

Zero Order Perturbations to Fully Nonlinear Equations

Comparison, Existence and Uniqueness

Fernando Charro (Joint work with Ireneo Peral)

Departamento de Matemáticas

Universidad Autónoma de Madrid

Supported by projects MTM2004-02223, MEC, and CCG06-UAM/ESP-0340, CAM-UAM, Spain.

Our aim is to study problems of the type

$$\left\{ \begin{array}{ll} F(\nabla u_{\lambda},D^{2}u_{\lambda})=f(\lambda,u_{\lambda}),\\ u_{\lambda}>0 \quad \text{in }\Omega,\\ u_{\lambda}=0 \quad \text{on }\partial\Omega, \end{array} \right.$$

where $F : \mathbb{R}^n \times S^n \to \mathbb{R}$ is:

(F1) Homogeneous of degree m:

- $F(t\vec{p}, tX) = t^m \cdot F(\vec{p}, X)$ for all t > 0.
- F(0,0) = 0.

(F2) Degenerate Elliptic: For every $\vec{p} \in \mathbb{R}^n$, $F(\vec{p}, X) \leq F(\vec{p}, Y)$ whenever $Y \leq X$, with $X, Y \in S^n$.

• • • •

and either

$$f(\lambda, u_{\lambda}) = \lambda \, u_{\lambda}^{q}, \quad \text{or} \quad f(\lambda, u_{\lambda}) = \lambda \, u_{\lambda}^{q} + u_{\lambda}^{r}$$

with 0 < q < m < r.

• For
$$F(\nabla u_{\lambda}, D^2 u_{\lambda}) = \lambda u_{\lambda}^q$$
:

1. Comparison Principle (\Rightarrow uniqueness).

H. Brezis, L. Oswald; *Remarks on sublinear elliptic equations*, Nonlinear Analysis, Theory, Methods & Applications, Vol. 10 (1986), no. 1, pp. 55-64.

H. Brezis, S. Kamin; Sublinear elliptic equations in \mathbb{R}^N , Manuscripta Math. 74, (1992), pp. 87-106.

2. Existence: $\exists ! u_{\lambda} > 0$ for every $\lambda > 0$. In fact,

$$u_{\lambda}(x) = \lambda^{\frac{1}{m-q}} u_1(x).$$

$$\blacktriangleright F(\nabla u_{\lambda}, D^2 u_{\lambda}) = \lambda u_{\lambda}^q + u_{\lambda}^r:$$

- 1. Existence of at least one positive solution for every λ small enough.
- 2. Non existence of positive solution for large λ .

3. (1) + (2) $\Rightarrow \exists \Lambda \in \mathbb{R}^+$ such that $\exists u_{\lambda} > 0 \ \forall \lambda \in (0, \Lambda)$.

L. Boccardo, M. Escobedo, I. Peral; *A Dirichlet Problem Involving Critical Exponents*, Nonlinear Anal. 24 (1995), no. 11, pp. 1639-1648.

Remark: The comparison result holds, with merely the ellipticity and homogeneity hypotheses. However, in order to prove existence, it is necessary to precise further structure on F.

Remark: The comparison result holds, with merely the ellipticity and homogeneity hypotheses. However, in order to prove existence, it is necessary to precise further structure on F.

Some examples :

Uniformly elliptic equations (Fully nonlinear).

Remark: The comparison result holds, with merely the ellipticity and homogeneity hypotheses. However, in order to prove existence, it is necessary to precise further structure on F.

Some examples :

- Uniformly elliptic equations (Fully nonlinear).
- Monge-Ampere type equations.

Remark: The comparison result holds, with merely the ellipticity and homogeneity hypotheses. However, in order to prove existence, it is necessary to precise further structure on F.

Some examples :

- Uniformly elliptic equations (Fully nonlinear).
- Monge-Ampere type equations.
- p-laplacian (Already known in the variational framework.)

Remark: The comparison result holds, with merely the ellipticity and homogeneity hypotheses. However, in order to prove existence, it is necessary to precise further structure on F.

Some examples :

- Uniformly elliptic equations (Fully nonlinear).
- Monge-Ampere type equations.
- p-laplacian (Already known in the variational framework.)
- \blacktriangleright ∞ -laplacian. With both normalizations:

$$\Delta_{\infty} u = \langle D^2 u \nabla u, \nabla u \rangle, \qquad \tilde{\Delta}_{\infty} u = \left\langle D^2 u \frac{\nabla u}{|\nabla u|}, \frac{\nabla u}{|\nabla u|} \right\rangle.$$

The problem with concave right hand side:

 $F(\nabla u_{\lambda}, D^2 u_{\lambda}) = \lambda \, u_{\lambda}^q.$

.

Some definitions (Sorry!)

Given an elliptic PDE $G(u, \nabla u, D^2 u) = 0$ (*):

" $\forall \phi \in C^2(\Omega), x_0 \in \Omega$ such that $u - \phi$ has a local minimum

u is a viscosity

sub

super

solution of (*) provided

at
$$x_0$$
" $\Rightarrow \quad G(u(x_0), \nabla \phi(x_0), D^2 \phi(x_0)) \mid \leq 0$
 $\geq 0.$

• • • • • • • •

Viscosity solution = Subsolution + Supersolution.

Main result on Comparison

Theorem 1 (Comparison Principle). Let $\Omega \subset \mathbb{R}^n$ be a bounded domain and F satisfying (F1) and (F2) for some m as above. Consider 0 < q < m and $u, v \in C(\overline{\Omega})$ satisfying (in the viscosity sense)

$$\begin{array}{l} F(\nabla u,D^2 u) \leq u^q \text{ in }\Omega,\\ F(\nabla v,D^2 v) \geq v^q \text{ in, }\Omega\\ u,v>0, \text{ in }\Omega \end{array} \end{array}$$

Then, $u \leq v$ on $\partial \Omega$ implies $u \leq v$ in $\overline{\Omega}$.

Usual strategy:

[CIL] M. G. Crandall, H. Ishii, P. L. Lions; User's Guide to Viscosity Solutions of Second Order PDE, Bull. Amer. Math. Soc. 27 (1992), no. 1, pp. 1-67.

Basic Hypothesis:

The equation $G(u, \nabla u, D^2 u) = 0$ is proper.

That means:

- ▶ $r \mapsto G(r, p, X)$ is non-decreasing.
- Degenerate elliptic. (Decreasing in the matrix argument.)

• • • •

Usual strategy:

[CIL] M. G. Crandall, H. Ishii, P. L. Lions; User's Guide to Viscosity Solutions of Second Order PDE, Bull. Amer. Math. Soc. 27 (1992), no. 1, pp. 1-67.

Basic Hypothesis:

The equation $G(u, \nabla u, D^2 u) = 0$ is proper.

That means:

- ▶ $r \mapsto G(r, p, X)$ is non-decreasing.
- Degenerate elliptic. (Decreasing in the matrix argument.)

.

PROBLEM: $G(r, p, X) = F(p, X) - r^q$ is decreasing in r!

Idea: A change of variables can turn the equation into proper.

$$\tilde{u}(x) = \frac{1}{1 - \frac{q}{m}} \cdot u^{1 - \frac{q}{m}}(x), \qquad \tilde{v}(x) = \frac{1}{1 - \frac{q}{m}} \cdot v^{1 - \frac{q}{m}}(x),$$
$$\tilde{v}_{\epsilon}(x) = (1 + \epsilon) \cdot \left(\tilde{v}(x) + \epsilon\right), \qquad \epsilon > 0,$$

Proof of Comparison

Idea: A change of variables can turn the equation into proper.

$$\tilde{u}(x) = \frac{1}{1 - \frac{q}{m}} \cdot u^{1 - \frac{q}{m}}(x), \qquad \tilde{v}(x) = \frac{1}{1 - \frac{q}{m}} \cdot v^{1 - \frac{q}{m}}(x),$$

$$\tilde{v}_{\epsilon}(x) = (1+\epsilon) \cdot (\tilde{v}(x) + \epsilon), \qquad \epsilon > 0,$$

Then, in the viscosity sense,

$$\begin{split} &F\Big(\nabla \tilde{u}, D^2 \tilde{u} + \frac{q}{m-q} \frac{\nabla \tilde{u} \otimes \nabla \tilde{u}}{\tilde{u}}\Big) \leq 1, \\ &F\Big(\nabla \tilde{v}_{\epsilon}, D^2 \tilde{v}_{\epsilon} + \frac{q}{m-q} \frac{\nabla \tilde{v}_{\epsilon} \otimes \nabla \tilde{v}_{\epsilon}}{\tilde{v}_{\epsilon}}\Big) \geq (1+\epsilon)^m > 1. \end{split}$$

in every $\Omega^* \subset \subset \Omega$. The new equation is proper.

Now, we can follow [CIL].

- We want $u \leq v$ in Ω .
- Suppose to the contrary that $\max_{\overline{\Omega}}(u-v) > 0$.

$$(u-v)|_{\partial\Omega} \le 0 \implies (\tilde{u}-\tilde{v}_{\epsilon})|_{\partial\Omega} < 0$$

Unif. Conv. $\Rightarrow \max_{\overline{\Omega}}(\tilde{u} - \tilde{v}_{\epsilon}) > 0$ for ϵ small (fixed henceforth)

 $\Rightarrow \exists \Omega^* \text{ such that } \{\text{max. points of } \tilde{u} - \tilde{v}_{\epsilon}\} \subset \Omega^* \subset \overline{\Omega^*} \subset \Omega.$

.

Proof of Comparison

The underlying idea: In a maximum point x_0 of $\tilde{u} - \tilde{v}_{\epsilon}$,

 $\tilde{v}_{\epsilon}(x_0) < \tilde{u}(x_0), \quad \nabla \tilde{u}(x_0) = \nabla \tilde{v}_{\epsilon}(x_0), \quad D^2 \tilde{u}(x_0) \le D^2 \tilde{v}_{\epsilon}(x_0).$

Thus,

$$D^{2}\tilde{u}(x_{0}) + \frac{q}{m-q} \frac{\nabla \tilde{u}(x_{0}) \otimes \nabla \tilde{u}(x_{0})}{\tilde{u}(x_{0})} \le D^{2}\tilde{v}_{\epsilon}(x_{0}) + \frac{q}{m-q} \frac{\nabla \tilde{v}_{\epsilon}(x_{0}) \otimes \nabla \tilde{v}_{\epsilon}(x_{0})}{\tilde{v}_{\epsilon}(x_{0})}$$

in the sense of matrices. In particular, by ellipticity,

$$0 < (1+\epsilon)^m - 1 \le F\left(\nabla \tilde{v}_{\epsilon}(x_0), D^2 \tilde{v}_{\epsilon}(x_0) + \frac{q}{m-q} \frac{\nabla \tilde{v}_{\epsilon}(x_0) \otimes \nabla \tilde{v}_{\epsilon}(x_0)}{\tilde{v}_{\epsilon}(x_0)}\right)$$
$$-F\left(\nabla \tilde{u}(x_0), D^2 \tilde{u}(x_0) + \frac{q}{m-q} \frac{\nabla \tilde{u}(x_0) \otimes \nabla \tilde{u}(x_0)}{\tilde{u}(x_0)}\right) \le 0.$$

.

At this stage, it is rather standard to make rigorous the above formal computation following [CIL]:

- Doubling Variables.
- Penalization method (Jensen).
- Maximum Principle for semicontinuous Functions.

M. G. Crandall, H. Ishii; *The Maximum Principle for Semicontinuous Functions*, Differential and Integral Equations 3 (1990), no. 6, pp. 1001-1014.

It is necessary to precise more structure on F.

(*F*1) Degenerate ellipticity: For every $p \in \mathbb{R}^n$, $F(p, X) \leq F(p, Y)$ whenever $Y \leq X$, with $X, Y \in S^n$.

It is necessary to precise more structure on F.

(*F*1') Uniform ellipticity: $\exists 0 < \theta \leq \Theta$ s.t. $\forall X, Y \in S^n$ with $Y \geq 0$,

 $-\Theta\operatorname{tr}(Y) \leq F(p,X+Y) - F(p,X) \leq -\theta\operatorname{tr}(Y)$

for every $p \in \mathbb{R}^n$.

.

It is necessary to precise more structure on F.

(*F*1') Uniform ellipticity: $\exists 0 < \theta \leq \Theta$ s.t. $\forall X, Y \in S^n$ with $Y \geq 0$,

$$-\Theta\operatorname{tr}(Y) \leq F(p, X + Y) - F(p, X) \leq -\theta\operatorname{tr}(Y)$$

for every $p \in \mathbb{R}^n$.

(F2) Homogeneity of degree m, as before.

It is necessary to precise more structure on F.

(*F*1') Uniform ellipticity: $\exists 0 < \theta \leq \Theta$ s.t. $\forall X, Y \in S^n$ with $Y \geq 0$,

$$-\Theta\operatorname{tr}(Y) \leq F(p,X+Y) - F(p,X) \leq -\theta\operatorname{tr}(Y)$$

for every $p \in \mathbb{R}^n$.

- (F2) Homogeneity of degree m, as before.
- (F3) Structure condition: $\exists \gamma > 0$ s. t. $\forall X, Y \in S^n$, $\forall p, q \in \mathbb{R}^n$,

 $\mathcal{P}_{\theta,\Theta}^{-}(X-Y) - \gamma |p-q| \le F(p,X) - F(q,Y) \le \mathcal{P}_{\theta,\Theta}^{+}(X-Y) + \gamma |p-q|,$

.

where $\mathcal{P}_{\theta,\Theta}^{-}(M) = \inf \left\{ -\operatorname{tr}(AM) : \ \theta |\xi|^{2} \leq \langle A\xi, \xi \rangle \leq \Theta |\xi|^{2} \ \forall \xi \in \mathbb{R}^{n} \right\},$ and $\mathcal{P}_{\theta,\Theta}^{+}(M) = \sup \left\{ -\operatorname{tr}(AM) : \ \theta |\xi|^{2} \leq \langle A\xi, \xi \rangle \leq \Theta |\xi|^{2} \ \forall \xi \in \mathbb{R}^{n} \right\}.$

Theorem 2. Let $\Omega \subset \mathbb{R}^n$ a bounded smooth domain, $F : \mathbb{R}^n \times S^n \to \mathbb{R}$ satisfy (F1'), (F2) and (F3), and 0 < q < m. Then, there exists a unique solution to

$$egin{aligned} F(
abla u_{\lambda}, D^2 u_{\lambda}) &= \lambda \, u_{\lambda}^q, \ u_{\lambda} &> 0 \quad \textit{in} \ \Omega, \ u_{\lambda} &= 0 \quad \textit{on} \ \partial\Omega, \end{aligned}$$

for every $\lambda > 0$ given by

$$u_{\lambda}(x) = \lambda^{\frac{1}{m-q}} u_1(x)$$

where u_1 is the solution with $\lambda = 1$.

Idea: [CIL]

Construct a sub- and supersolution + Comp. Principle + Perron

Step 1: Existence of solution to the auxiliary problems:

$$\begin{cases} F(\nabla v, D^2 v) = 1 & \text{in } \Omega \\ v > 0 & \text{in } \Omega \\ v = 0 & \text{on } \partial \Omega, \end{cases} \qquad \begin{cases} F(\nabla w, D^2 w) = d(x) & \text{in } \Omega \\ w > 0 & \text{in } \Omega \\ w = 0 & \text{on } \partial \Omega, \end{cases}$$

where $d(x) = \frac{\operatorname{dist}(x,\partial\Omega)}{\|\operatorname{dist}(\cdot,\partial\Omega)\|_{\infty}}$.

M.G. Crandall, M. Kocan, P.L. Lions, A. Świech; *Existence results for boundary problems* for uniformly elliptic and parabolic fully nonlinear equations, (1999).

.

Step 2: $\overline{u}(x) = \|v\|_{\infty}^{\frac{q}{m-q}} \cdot v(x)$ is a viscosity supersolution with $\overline{u} = 0$ on $\partial\Omega$.

(By Homogeneity.)

Step 2: $\overline{u}(x) = \|v\|_{\infty}^{\frac{q}{m-q}} \cdot v(x)$ is a viscosity supersolution with $\overline{u} = 0$ on $\partial\Omega$.

(By Homogeneity.)

Step 3: $\underline{u}(x) = t \cdot w(x)$ is a viscosity subsolution with $\underline{u} = 0$ on $\partial \Omega$ for every t > 0 small enough. (Uses Hopf's Lemma.)

• • • • •

Step 2: $\overline{u}(x) = \|v\|_{\infty}^{\frac{q}{m-q}} \cdot v(x)$ is a viscosity supersolution with $\overline{u} = 0$ on $\partial\Omega$.

(By Homogeneity.)

Step 3: $\underline{u}(x) = t \cdot w(x)$ is a viscosity subsolution with $\underline{u} = 0$ on $\partial \Omega$ for every t > 0 small enough. (Uses Hopf's Lemma.)

Step 4: Comparison Principle + Perron.

.

The problem with concave-convex right hand side:

 $F(\nabla u_{\lambda}, D^2 u_{\lambda}) = \lambda \, u_{\lambda}^q + u_{\lambda}^r.$

• • • • • •

Main results

Theorem 3 (Existence). Let $\Omega \subset \mathbb{R}^n$ smooth bounded domain, $F : \mathbb{R}^n \times S^n \to \mathbb{R}$ satisfy (F1'), (F2) and (F3). Then, $\exists \lambda_0 > 0$ such that, for every $\lambda \in (0, \lambda_0]$, the problem

$$\begin{cases} F(\nabla u_{\lambda}, D^{2}u_{\lambda}) = \lambda u_{\lambda}^{q} + u_{\lambda}^{r} \\ u_{\lambda} > 0 \quad \text{in } \Omega, \\ u_{\lambda} = 0 \quad \text{on } \partial \Omega, \end{cases}$$

has at least one nontrivial viscosity solution.

Theorem 4 (Non-existence). Assume the above hypotheses and that the problem

$$\begin{cases} F(\nabla v, D^2 v) = \lambda v^m & \text{in } \Omega \\ v > 0 & \text{in } \Omega \\ v = 0 & \text{on } \partial \Omega. \end{cases}$$

has a nontrivial solution if and only if $\lambda = \lambda_1$ for some number λ_1 . Then,

$$\begin{cases} F(\nabla u_{\lambda}, D^{2}u_{\lambda}) = \lambda u_{\lambda}^{q} + u_{\lambda}^{r}, \\ u_{\lambda} > 0 \quad \text{in } \Omega, \\ u_{\lambda} = 0 \quad \text{on } \partial \Omega, \end{cases}$$

has no solution (in the viscosity sense) for large λ .

Remark 5. Since m is the degree of homogeneity of F, the problem

 $\begin{cases} F(\nabla v, D^2 v) = \lambda v^m & \text{in } \Omega \\ v > 0 & \text{in } \Omega \\ v = 0 & \text{on } \partial \Omega, \end{cases}$

enjoys a typical feature of eigenvalue problems; provided the existence of v(x) > 0 for some λ , $\tilde{v}(x) = t \cdot v(x)$ is also a solution for every $t \in \mathbb{R}$.

Background on Fully nonlinear eigenvalue problems:

- Uniformly elliptic equations:
 - I. Birindelli, F. Demengel; *Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators*, Commun. Pure Appl. Anal. 6 (2007), no. 2, p. 335–366.
 - A. Quaas, B. Sirakov; On the Principal Eigenvalues and the Dirichlet Problem for Fully Nonlinear Operators, CR Math. Acad. Sci. Paris, (2006).

.

► *p*-laplacian:

J. Garcia Azorero, I. Peral; *Existence and nonuniqueness for the p-laplacian: Nonlinear eigenvalues*, Comm. in PDE 12, No. 12 (1987) pg.1389-1430.

\blacktriangleright ∞ -laplacian:

P. Juutinen; *Principal eigenvalue of a very badly degenerate operator and applications*, J. Differential Equations 236 (2007), no. 2, pp. 532–550.

Monge-Ampere:

P.-L. Lions; *Two remarks on Monge - Ampere equations*, Ann. Mat. Pura Appl. (4) 142 (1985), 263-275 (1986).

Corollary 6. Under the hypotheses of Theorems 3 and 4, there exists $\Lambda \in \mathbb{R}$ with $0 < \Lambda < \infty$ such that

$$\begin{cases} F(\nabla u_{\lambda}, D^{2}u_{\lambda}) = \lambda u_{\lambda}^{q} + u_{\lambda}^{r}, \\ u_{\lambda} > 0 \quad \text{in } \Omega, \\ u_{\lambda} = 0 \quad \text{on } \partial \Omega, \end{cases}$$

has at least one positive viscosity solution for every $\lambda \in (0, \Lambda)$.

We follow

L. Boccardo, M. Escobedo, I. Peral; *A Dirichlet Problem Involving Critical Exponents*, Nonlinear Anal. 24 (1995), no. 11, pp. 1639-1648.

Step 1: Existence of solution of the auxiliary problems:

	$\int F(\nabla v_{\lambda}, D^2 v_{\lambda}) = \lambda \text{in } \Omega$	$\int F(\nabla w_{\lambda}, D^2 w_{\lambda}) = \lambda d(x) \text{in } \Omega$
4	$v_\lambda > 0$ in Ω	$w_\lambda > 0$ in Ω
	$v_{\lambda} = 0$ on $\partial \Omega$,	$w_{\lambda}=0$ on $\partial\Omega,$

•

where $d(x) = \frac{\operatorname{dist}(x,\partial\Omega)}{\|\operatorname{dist}(\cdot,\partial\Omega)\|_{\infty}}$. (As before.)

Step 2: $\exists \lambda_0 > 0$ for which $\forall \lambda \in (0, \lambda_0]$, $\exists T_\lambda$ such that $\overline{u}_\lambda(x) = T_\lambda \cdot v_\lambda(x)$ is a viscosity supersolution.

Homogeneity $\Rightarrow F(\nabla \overline{u}_{\lambda}, D^2 \overline{u}_{\lambda}) = T_{\lambda}^m \cdot \lambda$

• • • •

Step 2: $\exists \lambda_0 > 0$ for which $\forall \lambda \in (0, \lambda_0]$, $\exists T_\lambda$ such that $\overline{u}_\lambda(x) = T_\lambda \cdot v_\lambda(x)$ is a viscosity supersolution.

 $\begin{array}{l} \text{Homogeneity} \ \Rightarrow \ F(\nabla \overline{u}_{\lambda}, D^{2} \overline{u}_{\lambda}) = T_{\lambda}^{m} \cdot \lambda \\ v_{\lambda}(x) = \lambda^{1/m} v_{1}(x) \ \Rightarrow \ \lambda \overline{u}_{\lambda}^{q} + \overline{u}_{\lambda}^{r} \leq \lambda^{1+\frac{q}{m}} T_{\lambda}^{q} \|v_{1}\|_{\infty}^{q} + \lambda^{\frac{r}{m}} T_{\lambda}^{r} \|v_{1}\|_{\infty}^{r} \end{array} \right\}$

• • • • •

Step 2: $\exists \lambda_0 > 0$ for which $\forall \lambda \in (0, \lambda_0]$, $\exists T_\lambda$ such that $\overline{u}_\lambda(x) = T_\lambda \cdot v_\lambda(x)$ is a viscosity supersolution.

 $\begin{array}{ll} \text{Homogeneity} \ \Rightarrow \ F(\nabla \overline{u}_{\lambda}, D^{2} \overline{u}_{\lambda}) = T_{\lambda}^{m} \cdot \lambda \\ v_{\lambda}(x) = \lambda^{1/m} \, v_{1}(x) \ \Rightarrow \ \lambda \, \overline{u}_{\lambda}^{q} + \overline{u}_{\lambda}^{r} \leq \lambda^{1+\frac{q}{m}} T_{\lambda}^{q} \| v_{1} \|_{\infty}^{q} + \lambda^{\frac{r}{m}} T_{\lambda}^{r} \| v_{1} \|_{\infty}^{r} \end{array} \right\}$

 $\Rightarrow \text{ We need: } \lambda^{\frac{q}{m}}T_{\lambda}^{q-m}\|v_1\|_{\infty}^q + \lambda^{\frac{r}{m}-1}T_{\lambda}^{r-m}\|v_1\|_{\infty}^r \leq 1$

• • • • • •

Step 2: $\exists \lambda_0 > 0$ for which $\forall \lambda \in (0, \lambda_0]$, $\exists T_\lambda$ such that $\overline{u}_\lambda(x) = T_\lambda \cdot v_\lambda(x)$ is a viscosity supersolution.

 $\begin{array}{ll} \text{Homogeneity} \Rightarrow F(\nabla \overline{u}_{\lambda}, D^{2} \overline{u}_{\lambda}) = T_{\lambda}^{m} \cdot \lambda \\ v_{\lambda}(x) = \lambda^{1/m} v_{1}(x) \Rightarrow \lambda \overline{u}_{\lambda}^{q} + \overline{u}_{\lambda}^{r} \leq \lambda^{1+\frac{q}{m}} T_{\lambda}^{q} \|v_{1}\|_{\infty}^{q} + \lambda^{\frac{r}{m}} T_{\lambda}^{r} \|v_{1}\|_{\infty}^{r} \end{array} \right\}$

$$\Rightarrow \text{ We need: } \underbrace{\lambda^{\frac{q}{m}} T_{\lambda}^{q-m} \|v_1\|_{\infty}^q + \lambda^{\frac{r}{m}-1} T_{\lambda}^{r-m} \|v_1\|_{\infty}^r}_{\Phi_{\lambda}(T)} \leq 1$$

.

 T_{λ}

Step 2: $\exists \lambda_0 > 0$ for which $\forall \lambda \in (0, \lambda_0]$, $\exists T_\lambda$ such that $\overline{u}_\lambda(x) = T_\lambda \cdot v_\lambda(x)$ is a viscosity supersolution.

 $\begin{array}{l} \text{Homogeneity} \ \Rightarrow \ F(\nabla \overline{u}_{\lambda}, D^{2}\overline{u}_{\lambda}) = T_{\lambda}^{m} \cdot \lambda \\ \\ v_{\lambda}(x) = \lambda^{1/m} \, v_{1}(x) \ \Rightarrow \ \lambda \, \overline{u}_{\lambda}^{q} + \overline{u}_{\lambda}^{r} \leq \lambda^{1+\frac{q}{m}} T_{\lambda}^{q} \| v_{1} \|_{\infty}^{q} + \lambda^{\frac{r}{m}} T_{\lambda}^{r} \| v_{1} \|_{\infty}^{r} \end{array} \right\}$

$$\Rightarrow \text{ We need: } \underbrace{\lambda^{\frac{q}{m}} T_{\lambda}^{q-m} \|v_1\|_{\infty}^{q} + \lambda^{\frac{r}{m}-1} T_{\lambda}^{r-m} \|v_1\|_{\infty}^{r}}_{\Phi_{\lambda}(T)} \leq 1$$

$$\Phi_{\lambda}(T)$$
Indeed: $\Phi_{\lambda}(T_{\lambda}) \leq 1 \iff \lambda \leq \lambda_0$

•

Step 3: $\underline{u}_{\lambda}(x) = t w_{\lambda}(x)$ is a viscosity subsolution for small t > 0(Homogeneity + Hopf's Lemma)

Step 3: $\underline{u}_{\lambda}(x) = t w_{\lambda}(x)$ is a viscosity subsolution for small t > 0(Homogeneity + Hopf's Lemma)

Step 4: We can choose *t* above such that $\underline{u}_{\lambda} \leq \overline{u}_{\lambda}$ in Ω . (Again Hopf's Lemma)

.

Step 5: Monotone iteration. Solve:

$$\begin{cases} F(\nabla w_1, D^2 w_1) = \lambda \, \overline{u}_{\lambda}^q + \overline{u}_{\lambda}^r & \text{in } \Omega \\ w_1 = 0 & \text{on } \partial \Omega. \end{cases}$$

Since $\underline{u}_{\lambda} = w_1 = \overline{u}_{\lambda} = 0$ on $\partial \Omega$,

 $F(\nabla \overline{u}_{\lambda}, D^{2}\overline{u}_{\lambda}) \geq \lambda \overline{u}_{\lambda}^{q} + \overline{u}_{\lambda}^{r},$ $F(\nabla w_{1}, D^{2}w_{1}) = \lambda \overline{u}_{\lambda}^{q} + \overline{u}_{\lambda}^{r},$ $F(\nabla \underline{u}_{\lambda}, D^{2}\underline{u}_{\lambda}) \leq \lambda \underline{u}_{\lambda}^{q} + \underline{u}_{\lambda}^{r} \leq \lambda \overline{u}_{\lambda}^{q} + \overline{u}_{\lambda}^{r}$

.

Step 5: Monotone iteration. Solve:

$$\begin{cases} F(\nabla w_1, D^2 w_1) = \lambda \, \overline{u}_{\lambda}^q + \overline{u}_{\lambda}^r & \text{in } \Omega \\ w_1 = 0 & \text{on } \partial \Omega. \end{cases}$$

Since $\underline{u}_{\lambda} = w_1 = \overline{u}_{\lambda} = 0$ on $\partial \Omega$,

$$F(\nabla \overline{u}_{\lambda}, D^{2}\overline{u}_{\lambda}) \geq \lambda \overline{u}_{\lambda}^{q} + \overline{u}_{\lambda}^{r},$$

$$F(\nabla w_{1}, D^{2}w_{1}) = \lambda \overline{u}_{\lambda}^{q} + \overline{u}_{\lambda}^{r},$$

$$F(\nabla \underline{u}_{\lambda}, D^{2}\underline{u}_{\lambda}) \leq \lambda \underline{u}_{\lambda}^{q} + \underline{u}_{\lambda}^{r} \leq \lambda \overline{u}_{\lambda}^{q} + \overline{u}_{\lambda}^{r},$$

$$\Rightarrow \underline{u}_{\lambda} \leq w_{1} \text{ in } \Omega.$$

•

Step 5: Monotone iteration. Solve:

$$\begin{cases} F(\nabla w_1, D^2 w_1) = \lambda \, \overline{u}_{\lambda}^q + \overline{u}_{\lambda}^r & \text{in } \Omega \\ w_1 = 0 & \text{on } \partial \Omega. \end{cases}$$

Since $\underline{u}_{\lambda} = w_1 = \overline{u}_{\lambda} = 0$ on $\partial \Omega$,

$$F(\nabla \overline{u}_{\lambda}, D^{2}\overline{u}_{\lambda}) \geq \lambda \overline{u}_{\lambda}^{q} + \overline{u}_{\lambda}^{r},$$

$$F(\nabla w_{1}, D^{2}w_{1}) = \lambda \overline{u}_{\lambda}^{q} + \overline{u}_{\lambda}^{r},$$

$$\Rightarrow \underline{u}_{\lambda} \leq w_{1} \leq \overline{u}_{\lambda}.$$

$$F(\nabla \underline{u}_{\lambda}, D^{2}\underline{u}_{\lambda}) \leq \lambda \underline{u}_{\lambda}^{q} + \underline{u}_{\lambda}^{r} \leq \lambda \overline{u}_{\lambda}^{q} + \overline{u}_{\lambda}^{r},$$

•

Now consider:

$$\begin{cases} F(\nabla w_2, D^2 w_2) = \lambda \, w_1^q + w_1^r & \text{in } \Omega, \\ w_2 = 0 & \text{on } \partial \Omega. \end{cases}$$

Now consider:

$$\begin{cases} F(\nabla w_2, D^2 w_2) = \lambda w_1^q + w_1^r & \text{in } \Omega, \\ w_2 = 0 & \text{on } \partial \Omega. \end{cases}$$

As before, since $\underline{u}_{\lambda} = w_1 = w_2 = 0$ on $\partial \Omega$,

$$F(\nabla w_1, D^2 w_1) = \lambda \,\overline{u}_{\lambda}^q + \overline{u}_{\lambda}^r,$$

$$F(\nabla w_2, D^2 w_2) = \lambda \,w_1^q + w_1^r,$$

$$F(\nabla \underline{u}_{\lambda}, D^2 \underline{u}_{\lambda}) \le \lambda \,\underline{u}_{\lambda}^q + \underline{u}_{\lambda}^r \le \lambda \,w_1^q + w_1^r\} \Rightarrow \underline{u}_{\lambda} \le w_2 \le w_1 \le \overline{u}_{\lambda}.$$

$$(*) \begin{cases} F(\nabla w_k, D^2 w_k) = \lambda w_{k-1}^q + w_{k-1}^r & \text{in } \Omega, \\ w_k = 0 & \text{on } \partial \Omega. \end{cases}$$

• • • • •

$$(*) \begin{cases} F(\nabla w_k, D^2 w_k) = \lambda w_{k-1}^q + w_{k-1}^r & \text{in } \Omega, \\ w_k = 0 & \text{on } \partial \Omega. \end{cases}$$

• (F1') + (F3) \Rightarrow ABP estimate:

L.A. Caffarelli, M.G. Crandall, M. Kocan, A. Świech; *On viscosity solutions of fully nonlinear equations with measurable ingredients*, Comm. Pure Appl. Math. 49 (1996), pp. 365-397.

•

$$(*) \begin{cases} F(\nabla w_k, D^2 w_k) = \lambda w_{k-1}^q + w_{k-1}^r & \text{in } \Omega, \\ w_k = 0 & \text{on } \partial \Omega. \end{cases}$$

• (F1') + (F3) \Rightarrow ABP estimate:

L.A. Caffarelli, M.G. Crandall, M. Kocan, A. Świech; *On viscosity solutions of fully nonlinear equations with measurable ingredients*, Comm. Pure Appl. Math. 49 (1996), pp. 365-397.

• ABP estimate \Rightarrow uniform C^{α} estimates:

L.A. Caffarelli, X. Cabré; *Fully Nonlinear Elliptic Equations,* Amer. Math. Soc., Colloquium publications, vol. 43 (1995).

• • • • •

$$(*) \begin{cases} F(\nabla w_k, D^2 w_k) = \lambda w_{k-1}^q + w_{k-1}^r & \text{in } \Omega, \\ w_k = 0 & \text{on } \partial \Omega. \end{cases}$$

• (F1') + (F3) \Rightarrow ABP estimate:

L.A. Caffarelli, M.G. Crandall, M. Kocan, A. Świech; *On viscosity solutions of fully nonlinear equations with measurable ingredients*, Comm. Pure Appl. Math. 49 (1996), pp. 365-397.

• ABP estimate \Rightarrow uniform C^{α} estimates:

L.A. Caffarelli, X. Cabré; *Fully Nonlinear Elliptic Equations,* Amer. Math. Soc., Colloquium publications, vol. 43 (1995).

• C^{α} estimates $\Rightarrow \exists u(x) = \lim_{k \to \infty} w_k(x)$ (uniform).

Since $w_k \rightarrow u$ uniformly, we can pass to the limit in

$$(*) \begin{cases} F(\nabla w_k, D^2 w_k) = \lambda w_{k-1}^q + w_{k-1}^r & \text{in } \Omega \\ w_k = 0 & \text{on } \partial \Omega, \end{cases}$$

(in the viscosity sense) to get

$$\begin{cases} F(\nabla u_{\lambda}, D^{2}u_{\lambda}) = \lambda u_{\lambda}^{q} + u_{\lambda}^{r}, \\ u_{\lambda} > 0 \quad \text{in } \Omega, \\ u_{\lambda} = 0 \quad \text{on } \partial\Omega. \end{cases}$$

•

•

We have finished.

To summarize:

- 1. Fundamental property: F is m-homogeneous.
- 2. Main ingredients of the proofs:
 - Solvability of the auxiliary problems.
 - Hopf's Lemma.
 - Uniform C^{α} estimates.

All the above can be easily extended to any equation ensuring the availability of the aforementioned ingredients (p-laplacian, ∞ -laplacian, Monge-Ampere...).

Theorem 7 (F. Ch., E. Colorado, I. Peral). Let 0 < q < m < r, where m is the degree of homogeneity of F. Then, there exist $\Lambda \in \mathbb{R}$, $0 < \Lambda < \infty$ such that, the problem

$$\begin{cases} F(\nabla u, D^2 u) = \lambda \, u^q + u^r, & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

- 1. Has at least two positive solutions for every $\lambda \in (0, \Lambda)$.
- 2. Has at least one positive solution for $\lambda = \Lambda$.
- 3. Has no positive solution for $\lambda > \Lambda$.

Idea: Degree theory + A priori estimates (sort of Gidas-Spruck).

That's all folks!