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Introduction

Our aim is to study problems of the type






F (∇uλ,D2uλ) = f(λ, uλ),

uλ > 0 in Ω,

uλ = 0 on ∂Ω,

where F : R
n × Sn → R is:

(F1) Homogeneous of degree m:
• F (t~p, tX) = tm · F (~p,X) for all t > 0.
• F (0, 0) = 0.

(F2) Degenerate Elliptic: For every ~p ∈ R
n, F (~p,X) ≤ F (~p, Y )

whenever Y ≤ X, with X,Y ∈ Sn.
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Introduction

and either

f(λ, uλ) = λu
q
λ, or f(λ, uλ) = λu

q
λ + ur

λ

with 0 < q < m < r.
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Introduction: Main results

◮ For F (∇uλ,D2uλ) = λu
q
λ:

1. Comparison Principle (⇒ uniqueness).

H. Brezis, L. Oswald; Remarks on sublinear elliptic equations, Nonlinear
Analysis, Theory, Methods & Applications, Vol. 10 (1986), no. 1, pp. 55-64.

H. Brezis, S. Kamin; Sublinear elliptic equations in R
N , Manuscripta Math.

74, (1992), pp. 87-106.

2. Existence: ∃! uλ > 0 for every λ > 0. In fact,

uλ(x) = λ
1

m−q u1(x).
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Introduction: Main results

◮ F (∇uλ,D2uλ) = λu
q
λ + ur

λ:

1. Existence of at least one positive solution for every λ

small enough.

2. Non existence of positive solution for large λ.

3. (1) + (2) ⇒ ∃Λ ∈ R
+ such that ∃uλ > 0 ∀λ ∈ (0,Λ).

L. Boccardo, M. Escobedo, I. Peral; A Dirichlet Problem Involving Critical

Exponents, Nonlinear Anal. 24 (1995), no. 11, pp. 1639-1648.
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Introduction: Main results

Remark: The comparison result holds, with merely the ellipticity
and homogeneity hypotheses. However, in order to prove
existence, it is necessary to precise further structure on F .
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Introduction: Main results

Remark: The comparison result holds, with merely the ellipticity
and homogeneity hypotheses. However, in order to prove
existence, it is necessary to precise further structure on F .

Some examples :
◮ Uniformly elliptic equations (Fully nonlinear).
◮ Monge-Ampere type equations.
◮ p-laplacian (Already known in the variational framework.)
◮ ∞-laplacian. With both normalizations:

∆∞u = 〈D2u∇u,∇u〉, ∆̃∞u =

〈

D2u
∇u

|∇u|
,
∇u

|∇u|

〉

.
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The problem with concave right
hand side:

F (∇uλ, D
2uλ) = λ u

q

λ.
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Some definitions (Sorry!)

Given an elliptic PDE G(u,∇u,D2u) = 0 (∗):

◮ u is a viscosity

∣
∣
∣
∣
∣

sub-
super-

∣
∣
∣
∣
∣

solution of (∗) provided

“∀φ ∈ C2(Ω), x0 ∈ Ω such that u−φ has a local

∣
∣
∣
∣
∣

maximum
minimum

∣
∣
∣
∣
∣

at x0” ⇒ G
(
u(x0),∇φ(x0),D

2φ(x0)
)

∣
∣
∣
∣
∣

≤ 0

≥ 0.

◮ Viscosity solution = Subsolution + Supersolution.
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Main result on Comparison

Theorem 1 (Comparison Principle). Let Ω ⊂ R
n be a bounded domain and

F satisfying (F1) and (F2) for some m as above. Consider 0 < q < m

and u, v ∈ C(Ω) satisfying (in the viscosity sense)







F (∇u,D2u) ≤ uq in Ω,

F (∇v,D2v) ≥ vq in, Ω

u, v > 0, in Ω

Then, u ≤ v on ∂Ω implies u ≤ v in Ω.

– p. 10



Proof of Comparison

Usual strategy:

[CIL] M. G. Crandall, H. Ishii, P. L. Lions; User’s Guide to Viscosity Solutions of Second

Order PDE, Bull. Amer. Math. Soc. 27 (1992), no. 1, pp. 1-67.

Basic Hypothesis:
The equation G(u,∇u,D2u) = 0 is proper.

That means:
◮ r 7→ G(r, p,X) is non-decreasing.
◮ Degenerate elliptic. (Decreasing in the matrix argument.)

– p. 11



Proof of Comparison

Usual strategy:

[CIL] M. G. Crandall, H. Ishii, P. L. Lions; User’s Guide to Viscosity Solutions of Second

Order PDE, Bull. Amer. Math. Soc. 27 (1992), no. 1, pp. 1-67.

Basic Hypothesis:
The equation G(u,∇u,D2u) = 0 is proper.

That means:
◮ r 7→ G(r, p,X) is non-decreasing.
◮ Degenerate elliptic. (Decreasing in the matrix argument.)

PROBLEM: G(r, p,X) = F (p,X) − rq is decreasing in r!
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Proof of Comparison

Idea: A change of variables can turn the equation into proper.

ũ(x) =
1

1 − q
m

· u1− q

m (x), ṽ(x) =
1

1 − q
m

· v1− q

m (x),

ṽǫ(x) = (1 + ǫ) ·
(
ṽ(x) + ǫ

)
, ǫ > 0,
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Proof of Comparison

Idea: A change of variables can turn the equation into proper.

ũ(x) =
1

1 − q
m

· u1− q

m (x), ṽ(x) =
1

1 − q
m

· v1− q

m (x),

ṽǫ(x) = (1 + ǫ) ·
(
ṽ(x) + ǫ

)
, ǫ > 0,

Then, in the viscosity sense,

F
(

∇ũ,D2ũ +
q

m − q

∇ũ ⊗∇ũ

ũ

)

≤ 1,

F
(

∇ṽǫ,D
2ṽǫ +

q

m − q

∇ṽǫ ⊗∇ṽǫ

ṽǫ

)

≥ (1 + ǫ)m > 1.

in every Ω∗ ⊂⊂ Ω. The new equation is proper.
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Proof of Comparison

Now, we can follow [CIL].

• We want u ≤ v in Ω.

• Suppose to the contrary that maxΩ(u − v) > 0.

(u − v)|∂Ω ≤ 0 ⇒ (ũ − ṽǫ)|∂Ω < 0

Unif. Conv. ⇒ max
Ω

(ũ − ṽǫ) > 0 for ǫ small (fixed henceforth)






⇒

⇒ ∃Ω∗ such that
{

max. points of ũ − ṽǫ

}
⊂ Ω∗ ⊂ Ω∗ ⊂ Ω.
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Proof of Comparison

The underlying idea: In a maximum point x0 of ũ − ṽǫ,

ṽǫ(x0) < ũ(x0), ∇ũ(x0) = ∇ṽǫ(x0), D2ũ(x0) ≤ D2ṽǫ(x0).

Thus,

D2ũ(x0)+
q

m − q

∇ũ(x0) ⊗∇ũ(x0)

ũ(x0)
≤ D2ṽǫ(x0)+

q

m − q

∇ṽǫ(x0) ⊗∇ṽǫ(x0)

ṽǫ(x0)

in the sense of matrices. In particular, by ellipticity,

0 < (1 + ǫ)m − 1 ≤ F
(

∇ṽǫ(x0), D
2ṽǫ(x0) + q

m−q

∇ṽǫ(x0)⊗∇ṽǫ(x0)
ṽǫ(x0)

)

−F
(

∇ũ(x0), D
2ũ(x0) + q

m−q

∇ũ(x0)⊗∇ũ(x0)
ũ(x0)

)

≤ 0.
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Proof of Comparison

At this stage, it is rather standard to make rigorous the above
formal computation following [CIL]:

◮ Doubling Variables.
◮ Penalization method (Jensen).
◮ Maximum Principle for semicontinuous Functions.

M. G. Crandall, H. Ishii; The Maximum Principle for Semicontinuous Functions,

Differential and Integral Equations 3 (1990), no. 6, pp. 1001-1014.
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Existence of solutions
It is necessary to precise more structure on F .

(F1) Degenerate ellipticity: For every p ∈ R
n, F (p, X) ≤ F (p, Y )

whenever Y ≤ X , with X, Y ∈ Sn.
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Existence of solutions
It is necessary to precise more structure on F .

(F1′) Uniform ellipticity: ∃ 0 < θ ≤ Θ s.t. ∀X, Y ∈ Sn with Y ≥ 0,

−Θ tr(Y ) ≤ F (p, X + Y ) − F (p, X) ≤ −θ tr(Y )

for every p ∈ R
n.

– p. 18
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Existence of solutions
It is necessary to precise more structure on F .

(F1′) Uniform ellipticity: ∃ 0 < θ ≤ Θ s.t. ∀X, Y ∈ Sn with Y ≥ 0,

−Θ tr(Y ) ≤ F (p, X + Y ) − F (p, X) ≤ −θ tr(Y )

for every p ∈ R
n.

(F2) Homogeneity of degree m, as before.

(F3) Structure condition: ∃ γ > 0 s. t. ∀X, Y ∈ Sn, ∀ p, q ∈ R
n,

P−

θ,Θ(X−Y )−γ |p−q| ≤ F (p, X)−F (q, Y ) ≤ P+
θ,Θ(X−Y )+γ |p−q|,

where P−

θ,Θ(M) = inf
{
−tr (AM) : θ|ξ|2 ≤ 〈Aξ, ξ〉 ≤ Θ|ξ|2 ∀ξ ∈ R

n
}

,

and P+
θ,Θ(M) = sup

{
−tr (AM) : θ|ξ|2 ≤ 〈Aξ, ξ〉 ≤ Θ|ξ|2 ∀ξ ∈ R

n
}

.

– p. 19



Existence of solutions

Theorem 2. Let Ω ⊂ R
n a bounded smooth domain, F : R

n × Sn → R

satisfy (F1′), (F2) and (F3), and 0 < q < m. Then, there exists a unique
solution to







F (∇uλ,D2uλ) = λu
q
λ,

uλ > 0 in Ω,

uλ = 0 on ∂Ω,

for every λ > 0 given by

uλ(x) = λ
1

m−q u1(x)

where u1 is the solution with λ = 1.

– p. 20



Proof of existence
Idea: [CIL]
Construct a sub- and supersolution + Comp. Principle + Perron

Step 1: Existence of solution to the auxiliary problems:






F (∇v,D2v) = 1 in Ω

v > 0 in Ω

v = 0 on ∂Ω,







F (∇w,D2w) = d(x) in Ω

w > 0 in Ω

w = 0 on ∂Ω,

where d(x) = dist(x,∂Ω)
‖dist(·,∂Ω)‖∞

.

M.G. Crandall, M. Kocan, P.L. Lions, A. Świech; Existence results for boundary problems

for uniformly elliptic and parabolic fully nonlinear equations, (1999).

– p. 21



Proof of existence

Step 2: u(x) = ‖v‖
q

m−q
∞ · v(x) is a viscosity supersolution with

u = 0 on ∂Ω.

(By Homogeneity.)

– p. 22



Proof of existence

Step 2: u(x) = ‖v‖
q

m−q
∞ · v(x) is a viscosity supersolution with

u = 0 on ∂Ω.

(By Homogeneity.)

Step 3: u(x) = t · w(x) is a viscosity subsolution with u = 0
on ∂Ω for every t > 0 small enough.

(Uses Hopf’s Lemma.)

– p. 22



Proof of existence

Step 2: u(x) = ‖v‖
q

m−q
∞ · v(x) is a viscosity supersolution with

u = 0 on ∂Ω.

(By Homogeneity.)

Step 3: u(x) = t · w(x) is a viscosity subsolution with u = 0
on ∂Ω for every t > 0 small enough.

(Uses Hopf’s Lemma.)

Step 4: Comparison Principle + Perron.
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The problem with concave-convex
right hand side:

F (∇uλ, D
2uλ) = λu

q

λ + ur
λ.

– p. 23



Main results
Theorem 3 (Existence). Let Ω ⊂ R

n smooth bounded domain,
F : R

n × Sn → R satisfy (F1′), (F2) and (F3). Then, ∃λ0 > 0 such

that, for every λ ∈ (0, λ0], the problem







F (∇uλ,D2uλ) = λu
q
λ + ur

λ,

uλ > 0 in Ω,

uλ = 0 on ∂Ω,

has at least one nontrivial viscosity solution.

– p. 24



Main results
Theorem 4 (Non-existence). Assume the above hypotheses and that the
problem







F (∇v,D2v) = λ vm in Ω

v > 0 in Ω

v = 0 on ∂Ω.

has a nontrivial solution if and only if λ = λ1 for some number λ1. Then,







F (∇uλ,D2uλ) = λu
q
λ + ur

λ,

uλ > 0 in Ω,

uλ = 0 on ∂Ω,

has no solution (in the viscosity sense) for large λ.

– p. 25



Main results
Remark 5. Since m is the degree of homogeneity of F , the problem

8

>

>

<

>

>

:

F (∇v, D2v) = λ vm in Ω

v > 0 in Ω

v = 0 on ∂Ω,

enjoys a typical feature of eigenvalue problems; provided the existence of
v(x) > 0 for some λ, ṽ(x) = t · v(x) is also a solution for every t ∈ R.

Background on Fully nonlinear eigenvalue problems:

◮ Uniformly elliptic equations:
• I. Birindelli, F. Demengel; Eigenvalue, maximum principle and regularity for

fully non linear homogeneous operators, Commun. Pure Appl. Anal. 6 (2007),
no. 2, p. 335–366.

• A. Quaas, B. Sirakov; On the Principal Eigenvalues and the Dirichlet Problem
for Fully Nonlinear Operators, CR Math. Acad. Sci. Paris, (2006).
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Main results
◮ p-laplacian:

J. Garcia Azorero, I. Peral; Existence and nonuniqueness for the p-laplacian:

Nonlinear eigenvalues, Comm. in PDE 12, No. 12 (1987) pg.1389-1430.

◮ ∞-laplacian:
P. Juutinen; Principal eigenvalue of a very badly degenerate operator and

applications, J. Differential Equations 236 (2007), no. 2, pp. 532–550.

◮ Monge-Ampere:
P.-L. Lions; Two remarks on Monge - Ampere equations, Ann. Mat. Pura Appl. (4)

142 (1985), 263-275 (1986).
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Main results

Corollary 6. Under the hypotheses of Theorems 3 and 4, there exists Λ ∈ R

with 0 < Λ < ∞ such that







F (∇uλ,D2uλ) = λu
q
λ + ur

λ,

uλ > 0 in Ω,

uλ = 0 on ∂Ω,

has at least one positive viscosity solution for every λ ∈ (0,Λ).

– p. 28



Proof of existence
We follow
L. Boccardo, M. Escobedo, I. Peral; A Dirichlet Problem Involving Critical Exponents,

Nonlinear Anal. 24 (1995), no. 11, pp. 1639-1648.

Step 1: Existence of solution of the auxiliary problems:






F (∇vλ,D2vλ) = λ in Ω

vλ > 0 in Ω

vλ = 0 on ∂Ω,







F (∇wλ,D2wλ) = λd(x) in Ω

wλ > 0 in Ω

wλ = 0 on ∂Ω,

where d(x) = dist(x,∂Ω)
‖dist(·,∂Ω)‖∞

.

(As before.)

– p. 29



Proof of existence
Step 2: ∃λ0 > 0 for which ∀λ ∈ (0, λ0], ∃Tλ such that
uλ(x) = Tλ · vλ(x) is a viscosity supersolution.

Homogeneity ⇒ F (∇uλ,D2uλ) = Tm
λ · λ

– p. 30



Proof of existence
Step 2: ∃λ0 > 0 for which ∀λ ∈ (0, λ0], ∃Tλ such that
uλ(x) = Tλ · vλ(x) is a viscosity supersolution.

Homogeneity ⇒ F (∇uλ,D2uλ) = Tm
λ · λ

vλ(x) = λ1/m v1(x) ⇒ λu
q
λ + ur

λ ≤ λ1+ q

m T
q
λ‖v1‖

q
∞ + λ

r
m T r

λ‖v1‖
r
∞

}
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Proof of existence
Step 2: ∃λ0 > 0 for which ∀λ ∈ (0, λ0], ∃Tλ such that
uλ(x) = Tλ · vλ(x) is a viscosity supersolution.

Homogeneity ⇒ F (∇uλ,D2uλ) = Tm
λ · λ

vλ(x) = λ1/m v1(x) ⇒ λu
q
λ + ur

λ ≤ λ1+ q

m T
q
λ‖v1‖

q
∞ + λ

r
m T r

λ‖v1‖
r
∞

}

⇒ We need: λ
q

m T
q−m
λ ‖v1‖

q
∞ + λ

r
m
−1T r−m

λ ‖v1‖
r
∞ ≤ 1
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Proof of existence
Step 2: ∃λ0 > 0 for which ∀λ ∈ (0, λ0], ∃Tλ such that
uλ(x) = Tλ · vλ(x) is a viscosity supersolution.

Homogeneity ⇒ F (∇uλ,D2uλ) = Tm
λ · λ

vλ(x) = λ1/m v1(x) ⇒ λu
q
λ + ur

λ ≤ λ1+ q

m T
q
λ‖v1‖

q
∞ + λ

r
m T r

λ‖v1‖
r
∞

}

⇒ We need: λ
q

m T
q−m
λ ‖v1‖

q
∞ + λ

r
m
−1T r−m

λ ‖v1‖
r
∞

︸ ︷︷ ︸

Φλ(T )

≤ 1

– p. 33



Proof of existence
Step 2: ∃λ0 > 0 for which ∀λ ∈ (0, λ0], ∃Tλ such that
uλ(x) = Tλ · vλ(x) is a viscosity supersolution.

Homogeneity ⇒ F (∇uλ,D2uλ) = Tm
λ · λ

vλ(x) = λ1/m v1(x) ⇒ λu
q
λ + ur

λ ≤ λ1+ q

m T
q
λ‖v1‖

q
∞ + λ

r
m T r

λ‖v1‖
r
∞

}

⇒ We need: λ
q

m T
q−m
λ ‖v1‖

q
∞ + λ

r
m
−1T r−m

λ ‖v1‖
r
∞

︸ ︷︷ ︸

Φλ(T )

≤ 1

-

6

r

Tλ

Φλ(T )

1
Indeed: Φλ(Tλ) ≤ 1 ⇔ λ ≤ λ0

– p. 33



Proof of existence
Step 3: uλ(x) = t wλ(x) is a viscosity subsolution for small t > 0

(Homogeneity + Hopf’s Lemma)
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Proof of existence
Step 3: uλ(x) = t wλ(x) is a viscosity subsolution for small t > 0

(Homogeneity + Hopf’s Lemma)

Step 4: We can choose t above such that uλ ≤ uλ in Ω.

(Again Hopf’s Lemma)
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Proof of existence
Step 5: Monotone iteration. Solve:

{

F (∇w1,D
2w1) = λu

q
λ + ur

λ in Ω

w1 = 0 on ∂Ω.

Since uλ = w1 = uλ = 0 on ∂Ω,

F (∇uλ,D2uλ) ≥ λu
q
λ + ur

λ,

F (∇w1,D
2w1) = λu

q
λ + ur

λ,

}

⇒ w1 ≤ uλ in Ω.

F (∇uλ,D2uλ) ≤ λu
q
λ + ur

λ ≤ λu
q
λ + ur

λ

– p. 35
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Proof of existence
Step 5: Monotone iteration. Solve:

{

F (∇w1,D
2w1) = λu

q
λ + ur

λ in Ω

w1 = 0 on ∂Ω.

Since uλ = w1 = uλ = 0 on ∂Ω,

F (∇uλ,D2uλ) ≥ λu
q
λ + ur

λ,

F (∇w1,D
2w1) = λu

q
λ + ur

λ,

F (∇uλ,D2uλ) ≤ λu
q
λ + ur

λ ≤ λu
q
λ + ur

λ







⇒ uλ ≤ w1 ≤ uλ.
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Proof of existence
Now consider:

{

F (∇w2,D
2w2) = λw

q
1 + wr

1 in Ω,

w2 = 0 on ∂Ω.

– p. 38



Proof of existence
Now consider:

{

F (∇w2,D
2w2) = λw

q
1 + wr

1 in Ω,

w2 = 0 on ∂Ω.

As before, since uλ = w1 = w2 = 0 on ∂Ω,

F (∇w1,D
2w1) = λu

q
λ + ur

λ,

F (∇w2,D
2w2) = λw

q
1 + wr

1,

F (∇uλ,D2uλ) ≤ λu
q
λ + ur

λ ≤ λw
q
1 + wr

1







⇒ uλ ≤ w2 ≤ w1 ≤ uλ.

– p. 38



Proof of existence
Iterating: u ≤ . . . ≤ wk ≤ wk−1 ≤ . . . ≤ w2 ≤ w1 ≤ u in Ω, with

(∗)

{

F (∇wk,D2wk) = λw
q
k−1 + wr

k−1 in Ω,

wk = 0 on ∂Ω.

– p. 39



Proof of existence
Iterating: u ≤ . . . ≤ wk ≤ wk−1 ≤ . . . ≤ w2 ≤ w1 ≤ u in Ω, with

(∗)

{

F (∇wk,D2wk) = λw
q
k−1 + wr

k−1 in Ω,

wk = 0 on ∂Ω.

• (F1’) + (F3) ⇒ ABP estimate:

L.A. Caffarelli, M.G. Crandall, M. Kocan, A. Świech; On viscosity solutions of fully

nonlinear equations with measurable ingredients, Comm. Pure Appl. Math. 49

(1996), pp. 365-397.
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Proof of existence
Iterating: u ≤ . . . ≤ wk ≤ wk−1 ≤ . . . ≤ w2 ≤ w1 ≤ u in Ω, with

(∗)

{

F (∇wk,D2wk) = λw
q
k−1 + wr

k−1 in Ω,

wk = 0 on ∂Ω.

• (F1’) + (F3) ⇒ ABP estimate:

L.A. Caffarelli, M.G. Crandall, M. Kocan, A. Świech; On viscosity solutions of fully

nonlinear equations with measurable ingredients, Comm. Pure Appl. Math. 49

(1996), pp. 365-397.

• ABP estimate ⇒ uniform Cα estimates:

L.A. Caffarelli, X. Cabré; Fully Nonlinear Elliptic Equations, Amer. Math. Soc.,

Colloquium publications, vol. 43 (1995).

– p. 40



Proof of existence
Iterating: u ≤ . . . ≤ wk ≤ wk−1 ≤ . . . ≤ w2 ≤ w1 ≤ u in Ω, with

(∗)

{

F (∇wk,D2wk) = λw
q
k−1 + wr

k−1 in Ω,

wk = 0 on ∂Ω.

• (F1’) + (F3) ⇒ ABP estimate:

L.A. Caffarelli, M.G. Crandall, M. Kocan, A. Świech; On viscosity solutions of fully

nonlinear equations with measurable ingredients, Comm. Pure Appl. Math. 49

(1996), pp. 365-397.

• ABP estimate ⇒ uniform Cα estimates:

L.A. Caffarelli, X. Cabré; Fully Nonlinear Elliptic Equations, Amer. Math. Soc.,

Colloquium publications, vol. 43 (1995).

• Cα estimates ⇒ ∃u(x) = limk→∞ wk(x) (uniform).
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Proof of existence
Since wk → u uniformly, we can pass to the limit in

(∗)

{

F (∇wk,D2wk) = λw
q
k−1 + wr

k−1 in Ω

wk = 0 on ∂Ω,

(in the viscosity sense) to get






F (∇uλ,D2uλ) = λu
q
λ + ur

λ,

uλ > 0 in Ω,

uλ = 0 on ∂Ω.

We have finished.
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Proof of existence

To summarize:

1. Fundamental property: F is m-homogeneous.

2. Main ingredients of the proofs:
◮ Solvability of the auxiliary problems.
◮ Hopf’s Lemma.
◮ Uniform Cα estimates.

All the above can be easily extended to any equation ensuring
the availability of the aforementioned ingredients (p−laplacian,
∞−laplacian, Monge-Ampere...).
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Work in progress

Theorem 7 (F. Ch., E. Colorado, I. Peral). Let 0 < q < m < r, where m is
the degree of homogeneity of F . Then, there exist Λ ∈ R, 0 < Λ < ∞
such that, the problem







F (∇u,D2u) = λuq + ur, in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

1. Has at least two positive solutions for every λ ∈ (0,Λ).

2. Has at least one positive solution for λ = Λ.

3. Has no positive solution for λ > Λ.

Idea: Degree theory + A priori estimates (sort of Gidas-Spruck).
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That’s all folks!
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