On a critical problem for Heat equation with Hardy Term

Ana Primo Ramos

Departamento de Matemáticas

Universidad Autónoma de Madrid

Joint work with:

- Ireneo Peral, U.A.M. , Spain.
- Boumediene Abdellaoui, Université Aboubekr Belkaïd, Algeria.

Bounded domain.

We will consider the problem:

$$
\left\{\begin{aligned}
u_{t}-\Delta u & =\lambda \frac{u}{|x|^{2}}+u^{p}+f \text { in } \Omega_{T} \equiv \Omega \times(0, T), \\
u(x, t) & >0 \text { in } \Omega_{T}, \\
u(x, t) & =0 \text { on } \partial \Omega \times(0, T), \\
u(x, 0) & =u_{0}(x) \text { if } x \in \Omega,
\end{aligned}\right.
$$

where Ω bounded, $\Omega \subset \mathbb{R}^{N}, N \geq 3,0 \in \Omega, \lambda>0, p>1$. f, u_{0} are non negative measurable functions.

Related problems.

- Heat equation, $\lambda=0$:

$$
\left\{\begin{array}{l}
u_{t}-\Delta u=u^{p}+f \text { in } \Omega_{T} \equiv \Omega \times(0, T), \\
u(x, t)>0 \text { in } \Omega_{T}, u(x, t)=0 \text { on } \partial \Omega \times(0, T), \\
u(x, 0)=u_{0}(x) \text { if } x \in \Omega .
\end{array}\right.
$$

Well known results.

- Associated elliptic problem, $\lambda>0$:

$$
-\Delta u=\lambda \frac{u}{|x|^{2}}+u^{p}+f \text { in } \Omega, u>0 \text { in } \Omega, u=0 \text { on } \partial \Omega .
$$

(BDT) No distributional solution for $p \geq p_{+}(\lambda)$.
(BDT) H. Brezis, L. Dupaigne, A. Tesei, On a semilinear elliptic equation with inverse-square potential.

Definition of solution: the weakest possible.

$u \in \mathcal{C}\left((0, T) ; L_{\text {loc }}^{1}(\Omega)\right)$ is a very weak supersolution (subsolution) if $\frac{u}{|x|^{2}} \in L_{l o c}^{1}\left(\Omega_{T}\right), u^{p} \in L_{l o c}^{1}\left(\Omega_{T}\right), f \in L_{l o c}^{1}\left(\Omega_{T}\right)$ and for all $\forall \phi \in \mathcal{C}_{0}^{\infty}(\Omega \times(0, T))$ such that $\phi \geq 0$,
$\int_{0}^{T} \int_{\Omega}\left(-\phi_{t}-\Delta \phi\right) u d x d t \geq(\leq) \int_{0}^{T} \int_{\Omega}\left(\lambda \frac{u}{|x|^{2}}+u^{p}+f\right) \phi d x d t$.
If u is a very weak super and subsolution, then we say that u is a very weak solution.
If u is a very weak supersolution (subsolution), then $u \in$ $\mathcal{C}\left((0, T) ; L_{l o c}^{1}(\Omega)\right) \cap L^{p}\left((0, T) ; L_{l o c}^{p}(\Omega)\right)$.

Behavior of the very weak supersolutions

Notation: The radial elliptic problem, $\lambda<\Lambda_{N}$,

$$
-\Delta w-\lambda \frac{w}{|x|^{2}}=0
$$

$|x|^{-\alpha_{1}},|x|^{-\alpha_{2}}$ are the radial solutions with
$\alpha_{1}=\frac{N-2}{2}-\sqrt{\left(\frac{N-2}{2}\right)^{2}-\lambda}, \alpha_{2}=\frac{N-2}{2}+\sqrt{\left(\frac{N-2}{2}\right)^{2}-\lambda}$, roots of $\alpha^{2}-(N-2) \alpha+\lambda=0$.
Hardy's inequality

$$
\int_{\Omega}|\nabla \phi|^{2} d x \geq \Lambda_{N} \int_{\Omega} \frac{|\phi|^{2}}{|x|^{2}} d x, \Lambda_{N}=\left(\frac{N-2}{2}\right)^{2}
$$

Singularity in a neighborhood of the origin

- u is a nonnegative function in $\Omega, u \not \equiv 0$,
- $u \in L_{l o c}^{1}\left(\Omega_{T}\right)$ and $\frac{u}{|x|^{2}} \in L_{l o c}^{1}\left(\Omega_{T}\right)$,
- u satisfies $u_{t}-\Delta u-\lambda \frac{u}{|x|^{2}} \geq 0$ in $\mathcal{D}^{\prime}\left(\Omega_{T}\right)$ with $\lambda \leq \Lambda_{N}$.

Fixed $0<t_{1}<t_{2} \leq T$, there exists a constant $C\left(N, r, t_{1}, t_{2}\right)$
such that $u \geq C|x|^{-\alpha_{1}}$ in $B_{r}(0) \times\left(t_{1}, t_{2}\right)$.

Behavior of the very weak supersolutions

- If u is a very weak supersolution to problem
$u_{t}-\Delta u-\lambda \frac{u}{|x|^{2}} \geq g$, then g must satisfy
$\int_{0}^{T} \int_{B_{r}(0)}|x|^{-\alpha_{1}} g d x<\infty$. (Approximated problems,test
function $\left(\varphi_{n}\right)_{t}-\Delta \varphi_{n}-\lambda \frac{\varphi_{n}}{|x|^{2}+\frac{1}{n}}=1$, pass to the limit).
- If u is a very weak supersolution, then there exists $r>0$,

$$
\int_{B_{r}(0)}|x|^{-\alpha_{1}} u_{0}(x) d x<\infty .
$$

(Approximated problems, test function $-\Delta \varphi_{n}-\frac{\lambda \varphi_{n}}{|x|^{2}+\frac{1}{n}}=c \varphi_{n}$, EDO, contradiction).

From a very weak supersolution, get a minimal solution

$\bar{u} \in \mathcal{C}\left((0, T) ; L_{l o c}^{1}(\Omega)\right)$ is a very weak supersolution, $\lambda \leq \Lambda_{N}$, then there exists a minimal solution in $B_{r}(0) \times\left(t_{1}, t_{2}\right) \subset \subset \Omega_{T}$ obtained by approximation.
Idea: Sub and super solutions method (aproximation and comparison).

$$
\begin{aligned}
& \left\{\begin{aligned}
\left(v_{0}\right)_{t}-\Delta v_{0} & =f \text { in } B_{r}(0) \times\left(t_{1}, t_{2}\right) \\
\left(v_{n}\right)_{t}-\Delta v_{n} & =\lambda \frac{v_{n-1}}{|x|^{2}+\frac{1}{n}}+v_{n-1}^{p}+f \text { in } B_{r}(0) \times\left(t_{1}, t_{2}\right) \\
v_{n}\left(x, t_{1}\right) & =T_{n}\left(\bar{u}\left(x, t_{1}\right)\right) \text { if } x \in B_{r}(0) \\
v_{n}(x, t) & =0 \text { on } \partial B_{r}(0) \times\left(t_{1}, t_{2}\right)
\end{aligned}\right. \\
& v_{n t-\Delta v_{n} \in L^{1}\left(B_{r}(0) \times\left(t_{1}, t_{2}\right)\right)}
\end{aligned}
$$

Critical exponents

Studying the elliptic radial case:

$$
-u_{r r}-\frac{(N-1)}{r} u_{r}-\lambda \frac{u}{r^{2}}=u^{p} \quad \text { in } \quad B_{r}(0)
$$

$u=A r^{-\beta}$, with $\beta=\frac{2}{p-1}, A^{p-1}=-\beta^{2}+(N-2) \beta-\lambda$.
We search $u>0$: $-\beta^{2}+(N-2) \beta-\lambda>0$.

$$
\begin{gathered}
\alpha_{1}<\beta<\alpha_{2} \Leftrightarrow p_{-}(\lambda)<p<p_{+}(\lambda) \\
p_{+}(\lambda)=1+\frac{2}{\alpha_{1}}, p_{-}(\lambda)=1+\frac{2}{\alpha_{2}}
\end{gathered}
$$

Critical exponents

$$
\begin{aligned}
& p_{+}(\lambda) \rightarrow 2^{*}-1=\frac{N+2}{N-2} \text { as } \lambda \rightarrow \lambda_{N}, \quad p_{+}(\lambda) \rightarrow \infty \text { as } \lambda \rightarrow 0, \\
& p_{-}(\lambda) \rightarrow 2^{*}-1=\frac{N+2}{N-2} \text { as } \lambda \rightarrow \lambda_{N}, \quad p_{-}(\lambda) \rightarrow \frac{N}{N-2} \text { as } \lambda \rightarrow 0,
\end{aligned}
$$

$p_{+}(\lambda)$ decreasing, $p_{-}(\lambda)$ increasing, $p_{-}(\lambda) \leq 2^{*}-1 \leq p_{+}(\lambda)$.

Strong nononexistence result

If $p \geq p_{+}(\lambda)$, then the problem has no positive very weak supersolution. If $f \equiv 0$, the unique nonnegative is $u \equiv 0$. Idea of the proof: Contradiction with Hardy inequality
Case 1: $\lambda>\Lambda_{N}$. Immediate.
Case 2: $\lambda<\Lambda_{N}, p>p_{+}(\lambda)$.

- Approximated problems (Truncated Hardy potential).
- $\frac{|\phi|^{2}}{u_{n}}, \phi \in \mathcal{C}_{0}^{\infty}\left(B_{r}(0)\right)$, Picone, Holder, Sobolev inequalities.
- $\int_{0}^{T} \int_{B_{r}(0)}|\nabla \phi|^{2} d x d t-\lambda \int_{0}^{T} \int_{B_{r}(0)} \frac{\phi^{2}}{|x|^{2}} d x d t \geq C \int_{0}^{T} \int_{B_{r}(0)} \frac{\phi^{2}}{|x|(p-1) \alpha_{1}}$.

As $p>p_{+}(\lambda)$, then $(p-1) \alpha_{1}>2$.

Strong nononexistence result

Case 3: $p=p_{+}(\lambda), \lambda<\Lambda_{N}:(p-1) \alpha_{1}=2$.

- Behavior: $u(x) \geq \frac{c_{0}}{|x|^{\alpha_{1}}}$ in $B_{\eta}(0) \times\left(t_{1}, t_{2}\right) \subset \subset \Omega_{T}$.
- Function test: $w(x, t)=|x|^{-\alpha_{1}}\left(\left(t-t_{1}\right)^{2}\left(\log \left(\frac{1}{|x|}\right)\right)^{\beta}+1\right)$.
- Comparison argument: $c u \geq w$ in $B_{\eta}(0) \times\left(t_{1}, t_{2}\right)$.
- $\phi \in \mathcal{C}_{0}^{\infty}\left(B_{\eta}(0)\right)$, Picone, Sobolev, Holder inequalities.
- Contradiction with Hardy's inequality,

$$
c \int_{B_{r}(0)} \frac{|\phi|^{2}}{|x|^{2}}\left(\log \left(\frac{1}{|x|}\right)\right)^{\beta} d x \leq \int_{B_{r}(0)}|\nabla \phi|^{2} d x, r \ll \eta
$$

Case 4: $p=p_{+}(\lambda), \lambda=\Lambda_{N}: \alpha_{1}(p+1)=N$.

$$
\int_{t_{1}}^{t_{2}} \int_{B_{r}(0)}|x|^{-\alpha_{1}} u^{p} d x \geq C^{p}\left(t_{2}-t_{1}\right) \int_{B_{r}(0)}|x|^{-\alpha_{1}(p+1)} d x=\infty .
$$

Instantaneous and Complete blow up

- Punctual blow up in problems with approximated Hardy potential.
$u_{n} \in \mathcal{C}\left((0, T) ; L^{1}(\Omega)\right) \cap L_{l o c}^{p}\left((0, T) ; L_{l o c}^{p}(\Omega)\right)$ very weak solution to,

$$
\left\{\begin{aligned}
u_{n t}-\Delta u_{n} & =\frac{u_{n}^{p}}{1+\frac{1}{n} u_{n}^{p}}+\lambda a_{n}(x) u_{n}+c f \text { in } \Omega_{T}, \\
u_{n}(x, t) & =0 \text { on } \partial \Omega \times(0, T), \\
u_{n}(x, 0) & =0 \text { if } x \in \Omega,
\end{aligned}\right.
$$

with $f \not \equiv, a_{n}(x)=\frac{1}{|x|^{2}+\frac{1}{n}}$, and $p \geq p_{+}(\lambda)$. Then

$$
u_{n}\left(x_{0}, t_{0}\right) \rightarrow \infty, \forall\left(x_{0}, t_{0}\right) \in \Omega \times(0, T) .
$$

Instantaneous and Complete blow up

- Punctual blow up in problems with a sequence tending to the critical exponent.
Let $p_{n}(\lambda)=1+\frac{2}{\alpha_{1}+\frac{1}{n}}$, a positive $f \in L^{\infty}\left(\Omega_{T}\right)$ and
$u_{n} \in \mathcal{C}\left((0, T) ; L_{\text {loc }}^{1}(\Omega)\right)$ a very weak supersolution to

$$
\left\{\begin{aligned}
u_{n t}-\Delta u_{n} & \geq \lambda \frac{u_{n}}{|x|^{2}}+u_{n}^{p_{n}}+f \text { in } \Omega_{T}, \\
u_{n}(x, t) & =0 \text { on } \partial \Omega \times(0, T), \\
u_{n}(x, 0) & =0 \text { in } \Omega .
\end{aligned}\right.
$$

Then

$$
u_{n}\left(x_{0}, t_{0}\right) \rightarrow \infty, \forall\left(x_{0}, t_{0}\right) \in \Omega \times(0, T) .
$$

Sketch of the proofs

- From the very weak supersolution we get a minimal solution obtained by approximation.
- By contradiction, we suppose $u_{n}\left(x_{0}, t_{0}\right) \rightarrow C<\infty$.
- $\int_{B_{r}(0) \times\left(t_{1}, t_{2}\right)} u_{n}(x, t) d x d t \leq C$, Harnack's inequality.
- $\int_{B_{r}(0) \times\left(t_{1}, t_{2}\right)} g_{n} \phi d x d t \leq \int_{B_{r}(0) \times\left(t_{1}, t_{2}\right)} u_{n}(x, t) d x d t \leq C$.
- In the case 1, MONOTONICITY. At the limit (Monotone Convergence), a very weak supersolution.
- In the case 2, NO MONOTONICITY. Another test function: $T_{k}\left(u_{n}\right) \phi$. At the limit (Fatou's Lemma), a very weak supersolution.

Difference with the Heat Equation

- HEAT EQUATION, $\lambda=0$:
$u_{t}-\Delta u=u^{p}+f$ in $\Omega_{T}, u>0, u=0$ on $\partial \Omega \times(0, T), u_{0}(x)$.
Existence of local solution (regular initial data).

$$
\lambda=0 \Rightarrow \alpha_{1}=0 \Rightarrow p_{+}(0)=\infty
$$

- HEAT EQUATION WITH HARDY TERM, $\lambda>0$:
$u_{t}-\Delta u=\lambda \frac{u}{|x|^{2}}+u^{p}+f$ in $\Omega_{T}, u>0, u=0$ on $\partial \Omega \times(0, T), u_{0}(x$
Non existence of very weak solution for

$$
p \geq p_{+}(\lambda)
$$

Existence of solutions: $p<p_{+}(\lambda)$.

- $f \equiv 0$: For $\lambda<\Lambda_{N}, 1<p<p_{+}(\lambda)$ and suitable $u_{0}(x)$. The problem
$u_{t}-\Delta u=\lambda \frac{u}{|x|^{2}}+u^{p}$ in $\Omega_{T}, u>0, u=0$ on $\partial \Omega \times(0, T), u_{0}(x)$,
has a solution.
- $f \supsetneqq 0$:lf $f(x) \leq \frac{c_{0}}{|x|^{2}}$ with c_{0} small, we get the existence of a minimal solution for all $p<p_{+}(\lambda)$.

Idea of the proof: If $p<2^{*}-1$, variational solution.
If $2^{*}-1<p<p_{+}(\lambda)$, construction of the elliptic radial solution
$u=A r^{-\beta}, \beta=\frac{2}{p-1}$ and small initial datum .

CAUCHY PROBLEM: HEAT EQUATION WITH HARDY TERM

We want to study the global existence in time when local existence is assumed:

$$
\left\{\begin{aligned}
u_{t}-\Delta u & =\lambda \frac{u}{|x|^{2}}+u^{p} \quad \text { in } \quad \mathbb{R}^{\mathrm{N}}, t>0 \\
u(x, 0) & =u_{0}(x) \geq 0 \quad \text { in } \quad \mathbb{R}^{\mathrm{N}},
\end{aligned}\right.
$$

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t}=-\Delta u+u^{1+\alpha}$. J. Fac. Sci. Univ. Tokyo Sect. I 131966 (1966)
T. Kawanago Existence and behaviour of solutions for $u_{t}=\Delta\left(u^{m}\right)+u^{l}$ Adv. Math. Sci. Appl. 7 (1997), no. 1.
H. Levine The role of critical exponents in blowup theorems. SIAM Rev. 32 (1990), no. 2 .

CAUCHY PROBLEM: HEAT EQUATION

Heat equation:

$$
\left\{\begin{aligned}
u_{t}-\Delta u & =u^{p} \text { in } \mathbb{R}^{\mathrm{N}}, t>0, \\
u(x, 0) & =u_{0}(x) \geq 0 \quad \text { in } \quad \mathbb{R}^{\mathrm{N}},
\end{aligned}\right.
$$

Fujita exponent: $1+\frac{2}{N}$
Definition: Blow-up in finite time, $\left\|u\left(\cdot, t_{n}\right)\right\|_{\infty} \rightarrow \infty, t_{n} \rightarrow T^{*}$.

Finite time blow-up
For small data

For large data $\quad \longrightarrow \quad$| Global Existence |
| :---: |
| Nonglobal Existence |

$1+\frac{2}{N}$

FUJITA TYPE EXPONENT WITH HARDY POTENTIAL

Fujita type exponent: $1+\frac{2}{N-\alpha_{1}}, \lambda=0, \alpha_{1}=0 \Rightarrow 1+\frac{2}{N}$. Definition: Blow-up in finite time. Unbounded solutions.
There exists $T^{*}<\infty, \lim _{t \rightarrow T^{*}} \int_{B_{r}(0)}|x|^{-\alpha_{1}} u(x, t) d x=\infty$.

Finite time blow-up
For small data \longrightarrow Global Existence
For large data \longrightarrow Nonglobal Existence \quad Non Existence

FUJITA TYPE EXPONENT WITH HARDY POTENTIAL

Assume that v is the solution to the equation

$$
u_{t}-\Delta u-\lambda \frac{u}{|x|^{2}}=0 \text { in } \mathbb{R}^{\mathrm{N}},
$$

then $v(r, t)=t^{-\frac{N}{2}+\alpha_{1}} r^{-\alpha_{1}} \exp ^{\left(\frac{-1}{4} \frac{r^{2}}{t}\right)}$ and satisfies
$\int_{\mathbb{R}^{\mathrm{N}}} r^{-\alpha_{1}} v(r, t) d x=C$.
For $\lambda=0 \Rightarrow \alpha_{1}=0, v(r, t)=t^{-\frac{N}{2}} \exp ^{\left(\frac{-1}{4} \frac{r^{2}}{t}\right)}$ the FUNDAMEN-
TAL SOLUTION to Heat equation, with $\int_{\mathbb{R}^{\mathbb{N}}} v(r, t) d x=C^{\prime}$.

FUJITA TYPE EXPONENT WITH HARDY POTENTIAL

$p<1+\frac{2}{N-\alpha_{1}}$, then u blows-up in finite time.

- We look for a family of subsolutions:

$$
\begin{aligned}
& w(r, t, T)=(T-t)^{-\theta} f\left(\frac{r}{(T-t)^{\beta}}\right), \theta=-\frac{1}{p-1}, \beta=\frac{1}{2}, s=\frac{r}{(T-t)^{\beta}} \\
& f(s)=A \phi(s), \phi(s)=s^{-\alpha_{1}} e^{-\frac{s^{2}}{4}}, A \gg 0, w_{t}-w_{r r}-\frac{(N-1)}{r} w_{r}-\lambda \frac{w}{r^{2}} \leq w^{p} .
\end{aligned}
$$

- $\mathrm{w}(\mathrm{r}, \mathrm{t}, \mathrm{T})$ has finite blow-up,

$$
\begin{aligned}
& \int_{B_{r}(0)}|x|^{-\alpha_{1}} w(x, t, T) d x=C(T-t)^{-\frac{1}{p-1}+\frac{N}{2}-\frac{\alpha_{1}}{2}} \int_{0}^{\frac{r}{(T-t)^{\frac{1}{2}}} \phi(s) s^{N-\alpha_{1}-1} d s=\infty .} \begin{array}{l}
\left(p<1+\frac{2}{N-\alpha_{1}} \Rightarrow-\frac{1}{p-1}+\frac{N}{2}-\frac{\alpha_{1}}{2}<0\right)
\end{array} .
\end{aligned}
$$

FUJITA TYPE EXPONENT WITH HARDY POTENTIAL

- COMPARISON ON INITIAL DATUM:
$\bar{u}(x, t)$, a time translation of a solution $\bar{u}(x, t)=u(x, t+T)$, is a supersolution to the homogenous equation with the same initial values. It is sufficient $v(x, T) \geq w(r, 0, T)$, to get $\bar{u}(x, 0) \geq w(r, 0, T)$.
$p<F(\lambda)=1+\frac{2}{N-\alpha_{1}}$, for $T \gg 1, T^{-\frac{N-\alpha_{1}}{2}} \gg A T^{-\frac{1}{p+1}}$.

FUJITA TYPE EXPONENT WITH HARDY POTENTIAL

- COMPARISON PRINCIPLE: $\bar{u}(x, t) \geq w(x, t), \forall t<T$.
- $h(x, t)=w(x, t)-\bar{u}(x, t), h_{+} \in L^{2}\left(0, T, D^{1,2}\left(\mathbb{R}^{\mathrm{N}}\right)\right)$, satisfying $h_{t}-\Delta h \leq \lambda \frac{h}{|x|^{2}}+w^{p}-\bar{u}^{p}$.
- Kato's inequality, $h_{+}(x, 0)=0$, (see (O)).

$$
h_{t}^{+}-\Delta h_{+} \leq \lambda \frac{h_{+}}{|x|^{2}}+p w^{p-1} h_{+} \quad \text { in } \quad \mathbb{R}^{\mathrm{N}}, t \in\left(0, T_{1}\right), T_{1}<T .
$$

- NO BOUNDED SOLUTIONS, $p<1+\frac{2}{N-\alpha_{1}}$,

$$
\exists C\left(T, T_{1}\right), \forall \epsilon>0, w^{p-1} \leq \epsilon \frac{1}{|x|^{2}}+C\left(T, T_{1}\right) .
$$

- Gronwall's inequality, $h_{+}=0$, so

$$
\bar{u}(x, t) \geq w(x, t), \forall t<T .
$$

CRITICAL FUJITA TYPE EXPONENT $p=1+\frac{2}{N-\alpha_{1}}$.

$p=1+\frac{2}{N-\alpha_{1}}$, then u blows-up in finite time.
Ideas of the proof: Suppose

$$
\int_{B_{r}(0)}|x|^{-\alpha_{1}} u(x, t) d x<\infty \text { for all } t>0
$$

With the change of variables, $v(x, t)=|x|{ }^{\alpha_{1}} u(x, t)$,

$$
|x|^{-2 \alpha_{1}} v_{t}-\operatorname{div}\left(|x|^{-2 \alpha_{1}} \nabla v\right)=|x|^{-\alpha_{1}(p+1)} v^{p},
$$

with v satisfying $\int_{\Omega}|x|^{-2 \alpha_{1}} v(x, t) d x<\infty$ for all $t>0$. Modification of known arguments are followed.

$$
F(\lambda)<p<p_{+}(\lambda) .
$$

GLOBAL EXISTENCE.

We look for a family of supersolutions
$w(r, t, T)=(T+t)^{-\theta} g\left(\frac{r}{(T+t)^{\beta}}\right), \theta=\frac{1}{p-1} \beta=\frac{1}{2}$.

$$
w_{t}-w_{r r}-\frac{(N-1)}{r} w_{r}-\lambda \frac{w}{r^{2}} \geq w^{p} .
$$

$g(s)=A \phi(c s)$, with $\phi(s)=s^{-\gamma} e^{-\frac{s^{2}}{4}}, \alpha_{1}<\gamma<\frac{2}{p-1}, A>$
$0, c>0$.lt is sufficient to choose $c<1$ and A small enough.
For suitable initial data we can construct a global solution.

L^{2} FINITE TIME BLOW UP

We give a sufficient condition on the initial datum to get a blow-up behavior of the solution in a suitable norm different from the blow-up behavior obtained in previous theorems. $1<p<p_{+}(\lambda)$. If u is a positive solution, $u_{0}(x) \geq h(x)$ where $0 \leq h \in L^{p+1}\left(\mathbb{R}^{\mathrm{N}}\right) \cap \mathcal{D}^{1,2}\left(\mathbb{R}^{\mathrm{N}}\right)$ satisfies

$$
\frac{1}{p+1} \int_{\mathbb{R}^{\mathrm{N}}} h^{p+1} d x>\frac{1}{2} \int_{\mathbb{R}^{\mathrm{N}}}\left(|\nabla h|^{2}-\lambda \frac{h^{2}}{|x|^{2}}\right) d x
$$

then u blows-up in finite time. The sense: there exists $T^{*}<\infty$ such that

$$
\int_{B_{R}(0)} u^{2}(x, t) d x \rightarrow \infty \text { as } t \rightarrow T^{*} .
$$

L^{p+1} INFINITE TIME BLOW UP

$F(\lambda)<p<2^{*}-1 . u$ is a global solution, then

$$
\int_{\mathbb{R}^{\mathrm{N}}} u^{p+1}(x, t) d x \rightarrow \infty \text { as } t \rightarrow \infty \text {. Infinite time. }
$$

Idea of the proof: $\exists \bar{T}>0, \sup _{t \in[\bar{T}, \infty]} \int_{\mathbb{R}^{N}} u^{p+1}(x, t) d x<\infty$.
Approximated problems. We have estimates that allow us to pass to the limit and to get a solution to the elliptic problem

$$
-\Delta u-\lambda \frac{u}{|x|^{2}}=u^{p} \in \mathbb{R}^{\mathrm{N}},
$$

but $p<2^{*}-1$, a contradiction with (\mathbf{T}).
(T) S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical

SUMMARY CAUCHY PROBLEM

- $p \leq F(\lambda)=1+\frac{2}{N-\alpha_{1}}$. Blow-up in finite time:
$\exists T^{*}<\infty, \lim _{t \rightarrow T^{*}} \int_{B_{r}(0)}|x|^{-\alpha_{1}} u(x, t) d x=\infty$.
- $F(\lambda)<p<p_{+}(\lambda)$. Global existence for small data. Non global existence for large data.
- $1<p<p_{+}(\lambda) . u$ a solution, u_{0} initial datum with sufficient property. Blow-up in finite time:
$\exists T^{*}<\infty, \int_{B_{R}(0)} u^{2}(x, t) d x \rightarrow \infty$ as $t \rightarrow T^{*}$.
- $F(\lambda)<p<2^{*}-1$. Blow-up in infinite time:

$$
\int_{\mathbb{R}^{\mathrm{N}}} u^{p+1}(x, t) d x \rightarrow \infty \text { as } t \rightarrow \infty
$$

yatatoty
4
4

