness and continuous dependence in small intervals of time.

For instance, a solution blows up if $\exists T<\infty$ blow-up time, such that the solution is properly defined $\forall 0<t<T$, whereas

$$
\limsup _{t \rightarrow T^{-}}\|u(\cdot, t)\|_{\infty}=\infty
$$

CLASSICAL BLOW-UP PROBLEMS

- Semilinear heat equation [Fujita]

$$
u_{t}=\Delta u+u^{\sigma}, \quad x \in \mathbb{R}^{N} .
$$

CLASSICAL BLOW-UP PROBLEMS

- Semilinear heat equation [Fujita]

$$
u_{t}=\Delta u+u^{\sigma}, \quad x \in \mathbb{R}^{N} .
$$

- Heat equation with nonlinear flux on the boundary

$$
\begin{cases}u_{t}=\Delta u, & x \in B(0, R) \\ \frac{\partial u}{\partial x}(x, t)=-u^{\sigma}(x, t), & x \in \partial B(0, R)\end{cases}
$$

CLASSICAL BLOW-UP PROBLEMS

- Semilinear heat equation [Fujita]

$$
u_{t}=\Delta u+u^{\sigma}, \quad x \in \mathbb{R}^{N} .
$$

- Heat equation with nonlinear flux on the boundary

$$
\begin{cases}u_{t}=\Delta u, & x \in B(0, R) \\ \frac{\partial u}{\partial x}(x, t)=-u^{\sigma}(x, t), & x \in \partial B(0, R)\end{cases}
$$

- Some generalizations: Substitute the linear diffusion term by
\triangleright The porous media operator: Δu^{m}
\triangleright The p-laplacian operator: $\quad \Delta_{p} u=\nabla\left(|\nabla u|^{p-2} \nabla u\right)$
\triangleright The doubly nonlinear operator: $\quad \nabla\left(\left|\nabla u^{m}\right|^{p-2} \nabla u^{m}\right)$

Purpose of the work

- Where do the solutions blow-up?

Blow-up set:

$$
B(u)=\{x \text { such that }
$$

$$
\left.\exists\left(x_{n}, t_{n}\right), x_{n} \rightarrow x, t_{n} \rightarrow T^{-}, \lim _{n \rightarrow \infty} u\left(x_{n}, t_{n}\right)=\infty\right\} .
$$

Purpose of the work

- Where do the solutions blow-up?

Blow-up set:
$B(u)=\{x$ such that
$\left.\exists\left(x_{n}, t_{n}\right), x_{n} \rightarrow x, t_{n} \rightarrow T^{-}, \lim _{n \rightarrow \infty} u\left(x_{n}, t_{n}\right)=\infty\right\}$.
\triangleright Global blow-up
\triangleright Regional blow-up
\triangleright Single point blow-up

EXAMPLES OF BLOW-UP SETS

For the porous media equation with a source

$$
u_{t}=\Delta u^{m}+u^{\sigma}
$$

\triangleright if $1<\sigma<m$ global blow-up : $B(u)=\mathbb{R}^{N}$,
[Galaktionov-Kurdyumov-Mikhailov-Samarskii]
\triangleright if $\sigma=m$ regional blow-up : $B(u)=\{|x| \leq r\}$,
[Cortázar-del Pino-Elgueta]
\triangleright if $\sigma>m$ single point blow-up : $B(u)=\{x=0\}$,
[Galaktionov-Kurdyumov-Mikhailov-Samarskii]

EXAMPLES OF BLOW-UP SETS

For the porous media equation with a source

$$
u_{t}=\Delta u^{m}+u^{\sigma}
$$

\triangleright if $1<\sigma<m$ global blow-up : $B(u)=\mathbb{R}^{N}$,
[Galaktionov-Kurdyumov-Mikhailov-Samarskii]
\triangleright if $\sigma=m$ regional blow-up : $B(u)=\{|x| \leq r\}$,
[Cortázar-del Pino-Elgueta]
\triangleright if $\sigma>m$ single point blow-up : $B(u)=\{x=0\}$,
[Galaktionov-Kurdyumov-Mikhailov-Samarskii]
with additional radial conditions: $B(u)=\{|x|=R\}$

EXAMPLES OF BLOW-UP SETS

For the porous media equation with a source

$$
u_{t}=\Delta u^{m}+u^{\sigma}
$$

\triangleright if $1<\sigma<m$ global blow-up : $B(u)=\mathbb{R}^{N}$,
[Galaktionov-Kurdyumov-Mikhailov-Samarskii]
\triangleright if $\sigma=m$ regional blow-up : $B(u)=\{|x| \leq r\}$,
[Cortázar-del Pino-Elgueta]
\triangleright if $\sigma>m$ single point blow-up : $B(u)=\{x=0\}$,
[Galaktionov-Kurdyumov-Mikhailov-Samarskii]
with additional radial conditions: $B(u)=\{|x|=R\}$
Total space, balls, points and spheres

New examples of blow-up sets

We find parabolic equations whose solutions blow up in segments in \mathbb{R}^{2}, that is

$$
B(u)=[-L, L] \times\{0\} .
$$

Generally, given N, M, arbitrary dimensions, there exists a solution to a parabolic problem in \mathbb{R}^{N+M}, blowing up in a set of the form

$$
B(u)=B(0, L) \times\{0\}
$$

being $B(0, L)$ the N-dimensional ball in \mathbb{R}^{N} of L radio.

New examples of blow-up sets

In the product space $\mathbb{R}^{N+M} \times(0, T)$, we consider

1. $u_{t}=\Delta_{x} u^{m}+\Delta_{y} u+u^{m}, \quad m>1$
2. $u_{t}=\nabla_{x}\left(\left|\nabla_{x} u\right|^{p-2} \nabla_{x} u\right)+\Delta_{y} u+u^{p-1}$, $p>2$.

In the product space $\mathbb{R}_{+}^{N} \times \mathbb{R}^{M} \times(0, T)$, we consider 3.

$$
\begin{cases}\left(u^{m}\right)_{t}=\nabla_{x}\left(\left|\nabla_{x} u\right|^{p-2} \nabla_{x} u\right)+\Delta_{y} u^{m}, & \text { in } \mathbb{R}_{+}^{N} \times \mathbb{R}^{M} \times(0, T), \\ -\left|\nabla_{x} u\right|^{p-2} \frac{\partial u}{\partial x_{N}}=u^{p-1}, & \text { on } \partial \mathbb{R}_{+}^{N} \times \mathbb{R}^{M} \times(0, T) .\end{cases}
$$

New examples of blow-up sets

Theorem

- There exists $L>0$ such that, given $\left\{y_{1}, \ldots, y_{k}\right\} \in \mathbb{R}^{M}$, and $\left\{x_{1}, \ldots, x_{j}\right\} \in \mathbb{R}^{N}$, two arbitrary sets of points, verifying $\left|x_{i}-x_{j}\right|>2 L$, there exists a solution to the parabolic problems 1 and 2, whose blow-up set is

$$
B(u)=\bigcup_{i=1}^{j} B\left(x_{i}, L\right) \times\left\{y_{1}, \ldots, y_{k}\right\}
$$

- There exists a solution to problem 3, whose blow-up set consists of an arbitrary number of connected components of dimension N,

$$
K \times\left\{y_{1}, \cdots, y_{k}\right\} .
$$

Proof of the Theorem

We consider solutions to problems 1,2,3 in separated variables:

$$
u(x, y, t)=\varphi(x) \psi(y, t)
$$

where ψ satisfies

$$
\psi_{t}(y, t)=\Delta_{y} \psi(y, t)+\psi^{\gamma}(y, t), \quad(y, t) \in \mathbb{R}^{M} \times(0, T),
$$

and φ is a compactly supported solution to an elliptic problem

1. $\varphi(x)=\Delta_{x} \varphi^{m}(x)+\varphi^{m}(x), \quad x \in \mathbb{R}^{N}$,
2. $\varphi(x)=\nabla_{x}\left(\left|\nabla_{x} \varphi\right|^{p-2} \nabla_{x} \varphi(x)\right)+\varphi^{p-1}(x), \quad x \in \mathbb{R}^{N}$,
3. $\begin{cases}\varphi^{m}(x)=\nabla\left(|\nabla \varphi|^{p-2} \nabla \varphi(x)\right), & x \in \mathbb{R}_{+}^{N}, \\ -|\nabla \varphi|^{p-2} \frac{\partial \varphi}{\partial x_{N}}(x)=\varphi^{p-1}(x), & x \in \partial \mathbb{R}_{+}^{N},\end{cases}$

Proof of the Theorem

We consider solutions to problems 1,2,3 in separated variables:

$$
u(x, y, t)=\varphi(x) \psi(y, t)
$$

where ψ satisfies

$$
\psi_{t}(y, t)=\Delta_{y} \psi(y, t)+\psi^{\gamma}(y, t), \quad(y, t) \in \mathbb{R}^{M} \times(0, T),
$$

and φ is a compactly supported solution to an elliptic problem

1. $\varphi(x)=\Delta_{x} \varphi^{m}(x)+\varphi^{m}(x), \quad x \in \mathbb{R}^{N}$,
2. $\varphi(x)=\nabla_{x}\left(\left|\nabla_{x} \varphi\right|^{p-2} \nabla_{x} \varphi(x)\right)+\varphi^{p-1}(x), \quad x \in \mathbb{R}^{N}$,
3. $\begin{cases}\varphi^{m}(x)=\nabla\left(|\nabla \varphi|^{p-2} \nabla \varphi(x)\right), & x \in \mathbb{R}_{+}^{N}, \\ -|\nabla \varphi|^{p-2} \frac{\partial \varphi}{\partial x_{N}}(x)=\varphi^{p-1}(x), & x \in \partial \mathbb{R}_{+}^{N},\end{cases}$

Then,

$$
B(u)=\operatorname{supp}(\varphi) \times B(\psi)
$$

Proof of the Theorem

We study $B(\psi)$. It is known that solutions to

$$
\psi_{t}(y, t)=\Delta_{y} \psi(y, t)+\psi^{\gamma}(y, t), \quad(y, t) \in \mathbb{R}^{M} \times(0, T),
$$

blow up if $\gamma>1$ and the initial condition is large.

Proof of the Theorem

We study $B(\psi)$. It is known that solutions to

$$
\psi_{t}(y, t)=\Delta_{y} \psi(y, t)+\psi^{\gamma}(y, t), \quad(y, t) \in \mathbb{R}^{M} \times(0, T),
$$

blow up if $\gamma>1$ and the initial condition is large.
Then, for each case we consider the following values of exponents

1. $\gamma=m>1$,
2. $\gamma=p-1>1$, thus we take $p>2$,
3. $\gamma=\frac{p-1}{m}$, thus we take $p-1>m$ and also $p>2$.

Proof of the Theorem

We study $B(\psi)$. It is known that solutions to

$$
\psi_{t}(y, t)=\Delta_{y} \psi(y, t)+\psi^{\gamma}(y, t), \quad(y, t) \in \mathbb{R}^{M} \times(0, T),
$$

blow up if $\gamma>1$ and the initial condition is large.
The blow-up set for this equation consists of a finite number of points,
[Chen-Matano, Muller-Weissler]

Proof of the Theorem

We study $B(\psi)$. It is known that solutions to

$$
\psi_{t}(y, t)=\Delta_{y} \psi(y, t)+\psi^{\gamma}(y, t), \quad(y, t) \in \mathbb{R}^{M} \times(0, T),
$$

blow up if $\gamma>1$ and the initial condition is large.
The blow-up set for this equation consists of a finite number of points,
[Chen-Matano, Muller-Weissler]
Moreover, given any set of points $\left\{y_{1}, \ldots, y_{k}\right\} \in \mathbb{R}^{M}$, it is possible to construct solutions, whose blow-up set is exactly

$$
B(\psi)=\left\{y_{1}, \ldots, y_{k}\right\}
$$

Proof of the Theorem

We study the support of φ.

$$
\text { 1. } \varphi(x)=\Delta_{x} \varphi^{m}(x)+\varphi^{m}(x), \quad x \in \mathbb{R}^{N} \text {, }
$$

There exists a unique radial solution to 1 such that $\varphi^{m} \in H^{1}\left(\mathbb{R}^{N}\right)$. Moreover, there exist initial data such that the corresponding solution to 1 consists of a finite number of copies of the radial profiles, centered at certain points x_{1}, \ldots, x_{j} with $\left|x_{i}-x_{j}\right|>2 L$, where L is the ratio of the unique radial solution.
[Cortázar-Elgueta-Felmer]

Thus,

$$
\operatorname{supp}(\varphi)=\bigcup_{i=1}^{j} B\left(x_{i}, L\right)
$$

Proof of the Theorem

We study the support of φ.

$$
\text { 1. } \varphi(x)=\Delta_{x} \varphi^{m}(x)+\varphi^{m}(x), \quad x \in \mathbb{R}^{N} \text {, }
$$

There exists a unique radial solution to 1 such that $\varphi^{m} \in H^{1}\left(\mathbb{R}^{N}\right)$. Moreover, there exist initial data such that the corresponding solution to 1 consists of a finite number of copies of the radial profiles, centered at certain points x_{1}, \ldots, x_{j} with $\left|x_{i}-x_{j}\right|>2 L$, where L is the ratio of the unique radial solution.
[Cortázar-Elgueta-Felmer]
2. $\varphi(x)=\nabla_{x}\left(\left|\nabla_{x} \varphi\right|^{p-2} \nabla_{x} \varphi(x)\right)+\varphi^{p-1}(x), \quad x \in \mathbb{R}^{N}$,

Thus,
[Galaktionov-Kurdyumov-Mikhailov-Samarskii]

$$
\operatorname{supp}(\varphi)=\bigcup_{i=1}^{j} B\left(x_{i}, L\right)
$$

Proof of the Theorem

3. For $p-1>m$ and $p>2, \varphi$ verifies

$$
\begin{cases}\varphi^{m}(x)=\nabla\left(|\nabla \varphi|^{p-2} \nabla \varphi(x)\right), & x \in \mathbb{R}_{+}^{N}, \\ -|\nabla \varphi|^{p-2} \frac{\partial \varphi}{\partial x_{N}}(x)=\varphi^{p-1}(x), & x \in \partial \mathbb{R}_{+}^{N}\end{cases}
$$

Proof of the Theorem

3. For $p-1>m$ and $p>2, \varphi$ verifies

$$
\begin{cases}\varphi^{m}(x)=\nabla\left(|\nabla \varphi|^{p-2} \nabla \varphi(x)\right), & x \in \mathbb{R}_{+}^{N} \\ -|\nabla \varphi|^{p-2} \frac{\partial \varphi}{\partial x_{N}}(x)=\varphi^{p-1}(x), & x \in \partial \mathbb{R}_{+}^{N}\end{cases}
$$

If $N=1, \varphi$ is explicit and compactly supported.
[Filo-MPL]

Corollary: Any solution to

1. $u_{t}=\Delta_{x} u^{m}+\Delta_{y} u+u^{m}, \quad$ in $\mathbb{R}^{N+M} \times(0, T)$.
2. $u_{t}=\nabla_{x}\left(\left|\nabla_{x} u\right|^{p-2} \nabla_{x} u\right)+\Delta_{y} u+u^{p-1}, \quad$ in $\mathbb{R}^{N+M} \times(0, T)$.
3.

$$
\begin{cases}\left(u^{m}\right)_{t}=\nabla_{x}\left(\left|\nabla_{x} u\right|^{p-2} \nabla_{x} u\right)+\Delta_{y} u^{m}, & \text { in } \mathbb{R}_{+}^{N} \times \mathbb{R}^{M} \times(0, T), \\ -\left|\nabla_{x} u\right|^{p-2} \frac{\partial u}{\partial x_{N}}=u^{p-1}, & \text { on } \partial \mathbb{R}_{+}^{N} \times \mathbb{R}^{M} \times(0, T) .\end{cases}
$$

blows up if

1. $1<m<1+2 / M$,
2. $1<p-1<1+2 / M$,
3. $1<(p-1) / m<1+2 / M$.

Corollary: Any solution to

1. $u_{t}=\Delta_{x} u^{m}+\Delta_{y} u+u^{m}, \quad$ in $\mathbb{R}^{N+M} \times(0, T)$.
2. $u_{t}=\nabla_{x}\left(\left|\nabla_{x} u\right|^{p-2} \nabla_{x} u\right)+\Delta_{y} u+u^{p-1}, \quad$ in $\mathbb{R}^{N+M} \times(0, T)$.
3.

$$
\begin{cases}\left(u^{m}\right)_{t}=\nabla_{x}\left(\left|\nabla_{x} u\right|^{p-2} \nabla_{x} u\right)+\Delta_{y} u^{m}, & \text { in } \mathbb{R}_{+}^{N} \times \mathbb{R}^{M} \times(0, T), \\ -\left|\nabla_{x} u\right|^{p-2} \frac{\partial u}{\partial x_{N}}=u^{p-1}, & \text { on } \partial \mathbb{R}_{+}^{N} \times \mathbb{R}^{M} \times(0, T) .\end{cases}
$$

blows up if

1. $1<m<1+2 / M$,
2. $1<p-1<1+2 / M$,
3. $1<(p-1) / m<1+2 / M$.

By comparison with solutions of the form $u(x, y, t)=\varphi(x) \psi(y, t)$.

Compactness in the half space

To extend the existence of solutions of compact support to

$$
\text { (P) } \begin{cases}\varphi^{m}(x)=\nabla\left(|\nabla \varphi|^{p-2} \nabla \varphi(x)\right), & x \in \mathbb{R}_{+}^{N}, \\ -|\nabla \varphi|^{p-2} \frac{\partial \varphi}{\partial x_{N}}(x)=\varphi^{p-1}(x), & x \in \partial \mathbb{R}_{+}^{N},\end{cases}
$$

to more space dimensions, we consider the symmetry property :

$$
u\left(x^{\prime}, x_{N}\right)=u\left(\left|x^{\prime}\right|, x_{N}\right), x^{\prime} \in \mathbb{R}^{N-1}, x_{N} \in \mathbb{R}_{+}
$$

Compactness in the half space

To extend the existence of solutions of compact support to

$$
\text { (P) } \begin{cases}\varphi^{m}(x)=\nabla\left(|\nabla \varphi|^{p-2} \nabla \varphi(x)\right), & x \in \mathbb{R}_{+}^{N}, \\ -|\nabla \varphi|^{p-2} \frac{\partial \varphi}{\partial x_{N}}(x)=\varphi^{p-1}(x), & x \in \partial \mathbb{R}_{+}^{N},\end{cases}
$$

to more space dimensions, we consider the symmetry property :

$$
u\left(x^{\prime}, x_{N}\right)=u\left(\left|x^{\prime}\right|, x_{N}\right), x^{\prime} \in \mathbb{R}^{N-1}, x_{N} \in \mathbb{R}_{+}
$$

Theorem If $p-1>m$ there exists a nonnegative nontrivial solution to (P) with compact support, verifying (\star). Moreover, any nontrivial and nonnegative solution to (P) such that $u \in W^{1, p}\left(\mathbb{R}_{+}^{N}\right)$ is compactly supported and radial in the tangencial variables.

COMPACTNESS IN THE HALF SPACE

We study the approximating problem

$$
(\mathrm{AP}) \begin{cases}\nabla\left(\left|\nabla u_{R}\right|^{p-2} \nabla u_{R}\right)=\left(u_{R}\right)^{m}, & \text { in } B_{R}^{+} \\ -\left|\nabla u_{R}\right|^{p-2} \frac{\partial u_{R}}{\partial x_{N}}=\left(u_{R}\right)^{p-1}, & \text { on } \Gamma_{0} \\ u_{R}=0, & \text { on } \Gamma_{+}\end{cases}
$$

where B_{R}^{+}denotes the half ball $B(0, R)_{+}=\left\{x,|x|<R, x_{N}>0\right\}$, $\Gamma_{0}=\partial B_{R}^{+} \cup\left\{x_{N}=0\right\}$ and $\Gamma_{+}=\partial B_{R}^{+} \cup\left\{x_{N}>0\right\}$.

COMPACTNESS IN THE HALF SPACE

We study the approximating problem

$$
(\mathrm{AP}) \begin{cases}\nabla\left(\left|\nabla u_{R}\right|^{p-2} \nabla u_{R}\right)=\left(u_{R}\right)^{m}, & \text { in } B_{R}^{+} \\ -\left|\nabla u_{R}\right|^{p-2} \frac{\partial u_{R}}{\partial x_{N}}=\left(u_{R}\right)^{p-1}, & \text { on } \Gamma_{0} \\ u_{R}=0, & \text { on } \Gamma_{+}\end{cases}
$$

where B_{R}^{+}denotes the half ball $B(0, R)_{+}=\left\{x,|x|<R, x_{N}>0\right\}$,
$\Gamma_{0}=\partial B_{R}^{+} \cup\left\{x_{N}=0\right\}$ and $\Gamma_{+}=\partial B_{R}^{+} \cup\left\{x_{N}>0\right\}$.
For R sufficiently large we show

$$
\max _{x \in \operatorname{supp}\left(u_{R}\right)}|x|<R
$$

Compactness in the half space

We find nontrivial compactly supported solutions to (AP) in a natural variational frame

$$
W=\left\{u \in W^{1, p}\left(B_{R}^{+}\right) \text {verifying }\left.u\right|_{\Gamma_{2}}=0\right\}
$$

with the norm

$$
\|u\|_{W}=\int_{B_{R}^{+}}|\nabla u|^{p} .
$$

By Poincaré's inequality, $\left\|\|_{W}\right.$ is equivalent to the usual norm of $W^{1, p}$.

COMPACTNESS IN THE HALF SPACE

By minimizing the functional

$$
J_{R}(u)=\frac{\frac{m+1}{p}\left(\int_{B_{R}^{+}}|\nabla u|^{p}-\int_{\Gamma_{1}} u^{p}\right)}{\left(\int_{B_{R}^{+}} u^{m+1}\right)^{p /(m+1)}}
$$

over W, we show

Proposition For R large there exists a nontrivial minimizer, u_{R}, which is a weak solution to (AP).

Compactness in the half space

Lemma If u_{R} is a nonnegative minimizer of J_{R}, there exists a constant C independent on R such that

$$
\left\|u_{R}\right\|_{L^{m+1}\left(B_{R}^{+}\right)} \leq C,\left\|u_{R}\right\|_{L^{\infty}\left(B_{R}^{+}\right)} \leq C \text { and }\left\|\nabla u_{R}\right\|_{L^{\infty}\left(B_{R / 2}^{+}\right)} \leq C .
$$

Compactness in the half space

We state a Comparison Principle for the problem

$$
(P C) \begin{cases}\nabla\left(|\nabla \omega|^{p-2} \nabla \omega\right)-\omega^{m}=0, & \text { in } \Omega \subset \mathbb{R}_{+}^{N}, \\ \omega=0, & \text { on } \partial \Omega \cap\left\{x_{N}>0\right\} \\ -|\nabla \omega|^{p-2} \frac{\partial \omega}{\partial x_{N}}=\omega^{p-1}, & \text { on } \partial \Omega \cap\left\{x_{N}=0\right\} .\end{cases}
$$

Lemma Let $\Omega \subset \mathbb{R}_{+}^{N}$ be an open bounded domain, with Lipschitz boundary. Suppose that $\omega_{i} \in W^{1, p}(\Omega), i=1,2$ are bounded sub and super solutions to problem (PC), respectively. If the $N-1$ dimensional measure of $\partial \Omega \cap\left\{x_{N}=0\right\}$ verifies $\mu\left(\partial \Omega \cap\left\{x_{N}=0\right\}\right)<\delta$ for $>\delta>0$ small, then $\left(\omega_{2}-\omega_{1}\right) \geq 0$ in Ω.

Compactness in the half space

Multiplying the inequalities verified by $\omega_{i}, i=1,2$ by $h\left(\omega_{2}-\omega_{1}\right)$, being $h(x)=-\quad \min \{0, x\}$, and integrating by parts

$$
\begin{aligned}
& C_{1}(p) \int_{\Omega}\left|\nabla h\left(\omega_{2}-\omega_{1}\right)\right|^{p}-\int_{\Omega}\left(\omega_{2}^{m}-\omega_{1}^{m}\right) h\left(\omega_{2}-\omega_{1}\right) \\
& \quad \leq C_{2}\left(\int_{\partial \Omega \cap\left\{x_{N}=0\right\}} h\left(\omega_{2}-\omega_{1}\right)^{p}\right)^{2 / p}\left(\mu\left(\partial \Omega \cap\left\{x_{N}=0\right\}\right)\right)^{1-2 / p},
\end{aligned}
$$

recall that $p>2$.

Compactness in the half space

Multiplying the inequalities verified by $\omega_{i}, i=1,2$ by $h\left(\omega_{2}-\omega_{1}\right)$, being $h(x)=-\quad \min \{0, x\}$, and integrating by parts

$$
\begin{aligned}
& C_{1}(p) \int_{\Omega}\left|\nabla h\left(\omega_{2}-\omega_{1}\right)\right|^{p}-\int_{\Omega}\left(\omega_{2}^{m}-\omega_{1}^{m}\right) h\left(\omega_{2}-\omega_{1}\right) \\
& \quad \leq C_{2}\left(\int_{\partial \Omega \cap\left\{x_{N}=0\right\}} h\left(\omega_{2}-\omega_{1}\right)^{p}\right)^{2 / p}\left(\mu\left(\partial \Omega \cap\left\{x_{N}=0\right\}\right)\right)^{1-2 / p},
\end{aligned}
$$

recall that $p>2$.
Since $W^{1, p}(\Omega) \subset L^{p}(\partial \Omega)$, applying Poincaré's inequality

$$
\left(\int_{\partial \Omega \cup\left\{x_{N}=0\right\}}|h|^{p}\right)^{\frac{1}{p}} \leq C\left(\int_{\Omega}|\nabla h|^{p}\right)^{\frac{1}{p}} .
$$

Compactness in the half space

Multiplying the inequalities verified by $\omega_{i}, i=1,2$ by $h\left(\omega_{2}-\omega_{1}\right)$, being $h(x)=-\quad \min \{0, x\}$, and integrating by parts

$$
\begin{aligned}
& C_{1}(p) \int_{\Omega}\left|\nabla h\left(\omega_{2}-\omega_{1}\right)\right|^{p}-\int_{\Omega}\left(\omega_{2}^{m}-\omega_{1}^{m}\right) h\left(\omega_{2}-\omega_{1}\right) \\
& \quad \leq C_{2}\left(\int_{\partial \Omega \cap\left\{x_{N}=0\right\}} h\left(\omega_{2}-\omega_{1}\right)^{p}\right)^{2 / p}\left(\mu\left(\partial \Omega \cap\left\{x_{N}=0\right\}\right)\right)^{1-2 / p},
\end{aligned}
$$

recall that $p>2$.

$$
\|\nabla h\|_{L^{p}(\Omega)}^{p} \leq C\|\nabla h\|_{L^{p}(\Omega)}^{2}\left(\mu\left(\partial \Omega \cap\left\{x_{N}=0\right\}\right)\right)^{1-2 / p}
$$

Compactness in the half space

Multiplying the inequalities verified by $\omega_{i}, i=1,2$ by $h\left(\omega_{2}-\omega_{1}\right)$, being $h(x)=-K \min \{0, x\}$, and integrating by parts

$$
\begin{aligned}
& C_{1}(p) \int_{\Omega}\left|\nabla h\left(\omega_{2}-\omega_{1}\right)\right|^{p}-\int_{\Omega}\left(\omega_{2}^{m}-\omega_{1}^{m}\right) h\left(\omega_{2}-\omega_{1}\right) \\
& \quad \leq C_{2}\left(\int_{\partial \Omega \cap\left\{x_{N}=0\right\}} h\left(\omega_{2}-\omega_{1}\right)^{p}\right)^{2 / p}\left(\mu\left(\partial \Omega \cap\left\{x_{N}=0\right\}\right)\right)^{1-2 / p},
\end{aligned}
$$

recall that $p>2$.

$$
\|\nabla h\|_{L^{p}(\Omega)}^{p} \leq C\|\nabla h\|_{L^{p}(\Omega)}^{2}\left(\mu\left(\partial \Omega \cap\left\{x_{N}=0\right\}\right)\right)^{1-2 / p}
$$

Compactness in the half space

Multiplying the inequalities verified by $\omega_{i}, i=1,2$ by $h\left(\omega_{2}-\omega_{1}\right)$, being $h(x)=-K \min \{0, x\}$, and integrating by parts

$$
\begin{aligned}
& C_{1}(p) \int_{\Omega}\left|\nabla h\left(\omega_{2}-\omega_{1}\right)\right|^{p}-\int_{\Omega}\left(\omega_{2}^{m}-\omega_{1}^{m}\right) h\left(\omega_{2}-\omega_{1}\right) \\
& \quad \leq C_{2}\left(\int_{\partial \Omega \cap\left\{x_{N}=0\right\}} h\left(\omega_{2}-\omega_{1}\right)^{p}\right)^{2 / p}\left(\mu\left(\partial \Omega \cap\left\{x_{N}=0\right\}\right)\right)^{1-2 / p},
\end{aligned}
$$

recall that $p>2$.

$$
\|\nabla h\|_{L^{p}(\Omega)}^{p} \leq C\|\nabla h\|_{L^{p}(\Omega)}^{2}\left(\mu\left(\partial \Omega \cap\left\{x_{N}=0\right\}\right)\right)^{1-2 / p}
$$

Due to $\omega_{1}=\omega_{2}=0$ on $\partial \Omega \cap\left\{x_{N}>0\right\}$, we have that $\nabla h\left(\omega_{2}-\omega_{1}\right) \neq 0$.

Choosing K large we ensure that $\|\nabla h\|_{L^{p}(\Omega)}>1$.

Compactness in the half space

Proposition Let u_{R} a solution to (AP). Then u_{R} is radial in the tangencial variables.
Moreover, $u_{R}\left(\left|x^{\prime}\right|, x_{N}\right)$ is decreasing in $\left|x^{\prime}\right|$ and x_{N}.

COMPACTNESS IN THE HALF SPACE

Proposition Let u_{R} a solution to (AP). Then u_{R} is radial in the tangencial variables.
Moreover, $u_{R}\left(\left|x^{\prime}\right|, x_{N}\right)$ is decreasing in $\left|x^{\prime}\right|$ and x_{N}.
In the proof we use

- the moving plane method ([Gidas-Ni-Niremberg]),
- the previous Comparison Principle applied to u_{R} and $u_{R}^{\lambda}(x)=u_{R}\left(x^{\lambda}\right)$, where x^{λ} denotes the reflection of x with respect to an appropriate plane.

Compactness in the half space

- $\left\|u_{R}\right\|_{L^{m+1}\left(B_{R}^{+}\right)} \leq C, \quad\left\|u_{R}\right\|_{L^{\infty}\left(B_{R}^{+}\right)} \leq C$ and $\left\|\nabla u_{R}\right\|_{L^{\infty}\left(B_{R / 2}^{+}\right)} \leq C$.
- Comparison Principle
- $u\left(x^{\prime}, x_{N}\right)=u\left(\left|x^{\prime}\right|, x_{N}\right), x^{\prime} \in \mathbb{R}^{N-1}, x_{N} \in \mathbb{R}_{+}$.
- $u_{R}\left(\left|x^{\prime}\right|, x_{N}\right)$ is decreasing in $\left|x^{\prime}\right|$ and x_{N}.

For R sufficiently large it holds

$$
\max _{x \in \operatorname{supp}\left(u_{R}\right)}|x|<R
$$

Compactness in the half space

We show that u_{R} is compactly supported in the x_{N} variable. For some $R_{1} \leq R$,

$$
u_{R}\left(x^{\prime}, R_{1}\right) \leq 1, \quad \forall x^{\prime}
$$

Compactness in the half space

We show that u_{R} is compactly supported in the x_{N} variable.
For some $R_{1} \leq R$,

$$
u_{R}\left(x^{\prime}, R_{1}\right) \leq 1, \quad \forall x^{\prime}
$$

Then, u_{R} is a subsolution of the problem

$$
\begin{cases}\nabla\left(|\nabla \omega|^{p-2} \nabla \omega\right)=\omega^{m}, & \text { in }\left\{x_{N}>R_{1}\right\} \cap B_{R}^{+}, \\ \omega\left(R_{1}\right)=1, & \text { in }\left\{x_{N}=R_{1}\right\} \cap B_{R}^{+}, \\ \omega=0, & \text { in }\left\{x_{N} \geq R_{2}\right\} \cap B_{R}^{+},\end{cases}
$$

for some $R_{2}<R$.

COMPACTNESS IN THE HALF SPACE

We show that u_{R} is compactly supported in the x_{N} variable.
For some $R_{1} \leq R$,

$$
u_{R}\left(x^{\prime}, R_{1}\right) \leq 1, \quad \forall x^{\prime}
$$

Then, u_{R} is a subsolution of the problem

$$
\begin{cases}\nabla\left(|\nabla \omega|^{p-2} \nabla \omega\right)=\omega^{m}, & \text { in }\left\{x_{N}>R_{1}\right\} \cap B_{R}^{+}, \\ \omega\left(R_{1}\right)=1, & \text { in }\left\{x_{N}=R_{1}\right\} \cap B_{R}^{+}, \\ \omega=0, & \text { in }\left\{x_{N} \geq R_{2}\right\} \cap B_{R}^{+},\end{cases}
$$

for some $R_{2}<R$. We construct a supersolution of the previous problem, compactly supported in x_{N}

$$
\omega=\beta\left(\left(R_{2}-x_{N}\right)^{+}\right)^{\frac{p}{p-(m+1)}}
$$

Compactness in the half space

We prove that $\operatorname{supp}\left(u_{R}\right)$ is bounded in the x^{\prime} direction.
For some $R_{3} \leq R, u_{R}\left(x^{\prime}, x_{N}\right) \leq \varepsilon, \forall x^{\prime}$ such that $\left|x^{\prime}\right|=R_{3}, \forall x_{N}>0$.

Compactness in the half space

We prove that $\operatorname{supp}\left(u_{R}\right)$ is bounded in the x^{\prime} direction.
For some $R_{3} \leq R, u_{R}\left(x^{\prime}, x_{N}\right) \leq \varepsilon, \forall x^{\prime}$ such that $\left|x^{\prime}\right|=R_{3}, \forall x_{N}>0$. u_{R} is a subsolution of

$$
\begin{array}{ll}
\nabla\left(|\nabla \phi|^{p-2} \nabla \phi\right)-\phi^{m}=0, & \text { in } \Omega \cap\left\{x_{N}>0\right\}, \\
-|\nabla \phi|^{p-2} \frac{\partial \phi}{\partial x_{N}}=\phi^{p-1}, & \text { on } \partial \Omega \cap\left\{x_{N}=0\right\}, \\
\varepsilon:=\inf _{\partial \Omega\left\{x_{N}>0\right\}} \phi>0, &
\end{array}
$$

where $\Omega=B\left(x_{0}, r_{0}\right)$, with $0<r_{0} \ll 1$, and $x_{0} \in\left\{x_{N}=0\right\}$, with $\left|x_{0}\right|$ and R large.

Compactness in the half space

We prove that $\operatorname{supp}\left(u_{R}\right)$ is bounded in the x^{\prime} direction.
For some $R_{3} \leq R, u_{R}\left(x^{\prime}, x_{N}\right) \leq \varepsilon, \forall x^{\prime}$ such that $\left|x^{\prime}\right|=R_{3}, \forall x_{N}>0$. u_{R} is a subsolution of

$$
\begin{array}{ll}
\nabla\left(|\nabla \phi|^{p-2} \nabla \phi\right)-\phi^{m}=0, & \text { in } \Omega \cap\left\{x_{N}>0\right\}, \\
-|\nabla \phi|^{p-2} \frac{\partial \phi}{\partial x_{N}}=\phi^{p-1}, & \text { on } \partial \Omega \cap\left\{x_{N}=0\right\}, \\
\varepsilon:=\inf _{\left.\partial \Omega \cap x_{N}>0\right\}} \phi>0, &
\end{array}
$$

where $\Omega=B\left(x_{0}, r_{0}\right)$, with $0<r_{0} \ll 1$, and $x_{0} \in\left\{x_{N}=0\right\}$, with $\left|x_{0}\right|$ and R large.

Then, $u_{R} \leq \phi$, and x_{0} arbitrary in $\partial B_{R_{3}+r_{0}} \cap\left\{x_{N}=0\right\}$. Thus u_{R} vanishes in a neigbourhood of this set.

Compactness in the half space

Every nonnegative nontrivial solution to (P), $\varphi \in W^{1, p}\left(\mathbb{R}_{+}^{N}\right)$, is compactly supported and radial in the tangencial variables.

Compactness in the half space

Every nonnegative nontrivial solution to $(\mathrm{P}), \varphi \in W^{1, p}\left(\mathbb{R}_{+}^{N}\right)$, is compactly supported and radial in the tangencial variables.

- Using that $\varphi \in W^{1, p}\left(\mathbb{R}_{+}^{N}\right)$ and the Hölder continuity of $\nabla \varphi$

$$
\|\varphi\|_{L^{m+1}\left(\mathbb{R}_{+}^{N}\right)} \leq C, \quad\|\varphi\|_{L^{\infty}\left(\mathbb{R}_{+}^{N}\right)} \leq C \text { and }\|\nabla \varphi\|_{L^{\infty}\left(\mathbb{R}_{+}^{N}\right)} \leq C .
$$

Compactness in the half space

Every nonnegative nontrivial solution to (P), $\varphi \in W^{1, p}\left(\mathbb{R}_{+}^{N}\right)$, is compactly supported and radial in the tangencial variables.

- Using that $\varphi \in W^{1, p}\left(\mathbb{R}_{+}^{N}\right)$ and the Hölder continuity of $\nabla \varphi$

$$
\|\varphi\|_{L^{m+1}\left(\mathbb{R}_{+}^{N}\right)} \leq C,\|\varphi\|_{L^{\infty}\left(\mathbb{R}_{+}^{N}\right)} \leq C \text { and }\|\nabla \varphi\|_{L^{\infty}\left(\mathbb{R}_{+}^{N}\right)} \leq C .
$$

- From these estimates and the Comparison Principle we deduce

$$
\lim _{R \rightarrow \infty} \sup _{\mathbb{R}_{+}^{N} \backslash B_{R}^{+}} \varphi=0
$$

Compactness in the half space

Every nonnegative nontrivial solution to (P), $\varphi \in W^{1, p}\left(\mathbb{R}_{+}^{N}\right)$, is compactly supported and radial in the tangencial variables.

- Using that $\varphi \in W^{1, p}\left(\mathbb{R}_{+}^{N}\right)$ and the Hölder continuity of $\nabla \varphi$

$$
\|\varphi\|_{L^{m+1}\left(\mathbb{R}_{+}^{N}\right)} \leq C,\|\varphi\|_{L^{\infty}\left(\mathbb{R}_{+}^{N}\right)} \leq C \text { and }\|\nabla \varphi\|_{L^{\infty}\left(\mathbb{R}_{+}^{N}\right)} \leq C .
$$

- From these estimates and the Comparison Principle we deduce

$$
\lim _{R \rightarrow \infty} \sup _{\mathbb{R}_{\dagger}^{N} \backslash B_{R}^{+}} \varphi=0
$$

- Then, $\varphi \leq \omega$ in $\left\{x_{N}>R_{1}\right\}$, with ω compactly supported in x_{N}.

COMPACTNESS IN THE HALF SPACE

Every nonnegative nontrivial solution to $(\mathrm{P}), \varphi \in W^{1, p}\left(\mathbb{R}_{+}^{N}\right)$, is compactly supported and radial in the tangencial variables.

- Using that $\varphi \in W^{1, p}\left(\mathbb{R}_{+}^{N}\right)$ and the Hölder continuity of $\nabla \varphi$

$$
\|\varphi\|_{L^{m+1}\left(\mathbb{R}_{+}^{N}\right)} \leq C,\|\varphi\|_{L^{\infty}\left(\mathbb{R}_{+}^{N}\right)} \leq C \text { and }\|\nabla \varphi\|_{L^{\infty}\left(\mathbb{R}_{+}^{N}\right)} \leq C .
$$

- From these estimates and the Comparison Principle we deduce

$$
\lim _{R \rightarrow \infty} \sup _{\mathbb{R}_{+}^{N} \backslash B_{R}^{+}} \varphi=0 .
$$

- Then, $\varphi \leq \omega$ in $\left\{x_{N}>R_{1}\right\}$, with ω compactly supported in x_{N}.
- Using similar techniques we see that φ is compactly supported in x^{\prime}.

Compactness in the half space

Every nonnegative nontrivial solution to $(\mathrm{P}), \varphi \in W^{1, p}\left(\mathbb{R}_{+}^{N}\right)$, is compactly supported and radial in the tangencial variables.

- Using that $\varphi \in W^{1, p}\left(\mathbb{R}_{+}^{N}\right)$ and the Hölder continuity of $\nabla \varphi$

$$
\|\varphi\|_{L^{m+1}\left(\mathbb{R}_{+}^{N}\right)} \leq C, \quad\|\varphi\|_{L^{\infty}\left(\mathbb{R}_{+}^{N}\right)} \leq C \text { and }\|\nabla \varphi\|_{L^{\infty}\left(\mathbb{R}_{+}^{N}\right)} \leq C .
$$

- From these estimates and the Comparison Principle we deduce

$$
\lim _{R \rightarrow \infty} \sup _{\mathbb{R}_{\dagger}^{N} \backslash B_{R}^{+}} \varphi=0 .
$$

- Then, $\varphi \leq \omega$ in $\left\{x_{N}>R_{1}\right\}$, with ω compactly supported in x_{N}.
- Using similar techniques we see that φ is compactly supported in x^{\prime}.
- The compactness of $\operatorname{supp}(\varphi)$ allows to apply the moving plane method to show the symmetry and growth properties.

