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Francesco Petitta San José 17/9/2007 Nonlinear parabolic equations with measure data



Plan of the talk

Introduction
Existence and main properties of renormalized solutions
for parabolic problems with general measure data (P.,
Renormalized solutions of nonlinear parabolic equations
with general measure data, to appear in Ann. Mat. Pura ed
Appl.)
Some remarks on the decomposition of µ

(P., Ponce,
Porretta, A strong approximation result for diffuse
measures and applications to nonlinear parabolic
equations, in preparation)
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Francesco Petitta San José 17/9/2007 Nonlinear parabolic equations with measure data



Main assumptions and statement of the problem

Let a : (0,T )× Ω× RN → RN be a Carathéodory function such
that:

a(t , x , ξ) · ξ ≥ α |ξ|p , p > 1 ,

|a(t , x , ξ)| ≤ β |ξ|p−1 ,

[a(t , x , ξ)− a(t , x , η)](ξ − η) > 0 ,

for a.e. (t , x) in Q, for all ξ, η in RN , with ξ 6= η, α, β > 0.

Let us consider
ut − div(a(t , x ,∇u)) = µ in (0,T )× Ω,

u(0, x) = u0(x) in Ω,

u(t , x) = 0 on (0,T )× ∂Ω,

(P)

where µ ∈M(Q) and u0 ∈ L1(Ω).
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that:

a(t , x , ξ) · ξ ≥ α |ξ|p , p > 1 ,

|a(t , x , ξ)| ≤ β |ξ|p−1 ,

[a(t , x , ξ)− a(t , x , η)](ξ − η) > 0 ,

for a.e. (t , x) in Q, for all ξ, η in RN , with ξ 6= η, α, β > 0.
Let us consider

ut − div(a(t , x ,∇u)) = µ in (0,T )× Ω,

u(0, x) = u0(x) in Ω,

u(t , x) = 0 on (0,T )× ∂Ω,

(P)

where µ ∈M(Q) and u0 ∈ L1(Ω).
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Some known results (For simplicity p ≥ 2)

For parabolic problem with measure a theory has been developed following
the outlines of the elliptic case.

No uniqueness of solutions in D′(Q) (Serrin’s counterexample can be
readapted, ∃ in Boccardo-Dall’Aglio-Gallouët-Orsina, ’97 ).

Duality solution for problem (P) in the linear case (∃ !).

µ ∈ Lp′(Q), u0 ∈ L2(Ω): ∃ ! u weak solution in W ∩ C([0,T ]; L2(Ω)) (J.
L. Lions, ′69). W =

n
u ∈ Lp(W 1,p

0 (Ω)), ut ∈ Lp′(W−1,p′(Ω))
o

µ ∈ L1(Q), u0 ∈ L1(Ω), p > 2N+1
N+1 : ∃ ! u entropy solution

Lq(0, 1; W 1,q
0 (Ω)) ∩ C([0,T ]; L1(Ω)), ∀q < p − N

N+1 (Prignet, ′97).

µ ∈M0(Q), u0 ∈ L1(Ω): ∃ ! u renormalized solution,
(Droniou-Porretta-Prignet, ′03).

Remark

In any case we have Tk (u) ∈ Lp(0,T ; W 1,p
0 (Ω))

Notice µ ∈M0(Q), then Renormalized⇔ Entropy (Droniou-Prignet,
′05).
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Duality solution for problem (P) in the linear case (∃ !).

µ ∈ Lp′(Q), u0 ∈ L2(Ω): ∃ ! u weak solution in W ∩ C([0,T ]; L2(Ω)) (J.
L. Lions, ′69). W =

n
u ∈ Lp(W 1,p

0 (Ω)), ut ∈ Lp′(W−1,p′(Ω))
o

µ ∈ L1(Q), u0 ∈ L1(Ω), p > 2N+1
N+1 : ∃ ! u entropy solution

Lq(0, 1; W 1,q
0 (Ω)) ∩ C([0,T ]; L1(Ω)), ∀q < p − N

N+1 (Prignet, ′97).

µ ∈M0(Q), u0 ∈ L1(Ω): ∃ ! u renormalized solution,
(Droniou-Porretta-Prignet, ′03).

Remark

In any case we have Tk (u) ∈ Lp(0,T ; W 1,p
0 (Ω))

Notice µ ∈M0(Q), then Renormalized⇔ Entropy (Droniou-Prignet,
′05).
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Preliminaries on parabolic p-capacity (Pierre, ′83, [DPP], ′03).

Let U ⊆ Q be an open set; we define the parabolic p-capacity of U as

capp(U) = inf{‖u‖W : u ∈W ,u ≥ χU a.e. in Q},

and then for any Borelian set by outer regularity.

Theorem (DPP)

Let µ ∈M0(Q) then there exist f ∈ L1(Q), g ∈ Lp(0,T ; W 1,p
0 (Ω)) and

h ∈ Lp′(0,T ; W−1,p′(Ω)), such that

µ = f + gt + h in D′(Q) .

Theorem (DPP)

Any element v of W admits a capp-quasi continuous representative ṽ
(unique q.e.)
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Definition of renormalized solution

Notation: v = u − g, µ̂0 = µ0 − gt , with

µ = µ0 + µs = f + gt + h + µ+
s − µ−s ,

and µs is concentrated on E = E+ ∪ E−, capp(E) = 0, E+ ∩ E− = ∅.

Definition (Renormalized solution)

A function u is a renormalized solution of problem (P) if there exists a
decomposition (f , g, h) of µ0 such that

v ∈ Lq(0,T ; W 1,q
0 (Ω)) ∩ L∞(0,T ; L1(Ω)), ∀ q < p − N

N+1 ,

Tk (v) ∈ Lp(0,T ; W 1,p
0 (Ω)), ∀ k > 0,

For any S ∈ W 2,∞(R) (S(0) = 0, supp(S′) ⊆ [−M,M]), we have

−
Z

Ω

S(u0)ϕ(0) −
Z T

0
〈ϕt ,S(v)〉 +

Z
Q

S′(v)a(t , x ,∇u) · ∇ϕ

+

Z
Q

S′′(v)a(t , x ,∇u) · ∇v ϕ =

Z
Q

S′(v)ϕ d µ̂0,

∀ϕ ∈ Lp(0,T ; W 1,p
0 (Ω)) ∩ L∞(Q), ϕt ∈ Lp′(0,T ; W−1,p′(Ω)),

ϕ(T , x) = 0...
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s − µ−s ,
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For any S ∈ W 2,∞(R) (S(0) = 0, supp(S′) ⊆ [−M,M]), we have

−
Z

Ω

S(u0)ϕ(0) −
Z T
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Z
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+

Z
Q

S′′(v)a(t , x ,∇u) · ∇v ϕ =

Z
Q

S′(v)ϕ d µ̂0,

∀ϕ ∈ Lp(0,T ; W 1,p
0 (Ω)) ∩ L∞(Q), ϕt ∈ Lp′(0,T ; W−1,p′(Ω)),

ϕ(T , x) = 0...
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Definition of renormalized solution

Definition (...)

Moreover, for any ψ ∈ C(Q) we have

lim
n→+∞

1
n

Z
{n≤v<2n}

a(t , x ,∇u) · ∇v ψ dxdt =

Z
Q
ψ dµ+

s ,

e

lim
n→+∞

1
n

Z
{−2n<v≤−n}

a(t , x ,∇u) · ∇v ψ dxdt =

Z
Q
ψ dµ−s .

Remarks

In the sense of distribution (if h = −div(G)),

(S(v))t − div(a(t , x ,∇u)S′(v)) + S′′(v)a(t , x ,∇u) · ∇v
= S′(v)f + S′′(v)G · ∇v − div(GS′(v)).

S(v) ∈ C([0,T ]; L1(Ω)) and S(v)(0) = S(u0) in L1(Ω) for any S. (using a result
of Porretta ’99)
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Francesco Petitta San José 17/9/2007 Nonlinear parabolic equations with measure data



Preliminaries estimates and main result

A key estimate enjoyed by any renormalized solution is the following

Proposition (P., ’07 )

Let v = u − g be a renormalized solution of problem (P). Then, for any k > 0,
we have Z

Q
|∇Tk (v)|p dxdt ≤ C(k + 1).

The proof is based essentially on the reconstruction property of µs over a
suitable decomposition of the set {|v | ≤ k}.
The existence result is the following:

Theorem (P., ’07)

Let µ ∈M(Q) and u0 ∈ L1(Ω). Then there exists a renormalized solution of
problem (P).
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capp-quasi continuous representative

Using the previous estimate on the truncation we obtain:

Theorem (P., ’07)

Let v = u − g be a renormalized solution of problem (P). Then v
admits a capp-quasi continuous representative finite q.e.

Conjecture

If µ does not charge the sets {t} × Ω, then u admits a capp-quasi
continuous representative.

The proof is based essentially on

A suitable capacitary estimate on the level sets of v ,

The fact that v is finite capp-quasi everywhere.

Remark
In general, u does not admit a capp-quasi continuous representative;
and u is not even in C(0,T ; L1(Ω)) (P.-Ponce-Porretta).
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Basic steps in the proof of existence
The proof is very technical and can just be summarized as follows:

Approximation of the measure µε = f ε − div(Gε) + gεt + λε⊕ − λε	,
Basic estimates

‖vε‖L∞(0,T ;L1(Ω)) ≤ C,
Z

Q
|∇Tk (vε)|p dxdt ≤ C(k + 1).

Compactness

vε −→ v a.e. in Q weakly Lq(0,T ; W 1,q
0 (Ω)) and strongly in L1(Q),

Tk (vε) ⇀ Tk (v) weakly Lp(0,T ; W 1,p
0 (Ω)) and a.e. in Q,

∇vε −→ ∇v a.e. in Q.

Tk (vε) −→ Tk (v) Strongly in Lp(0,T ; W 1,p
0 (Ω)).

In which the main ingredient relies in showing that

lim sup
ε→0

Z
Q

a(t , x ,∇uε) · ∇Tk (vε) dxdt ≤
Z

Q
a(t , x ,∇u) · ∇Tk (v) dxdt .

Passing to the limit in the approximated problems.
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The presence of the term g

As we said before, if µ ∈M(Q) then

µ = f + gt + h + µs in D′(Q),

with g ∈ Lp(0,T ; W 1,p
0 (Ω)) .

With the stronger assumption that g can be chosen to be
bounded one can prove several interesting properties about the
measure µ and the solution of the related parabolic problem.
Among the others, as we will talk about in a while

Representation Theorem for measures inM0(Q)
(P.-Ponce-Porretta)
Inverse maximum principle for general monotone operators
(P., ’07).
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Example of essentially unbounded g

Unfortunately, in general, this is false!

Example

Take µ = δt0 ⊗ f , with f ∈ L1(Ω), f /∈ L∞(Ω). Consider
u ∈ L2(t0,T ; H1

0 (Ω)) ∩ C([t0,T ]; L1(Ω)) as the solution of problem

(
ut −∆u + |∇u|2 = 0 in (t0,T )× Ω,

u(t0, x) = f in Ω,

which exists. Moreover, ũ =

(
0 if t < t0
u if t ≥ t0.

solves

(
ũt −∆ũ + |∇ũ|2 = δt0 ⊗ f in (0,T )× Ω,

ũ(x , 0) = 0 in Ω,

and ũ ∈ L2(0,T ; H1
0 (Ω)), so that ũ realizes a good decomposition for µ. Suppose, by

contradiction, that µ admits a decomposition with g ∈ L2(0,T ; H1
0 (Ω)) ∩ L∞(Q); by a

result of [DPP], ũ − g ∈ C([0,T ]; L1(Ω)), which brings to a contradiction.
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(
0 if t < t0
u if t ≥ t0.

solves

(
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result of [DPP], ũ − g ∈ C([0,T ]; L1(Ω)), which brings to a contradiction.
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0 (Ω)) ∩ C([t0,T ]; L1(Ω)) as the solution of problem

(
ut −∆u + |∇u|2 = 0 in (t0,T )× Ω,

u(t0, x) = f in Ω,

which exists. Moreover, ũ =

(
0 if t < t0
u if t ≥ t0.

solves

(
ũt −∆ũ + |∇ũ|2 = δt0 ⊗ f in (0,T )× Ω,

ũ(x , 0) = 0 in Ω,

and ũ ∈ L2(0,T ; H1
0 (Ω)), so that ũ realizes a good decomposition for µ. Suppose, by

contradiction, that µ admits a decomposition with g ∈ L2(0,T ; H1
0 (Ω)) ∩ L∞(Q);

by a
result of [DPP], ũ − g ∈ C([0,T ]; L1(Ω)), which brings to a contradiction.
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The best one can do...
In some sense, the best one can expect is contained in the following strong
approximation result

Theorem (P.-Ponce-Porretta)

Let µ ≥ 0 be diffuse measure with respect to the parabolic p-capacity, then, for any
ε > 0, there exists a diffuse measure ν such that

‖µ− ν‖M(Q) ≤ ε and ν = vt −∆pv

where v ∈ Lp(0,T ; W 1,p
0 (Ω)) ∩ L∞(Q).

The proof of this result is based on a new estimate on the sets where u is large

Lemma (P.-Ponce-Porretta)

Let µ ≥ 0 be inM(Q) ∩ Lp′ (0,T ; W−1,p′ (Ω)) and let u be the solution of problem(
ut −∆pu = µ in (0,T )× Ω,

u(0, x) = u0 ∈ L1(Ω) in Ω,

Then capp({u ≥ k}) ≤ C(‖µ‖M(Q), ‖u0‖L1(Ω)) max

(
1

k
1
p
,

1

k
1

p′

)
, ∀ k > 0.
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Idea of the proof of the capacitary Lemma

The main steps in the proof of the capacitary estimates are

∥∥∥Tk (u)
k

∥∥∥2

L∞(0,T ;L2(Ω))
≤ C

k and
∥∥∥Tk (u)

k

∥∥∥p

Lp(0,T ;W 1,p
0 (Ω))

≤ C
kp−1

Let Ψk (u) = Tk (u)
k , and consider z as the solution of the

backward problem
−zt −∆pz = −2∆pΨk (u) in (0,T )× Ω,

z(T , x) = Ψk (u)(T ) in Ω,

z(t , x) = 0 on (0,T )× ∂Ω.

Then,

‖z‖W ≤ C max

{
1

k
1
p

,
1

k
1
p′

}
.

By suitable comparison z ≥ Ψk (u) and so it can be use to
test the capacity of {u ≥ k}
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Basics for the proof of the approximation result I

As we said the proof of the approximation result relies on the
capacitary Lemma and on the following

Proposition (PPP)

Let µ = f + gt − div(G) in D′(Q) be a measure inM(Q), with
f ∈ L1(Q), g ∈ Lp(0,T ; W 1,p

0 (Ω)), and G ∈ (Lp′(Q))N . If
g ∈ L∞(Q) then µ is diffuse.

As a consequence, this result leads to the proof the inverse
maximum principle for the p-laplace operator which, roughly
speaking, asserts that, if (∂t −∆p)u is a measure and u ≥ 0 a.
e. on Q, then

[(∂t −∆p) u]c ≥ 0.
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Proof of the approximation result II

Let us introduce the following notion

Definition
A sequence of measures µn is p-equidiffuse if {µn} is bounded
on Q and, moreover, given ε > 0, there exists η > 0 such that

capp(E) < η ⇒ |µn|(E) < ε, ∀ n ≥ 1.

We have

Proposition (p-Equidiffusion)
Let µ be a diffuse measure and ρn a sequence of mollifiers.
Then ρn ∗ µ is p-equidiffuse.
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Sketches from: The Proof
Take µn = µ ∗ ρn, and let us fix a small δ > 0; define

Sk,δ(s) =

8><>:
1 if |s| ≤ k ,
0 if |s| > k + δ,

affine otherwise,
Tk,δ(s) =

Z s

0
Sk,δ(σ) dσ.

We have
Tk,δ(un)t − div

“
Sk,δ(un)|∇un|p−2∇un

”
= Sk,δ(un)µn + 1

δ
|∇un|pχ{k≤un<k+δ}, in D′(Q)

and, multiplying the equation solved by un by 1− Sk,δ(un),

1
δ

Z
{k≤un<k+δ}

|∇un|p ≤
Z

Q
Bk,δ(un)µn ≤

Z
{un>k}

µn.

So that, νk
n ≡ Tk (un)t −∆pTk (un) is a measure and satisfies, after computations,Z

Q
|νk

n − µn| ≤ 2
Z

un>k
µn,
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Francesco Petitta San José 17/9/2007 Nonlinear parabolic equations with measure data



...

Let us define νk as the ∗-weak in the sense of measures, as n tends to infinity of νk
n ,

that is
νk

n
∗→ νk .

Now, using the fact that (up to subsequences) ∇un converges to ∇u a.e. on Q (see
[BDGO]) we have that Tk (un) converges to Tk (u) weakly in Lp(0,T ; W 1,p

0 (Ω)) and

∆pTk (un) −→ ∆pTk (u)

weakly in Lp′ (0,T ; W−1,p′ (Ω)); so that νk = Tk (u)t −∆pTk (u). So, thanks to
capacitary lemma and the p-equidiffiusion result, for fixed ε > 0, we can choose kε
large enough such that,

‖νkε − µ‖M(Q) ≤ ε,

with
νkε = Tkε

(u)t −∆pTkε
(u),

and this concludes the proof of the approximation theorem.
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MUCHAS GRACIAS!!!!
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