Primer Encuentro de la red de ecuaciones Elipticas y parabolicas no Lineales

Almeria 17-19 se Septiembre de 2007

Regularity and nonuniqueness results for parabolic problems with natural growth in the Gradient
B. Abdellaoui.

Dpartement de Mathematique
Institut des Sciences Exacts
Universit de Tlemcen-Argelia
España

Joint work with:

- Ireneo Peral, U.A.M., Spain.
- Andrea Dall'Aglio, Roma I, Italy.

Presentation

In this talk we analyze existence, nonexistence, multiplicity and regularity of solution to problem

$$
\mathbb{P}\left\{\begin{aligned}
u_{t}-\Delta u & =\beta(u)|\nabla u|^{2}+f(x, t) & & \text { in } Q \equiv \Omega \times(0,+\infty) \\
u(x, t) & =0 & & \text { on } \partial \Omega \times(0,+\infty), \\
u(x, 0) & =u_{0}(x) & & \text { in } \Omega,
\end{aligned}\right.
$$

where β is a continuous nondecreasing positive function and f belongs to some suitable Lebesgue space.

When $\beta(s) \equiv 1$ the equation above appears in the physical theory of growth and roughening of surfaces, where it is known as the Kardar-Parisi-Zhang equation and also appear in some models of propagation of flames.
See details in:

- M. Kardar, G. Parisi, Y.C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56, (1986), 889-892.
- P.L. Lions, Generalized solutions of Hamilton-Jacobi Equations, Pitman Res. Notes Math. 62 (1982).
- P.L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations: part 1: The dynamic programming principle and applications and part 2: Viscosity solutions and uniqueness. Communications in Partial Differential Equations 8 (1983), 1101-1174 and 1229-1276.
- H. Berestycki, S. Kamin, G. Sivashinsky, Metastability in a flame front evolution equation Interfaces Free Bound. 3, 4 (2001) 361-392.

Some pioneering and preceding works related to the prob-

 lem- A. Ben-Artzi, P. Souplet, F.B. Weissler: The local theory for the viscous Hamilton-Jacobi equations in Lebesgue spaces. J. Math. Pure. Appl. 9 no. 81 (2002), 343-378.
- D. Blanchard, F. Murat, H. Redwane: Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems. J. Differential Equations 177 (2001), no. 2, 331-374.
- D. Blanchard, A. Porretta: Nonlinear parabolic equations with natural growth terms and measure initial data. Ann Sc. Norm. Sup. Pisa cl. 30 (2001) no. 3-4, 583-622.
- L. Boccardo, A. Dall'Aglio, T. Gallouët, L. Orsina: Nonlinear parabolic equations with measure data. J. Funct. Anal. 147 no. 1 (1997), 237-258.
- L. Boccardo, T. Gallouët. Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87 no. 1 (1989), 149-169.
- A. Dall'Aglio, D. Giachetti and J.-P. Puel: Nonlinear parabolic equations with natural growth in general domains. Boll. Un. Mat. Ital. Sez. B 8 (2005), 653-683.

Let Ω be a bounded domain in $\mathbb{R}^{\mathrm{N}}, N \geq 1$.
We will denote by Q the cylinder $\Omega \times(0, \infty)$; moreover, for $0<t_{1}<t_{2}$, we will denote by $Q_{t_{1}}, Q_{t_{1}, t_{2}}$ the cylinders $\Omega \times\left(0, t_{1}\right), \Omega \times\left(t_{1}, t_{2}\right)$, respectively.
$u_{0}(x)$ and $f(x, t)$ are positive functions defined in Ω, Q, respectively, such that $u_{0} \in L^{1}(\Omega)$ and $f \in L^{1}\left(Q_{T}\right)$, for every $T>0$.

Definition 1

We say that $u(x, t)$ is a distributional solution to problem \mathbb{P} if $u \in \mathcal{C}\left([0, \infty) ; L^{1}(\Omega)\right) \cap$ $L_{\text {loc }}^{2}\left([0, \infty) ; W_{0}^{1,2}(\Omega)\right), \beta(u)|\nabla u|^{2} \in L_{\text {loc }}^{1}(\bar{Q})$, and if for all $\phi(x, t) \in \mathcal{C}_{0}^{\infty}(Q)$ one has $-\iint_{Q} u \phi_{t} d x d t+\iint_{Q} \nabla u \cdot \nabla \phi d x d t=\iint_{Q} \beta(u)|\nabla u|^{2} \phi d x d t+\iint_{Q} f \phi d x d t$ and

$$
u(\cdot, 0)=u_{0}(\cdot) \quad \text { in } L^{1}(\Omega)
$$

Remark

The previous definition implies that, for every bounded, Lipschitz continuous function $h(s)$ such that $h(0)=0$, and for every $\tau>0$, one has

$$
\begin{aligned}
\int_{\Omega} H(u(x, \tau)) d x-\int_{\Omega} H(& \left.u_{0}(x)\right) d x+\iint_{Q_{\tau}}|\nabla u|^{2} h^{\prime}(u) d x d t \\
& =\iint_{Q_{\tau}} \beta(u)|\nabla u|^{2} h(u) d x d t+\iint_{Q_{\tau}} f h(u) d x d t
\end{aligned}
$$

where $H(s)=\int_{0}^{s} h(\sigma) d \sigma$.

(III) Picone inequality.

As an extension of a result by Picone in 1910 we have the following Theorem: Theorem If $u \in W_{0}^{1,2}(\Omega), u \geq 0, v \in W_{0}^{1,2}(\Omega),-\Delta v \geq 0$ is a bounded Radon measure, $\left.v\right|_{\partial \Omega}=0, v \geq 0$ and not identically zero, then

$$
\int_{\Omega}|\nabla u|^{2} \geq \int_{\Omega}\left(\frac{u^{2}}{v}\right)(-\Delta v) .
$$

See M. Picone, Ann. Scuola. Norm. Pisa. Vol 11 (1910), 1-144.
See for a general extension Ireneo Peral, A. B, Commun. Pure Appl. Anal. Vol. 2, no. 4 (2003), 539-566.

Planning of the talk.

- Existence of regular solution.
- Regularity of general solution.
- Nonexistence result: Optima condition on f.
- Existence of weaker solutions:1-Connection with semi-linear problems with measure data
- Existence of weaker solutions:2- Singular initial datum

Existence of solution with higher regularity.

For simplicity we will consider the case $\beta=1$.

$$
(\mathbf{P})\left\{\begin{aligned}
u_{t}-\Delta u & =|\nabla u|^{2}+f(x, t) & & \text { in } Q \equiv \Omega \times(0,+\infty) \\
u(x, t) & =0 & & \text { on } \partial \Omega \times(0,+\infty) \\
u(x, 0) & =u_{0}(x) & & \text { in } \Omega,
\end{aligned}\right.
$$

Assume that f is a positive function such that

$$
(\mathbf{H}) \quad f(x, t) \in L_{\mathrm{loc}}^{r}\left([0, \infty) ; L^{q}(\Omega)\right), \quad \text { with } q, r>1, \quad \frac{N}{q}+\frac{2}{r}<2 .
$$

We perform the change of variable $v=e^{u}-1$; then problem \mathbf{P} becomes

$$
(\mathbf{S})\left\{\begin{aligned}
v_{t}-\Delta v & =f(x, t)(v+1) & & \text { in } Q \\
v(x, t) & =0 & & \text { on } \partial \Omega \times(0, \infty) \\
v(x, 0) & =v_{0}(x)=e^{u_{0}}-1 . & &
\end{aligned}\right.
$$

If we assume that $v_{0}(x)=e^{u_{0}}-1 \in L^{2}(\Omega)$, then existence of a solution $v \in$ $\mathcal{C}\left([0, \infty) ; L^{2}(\Omega)\right) \cap L_{\mathrm{loc}}^{2}\left([0, \infty) ; W_{0}^{1,2}(\Omega)\right)$ can be proved using the approximations argument and apriori estimate.

We set $u=\log (v+1)$, then $u \in L^{2}\left(0, T ; W_{0}^{1,2}(\Omega)\right)$ and u satisfies problem (\mathbf{P}).
The inverse is also true in the sense that if u is a solution to problem (\mathbf{P}) with $e^{u_{0}(x)}-1 \in L^{2}(\Omega)$ and $e^{u}-1 \in L^{2}\left((0, T), W_{0}^{1,2}(\Omega)\right)$, then if we set $v=e^{u}-1$ we obtain that v solves problem (\mathbf{S}).

Optimality of the hypotheses on f : nonexistence result.

To see that the condition on f is optimal in some sense we will assume that $0 \in \Omega$ and that $f(x, t)=f(x)=\frac{\lambda}{|x|^{2}}$. Then $f(x) \in L^{q}(\Omega)$ for every $q<N / 2$. Consider

$$
\Lambda_{N} \equiv \inf _{\left\{\phi \in W_{0}^{1,2}(\Omega)(\Omega) ; \phi \neq 0\right\}} \frac{\int_{\Omega}|\nabla \phi|^{2} d x}{\int_{\Omega} \phi^{2}|x|^{-2} d x} .
$$

Theorem 1 Assume that $N \geq 3$, and that $\lambda>\Lambda_{N}=\left(\frac{N-2}{2}\right)^{2}$, then, for any initial datum $u_{0} \geq 0$ and for any $T>0$, problem

$$
\left\{\begin{align*}
u_{t}-\Delta u & =|\nabla u|^{2}+\frac{\lambda}{|x|^{2}} & & \text { in } Q_{T} \tag{0.1}\\
u(x, t) & =0 & & \text { on } \partial \Omega \times(0, T), \\
u(x, 0) & =u_{0}(x) & & \text { in } \Omega,
\end{align*}\right.
$$

has no solution.
Idea of the proof. Consider Taking $\phi \in \mathcal{C}_{0}^{\infty}(\Omega)$
Taking ϕ^{2} as a test function in (0.1) we obtain that

$$
\begin{gathered}
\int_{\Omega} u\left(x, t_{2}\right) \phi^{2} d x-\int_{\Omega} u\left(x, t_{1}\right) \phi^{2} d x+2 \iint_{Q_{t_{1}, t_{2}}} \phi \nabla \phi \cdot \nabla u d x d t \\
=\iint_{Q_{t_{1}, t_{2}}} \phi^{2}|\nabla u|^{2} d x d t+\lambda \iint_{Q_{t_{1}, t_{2}}} \frac{\phi^{2}}{|x|^{2}} d x d t
\end{gathered}
$$

where we have set $Q_{t_{1}, t_{2}}=\Omega \times\left(t_{1}, t_{2}\right)$. Hence

$$
-\int_{\Omega} u\left(x, t_{2}\right) \phi^{2} d x \leq\left(t_{2}-t_{1}\right)\left[\int_{\Omega}|\nabla \phi|^{2} d x-\lambda \int_{\Omega} \frac{\phi^{2}}{|x|^{2}} d x\right] .
$$

By The main Regularity Theorem of general solution obtained bellow,
$u(\cdot, t) \in L^{a}(\Omega)$ for all $t \in(0, T)$ and for all $a<\infty$; therefore we obtain that

$$
\int_{\Omega}|\nabla \phi|^{2} d x-\lambda \int_{\Omega} \frac{\phi^{2}}{|x|^{2}} d x \geq-\frac{1}{t_{2}-t_{1}}\left(\int_{\Omega} u^{\frac{N}{2}}\left(x, t_{2}\right) d x\right)^{\frac{2}{N}}\left(\int_{\Omega}|\phi|^{2^{*}} d x\right)^{\frac{2}{2^{*}}} .
$$

By density, this implies that
$I(\Omega) \equiv \inf _{\phi \in W_{0}^{1,2}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\nabla \phi|^{2} d x-\lambda \int_{\Omega} \frac{\phi^{2}}{|x|^{2}} d x}{\left(\int_{\Omega}|\phi|^{2^{*}} d x\right)^{\frac{2}{2^{*}}}} \geq-\frac{1}{t_{2}-t_{1}}\left(\int_{\Omega} u^{\frac{N}{2}}\left(x, t_{2}\right) d x\right)^{\frac{2}{N}}>-\infty$.

Since $\lambda>\Lambda_{N}$, taking the sequence $\phi_{n}(x)=T_{n}\left(|x|^{-\frac{N-2}{2}}\right) \eta(x)$, where $\eta(x)$ is a cut-off function with compact support in Ω which is 1 in a neighborhood of the origin,
one can check that $I(\Omega)=-\infty$. Hence we reach a contradiction.

Regularity of general solutions.

Suppose that (\mathbf{H}) holds and that $0 \leq u_{0} \in L^{1}(\Omega)$.
Our first result on the regularity is the following.

Proposition 1

Assume that $u \in \mathcal{C}\left([0, \infty) ; L^{1}(\Omega)\right) \cap L_{\mathrm{loc}}^{2}\left([0, \infty) ; W_{0}^{1,2}(\Omega)\right)$ is a solution of problem (\mathbf{P}), where $f \in L_{\mathrm{loc}}^{1}(\bar{Q})$ is such that $f(x, t) \geq 0$ a.e. in Q. Then

$$
\begin{equation*}
\int_{\Omega} e^{u(x, \tau)} d(x) d x<\infty \quad \text { for every } \tau>0, d(x)=\operatorname{dist}(x, \partial \Omega) \tag{0.2}
\end{equation*}
$$

Idea of the proof.
Let $\epsilon>0$, we consider $v_{\epsilon}=H_{\epsilon}(u)$, where $H_{\epsilon}(s)=e^{\frac{s}{1+\epsilon s}}-1$, then

- $v_{\epsilon} \in L^{\infty}(Q) \cap L_{\mathrm{loc}}^{2}\left([0, \infty) ; W_{0}^{1,2}(\Omega)\right)$
- $\left(v_{\epsilon}\right)_{t}-\Delta v_{\epsilon} \geq 0$ in the sense of distributions.
$u \in L^{1}(\Omega)$, in particular $e^{u(x, t)}<\infty$ a.e. in Q.

For $t_{0}>0$, let w be the solution of problem

$$
\left\{\begin{align*}
w_{t}-\Delta w & =0 & & \text { in } \Omega \times\left(t_{0}, \infty\right) \tag{0.3}\\
w(x, t) & =0 & & \text { on } \partial \Omega \times\left(t_{0}, \infty\right) \\
w\left(x, t_{0}\right) & =v_{\epsilon}\left(x, t_{0}\right) . & &
\end{align*}\right.
$$

Using a result by Martel (see Ann. Inst. H. Poincaré Anal. Non Linéaire 15 no. 6 (1998), 687-723.) for some positive functions $c_{1}(t), c_{2}(t)$.

$$
c_{1}(t)\left\|v_{\epsilon}\left(\cdot, t_{0}\right) d(\cdot)\right\|_{L^{1}} d(x) \leq w(x, t) \leq c_{2}(t)\left\|v_{\epsilon}\left(\cdot, t_{0}\right) d(\cdot)\right\|_{L^{1}} d(x) \text { for all } t>t_{0},
$$

Since v_{ϵ} is a supersolution to (0.3), we conclude that $w \leq v_{\epsilon}$ in $\Omega \times\left(t_{0}, \infty\right)$. Then

$$
c_{1}(t)\left\|v_{\epsilon}\left(\cdot, t_{0}\right) d(\cdot)\right\|_{L^{1}} d(x) \leq v_{\epsilon}(x, t) \leq e^{u(x, t)}<\infty \quad \text { for a.e. }(x, t) \in \Omega \times\left(t_{0}, \infty\right)
$$

Fixed $(x, t) \in \Omega \times\left(t_{0}, \infty\right)$, such that $u(x, t)<\infty$, by Fatou's lemma we get

$$
\int_{\Omega} e^{u\left(x, t_{0}\right)} d(x) d x<\infty .
$$

Using the fact that $t_{0}>0$ is arbitrary, we conclude that (0.2) holds. As a consequence we obtain the following result.

Main Regularity Theorem Under the same hypotheses as in the previous propositions, for all $\tau>0$ we have

1. $\iint_{Q_{\tau}}|\nabla u|^{2} e^{\delta u} d x d t<\infty, \quad$ for all $\delta<1$,
2. $\iint_{Q_{\tau}} f e^{u} d x d t<\infty$,
3. $\iint_{Q_{\tau}} e^{\frac{u}{1+\epsilon u}}|\nabla u|^{2}\left(1-\frac{1}{(1+\epsilon u)^{2}}\right) d x d t \leq C(\tau)$ uniformly in ϵ,
4. $\int_{\Omega} e^{u_{0}(x)} d x<\infty$
and finally
5. $e^{u} \in L^{\infty}\left(0, \tau ; L^{1}(\Omega)\right)$.

Idea of the proof.
Let us consider an open set $\tilde{\Omega} \supset \supset \Omega$. For $\tau>0$, Let $\phi(x, t)$ be the solution to

$$
\left\{\begin{aligned}
-\phi_{t}-\Delta \phi & =0 & & \text { in } \tilde{\Omega} \times(0, \tau+1) \\
\phi(x, t) & =0 & & \text { on } \partial \tilde{\Omega} \times(0, \tau+1), \\
\phi(x, \tau+1) & =\tilde{d}(x) & &
\end{aligned}\right.
$$

where

$$
\tilde{d}(x)= \begin{cases}\operatorname{dist}(x, \partial \Omega) & \text { if } x \in \Omega, \\ 0 & \text { if } x \in \tilde{\Omega} \backslash \Omega\end{cases}
$$

Then it is well known that

$$
\phi(x, t) \geq c(\tau)>0, \quad \text { for a.e. }(x, t) \in \Omega \times(0, \tau) .
$$

Let us define

$$
k_{\delta, \epsilon}(s)=e^{\frac{\delta s}{1+\epsilon s}}, \quad \Psi_{\delta, \epsilon}(s)=\int_{0}^{s} k_{\delta, \epsilon}(\sigma) d \sigma \leq \frac{1}{\delta} e^{\delta s} .
$$

We use $\phi(x, t)\left(k_{\delta, \epsilon}(u(x, t))-1\right)$ as test function in problem (\mathbf{P}) and we integrate in $Q_{\tau+1}$,

$$
\begin{align*}
& \int_{\Omega} \Psi_{\delta, \epsilon}(u(x, \tau+1)) d(x) d x-\int_{\Omega} u(x, \tau+1) d(x) d x \\
& -\int_{\Omega} \Psi_{\delta, \epsilon}(u(x, 0)) \phi(x, 0) d x+\int_{\Omega} u(x, 0) \phi(x, 0) d x+\iint_{Q_{\tau+1}} k_{\delta, \epsilon}^{\prime}(u)|\nabla u|^{2} \phi d x d t \\
& =\iint_{Q_{\tau+1}} k_{\delta, \epsilon}(u)|\nabla u|^{2} \phi d x d t-\iint_{Q_{\tau+1}}|\nabla u|^{2} \phi d x d t+\iint_{Q_{\tau+1}} f k_{\delta, \epsilon}(u) \phi d x d t \\
& -\iint_{Q_{\tau+1}} f \phi d x d t . \tag{0.4}
\end{align*}
$$

The first integral in (0.4) is bounded by (0.2), hence by the definition of ϕ,

$$
\begin{aligned}
& \iint_{Q_{\tau}} e^{\frac{\delta u}{1+\epsilon u}}\left(1-\frac{\delta}{(1+\epsilon u)^{2}}\right)|\nabla u|^{2} d x d t+\iint_{Q_{\tau}} e^{\frac{\delta u}{1+\epsilon u}} f d x d t+\int_{\Omega} \Psi_{\delta, \epsilon}\left(u_{0}(x)\right) d x \\
= & \iint_{Q_{\tau}}\left(k_{\delta, \epsilon}(u)-k_{\delta, \epsilon}^{\prime}(u)\right)|\nabla u|^{2} d x d t+\iint_{Q_{\tau}} f k_{\delta, \epsilon}(u) d x d t+\int_{\Omega} \Psi_{\delta, \epsilon}\left(u_{0}(x)\right) d x \leq c(\tau) .
\end{aligned}
$$

Then, taking $\delta<1$ and passing to the limit as $\epsilon \rightarrow 0$, we obtain estimate (1). Taking $\delta=1$, we obtain estimates (2), (3) and (4). Finally, let $\omega(x, t)$ be the solution of

$$
\left\{\begin{array}{rll}
-\omega_{t}-\Delta \omega & =0 & \text { in } Q_{\tau} \\
\omega(x, t) & =0 & \text { on } \partial \Omega \times(0, \tau), \\
\omega(x, \tau) & \equiv 1 &
\end{array}\right.
$$

Then $0 \leq \omega(x, t) \leq 1$ for every $(x, t) \in Q_{\tau}$. Multiplying problem (\mathbf{P}) by $k_{1, \epsilon}(u) \omega$ and passing to the limit as $\epsilon \rightarrow 0$ we get (5).

Existence of weaker solutions related to problems with measure data: Nonuniquness result

We begin by the following existence result that can be proved by approximation argument and apriori estimate.

Theorem

Let μ be a Radon measure on Q, which is finite on Q_{T} for every $T>0$. Then problem

$$
(\mathbf{S S})\left\{\begin{aligned}
v_{t}-\Delta v & =f(x, t) v+\mu & & \text { in } Q \\
v & =0 & & \text { on } \partial \Omega \times(0, \infty), \\
v(x, 0) & =\phi(x) \in L^{1}(\Omega) & &
\end{aligned}\right.
$$

has a unique distributional solution such that

$$
\left\{\begin{array}{l}
i) \quad v \in L_{\mathrm{loc}}^{r_{1}}\left([0, \infty) ; W_{0}^{1, q_{1}}(\Omega)\right) \text { for every } r_{1}, q_{1} \geq 1 \text { such that } \frac{N}{q_{1}}+\frac{2}{r_{1}}>N+1 \\
i i) \quad v \in L_{\mathrm{loc}}^{\infty}\left([0, \infty) ; L^{1}(\Omega)\right), \text { for every } k>0 ; \\
i i i) \quad T_{k} v \in L_{\mathrm{loc}}^{2}\left([0, \infty) ; W_{0}^{1,2}(\Omega)\right), \text { for every } k>0 \\
i v) \quad f v \in L_{\mathrm{loc}}^{1}(\bar{Q}) .
\end{array}\right.
$$

Our main result is to show that there exists a one-to-one correspondence between the solutions of problem (\mathbf{P}) and (SS), where μ is an arbitrary positive "singular" measure.

To clarify the meaning of " singular" measure we have to use a notion of parabolic capacity introduced by Pierre in (SIAM J. Math. Anal. 14 no. 3 (1983), see also Droniou, Porretta and Prignet: Parabolic capacity and soft measures for nonlinear equations. Potential Anal. 19 no. 2 2003).

For $T>0$, we define the Hilbert space \mathbf{W} by setting

$$
\mathbf{W}=\mathbf{W}_{T}=\left\{u \in L^{2}\left(0, T ; W_{0}^{1,2}(\Omega)\right), u_{t} \in L^{2}\left(0, T ; W^{-1,2}(\Omega)\right)\right\},
$$

equipped with the norm defined by

$$
\|u\|_{\mathbf{W}_{T}}^{2}=\iint_{Q_{T}}|\nabla u|^{2} d x d t+\int_{0}^{T}\left\|u_{t}\right\|_{W^{-1,2}}^{2} d t .
$$

Definition 1

If $U \subset Q_{T}$ is an open set, we define
$\operatorname{cap}_{1,2}(U)=\inf \left\{\|u\|_{\mathbf{W}}: u \in \mathbf{W}, u \geq \chi_{U}\right.$ almost everywhere in $\left.Q_{T}\right\}$
(we will use the convention that $\inf \emptyset=+\infty$), then for any borelian subset $B \subset Q_{T}$ the definition is extended by setting:

$$
\operatorname{cap}_{1,2}(B)=\inf \left\{\operatorname{cap}_{1,2}(U), U \text { open subset of } Q_{T}, B \subset U\right\} .
$$

Definition 2(Singular measures)

Let the space dimension N be at least 2 . Let μ be a positive Radon measure in Q. We will say that μ is singular if it is concentrated on a subset $E \subset Q$ such that

$$
\operatorname{cap}_{1,2}\left(E \cap Q_{\tau}\right)=0, \text { for every } \tau>0 .
$$

As examples of singular measures, one can consider:
i) a space-time Dirac delta $\mu=\delta_{\left(x_{0}, t_{0}\right)}$ defined by $\langle\mu, \varphi\rangle=\varphi\left(x_{0}, t_{0}\right)$ for every $\varphi(x, t) \in \mathcal{C}_{c}(Q) ;$
ii) a Dirac delta in space $\mu=\mu(x)=\delta_{x_{0}}$ defined by $\langle\mu, \phi\rangle=\int_{0}^{\infty} \phi\left(x_{0}, t\right) d t$;
iii) more generally, a measure μ concentrated on the set $E \times(0,+\infty)$, where $E \subset \Omega$ has zero "elliptic" 2-capacity;
iv) a measure μ concentrated on a set of the form $E \times\left\{t_{0}\right\}$, where $E \subset \Omega$ has zero Lebesgue measure.

Our main result is the following multiplicity result.
Main Theorem Let μ_{s} be a positive, singular Radon measure such that $\left.\mu_{s}\right|_{Q_{T}}$ is bounded for every $T>0$.
Assume that $f(x, t)$ is a positive and that u_{0} satisfies $v_{0}=e^{u_{0}}-1 \in L^{1}(\Omega)$. Consider v, the unique solution of problem

$$
\left\{\begin{align*}
& v_{t}-\Delta v=f(x, t)(v+1)+\mu_{s} \text { in } \mathcal{D}^{\prime}(Q) \\
& v \in L_{\mathrm{loc}}^{\infty}\left([0, \infty) ; L^{1}(\Omega)\right) \cap L_{\mathrm{loc}}^{\rho}([0, ~ \tag{0.5}\\
& \text { where } \sigma, \rho \\
& v(x, 0)=v_{0}(x), \quad f v \in L_{\mathrm{loc}}^{1}(\bar{Q}) .
\end{align*}\right.
$$

We set $u=\log (v+1)$, then $u \in L_{\text {loc }}^{2}\left([0, \infty) ; W_{0}^{1,2}(\Omega)\right) \cap \mathcal{C}\left([0, \infty) ; L^{1}(\Omega)\right)$ and is a weak solution of

$$
\left\{\begin{align*}
u_{t}-\Delta u & =|\nabla u|^{2}+f(x, t) \text { in } \mathcal{D}^{\prime}(Q) \tag{0.6}\\
u(x, 0) & =u_{0}(x) \equiv \log \left(v_{0}(x)+1\right)
\end{align*}\right.
$$

Outline of the proof.

Let $h_{n}(x, t) \in L^{\infty}(Q)$ be a sequence of bounded nonnegative functions such that $\left\|h_{n}\right\|_{L^{1}\left(Q_{T}\right)} \leq C(T)$ for every $T>0$, and

$$
h_{n} \rightharpoonup \mu_{s} \text { weakly in the measures sense in } Q_{T} \text {, for every } T>0 \text {. }
$$

Consider now the unique solution v_{n} to problem

$$
\left\{\begin{aligned}
\left(v_{n}\right)_{t}-\Delta v_{n} & =T_{n}(f(v+1))+h_{n} \quad \text { in } Q \\
v_{n} & \in L_{\mathrm{loc}}^{2}\left([0, \infty) ; W_{0}^{1,2}(\Omega)\right) \\
v_{n}(x, 0) & =T_{n}\left(v_{0}(x)\right) .
\end{aligned}\right.
$$

- $\left(v_{n}\right)_{t} \in L_{\text {loc }}^{2}(\bar{Q})$,
- $v_{n} \rightarrow v$ in $L^{\rho}\left(0, T ; W_{0}^{1, \sigma}(\Omega)\right)$ for all ρ and σ as in (0.5) and for all $T>0$. We set $u_{n}=\log \left(v_{n}+1\right)$, then

$$
\left(u_{n}\right)_{t}-\Delta u_{n}=\left|\nabla u_{n}\right|^{2}+\frac{T_{n}(f(v+1))}{v_{n}+1}+\frac{h_{n}}{v_{n}+1} \text { in } \mathcal{D}^{\prime}(Q) .
$$

using the definition of v_{n} we conclude easily that, for every $T>0$,

$$
\frac{T_{n}(f(v+1))}{v_{n}+1} \rightarrow f(x, t) \text { in } L^{1}\left(Q_{T}\right) \text { and } u_{n} \rightarrow u \text { in } L^{1}\left(Q_{T}\right) .
$$

We claim that

$$
\frac{h_{n}}{v_{n}+1} \rightarrow 0 \text { in } \mathcal{D}^{\prime}(Q)
$$

Consider $\phi(x, t)$ be a function in $\mathcal{C}_{0}^{\infty}(Q)$; we want to prove that

$$
\lim _{n \rightarrow \infty} \iint_{Q_{T}} \phi \frac{h_{n}}{v_{n}+1} d x=0
$$

We assume that $\operatorname{supp} \phi \subset Q_{T}$, and we use the assumption on μ_{s} :
let $A \subset Q_{T}$ be such that $\operatorname{cap}_{1,2}(A)=0$ and $\mu_{s}\left\llcorner Q_{T}\right.$ is concentrated on A.
$\forall \epsilon>0$, there exists an open set $U_{\epsilon} \subset Q_{T}$ and $\psi_{\epsilon} \in \mathbf{W}_{T}$ with

- $A \subset U_{\epsilon}$ and $\operatorname{cap}_{1,2}\left(U_{\epsilon}\right) \leq \epsilon / 2$
- $\psi_{\epsilon} \geq \chi_{U_{\epsilon}}$ and $\left\|\psi_{\epsilon}\right\|_{\mathbf{w}_{T}} \leq \epsilon$.

Let us define the real function

$$
m(s)=\frac{2|s|}{|s|+1} \text { then } m\left(\psi_{\epsilon}\right) \leq 2, \quad m\left(\psi_{\epsilon}\right) \geq \chi_{U_{\epsilon}}
$$

and

$$
\iint_{Q_{T}}\left|\nabla m\left(\psi_{\epsilon}\right)\right|^{2} d x d t=\iint_{Q_{T}}\left|m^{\prime}\left(\psi_{\epsilon}\right)\right|^{2}\left|\nabla \psi_{\epsilon}\right|^{2} d x d t \leq 4 \epsilon^{2}
$$

Using a Picone-type inequality, we obtain that

$$
\begin{aligned}
4 \epsilon^{2} \geq \int_{\Omega}\left|\nabla m\left(\psi_{\epsilon}\right)\right|^{2} d x & \geq \int_{\Omega} \frac{-\Delta\left(v_{n}+1\right)}{v_{n}+1} m^{2}\left(\psi_{\epsilon}\right) d x \\
& \geq \int_{\Omega} \frac{h_{n}}{v_{n}+1} m^{2}\left(\psi_{\epsilon}\right) d x-\int_{\Omega} \frac{\left(v_{n}\right)_{t}}{v_{n}+1} m^{2}\left(\psi_{\epsilon}\right) d x
\end{aligned}
$$

By integration in t, we get

$$
\begin{aligned}
\iint_{U_{\epsilon}} \frac{h_{n}}{v_{n}+1} d x d t & \leq 4 \epsilon^{2} T+\int_{\Omega} \log \left(v_{n}(x, T)+1\right) m^{2}\left(\psi_{\epsilon}(x, T)\right) d x \\
& +2 \iint_{Q_{T}} \log \left(v_{n}+1\right) m\left(\psi_{\epsilon}\right) m^{\prime}\left(\psi_{\epsilon}\right)\left(\psi_{\epsilon}\right)_{t} d x d t \\
& =4 \epsilon^{2} T+I_{1}+I_{2} .
\end{aligned}
$$

We begin by estimating I_{1}. Since $|m(s)| \leq 2$, then by Hölder's inequality,

$$
I_{1} \leq C\left(\int_{\Omega} \log ^{2}\left(v_{n}(x, T)+1\right) d x\right)^{\frac{1}{2}}\left(\int_{\Omega} m^{4}\left(\psi_{\epsilon}(x, T)\right) d x\right)^{\frac{1}{2}} \leq C\left(\int_{\Omega} m^{2}\left(\psi_{\epsilon}(x, T)\right) d x\right)^{\frac{1}{2}}
$$

where in the last estimate we have used the inequality $\log (s+1) \leq s^{\frac{1}{2}}+c$ and the bound

$$
\max _{t \in[0, T]} \int_{\Omega} v_{n}(x, t) d x \leq C(T)
$$

Since $m(s) \leq 2|s|$, it follows that

$$
I_{1} \leq C\left(\int_{\Omega}\left|\psi_{\epsilon}(x, T)\right|^{2} d x\right)^{\frac{1}{2}} \leq \max _{t \in[0, T]}\left(\int_{\Omega} \psi_{\epsilon}^{2}(x, t) d x\right)^{\frac{1}{2}} \leq C\left\|\psi_{\epsilon}\right\|_{\mathbf{w}_{T}} \leq C \epsilon,
$$

by the fact that $\mathbf{W}_{T} \subset \mathcal{C}\left([0, T] ; L^{2}(\Omega)\right)$ with a continuous inclusion.

We now estimate I_{2}. Using $\frac{m^{2}\left(\psi_{\epsilon}\right)}{v_{n}+1}$ as a test function in the problem solved by v_{n} and by a direct computation we obtain

$$
2 I_{2}=2 \iint_{Q_{T}} \log \left(v_{n}+1\right) m\left(\psi_{\epsilon}\right) m^{\prime}\left(\psi_{\epsilon}\right)\left(\psi_{\epsilon}\right)_{t} d x d t \leq C \epsilon
$$

Hence we conclude that

$$
\iint_{U_{\epsilon}} \frac{h_{n}}{v_{n}+1} d x d t \leq C\left(\epsilon+\epsilon^{2}\right)
$$

Now,

$$
\begin{aligned}
& \left|\iint_{Q_{T}} \phi \frac{h_{n}}{v_{n}+1} d x d t\right| \\
& \leq\|\phi\|_{\infty} \iint_{U_{\epsilon}} \frac{h_{n}}{v_{n}+1} d x d t+\iint_{Q_{T} \backslash U_{\epsilon}}|\phi| h_{n} d x d t \leq C \epsilon
\end{aligned}
$$

Since ϵ is arbitrary we get the desired result.

Using the definition of u_{n} and Vitali theorem we can prove that

$$
\left|\nabla u_{n}\right|^{2} \rightarrow|\nabla u|^{2} \text { strongly in } L^{1}(\Omega)
$$

Let $\phi \in \mathcal{C}_{0}^{\infty}\left(Q_{T}\right)$, then we have

$$
\begin{aligned}
& \iint_{Q_{T}}\left(\left(u_{n}\right)_{t}-\Delta u_{n}\right) \phi d x d t \\
& =\iint_{Q_{T}} \frac{T_{n}(f(v+1))}{v_{n}+1} \phi d x d t+\iint_{Q_{T}}\left|\nabla u_{n}\right|^{2} \phi d x d t+\iint_{Q_{T}} \frac{h_{n} \phi}{v_{n}+1} d x d t
\end{aligned}
$$

As $n \rightarrow \infty$, we obtain that u solves

$$
u_{t}-\Delta u=|\nabla u|^{2}+f(x, t) \text { in } \mathcal{D}^{\prime}(Q)
$$

The inverse setting

Theorem Let $u \in \mathcal{C}\left([0, \infty) ; L^{1}(\Omega)\right) \cap L_{\text {loc }}^{2}\left([0, \infty) ; W_{0}^{1,2}(\Omega)\right)$.
Consider $v=e^{u}-1$, then $v \in L_{\text {loc }}^{1}(\bar{Q})$, and there exists a bounded positive measure μ in Q_{T} for every $T>0$, such that

- v solves $v_{t}-\Delta v=f(x, t)(v+1)+\mu$ in $\mathcal{D}(Q)$.
- μ is concentrated on the set $A \equiv\{(x, t): u(x, t)=\infty\}$ and $\operatorname{cap}_{1,2}(A \cap$ $\left.Q_{T}\right)=0$ for all $T>0$, that is μ is a singular measure.

Moreover μ can be characterized as a weak limit in the space of bounded Radon measures, as follows:

$$
\mu=\lim _{\epsilon \rightarrow 0}|\nabla u|^{2} e^{\frac{u}{1+\epsilon u}}\left(1-\frac{1}{(1+\epsilon u)^{2}}\right) \quad \text { in } Q_{T}, \text { for every } T>0
$$

Outline of the proof.

Let $v=e^{u}-1$, then by the regularity results of $u, v \in L_{\mathrm{loc}}^{1}(\bar{Q})$ and

$$
\iint_{Q_{\tau}} f(x, t)(v+1) d x d t+\iint_{Q_{\tau}}|\nabla u|^{2} e^{\frac{u}{1+\epsilon u}}\left(1-\frac{1}{(1+\epsilon u)^{2}}\right) d x d t \leq C(\tau) .
$$

Therefore, there exists a positive Radon measure μ in Q such that for all $\tau>0$

$$
|\nabla u|^{2} e^{\frac{u}{1+\epsilon u}}\left(1-\frac{1}{(1+\epsilon u)^{2}}\right) \rightharpoonup \mu \quad \text { in the weak measure sense in } Q_{\tau} .
$$

μ is concentrated in the set $A \equiv\{(x, t) \in Q: u(x, t)=\infty\}$: Because

$$
\iint_{Q_{T} \cap\{u \leq k\}}|\nabla u|^{2} e^{\frac{u}{1+\epsilon u}}\left(1-\frac{1}{(1+\epsilon u)^{2}}\right) d x d t \rightarrow 0 \text { as } \epsilon \rightarrow 0 .
$$

Define

$$
v_{\epsilon}(x, t)=\int_{0}^{u(x, t)} e^{\frac{s}{1+\epsilon s}} d s \in L_{\mathrm{loc}}^{2}\left([0, \infty) ; W_{0}^{1,2}(\Omega)\right) .
$$

then

$$
\left(v_{\epsilon}\right)_{t}-\Delta v_{\epsilon}=e^{\frac{u}{1+\epsilon u}}|\nabla u|^{2}\left(1-\frac{1}{(1+\epsilon u)^{2}}\right)+f(x, t) e^{\frac{u}{1+\epsilon u}} \text { in } \mathcal{D}^{\prime} .
$$

It is clear that

- $f(x, t) e^{\frac{u}{1+e u}} \rightarrow f(x, t)(v+1)$ strongly in L^{1},
- $e^{\frac{u}{1+\epsilon u}}|\nabla u|^{2}\left(1-\frac{1}{(1+\epsilon u)^{2}}\right) \rightharpoonup \nu$ in the sense of measures,

Since $v_{\epsilon} \rightarrow v$ in $L^{1}\left(Q_{\tau}\right)$ for all $\tau>0$, then

- $v_{t}-\Delta v=f(x, t)(v+1)+\mu$
- μ is uniquely determined.

Finally to prove that $\operatorname{cap}_{1,2}\left(A \cap Q_{T}\right)=0$ and then μ is a singular measure in the sense of Definition 2.

Consider $A_{T}=A \cap Q_{T}$, since $u \in \mathcal{C}\left([0, T] ; L^{1}(\Omega)\right) \cap L^{2}\left([0, T] ; W_{0}^{1,2}(\Omega)\right)$ solves

$$
\left\{\begin{aligned}
u_{t}-\Delta u & =g(x, t) \equiv|\nabla u|^{2}+f(x, t) & & \text { in } Q_{T} \\
u(x, t) & =0 & & \text { on } \partial \Omega \times(0, T), \\
u(x, 0) & =u_{0}(x) & & \text { in } \Omega,
\end{aligned}\right.
$$

then using $T_{k}(u)$ as a test function in the above problem it follows that

$$
\int_{\Omega} \Theta_{k}(u(x, \tau)) d x+\iint_{Q_{T}}\left|\nabla T_{k}(u)\right|^{2} d x d t \leq k\left(\|g\|_{L^{1}\left(Q_{T}\right)}+\left\|u_{0}\right\|_{L^{1}(\Omega)}\right) .
$$

with Let $\tau \leq T$ and

$$
\Theta_{k}(s)=\int_{0}^{s} T_{k}(\sigma) d \sigma=\left\{\begin{array}{lll}
\frac{1}{2} s^{2} & \text { if } & |s| \leq k \\
k s-\frac{1}{2} k^{2} & \text { if } & |s| \geq k
\end{array}\right.
$$

Since $\Theta_{k}(s) \geq \frac{1}{2} T_{k}^{2}(s)$, we conclude that

$$
\left\|T_{k}(u)\right\|_{L^{\infty}\left((0, T) ; L^{2}(\Omega)\right)}^{2}+\left\|T_{k}(u)\right\|_{L^{2}\left((0, T) ; W_{0}^{1,2}(\Omega)\right)}^{2} \leq C(T) k
$$

Consider $w_{k}=\frac{T_{k}(u)}{k}$,

- $w_{k} \in \mathbf{X} \equiv L^{\infty}\left((0, T) ; L^{2}(\Omega)\right) \cap L^{2}\left((0, T) ; W_{0}^{1,2}(\Omega)\right),\left\|w_{k}\right\|_{X}^{2} \leq \frac{C(T)}{k}$.
- $\left\|w_{k}\right\|_{\mathrm{X}}^{2} \rightarrow 0$ as $k \rightarrow \infty$.
- From Kato inequality $\left(w_{k}\right)_{t}-\Delta w_{k} \geq 0$ in \mathcal{D}^{\prime}.

Therefore by using Proposition 3 in (M. Pierre: SIAM J. Math. Anal. 14 no. 3 (1983),)
there exists $z_{k} \in \mathbf{W}$ such that

- $z_{k} \geq w_{k}$
- $\left\|z_{k}\right\|_{\mathbf{w}} \leq\left\|w_{k}\right\|_{\mathbf{x}}$.

It is clear that $z_{k} \geq 1$ on A_{T}. Hence

$$
\operatorname{cap}_{1,2}\left(A_{T}\right) \leq\left\|z_{k}\right\|_{\mathbb{W}} \leq\left\|w_{k}\right\|_{X} \leq\left(\frac{C(T)}{k}\right)^{\frac{1}{2}}
$$

Letting $k \rightarrow \infty$ it follows that $\operatorname{cap}_{1,2}\left(A_{T}\right)=0$ and then the result follows.

Nonuniqueness induced by singular perturbations of the initial data.

We prove an other nonuniqueness result for problem (P) by perturbing the initial data in the associated linear problem with a suitable singular measure.

We suppose that $f(x, t) \equiv 0,|E|$ will denote the usual Lebesgue measure of $E \subset \mathbb{R}^{N}$.

Theorem

Let ν_{s} be a bounded positive singular measure in Ω, concentrated on a subset $E \subset \subset \Omega$ such that $|E|=0$. Let v be the unique solution of problem

$$
\left\{\begin{align*}
v_{t}-\Delta v & =0 \text { in } \mathcal{D}^{\prime}(Q) \tag{0.7}\\
v(x, t) & =0 \text { on } \partial \Omega \times(0, \infty) \\
v(x, 0) & =\nu_{s}
\end{align*}\right.
$$

We set $u=\log (v+1)$, then $u \in L_{\text {loc }}^{2}\left([0, \infty) ; W_{0}^{1,2}(\Omega)\right)$ and verifies

$$
\left\{\begin{align*}
u_{t}-\Delta u & =|\nabla u|^{2} \text { in } \mathcal{D}^{\prime}(Q) \tag{0.8}\\
u(x, 0) & =0 .
\end{align*}\right.
$$

Outline of the proof.

Let $h_{n} \in L^{\infty}(\Omega)$ be a sequence of nonnegative functions such that $\left\|h_{n}\right\|_{L^{1}(\Omega)} \leq$ C and $h_{n} \rightharpoonup \nu_{s}$ weakly in the measure sense, namely

$$
\lim \int_{\Omega} h_{n}(x) \phi(x) d x \rightarrow\left\langle\nu_{s}, \phi\right\rangle \text { for all } \phi \in \mathcal{C}_{c}(\Omega)
$$

Consider now v_{n} the unique solution to problem

$$
\left\{\begin{align*}
\left(v_{n}\right)_{t}-\Delta v_{n} & =0 \text { in } Q \tag{0.9}\\
v_{n} & \in L_{\mathrm{loc}}^{2}\left([0, \infty) ; W_{0}^{1,2}(\Omega)\right) \\
v_{n}(x, 0) & =h_{n}(x) .
\end{align*}\right.
$$

Then $v_{n} \rightarrow v$ strongly in $L^{r}\left(0, T ; W_{0}^{1, q}(\Omega)\right)$, with $\frac{N}{q}+\frac{2}{r}>N+1$
By Vetali Theorem, we can prove that $\left|\nabla u_{n}\right|^{2} \rightarrow|\nabla u|^{2}$ strongly in $L^{1}\left(Q_{T}\right), \forall T>0$.
To finish we have to show that

$$
\log \left(1+v_{n}(., t)\right) \rightarrow 0 \text { strongly in } L^{1}(\Omega) \text { as } t \rightarrow 0, n \rightarrow \infty .
$$

Take $H\left(v_{n}\right)$, where $H(s)=1-\frac{1}{(1+s)^{\alpha}}, 0<\alpha \ll 1$, as a test function in (0.9),

$$
\int_{\Omega} \bar{H}\left(v_{n}(x, \tau)\right) d x+\alpha \iint_{Q_{\tau}} \frac{\left|\nabla v_{n}\right|^{2}}{\left(1+v_{n}\right)^{1+\alpha}} d x d t=\int_{\Omega} \bar{H}\left(h_{n}(x)\right) d x
$$

$\bar{H}(s)=\int_{0}^{s} H(\sigma) d \sigma=s-\frac{1}{1-\alpha}\left((1+s)^{1-\alpha}-1\right)$.
Hence $\int_{\Omega} v_{n}(x, t) d x \leq C, C$ is positive constant independent of n and t.
Thus $\log \left(1+v_{n}(., t)\right)$ is bounded in $L^{p}(\Omega)$ for all $p<\infty$ uniformly in n and t.
By the strong convergence of $T_{k} v_{n}$, for small $\epsilon>0, \exists n(\epsilon), \exists \tau(\epsilon)>0$ such that for $n \geq n(\epsilon)$ and $t \leq \tau(\epsilon)$, we have

$$
\begin{equation*}
\iint_{Q_{t}} \frac{\left|\nabla v_{n}\right|^{2}}{\left(1+v_{n}\right)^{2}} d x d s \leq \epsilon \tag{0.10}
\end{equation*}
$$

Since ν_{s} is concentrated on a set $E \subset \subset \Omega$ with $|E|=0$, then for $\epsilon \in(0,1)$ there exists an open set U_{ϵ} such that $E \subset U_{\epsilon} \subset \Omega$ and $\left|U_{\epsilon}\right| \leq \epsilon / 2$.

We can assume that supp $h_{n} \subset U_{\epsilon}$ for $n \geq n(\epsilon)$.
Take $\phi_{\epsilon} \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ with $0 \leq \phi_{\epsilon} \leq 1, \phi_{\epsilon}=1$ in $U_{\epsilon}, \operatorname{supp} \phi_{\epsilon} \subset O_{\epsilon}$ and $\left|O_{\epsilon}\right| \leq 2 \epsilon$.

Consider w_{ϵ}, the solution to problem

$$
\left\{\begin{aligned}
w_{\epsilon t}-\Delta w_{\epsilon} & =0 \text { in } Q \\
w_{\epsilon}(x, t) & =0 \text { on } \partial \Omega \times(0, \infty) \\
w_{\epsilon}(x, 0) & =\phi_{\epsilon}(x)
\end{aligned}\right.
$$

- $0 \leq w_{\epsilon} \leq 1$ and $w_{\epsilon} \rightarrow 0$ strongly in $\left.L^{2}(0, \infty) ; W_{0}^{1,2}(\Omega)\right) \cap \mathcal{C}\left([0, \infty) ; L^{2}(\Omega)\right)$
- $\frac{d w_{\epsilon}}{d t} \rightarrow 0$ strongly in $\left.L^{2}(0, \infty) ; W^{-1,2}(\Omega)\right)$.

For $t \leq \tau(\epsilon)$, set $\widetilde{w}_{\epsilon}(x, t)=w(x, \tau-t)$, using $\frac{\widetilde{w}_{\epsilon}}{1+v_{n}}$ as a test function in (0.9),
$\int_{\Omega} \log \left(1+v_{n}(x, \tau)\right) \widetilde{w}_{\epsilon}(x, \tau) d x-\iint_{Q_{\tau}} \frac{\left|\nabla v_{n}\right|^{2}}{\left(1+v_{n}\right)^{2}} \widetilde{w}_{\epsilon} d x d s=\int_{\Omega} \log \left(1+h_{n}\right) \widetilde{w}_{\epsilon}(x, 0) d x$.
Using (0.10) and the properties of \widetilde{w}_{ϵ}, we get
$\int_{U_{\epsilon}} \log \left(1+v_{n}(x, \tau)\right) d x \leq \epsilon+\int_{\Omega} \log \left(1+h_{n}\right) \widetilde{w}_{\epsilon}(x, 0) d x \leq \epsilon+\int_{\Omega} \log \left(1+h_{n}\right) d x$
We can prove the same estimate for any $t \leq \tau(\epsilon)$. Since $\operatorname{supp} h_{n} \subset U_{\epsilon}$, then
$\int_{\Omega} \log \left(1+h_{n}\right) d x=\int_{U_{\epsilon}} \log \left(1+h_{n}\right) d x \leq C\left(\epsilon+\int_{U_{\epsilon}} h_{n}^{1 / 2} d x\right) \leq C\left(\epsilon+\epsilon^{1 / 2}\right) \leq C \epsilon^{1 / 2}$,
Hence we conclude that

$$
\int_{U_{\epsilon}} \log \left(1+v_{n}(x, t)\right) d x \leq C \epsilon^{1 / 2} \text { for } n \geq n(\epsilon) \text { and } t \leq \tau(\epsilon)
$$

Using the same argument as above we can prove that

$$
\int_{\Omega \backslash U_{\epsilon}} \log \left(1+v_{n}(x, t)\right) d x \leq C \epsilon^{1 / 2}
$$

Hence we conclude.

Therefore u solves (0.8).

