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Presentation

In this talk we analyze existence, nonexistence, multiplicity and regularity

of solution to problem

P


ut −∆u = β(u)|∇u|2 + f (x, t) in Q ≡ Ω× (0,+∞)

u(x, t) = 0 on ∂Ω× (0,+∞),

u(x, 0) = u0(x) in Ω,

where β is a continuous nondecreasing positive function and f belongs

to some suitable Lebesgue space.

When β(s) ≡ 1 the equation above appears in the physical theory of

growth and roughening of surfaces, where it is known as the Kardar-

Parisi-Zhang equation and also appear in some models of propagation of

flames.
See details in:

• M. Kardar, G. Parisi, Y.C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett.
56, (1986), 889-892.

• P.L. Lions,Generalized solutions of Hamilton-Jacobi Equations, Pitman Res. Notes Math. 62
(1982).

• P.L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations: part 1:
The dynamic programming principle and applications and part 2: Viscosity solutions and unique-
ness. Communications in Partial Differential Equations 8 (1983), 1101-1174 and 1229-1276.

• H. Berestycki, S. Kamin, G. Sivashinsky, Metastability in a flame front evolution equation
Interfaces Free Bound. 3, 4 (2001) 361-392.
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Some pioneering and preceding works related to the prob-
lem

• A. Ben-Artzi, P. Souplet, F.B. Weissler: The local theory for the viscous
Hamilton-Jacobi equations in Lebesgue spaces. J. Math. Pure. Appl. 9 no. 81
(2002), 343–378.

• D. Blanchard, F. Murat, H. Redwane: Existence and uniqueness of a
renormalized solution for a fairly general class of nonlinear parabolic prob-
lems. J. Differential Equations 177 (2001), no. 2, 331–374.

• D. Blanchard, A. Porretta: Nonlinear parabolic equations with natural
growth terms and measure initial data. Ann Sc. Norm. Sup. Pisa cl. 30 (2001)
no. 3-4, 583–622.

• L. Boccardo, A. Dall’Aglio, T. Gallouët, L. Orsina: Nonlinear parabolic
equations with measure data. J. Funct. Anal. 147 no. 1 (1997), 237–258.

• L. Boccardo, T. Gallouët. Nonlinear elliptic and parabolic equations in-
volving measure data. J. Funct. Anal. 87 no. 1 (1989), 149–169.

• A. Dall’Aglio, D. Giachetti and J.-P. Puel: Nonlinear parabolic equa-
tions with natural growth in general domains. Boll. Un. Mat. Ital. Sez. B 8
(2005), 653–683.
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Let Ω be a bounded domain in IRN, N ≥ 1.

We will denote by Q the cylinder Ω × (0,∞); moreover, for 0 < t1 < t2, we
will denote by Qt1, Qt1,t2 the cylinders Ω× (0, t1), Ω× (t1, t2), respectively.

u0(x) and f(x, t) are positive functions defined in Ω, Q, respectively, such that
u0 ∈ L1(Ω) and f ∈ L1(QT ), for every T > 0.

Definition 1
We say that u(x, t) is a distributional solution to problem P if u ∈ C([0,∞);L1(Ω))∩
L2

loc([0,∞);W 1,2
0 (Ω)), β(u)|∇u|2 ∈ L1

loc(Q), and if for all φ(x, t) ∈ C∞0 (Q) one has

−
∫∫

Q

uφt dx dt+

∫∫
Q

∇u · ∇φ dx dt =

∫∫
Q

β(u) |∇u|2 φ dx dt+
∫∫

Q

fφ dx dt

and
u(·, 0) = u0(·) in L1(Ω).

Remark
The previous definition implies that, for every bounded, Lipschitz continuous

function h(s) such that h(0) = 0, and for every τ > 0, one has∫
Ω
H(u(x, τ)) dx−

∫
Ω
H(u0(x)) dx+

∫∫
Qτ

|∇u|2 h′(u) dx dt

=

∫∫
Qτ

β(u) |∇u|2 h(u) dx dt+

∫∫
Qτ

f h(u) dx dt ,

where H(s) =
∫ s

0 h(σ) dσ.
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(III) Picone inequality.

As an extension of a result by Picone in 1910 we have the following Theorem:
Theorem If u ∈ W 1,2

0 (Ω), u ≥ 0, v ∈ W 1,2
0 (Ω), −∆v ≥ 0 is a bounded Radon

measure, v|∂Ω = 0, v ≥ 0 and not identically zero, then∫
Ω
|∇u|2 ≥

∫
Ω
(
u2

v
)(−∆v).

See M. Picone, Ann. Scuola. Norm. Pisa. Vol 11 (1910), 1-144.

See for a general extension Ireneo Peral, A. B, Commun. Pure Appl. Anal. Vol. 2, no. 4 (2003), 539-566.

Planning of the talk.

• Existence of regular solution.

• Regularity of general solution.

• Nonexistence result: Optima condition on f .

• Existence of weaker solutions:1-Connection with semi-linear problems with

measure data

• Existence of weaker solutions:2- Singular initial datum
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Existence of solution with higher regularity.

For simplicity we will consider the case β = 1.

(P)


ut −∆u = |∇u|2 + f(x, t) in Q ≡ Ω× (0,+∞)

u(x, t) = 0 on ∂Ω× (0,+∞),

u(x, 0) = u0(x) in Ω,

Assume that f is a positive function such that

(H) f(x, t) ∈ Lr
loc([0,∞);Lq(Ω)) , with q, r > 1 ,

N

q
+

2

r
< 2 .

We perform the change of variable v = eu − 1; then problem P becomes

(S)


vt −∆v = f(x, t)(v + 1) in Q

v(x, t) = 0 on ∂Ω× (0,∞)

v(x, 0) = v0(x) = eu0 − 1 .

If we assume that v0(x) = eu0 − 1 ∈ L2(Ω), then existence of a solution v ∈
C([0,∞);L2(Ω)) ∩ L2

loc([0,∞);W 1,2
0 (Ω)) can be proved using the approximations

argument and apriori estimate.

We set u = log(v+1), then u ∈ L2(0, T ;W 1,2
0 (Ω)) and u satisfies problem (P).

The inverse is also true in the sense that if u is a solution to problem (P) with
eu0(x) − 1 ∈ L2(Ω) and eu − 1 ∈ L2((0, T ),W 1,2

0 (Ω)), then if we set v = eu − 1 we
obtain that v solves problem (S).
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Optimality of the hypotheses on f : nonexistence result.

To see that the condition on f is optimal in some sense we will assume that 0 ∈ Ω

and that f(x, t) = f(x) =
λ

|x|2
. Then f(x) ∈ Lq(Ω) for every q < N/2. Consider

ΛN ≡ inf
{φ∈W 1,2

0 (Ω)(Ω);φ6=0}

∫
Ω
|∇φ|2dx∫

Ω
φ2 |x|−2 dx

.

Theorem 1 Assume that N ≥ 3, and that λ > ΛN = (N−2
2 )2, then, for any initial

datum u0 ≥ 0 and for any T > 0, problem
ut −∆u = |∇u|2 +

λ

|x|2
in QT

u(x, t) = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω ,

(0.1)

has no solution.

Idea of the proof. Consider Taking φ ∈ C∞0 (Ω)

Taking φ2 as a test function in (0.1) we obtain that∫
Ω
u(x, t2)φ

2 dx−
∫

Ω
u(x, t1)φ

2dx + 2

∫∫
Qt1,t2

φ∇φ · ∇u dx dt

=

∫∫
Qt1,t2

φ2 |∇u|2 dx dt + λ

∫∫
Qt1,t2

φ2

|x|2
dx dt ,

where we have set Qt1,t2 = Ω× (t1, t2). Hence

−
∫

Ω
u(x, t2)φ

2 dx ≤ (t2 − t1)
[ ∫

Ω
|∇φ|2 dx− λ

∫
Ω

φ2

|x|2
dx

]
.
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By The main Regularity Theorem of general solution obtained bellow,

u(·, t) ∈ La(Ω) for all t ∈ (0, T ) and for all a <∞; therefore we obtain that

∫
Ω
|∇φ|2 dx− λ

∫
Ω

φ2

|x|2
dx ≥ − 1

t2 − t1

( ∫
Ω
u

N
2 (x, t2) dx

) 2
N

( ∫
Ω
|φ|2∗ dx

) 2
2∗
.

By density, this implies that

I(Ω) ≡ inf
φ∈W 1,2

0 (Ω)\{0}

∫
Ω
|∇φ|2 dx− λ

∫
Ω

φ2

|x|2
dx( ∫

Ω
|φ|2∗ dx

) 2
2∗

≥ − 1

t2 − t1

( ∫
Ω
u

N
2 (x, t2) dx

) 2
N

> −∞ .

Since λ > ΛN , taking the sequence φn(x) = Tn(|x|−
N−2

2 )η(x), where η(x) is a
cut-off function with compact support in Ω which is 1 in a neighborhood of the
origin,

one can check that I(Ω) = −∞. Hence we reach a contradiction.
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Regularity of general solutions.

Suppose that (H) holds and that 0 ≤ u0 ∈ L1(Ω).
Our first result on the regularity is the following.

Proposition 1
Assume that u ∈ C([0,∞);L1(Ω))∩L2

loc([0,∞);W 1,2
0 (Ω)) is a solution of problem

(P), where f ∈ L1
loc(Q) is such that f(x, t) ≥ 0 a.e. in Q. Then∫

Ω
eu(x,τ)d(x) dx <∞ for every τ > 0, d(x) = dist(x, ∂Ω). (0.2)

Idea of the proof.
Let ε > 0, we consider vε = Hε(u), where Hε(s) = e

s
1+εs − 1, then

• vε ∈ L∞(Q) ∩ L2
loc([0,∞);W 1,2

0 (Ω))

• (vε)t −∆vε ≥ 0 in the sense of distributions.

u ∈ L1(Ω), in particular eu(x,t) <∞ a.e. in Q.

For t0 > 0, let w be the solution of problem
wt −∆w = 0 in Ω× (t0,∞)

w(x, t) = 0 on ∂Ω× (t0,∞),
w(x, t0) = vε(x, t0).

(0.3)

Using a result by Martel (see Ann. Inst. H. Poincaré Anal. Non Linéaire 15 no. 6 (1998), 687–723.)
for some positive functions c1(t), c2(t).

c1(t)||vε(·, t0)d(·)||L1d(x) ≤ w(x, t) ≤ c2(t)||vε(·, t0)d(·)||L1d(x) for all t > t0,

Since vε is a supersolution to (0.3), we conclude that w ≤ vε in Ω× (t0,∞). Then

c1(t)||vε(·, t0)d(·)||L1d(x) ≤ vε(x, t) ≤ eu(x,t) <∞ for a.e. (x, t) ∈ Ω× (t0,∞) .
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Fixed (x, t) ∈ Ω× (t0,∞), such that u(x, t) <∞, by Fatou’s lemma we get∫
Ω
eu(x,t0) d(x) dx <∞.

Using the fact that t0 > 0 is arbitrary, we conclude that (0.2) holds.
As a consequence we obtain the following result.

Main Regularity Theorem Under the same hypotheses as in the previous
propositions, for all τ > 0 we have

1.

∫∫
Qτ

|∇u|2 eδu dx dt <∞, for all δ < 1 ,

2.

∫∫
Qτ

f eu dx dt <∞ ,

3.

∫∫
Qτ

e
u

1+εu |∇u|2
(
1− 1

(1 + εu)2

)
dx dt ≤ C(τ) uniformly in ε ,

4.

∫
Ω
eu0(x) dx <∞

and finally

5. eu ∈ L∞(0, τ ;L1(Ω)).

Idea of the proof.
Let us consider an open set Ω̃ ⊃⊃ Ω. For τ > 0, Let φ(x, t) be the solution to

−φt −∆φ = 0 in Ω̃× (0, τ + 1)

φ(x, t) = 0 on ∂Ω̃× (0, τ + 1),

φ(x, τ + 1) = d̃(x) ,

where

d̃(x) =

{
dist(x, ∂Ω) if x ∈ Ω,

0 if x ∈ Ω̃ \ Ω.
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Then it is well known that

φ(x, t) ≥ c(τ) > 0 , for a.e. (x, t) ∈ Ω× (0, τ) .

Let us define

kδ,ε(s) = e
δs

1+εs , Ψδ,ε(s) =

∫ s

0
kδ,ε(σ)dσ ≤ 1

δ
eδs .

We use φ(x, t) (kδ,ε(u(x, t))− 1) as test function in problem (P) and we integrate
in Qτ+1,∫

Ω
Ψδ,ε(u(x, τ + 1)) d(x) dx−

∫
Ω
u(x, τ + 1) d(x) dx

−
∫

Ω
Ψδ,ε(u(x, 0))φ(x, 0) dx+

∫
Ω
u(x, 0)φ(x, 0) dx+

∫∫
Qτ+1

k′δ,ε(u) |∇u|2 φ dx dt

=

∫∫
Qτ+1

kδ,ε(u) |∇u|2 φ dx dt−
∫∫

Qτ+1

|∇u|2 φ dx dt+

∫∫
Qτ+1

f kδ,ε(u)φ dx dt

−
∫∫

Qτ+1

f φ dx dt . (0.4)

The first integral in (0.4) is bounded by (0.2), hence by the definition of φ,∫∫
Qτ

e
δ u

1+ε u

(
1− δ

(1 + ε u)2

)
|∇u|2 dx dt+

∫∫
Qτ

e
δ u

1+ε u f dx dt+

∫
Ω

Ψδ,ε(u0(x)) dx

=

∫∫
Qτ

(
kδ,ε(u)−k′δ,ε(u)

)
|∇u|2 dx dt+

∫∫
Qτ

f kδ,ε(u) dx dt+

∫
Ω

Ψδ,ε(u0(x)) dx ≤ c(τ) .

Then, taking δ < 1 and passing to the limit as ε → 0, we obtain estimate (1).
Taking δ = 1, we obtain estimates (2), (3) and (4). Finally, let ω(x, t) be the
solution of 

−ωt −∆ω = 0 in Qτ

ω(x, t) = 0 on ∂Ω× (0, τ),

ω(x, τ) ≡ 1 .

Then 0 ≤ ω(x, t) ≤ 1 for every (x, t) ∈ Qτ . Multiplying problem (P) by k1,ε(u)ω
and passing to the limit as ε→ 0 we get (5).
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Existence of weaker solutions related to problems with
measure data: Nonuniquness result

We begin by the following existence result that can be proved by approximation
argument and apriori estimate.
Theorem
Let µ be a Radon measure on Q, which is finite on QT for every T > 0. Then
problem

(SS)


vt −∆v = f(x, t) v + µ in Q

v = 0 on ∂Ω× (0,∞),

v(x, 0) = φ(x) ∈ L1(Ω),

has a unique distributional solution such that
i) v ∈ Lr1

loc([0,∞);W 1,q1

0 (Ω)) for every r1, q1 ≥ 1 such that
N

q1
+

2

r1
> N + 1 ;

ii) v ∈ L∞loc([0,∞);L1(Ω)) , for every k > 0;

iii) Tkv ∈ L2
loc([0,∞);W 1,2

0 (Ω)) , for every k > 0;

iv) f v ∈ L1
loc(Q) .

Our main result is to show that there exists a one-to-one correspondence between
the solutions of problem (P) and (SS), where µ is an arbitrary positive “singular”
measure.

To clarify the meaning of ” singular” measure we have to use a notion of
parabolic capacity introduced by Pierre in (SIAM J. Math. Anal. 14 no. 3 (1983), see also

Droniou, Porretta and Prignet: Parabolic capacity and soft measures for nonlinear equations. Potential

Anal. 19 no. 2 2003).
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For T > 0, we define the Hilbert space W by setting

W = WT = {u ∈ L2(0, T ;W 1,2
0 (Ω)), ut ∈ L2(0, T ;W−1,2(Ω))},

equipped with the norm defined by

||u||2WT
=

∫∫
QT

|∇u|2 dx dt+

∫ T

0
||ut||2W−1,2dt .

Definition 1
If U ⊂ QT is an open set, we define

cap1,2(U) = inf {‖u‖W : u ∈ W, u ≥ χU almost everywhere in QT}

(we will use the convention that inf ∅ = +∞), then for any borelian subset B ⊂ QT

the definition is extended by setting:

cap1,2(B) = inf
{
cap1,2(U), U open subset of QT , B ⊂ U

}
.

Definition 2( Singular measures)
Let the space dimension N be at least 2. Let µ be a positive Radon measure

in Q. We will say that µ is singular if it is concentrated on a subset E ⊂ Q such
that

cap1,2(E ∩Qτ) = 0, for every τ > 0.

As examples of singular measures, one can consider:

i) a space-time Dirac delta µ = δ(x0,t0) defined by 〈µ, ϕ〉 = ϕ(x0, t0) for every
ϕ(x, t) ∈ Cc(Q);

ii) a Dirac delta in space µ = µ(x) = δx0
defined by 〈µ, φ〉 =

∫ ∞
0 φ(x0, t) dt;

iii) more generally, a measure µ concentrated on the set E × (0,+∞), where
E ⊂ Ω has zero “elliptic” 2-capacity;

iv) a measure µ concentrated on a set of the form E × {t0}, where E ⊂ Ω has
zero Lebesgue measure.
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Our main result is the following multiplicity result.

Main Theorem Let µs be a positive, singular Radon measure such that
µs

∣∣
QT

is bounded for every T > 0.

Assume that f(x, t) is a positive and that u0 satisfies v0 = eu0 − 1 ∈ L1(Ω).
Consider v, the unique solution of problem

vt −∆v = f(x, t) (v + 1) + µs in D′(Q)

v ∈ L∞loc([0,∞);L1(Ω)) ∩ Lρ
loc([0,∞);W 1,σ

0 (Ω))

where σ, ρ > 1 verify
N

σ
+

2

ρ
> N + 1

v(x, 0) = v0(x) , f v ∈ L1
loc(Q).

(0.5)

We set u = log(v + 1), then u ∈ L2
loc([0,∞);W 1,2

0 (Ω)) ∩ C([0,∞);L1(Ω)) and
is a weak solution of{

ut −∆u = |∇u|2 + f(x, t) in D′(Q)

u(x, 0) = u0(x) ≡ log(v0(x) + 1) .
(0.6)

Outline of the proof.
Let hn(x, t) ∈ L∞(Q) be a sequence of bounded nonnegative functions such

that ‖hn‖L1(QT ) ≤ C(T ) for every T > 0, and

hn ⇀ µs weakly in the measures sense in QT , for every T > 0.

Consider now the unique solution vn to problem
(vn)t −∆vn = Tn(f (v + 1)) + hn in Q

vn ∈ L2
loc([0,∞);W 1,2

0 (Ω))

vn(x, 0) = Tn(v0(x)) .

• (vn)t ∈ L2
loc(Q),
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• vn → v in Lρ(0, T ;W 1,σ
0 (Ω)) for all ρ and σ as in (0.5) and for all T > 0.

We set un = log(vn + 1), then

(un)t −∆un = |∇un|2 +
Tn(f (v + 1))

vn + 1
+

hn

vn + 1
in D′(Q).

using the definition of vn we conclude easily that, for every T > 0,

Tn(f(v + 1))

vn + 1
→ f(x, t) in L1(QT ) and un → u in L1(QT ).

We claim that
hn

vn + 1
→ 0 in D′(Q).

Consider φ(x, t) be a function in C∞0 (Q); we want to prove that

lim
n→∞

∫∫
QT

φ
hn

vn + 1
dx = 0 .

We assume that supp φ ⊂ QT , and we use the assumption on µs:

let A ⊂ QT be such that cap1,2(A) = 0 and µsxQT is concentrated on A.

∀ε > 0, there exists an open set Uε ⊂ QT and ψε ∈ WT with

• A ⊂ Uε and cap1,2(Uε) ≤ ε/2

• ψε ≥ χUε
and ||ψε||WT

≤ ε.

Let us define the real function

m(s) =
2|s|
|s|+ 1

then m(ψε) ≤ 2, m(ψε) ≥ χUε

and ∫∫
QT

|∇m(ψε)|2 dx dt =

∫∫
QT

|m′(ψε)|2|∇ψε|2 dx dt ≤ 4 ε2.
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Using a Picone-type inequality, we obtain that

4 ε2 ≥
∫

Ω
|∇m(ψε)|2 dx ≥

∫
Ω

−∆(vn + 1)

vn + 1
m2(ψε) dx

≥
∫

Ω

hn

vn + 1
m2(ψε) dx−

∫
Ω

(vn)t

vn + 1
m2(ψε) dx.

By integration in t, we get∫∫
Uε

hn

vn + 1
dx dt ≤ 4 ε2 T +

∫
Ω log(vn(x, T ) + 1)m2(ψε(x, T )) dx

+ 2

∫∫
QT

log(vn + 1)m(ψε)m
′(ψε) (ψε)t dx dt

= 4 ε2 T + I1 + I2 .

We begin by estimating I1. Since |m(s)| ≤ 2, then by Hölder’s inequality,

I1 ≤ C
( ∫

Ω
log2(vn(x, T )+1) dx

) 1
2
( ∫

Ω
m4(ψε(x, T )) dx

) 1
2 ≤ C

( ∫
Ω
m2(ψε(x, T )) dx

) 1
2

where in the last estimate we have used the inequality log(s+1) ≤ s
1
2 + c and the

bound

max
t∈[0,T ]

∫
Ω
vn(x, t) dx ≤ C(T ) .

Since m(s) ≤ 2 |s|, it follows that

I1 ≤ C
( ∫

Ω
|ψε(x, T )|2 dx

) 1
2 ≤ max

t∈[0,T ]

( ∫
Ω
ψ2

ε (x, t) dx
) 1

2 ≤ C ||ψε||WT
≤ C ε,

by the fact that WT ⊂ C([0, T ];L2(Ω)) with a continuous inclusion.
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We now estimate I2. Using
m2(ψε)

vn + 1
as a test function in the problem solved by vn

and by a direct computation we obtain

2I2 = 2

∫∫
QT

log(vn + 1)m(ψε)m
′(ψε) (ψε)t dx dt ≤ C ε .

Hence we conclude that ∫∫
Uε

hn

vn + 1
dx dt ≤ C(ε+ ε2) .

Now, ∣∣∣ ∫∫
QT

φ
hn

vn + 1
dx dt

∣∣∣
≤ ||φ||∞

∫∫
Uε

hn

vn + 1
dx dt+

∫∫
QT \Uε

|φ|hn dx dt ≤ Cε

Since ε is arbitrary we get the desired result.

Using the definition of un and Vitali theorem we can prove that

|∇un|2 → |∇u|2 strongly in L1(Ω).

Let φ ∈ C∞0 (QT ), then we have∫∫
QT

((un)t −∆un) φ dx dt

=

∫∫
QT

Tn(f(v + 1))

vn + 1
φ dx dt+

∫∫
QT

|∇un|2φ dx dt+

∫∫
QT

hnφ

vn + 1
dx dt.

As n→∞, we obtain that u solves

ut −∆u = |∇u|2 + f(x, t) in D′(Q).
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The inverse setting
Theorem Let u ∈ C([0,∞);L1(Ω)) ∩ L2

loc([0,∞);W 1,2
0 (Ω)).

Consider v = eu − 1, then v ∈ L1
loc(Q), and there exists a bounded positive

measure µ in QT for every T > 0, such that

• v solves vt −∆v = f(x, t) (v + 1) + µ in D(Q).

• µ is concentrated on the set A ≡ {(x, t) : u(x, t) = ∞} and cap1,2(A ∩
QT ) = 0 for all T > 0, that is µ is a singular measure.

Moreover µ can be characterized as a weak limit in the space of bounded
Radon measures, as follows:

µ = lim
ε→0

|∇u|2e
u

1+εu

(
1− 1

(1 + εu)2

)
in QT , for every T > 0.

Outline of the proof.
Let v = eu − 1, then by the regularity results of u, v ∈ L1

loc(Q) and∫∫
Qτ

f(x, t) (v + 1) dx dt+

∫∫
Qτ

|∇u|2 e
u

1+εu

(
1− 1

(1 + εu)2

)
dx dt ≤ C(τ) .

Therefore, there exists a positive Radon measure µ in Q such that for all τ > 0

|∇u|2e
u

1+εu

(
1− 1

(1 + εu)2

)
⇀ µ in the weak measure sense in Qτ .

µ is concentrated in the set A ≡ {(x, t) ∈ Q : u(x, t) = ∞}: Because∫∫
Qτ∩{u≤k}

|∇u|2 e
u

1+εu

(
1− 1

(1 + εu)2

)
dx dt→ 0 as ε→ 0.

Define

vε(x, t) =

∫ u(x,t)

0
e

s
1+εsds ∈ L2

loc([0,∞);W 1,2
0 (Ω)).

then

(vε)t −∆vε = e
u

1+εu |∇u|2(1− 1

(1 + εu)2 ) + f(x, t)e
u

1+εu in D′.
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It is clear that

• f(x, t)e
u

1+εu → f(x, t)(v + 1) strongly in L1,

• e u
1+εu |∇u|2(1− 1

(1+εu)2 ) ⇀ ν in the sense of measures,

Since vε → v in L1(Qτ) for all τ > 0, then

• vt −∆v = f(x, t) (v + 1) + µ

• µ is uniquely determined.

Finally to prove that cap1,2(A ∩QT ) = 0 and then µ is a singular measure in the
sense of Definition 2.

Consider AT = A ∩QT , since u ∈ C([0, T ];L1(Ω)) ∩ L2([0, T ];W 1,2
0 (Ω)) solves

ut −∆u = g(x, t) ≡ |∇u|2 + f(x, t) in QT

u(x, t) = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

then using Tk(u) as a test function in the above problem it follows that∫
Ω

Θk(u(x, τ)) dx+

∫∫
Qτ

|∇Tk(u)|2 dx dt ≤ k(||g||L1(QT ) + ||u0||L1(Ω)).

with Let τ ≤ T and

Θk(s) =

∫ s

0
Tk(σ)dσ =

{
1
2s

2 if |s| ≤ k,

ks− 1
2k

2 if |s| ≥ k.

Since Θk(s) ≥ 1
2T

2
k (s), we conclude that

||Tk(u)||2L∞((0,T );L2(Ω)) + ||Tk(u)||2L2((0,T );W 1,2
0 (Ω)) ≤ C(T )k.
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Consider wk =
Tk(u)

k
,

• wk ∈ X ≡ L∞((0, T );L2(Ω)) ∩ L2((0, T );W 1,2
0 (Ω)), ||wk||2X ≤ C(T )

k
.

• ||wk||2X → 0 as k →∞.

• From Kato inequality (wk)t −∆wk ≥ 0 in D′.

Therefore by using Proposition 3 in (M. Pierre: SIAM J. Math. Anal. 14 no. 3 (1983),)

there exists zk ∈ W such that

• zk ≥ wk

• ||zk||W ≤ ||wk||X.

It is clear that zk ≥ 1 on AT . Hence

cap1,2(AT ) ≤ ||zk||W ≤ ||wk||X ≤ (
C(T )

k
)

1
2 .

Letting k →∞ it follows that cap1,2(AT ) = 0 and then the result follows.
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Nonuniqueness induced by singular perturbations of
the initial data.

We prove an other nonuniqueness result for problem (P) by perturbing the initial
data in the associated linear problem with a suitable singular measure.

We suppose that f(x, t) ≡ 0, |E| will denote the usual Lebesgue measure of
E ⊂ RN .
Theorem
Let νs be a bounded positive singular measure in Ω, concentrated on a subset
E ⊂⊂ Ω such that |E| = 0 . Let v be the unique solution of problem

vt −∆v = 0 in D′(Q)

v(x, t) = 0 on ∂Ω× (0,∞)

v(x, 0) = νs .

(0.7)

We set u = log(v + 1), then u ∈ L2
loc([0,∞);W 1,2

0 (Ω)) and verifies{
ut −∆u = |∇u|2 in D′(Q)

u(x, 0) = 0.
(0.8)

Outline of the proof.

Let hn ∈ L∞(Ω) be a sequence of nonnegative functions such that ||hn||L1(Ω) ≤
C and hn ⇀ νs weakly in the measure sense, namely

lim

∫
Ω
hn(x)φ(x)dx→ 〈νs, φ〉 for all φ ∈ Cc(Ω).

Consider now vn the unique solution to problem
(vn)t −∆vn = 0 in Q

vn ∈ L2
loc([0,∞);W 1,2

0 (Ω))

vn(x, 0) = hn(x) .

(0.9)
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Then vn → v strongly in Lr(0, T ;W 1,q
0 (Ω)), with

N

q
+

2

r
> N + 1

By Vetali Theorem, we can prove that |∇un|2 → |∇u|2 strongly in L1(QT ),∀T > 0.

To finish we have to show that

log(1 + vn(., t)) → 0 strongly in L1(Ω) as t→ 0, n→∞.

Take H(vn), where H(s) = 1− 1

(1 + s)α
, 0 < α << 1, as a test function in (0.9),

∫
Ω
H(vn(x, τ)) dx+ α

∫∫
Qτ

|∇vn|2

(1 + vn)1+α
dx dt =

∫
Ω
H(hn(x)) dx

H(s) =
∫ s

0 H(σ)dσ = s− 1
1−α((1 + s)1−α − 1).

Hence
∫

Ω vn(x, t) dx ≤ C, C is positive constant independent of n and t.

Thus log(1 + vn(., t)) is bounded in Lp(Ω) for all p <∞ uniformly in n and t.

By the strong convergence of Tk vn, for small ε > 0, ∃n(ε), ∃τ(ε) > 0 such that
for n ≥ n(ε) and t ≤ τ(ε), we have∫∫

Qt

|∇vn|2

(1 + vn)2 dx ds ≤ ε. (0.10)

Since νs is concentrated on a set E ⊂⊂ Ω with |E| = 0, then for ε ∈ (0, 1) there
exists an open set Uε such that E ⊂ Uε ⊂ Ω and |Uε| ≤ ε/2.

We can assume that supphn ⊂ Uε for n ≥ n(ε).

Take φε ∈ C∞0 (RN) with 0 ≤ φε ≤ 1, φε = 1 in Uε, suppφε ⊂ Oε and |Oε| ≤ 2ε.
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Consider wε, the solution to problem
wεt −∆wε = 0 in Q,

wε(x, t) = 0 on ∂Ω× (0,∞),

wε(x, 0) = φε(x).

• 0 ≤ wε ≤ 1 and wε → 0 strongly in L2(0,∞);W 1,2
0 (Ω)) ∩ C([0,∞);L2(Ω))

• dwε

dt
→ 0 strongly in L2(0,∞);W−1,2(Ω)).

For t ≤ τ(ε), set w̃ε(x, t) = w(x, τ − t), using
w̃ε

1 + vn
as a test function in (0.9),

∫
Ω

log(1+vn(x, τ)) w̃ε(x, τ) dx−
∫∫

Qτ

|∇vn|2

(1 + vn)2 w̃ε dx ds =

∫
Ω

log(1+hn)w̃ε(x, 0) dx.

Using (0.10) and the properties of w̃ε, we get∫
Uε

log(1 + vn(x, τ)) dx ≤ ε+

∫
Ω

log(1 + hn) w̃ε(x, 0) dx ≤ ε+

∫
Ω

log(1 + hn) dx

We can prove the same estimate for any t ≤ τ(ε). Since supphn ⊂ Uε, then∫
Ω

log(1+hn) dx =

∫
Uε

log(1+hn) dx ≤ C
(
ε+

∫
Uε

h1/2
n dx

)
≤ C(ε+ ε1/2) ≤ C ε1/2,

Hence we conclude that∫
Uε

log(1 + vn(x, t)) dx ≤ C ε1/2 for n ≥ n(ε) and t ≤ τ(ε).

Using the same argument as above we can prove that∫
Ω\Uε

log(1 + vn(x, t)) dx ≤ C ε1/2.

Hence we conclude.

Therefore u solves (0.8).


