# Some remarks on nonlinear parabolic equations with general measure data 

Francesco Petitta<br>17 september 2007

# Some remarks on nonlinear parabolic equations with general measure data 

Francesco Petitta<br>17 september 2007<br>Sapienza, Università di Roma



Universidad de Granada

## Plan of the talk

- Introduction


## Plan of the talk

- Introduction
- Existence and main properties of renormalized solutions for parabolic problems with general measure data


## Plan of the talk

- Introduction
- Existence and main properties of renormalized solutions for parabolic problems with general measure data ( $P$., Renormalized solutions of nonlinear parabolic equations with general measure data, to appear in Ann. Mat. Pura ed Appl.)


## Plan of the talk

- Introduction
- Existence and main properties of renormalized solutions for parabolic problems with general measure data (P., Renormalized solutions of nonlinear parabolic equations with general measure data, to appear in Ann. Mat. Pura ed Appl.)
- Some remarks on the decomposition of $\mu$


## Plan of the talk

- Introduction
- Existence and main properties of renormalized solutions for parabolic problems with general measure data ( $P$., Renormalized solutions of nonlinear parabolic equations with general measure data, to appear in Ann. Mat. Pura ed Appl.)
- Some remarks on the decomposition of $\mu$ (P., Ponce, Porretta, A strong approximation result for diffuse measures and applications to nonlinear parabolic equations, in preparation)


## Main assumptions and statement of the problem

Let a : $(0, T) \times \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be a Carathéodory function such that:

$$
\begin{gathered}
a(t, x, \xi) \cdot \xi \geq \alpha|\xi|^{p}, \quad p>1, \\
|a(t, x, \xi)| \leq \beta|\xi|^{p-1}, \\
{[a(t, x, \xi)-a(t, x, \eta)](\xi-\eta)>0,}
\end{gathered}
$$

for a.e. $(t, x)$ in $Q$, for all $\xi, \eta$ in $\mathbb{R}^{N}$, with $\xi \neq \eta, \alpha, \beta>0$.

## Main assumptions and statement of the problem

Let a : $(0, T) \times \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be a Carathéodory function such that:

$$
\begin{gathered}
a(t, x, \xi) \cdot \xi \geq \alpha|\xi|^{p}, \quad p>1 \\
|a(t, x, \xi)| \leq \beta|\xi|^{p-1} \\
{[a(t, x, \xi)-a(t, x, \eta)](\xi-\eta)>0}
\end{gathered}
$$

for a.e. $(t, x)$ in $Q$, for all $\xi, \eta$ in $\mathbb{R}^{N}$, with $\xi \neq \eta, \alpha, \beta>0$. Let us consider

$$
\begin{cases}u_{t}-\operatorname{div}(a(t, x, \nabla u))=\mu & \text { in }(0, T) \times \Omega  \tag{P}\\ u(0, x)=u_{0}(x) & \text { in } \Omega \\ u(t, x)=0 & \text { on }(0, T) \times \partial \Omega\end{cases}
$$

where $\mu \in \mathcal{M}(Q)$ and $u_{0} \in L^{1}(\Omega)$.

## Some known results (For simplicity $p \geq 2$ )

For parabolic problem with measure a theory has been developed following the outlines of the elliptic case.

## Some known results (For simplicity $p \geq 2$ )

For parabolic problem with measure a theory has been developed following the outlines of the elliptic case.

- No uniqueness of solutions in $\mathcal{D}^{\prime}(Q)$ (Serrin's counterexample can be readapted, $\exists$ in Boccardo-Dall'Aglio-Gallouët-Orsina, '97 ).


## Some known results (For simplicity $p \geq 2$ )

For parabolic problem with measure a theory has been developed following the outlines of the elliptic case.

- No uniqueness of solutions in $\mathcal{D}^{\prime}(Q)$ (Serrin's counterexample can be readapted, $\exists$ in Boccardo-Dall'Aglio-Gallouët-Orsina, '97 ).
- Duality solution for problem ( P ) in the linear case ( $\exists$ !).


## Some known results (For simplicity $p \geq 2$ )

For parabolic problem with measure a theory has been developed following the outlines of the elliptic case.

- No uniqueness of solutions in $\mathcal{D}^{\prime}(Q)$ (Serrin's counterexample can be readapted, $\exists$ in Boccardo-Dall'Aglio-Gallouët-Orsina, '97 ).
- Duality solution for problem ( P ) in the linear case ( $\exists$ !).
- $\mu \in L^{P^{\prime}}(Q), u_{0} \in L^{2}(\Omega)$ : $\exists!u$ weak solution in $W \cap C\left([0, T] ; L^{2}(\Omega)\right)(J$.
L. Lions, $\left.{ }^{\prime} 69\right) . W=\left\{u \in L^{p}\left(W_{0}^{1, p}(\Omega)\right), u_{t} \in L^{p^{\prime}}\left(W^{-1, p^{\prime}}(\Omega)\right)\right\}$


## Some known results (For simplicity $p \geq 2$ )

For parabolic problem with measure a theory has been developed following the outlines of the elliptic case.

- No uniqueness of solutions in $\mathcal{D}^{\prime}(Q)$ (Serrin's counterexample can be readapted, $\exists$ in Boccardo-Dall'Aglio-Gallouët-Orsina, '97 ).
- Duality solution for problem ( P ) in the linear case ( $\exists$ !).
- $\mu \in L^{P^{\prime}}(Q), u_{0} \in L^{2}(\Omega)$ : $\exists!u$ weak solution in $W \cap C\left([0, T] ; L^{2}(\Omega)\right)(J$.
L. Lions, $\left.{ }^{\prime} 69\right) . W=\left\{u \in L^{p}\left(W_{0}^{1, p}(\Omega)\right), u_{t} \in L^{p^{\prime}}\left(W^{-1, p^{\prime}}(\Omega)\right)\right\}$
- $\mu \in L^{1}(Q), u_{0} \in L^{1}(\Omega), p>\frac{2 N+1}{N+1}: \exists!u$ entropy solution $L^{q}\left(0,1 ; W_{0}^{1, q}(\Omega)\right) \cap C\left([0, T] ; L^{1}(\Omega)\right), \forall q<p-\frac{N}{N+1}$ (Prignet, '97).


## Some known results (For simplicity $p \geq 2$ )

For parabolic problem with measure a theory has been developed following the outlines of the elliptic case.

- No uniqueness of solutions in $\mathcal{D}^{\prime}(Q)$ (Serrin's counterexample can be readapted, $\exists$ in Boccardo-Dall'Aglio-Gallouët-Orsina, '97 ).
- Duality solution for problem ( P ) in the linear case ( $\exists$ !).
- $\mu \in L^{P^{\prime}}(Q), u_{0} \in L^{2}(\Omega)$ : $\exists!u$ weak solution in $W \cap C\left([0, T] ; L^{2}(\Omega)\right)(J$. L. Lions, $\left.{ }^{\prime} 69\right) . W=\left\{u \in L^{p}\left(W_{0}^{1, p}(\Omega)\right), u_{t} \in L^{p^{\prime}}\left(W^{-1, p^{\prime}}(\Omega)\right)\right\}$
- $\mu \in L^{1}(Q), u_{0} \in L^{1}(\Omega), p>\frac{2 N+1}{N+1}: \exists!u$ entropy solution $L^{q}\left(0,1 ; W_{0}^{1, q}(\Omega)\right) \cap C\left([0, T] ; L^{1}(\Omega)\right), \forall q<p-\frac{N}{N+1}$ (Prignet, '97).
- $\mu \in \mathcal{M}_{0}(Q), u_{0} \in L^{1}(\Omega): \exists$ ! u renormalized solution, (Droniou-Porretta-Prignet, '03).


## Some known results (For simplicity $p \geq 2$ )

For parabolic problem with measure a theory has been developed following the outlines of the elliptic case.

- No uniqueness of solutions in $\mathcal{D}^{\prime}(Q)$ (Serrin's counterexample can be readapted, $\exists$ in Boccardo-Dall'Aglio-Gallouët-Orsina, '97 ).
- Duality solution for problem ( P ) in the linear case ( $\exists$ !).
- $\mu \in L^{P^{\prime}}(Q), u_{0} \in L^{2}(\Omega)$ : $\exists!u$ weak solution in $W \cap C\left([0, T] ; L^{2}(\Omega)\right)(J$. L. Lions, $\left.{ }^{\prime} 69\right) . W=\left\{u \in L^{p}\left(W_{0}^{1, p}(\Omega)\right), u_{t} \in L^{p^{\prime}}\left(W^{-1, p^{\prime}}(\Omega)\right)\right\}$
- $\mu \in L^{1}(Q), u_{0} \in L^{1}(\Omega), p>\frac{2 N+1}{N+1}: \exists$ ! $u$ entropy solution $L^{q}\left(0,1 ; W_{0}^{1, q}(\Omega)\right) \cap C\left([0, T] ; L^{1}(\Omega)\right), \forall q<p-\frac{N}{N+1}$ (Prignet, '97).
- $\mu \in \mathcal{M}_{0}(Q), u_{0} \in L^{1}(\Omega): \exists$ ! $u$ renormalized solution, (Droniou-Porretta-Prignet, '03).


## Remark

- In any case we have

$$
T_{k}(u) \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)
$$

## Some known results (For simplicity $p \geq 2$ )

For parabolic problem with measure a theory has been developed following the outlines of the elliptic case.

- No uniqueness of solutions in $\mathcal{D}^{\prime}(Q)$ (Serrin's counterexample can be readapted, $\exists$ in Boccardo-Dall'Aglio-Gallouët-Orsina, '97 ).
- Duality solution for problem ( P ) in the linear case ( $\exists$ !).
- $\mu \in L^{P^{\prime}}(Q), u_{0} \in L^{2}(\Omega)$ : $\exists!u$ weak solution in $W \cap C\left([0, T] ; L^{2}(\Omega)\right)(J$. L. Lions, $\left.{ }^{\prime} 69\right) . W=\left\{u \in L^{p}\left(W_{0}^{1, p}(\Omega)\right), u_{t} \in L^{p^{\prime}}\left(W^{-1, p^{\prime}}(\Omega)\right)\right\}$
- $\mu \in L^{1}(Q), u_{0} \in L^{1}(\Omega), p>\frac{2 N+1}{N+1}: \exists$ ! $u$ entropy solution $L^{q}\left(0,1 ; W_{0}^{1, q}(\Omega)\right) \cap C\left([0, T] ; L^{1}(\Omega)\right), \forall q<p-\frac{N}{N+1}$ (Prignet, '97).
- $\mu \in \mathcal{M}_{0}(Q), u_{0} \in L^{1}(\Omega): \exists$ ! $u$ renormalized solution, (Droniou-Porretta-Prignet, '03).


## Remark

- In any case we have

$$
T_{k}(u) \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)
$$

- Notice $\mu \in \mathcal{M}_{0}(Q)$, then Renormalized $\Leftrightarrow$ Entropy

Let $U \subseteq Q$ be an open set; we define the parabolic p-capacity of $U$ as

$$
\operatorname{cap}_{p}(U)=\inf \{\|u\| w: u \in W, u \geq \chi u \text { a.e. in } Q\}
$$

## Preliminaries on parabolic p-capacity (Pierre, '83, [DPP], '03).

Let $U \subseteq Q$ be an open set; we define the parabolic p-capacity of $U$ as

$$
\operatorname{cap}_{p}(U)=\inf \left\{\|u\|_{w}: u \in W, u \geq \chi u \text { a.e. in } Q\right\}
$$

and then for any Borelian set by outer regularity.

## Preliminaries on parabolic p-capacity (Pierre, '83, [DPP], '003).

Let $U \subseteq Q$ be an open set; we define the parabolic p-capacity of $U$ as

$$
\operatorname{cap}_{p}(U)=\inf \{\|u\| w: u \in W, u \geq \chi u \text { a.e. in } Q\}
$$

and then for any Borelian set by outer regularity.

## Theorem (DPP)

Let $\mu \in \mathcal{M}_{0}(Q)$ then there exist $f \in L^{1}(Q), g \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ and $h \in L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$, such that

$$
\mu=f+g_{t}+h \text { in } \mathcal{D}^{\prime}(Q) \text {. }
$$

## Preliminaries on parabolic p-capacity (Pierre, '83, [DPP], '003).

Let $U \subseteq Q$ be an open set; we define the parabolic p-capacity of $U$ as

$$
\operatorname{cap}_{p}(U)=\inf \left\{\|u\|_{w}: u \in W, u \geq \chi u \text { a.e. in } Q\right\}
$$

and then for any Borelian set by outer regularity.

## Theorem (DPP)

Let $\mu \in \mathcal{M}_{0}(Q)$ then there exist $f \in L^{1}(Q), g \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ and $h \in L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$, such that

$$
\mu=f+g_{t}+h \text { in } \mathcal{D}^{\prime}(Q) \text {. }
$$

## Theorem (DPP)

Any element $v$ of $W$ admits a cap $p_{p}$-quasi continuous representative $\tilde{v}$ (unique q.e.)

## Definition of renormalized solution

## Definition of renormalized solution

Notation: $v=u-g, \hat{\mu}_{0}=\mu_{0}-g_{t}$, with

$$
\mu=\mu_{0}+\mu_{s}=f+g_{t}+h+\mu_{s}^{+}-\mu_{s}^{-},
$$

and $\mu_{s}$ is concentrated on $E=E^{+} \cup E^{-}, \operatorname{cap}_{p}(E)=0, E^{+} \cap E^{-}=\emptyset$.

## Definition of renormalized solution

Notation: $v=u-g, \hat{\mu}_{0}=\mu_{0}-g_{t}$, with

$$
\mu=\mu_{0}+\mu_{s}=f+g_{t}+h+\mu_{s}^{+}-\mu_{s}^{-},
$$

and $\mu_{s}$ is concentrated on $E=E^{+} \cup E^{-}, \operatorname{cap}_{p}(E)=0, E^{+} \cap E^{-}=\emptyset$.

## Definition (Renormalized solution)

A function $u$ is a renormalized solution of problem ( P ) if there exists a decomposition ( $f, g, h$ ) of $\mu_{0}$ such that

## Definition of renormalized solution

Notation: $v=u-g, \hat{\mu}_{0}=\mu_{0}-g_{t}$, with

$$
\mu=\mu_{0}+\mu_{s}=f+g_{t}+h+\mu_{s}^{+}-\mu_{s}^{-},
$$

and $\mu_{s}$ is concentrated on $E=E^{+} \cup E^{-}, \operatorname{cap}_{p}(E)=0, E^{+} \cap E^{-}=\emptyset$.

## Definition (Renormalized solution)

A function $u$ is a renormalized solution of problem ( P ) if there exists a decomposition $(f, g, h)$ of $\mu_{0}$ such that

- $v \in L^{q}\left(0, T ; W_{0}^{1, q}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{1}(\Omega)\right), \forall q<p-\frac{N}{N+1}$,


## Definition of renormalized solution

Notation: $v=u-g, \hat{\mu}_{0}=\mu_{0}-g_{t}$, with

$$
\mu=\mu_{0}+\mu_{s}=f+g_{t}+h+\mu_{s}^{+}-\mu_{s}^{-},
$$

and $\mu_{s}$ is concentrated on $E=E^{+} \cup E^{-}, \operatorname{cap}_{p}(E)=0, E^{+} \cap E^{-}=\emptyset$.

## Definition (Renormalized solution)

A function $u$ is a renormalized solution of problem ( P ) if there exists a decomposition $(f, g, h)$ of $\mu_{0}$ such that

- $v \in L^{q}\left(0, T ; W_{0}^{1, q}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{1}(\Omega)\right), \forall q<p-\frac{N}{N+1}$,
- $T_{k}(v) \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right), \forall k>0$,


## Definition of renormalized solution

Notation: $v=u-g, \hat{\mu}_{0}=\mu_{0}-g_{t}$, with

$$
\mu=\mu_{0}+\mu_{s}=f+g_{t}+h+\mu_{s}^{+}-\mu_{s}^{-},
$$

and $\mu_{s}$ is concentrated on $E=E^{+} \cup E^{-}, \operatorname{cap}_{p}(E)=0, E^{+} \cap E^{-}=\emptyset$.

## Definition (Renormalized solution)

A function $u$ is a renormalized solution of problem ( P ) if there exists a decomposition $(f, g, h)$ of $\mu_{0}$ such that

- $v \in L^{q}\left(0, T ; W_{0}^{1, q}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{1}(\Omega)\right), \forall q<p-\frac{N}{N+1}$,
- $T_{k}(v) \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right), \forall k>0$,
- For any $S \in W^{2, \infty}(\mathbb{R})\left(S(0)=0, \operatorname{supp}\left(S^{\prime}\right) \subseteq[-M, M]\right)$, we have

$$
\begin{aligned}
& -\int_{\Omega} S\left(u_{0}\right) \varphi(0)-\int_{0}^{T}\left\langle\varphi_{t}, S(v)\right\rangle+\int_{Q} S^{\prime}(v) a(t, x, \nabla u) \cdot \nabla \varphi \\
& \quad+\int_{Q} S^{\prime \prime}(v) a(t, x, \nabla u) \cdot \nabla v \varphi=\int_{Q} S^{\prime}(v) \varphi d \hat{\mu}_{0},
\end{aligned}
$$

$$
\begin{aligned}
& \forall \varphi \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \cap L^{\infty}(Q), \varphi_{t} \in L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right), \\
& \varphi(T, x)=0 \ldots
\end{aligned}
$$

## Definition of renormalized solution

## Definition (...)

- Moreover, for any $\psi \in C(\bar{Q})$ we have

$$
\lim _{n \rightarrow+\infty} \frac{1}{n} \int_{\{n \leq v<2 n\}} a(t, x, \nabla u) \cdot \nabla v \psi d x d t=\int_{Q} \psi d \mu_{s}^{+},
$$

e

$$
\lim _{n \rightarrow+\infty} \frac{1}{n} \int_{\{-2 n<v \leq-n\}} a(t, x, \nabla u) \cdot \nabla v \psi d x d t=\int_{Q} \psi d \mu_{s}^{-}
$$

## Definition of renormalized solution

Definition (...)

- Moreover, for any $\psi \in C(\bar{Q})$ we have

$$
\lim _{n \rightarrow+\infty} \frac{1}{n} \int_{\{n \leq v<2 n\}} a(t, x, \nabla u) \cdot \nabla v \psi d x d t=\int_{Q} \psi d \mu_{s}^{+}
$$

e

$$
\lim _{n \rightarrow+\infty} \frac{1}{n} \int_{\{-2 n<v \leq-n\}} a(t, x, \nabla u) \cdot \nabla v \psi d x d t=\int_{Q} \psi d \mu_{s}^{-} .
$$

## Remarks

- In the sense of distribution (if $h=-\operatorname{div}(G)$ ),

$$
\begin{aligned}
& (S(v))_{t}-\operatorname{div}\left(a(t, x, \nabla u) S^{\prime}(v)\right)+S^{\prime \prime}(v) a(t, x, \nabla u) \cdot \nabla v \\
& =S^{\prime}(v) f+S^{\prime \prime}(v) G \cdot \nabla v-\operatorname{div}\left(G S^{\prime}(v)\right) .
\end{aligned}
$$

## Definition of renormalized solution

Definition (...)

- Moreover, for any $\psi \in C(\bar{Q})$ we have

$$
\lim _{n \rightarrow+\infty} \frac{1}{n} \int_{\{n \leq v<2 n\}} a(t, x, \nabla u) \cdot \nabla v \psi d x d t=\int_{Q} \psi d \mu_{s}^{+}
$$

e

$$
\lim _{n \rightarrow+\infty} \frac{1}{n} \int_{\{-2 n<v \leq-n\}} a(t, x, \nabla u) \cdot \nabla v \psi d x d t=\int_{Q} \psi d \mu_{s}^{-}
$$

## Remarks

- In the sense of distribution (if $h=-\operatorname{div}(G)$ ),

$$
\begin{aligned}
& (S(v))_{t}-\operatorname{div}\left(a(t, x, \nabla u) S^{\prime}(v)\right)+S^{\prime \prime}(v) a(t, x, \nabla u) \cdot \nabla v \\
& =S^{\prime}(v) f+S^{\prime \prime}(v) G \cdot \nabla v-\operatorname{div}\left(G S^{\prime}(v)\right) .
\end{aligned}
$$

- $S(v) \in C\left([0, T] ; L^{1}(\Omega)\right)$ and $S(v)(0)=S\left(u_{0}\right)$ in $L^{1}(\Omega)$ for any $S$. (using a result of


## Preliminaries estimates and main result

A key estimate enjoyed by any renormalized solution is the following
Proposition (P., '07 )
Let $v=u-g$ be a renormalized solution of problem $(P)$. Then, for any $k>0$, we have

$$
\int_{Q}\left|\nabla T_{k}(v)\right|^{p} d x d t \leq C(k+1) .
$$

## Preliminaries estimates and main result

A key estimate enjoyed by any renormalized solution is the following

## Proposition (P., '07 )

Let $v=u-g$ be a renormalized solution of problem $(P)$. Then, for any $k>0$, we have

$$
\int_{Q}\left|\nabla T_{k}(v)\right|^{p} d x d t \leq C(k+1)
$$

The proof is based essentially on the reconstruction property of $\mu_{s}$ over a suitable decomposition of the set $\{|v| \leq k\}$.

## Preliminaries estimates and main result

A key estimate enjoyed by any renormalized solution is the following

## Proposition (P., '07 )

Let $v=u-g$ be a renormalized solution of problem (P). Then, for any $k>0$, we have

$$
\int_{Q}\left|\nabla T_{k}(v)\right|^{p} d x d t \leq C(k+1) .
$$

The proof is based essentially on the reconstruction property of $\mu_{s}$ over a suitable decomposition of the set $\{|v| \leq k\}$.
The existence result is the following:

## Theorem (P., '07)

Let $\mu \in \mathcal{M}(Q)$ and $u_{0} \in L^{1}(\Omega)$. Then there exists a renormalized solution of problem (P).

## $\operatorname{cap}_{p}$-quasi continuous representative

Using the previous estimate on the truncation we obtain:
Theorem (P., '07)
Let $v=u-g$ be a renormalized solution of problem (P). Then $v$ admits a cap $p_{p}$-quasi continuous representative finite q.e.

## $\operatorname{cap}_{p}$-quasi continuous representative

Using the previous estimate on the truncation we obtain:
Theorem (P., '07)
Let $v=u-g$ be a renormalized solution of problem (P). Then $v$ admits a cap $p_{p}$-quasi continuous representative finite q.e.

## Conjecture

If $\mu$ does not charge the sets $\{t\} \times \Omega$, then $u$ admits a cap $_{p}$-quasi continuous representative.

## $\operatorname{cap}_{p}$-quasi continuous representative

Using the previous estimate on the truncation we obtain:
Theorem (P., '07)
Let $v=u-g$ be a renormalized solution of problem (P). Then $v$ admits a cap $p_{p}$-quasi continuous representative finite q.e.

## Conjecture

If $\mu$ does not charge the sets $\{t\} \times \Omega$, then $u$ admits a cap ${ }_{p}$-quasi continuous representative.

The proof is based essentially on

- A suitable capacitary estimate on the level sets of $v$,


## $\operatorname{cap}_{p}$-quasi continuous representative

Using the previous estimate on the truncation we obtain:
Theorem (P., '07)
Let $v=u-g$ be a renormalized solution of problem (P). Then $v$ admits a cap $p_{p}$-quasi continuous representative finite q.e.

## Conjecture

If $\mu$ does not charge the sets $\{t\} \times \Omega$, then $u$ admits a cap $_{p}$-quasi continuous representative.

The proof is based essentially on

- A suitable capacitary estimate on the level sets of $v$,
- The fact that $v$ is finite cap $_{p}$-quasi everywhere.


## $\operatorname{cap}_{p}$-quasi continuous representative

Using the previous estimate on the truncation we obtain:
Theorem (P., '07)
Let $v=u-g$ be a renormalized solution of problem (P). Then $v$ admits a cap $p_{p}$-quasi continuous representative finite q.e.

## Conjecture

If $\mu$ does not charge the sets $\{t\} \times \Omega$, then $u$ admits a cap $_{p}$-quasi continuous representative.

The proof is based essentially on

- A suitable capacitary estimate on the level sets of $v$,
- The fact that $v$ is finite cap $_{p}$-quasi everywhere.


## Remark

In general, $u$ does not admit a cap $p_{p}$-quasi continuous representative; and $u$ is not even in $C\left(0, T ; L^{1}(\Omega)\right)$

## Basic steps in the proof of existence

The proof is very technical and can just be summarized as follows:

## Basic steps in the proof of existence

The proof is very technical and can just be summarized as follows:

- Approximation of the measure $\mu^{\varepsilon}=f^{\varepsilon}-\operatorname{div}\left(G^{\varepsilon}\right)+g_{t}^{\varepsilon}+\lambda_{\oplus}^{\varepsilon}-\lambda_{\ominus}^{\varepsilon}$,


## Basic steps in the proof of existence

The proof is very technical and can just be summarized as follows:

- Approximation of the measure $\mu^{\varepsilon}=f^{\varepsilon}-\operatorname{div}\left(G^{\varepsilon}\right)+g_{t}^{\varepsilon}+\lambda_{\oplus}^{\varepsilon}-\lambda_{\ominus}^{\varepsilon}$,
- Basic estimates

$$
\left\|v^{\varepsilon}\right\|_{L \infty\left(0, T ; L^{1}(\Omega)\right)} \leq C, \quad \int_{Q}\left|\nabla T_{k}\left(v^{\varepsilon}\right)\right|^{p} d x d t \leq C(k+1) .
$$

## Basic steps in the proof of existence

The proof is very technical and can just be summarized as follows:

- Approximation of the measure $\mu^{\varepsilon}=f^{\varepsilon}-\operatorname{div}\left(G^{\varepsilon}\right)+g_{t}^{\varepsilon}+\lambda_{\oplus}^{\varepsilon}-\lambda_{\ominus}^{\varepsilon}$,
- Basic estimates

$$
\left\|v^{\varepsilon}\right\|_{L^{\infty}\left(0, T ; L^{1}(\Omega)\right)} \leq C, \quad \int_{Q}\left|\nabla T_{k}\left(v^{\varepsilon}\right)\right|^{p} d x d t \leq C(k+1) .
$$

- Compactness
$v^{\varepsilon} \longrightarrow v$ a.e. in $Q$ weakly $L^{q}\left(0, T ; W_{0}^{1, q}(\Omega)\right)$ and strongly in $L^{1}(Q)$,
$T_{k}\left(v^{\varepsilon}\right) \rightharpoonup T_{k}(v)$ weakly $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ and a.e. in $Q$,
$\nabla v^{\varepsilon} \longrightarrow \nabla v$ a.e. in $Q$.


## Basic steps in the proof of existence

The proof is very technical and can just be summarized as follows:

- Approximation of the measure $\mu^{\varepsilon}=f^{\varepsilon}-\operatorname{div}\left(G^{\varepsilon}\right)+g_{t}^{\varepsilon}+\lambda_{\oplus}^{\varepsilon}-\lambda_{\ominus}^{\varepsilon}$,
- Basic estimates

$$
\left\|v^{\varepsilon}\right\|_{L^{\infty}\left(0, T ; L^{1}(\Omega)\right)} \leq C, \quad \int_{Q}\left|\nabla T_{k}\left(v^{\varepsilon}\right)\right|^{p} d x d t \leq C(k+1) .
$$

- Compactness

$$
v^{\varepsilon} \longrightarrow v \text { a.e. in } Q \text { weakly } L^{q}\left(0, T ; W_{0}^{1, q}(\Omega)\right) \text { and strongly in } L^{1}(Q),
$$

$$
T_{k}\left(v^{\varepsilon}\right) \rightharpoonup T_{k}(v) \text { weakly } L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \text { and a.e. in } Q \text {, }
$$

$$
\nabla v^{\varepsilon} \longrightarrow \nabla v \text { a.e. in } Q .
$$

- $T_{k}\left(v^{\varepsilon}\right) \longrightarrow T_{k}(v)$ Strongly in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$.


## Basic steps in the proof of existence

The proof is very technical and can just be summarized as follows:

- Approximation of the measure $\mu^{\varepsilon}=f^{\varepsilon}-\operatorname{div}\left(G^{\varepsilon}\right)+g_{t}^{\varepsilon}+\lambda_{\oplus}^{\varepsilon}-\lambda_{\ominus}^{\varepsilon}$,
- Basic estimates

$$
\left\|v^{\varepsilon}\right\|_{L \infty\left(0, T ; L^{1}(\Omega)\right)} \leq C, \quad \int_{Q}\left|\nabla T_{k}\left(v^{\varepsilon}\right)\right|^{p} d x d t \leq C(k+1) .
$$

- Compactness

$$
v^{\varepsilon} \longrightarrow v \text { a.e. in } Q \text { weakly } L^{q}\left(0, T ; W_{0}^{1, q}(\Omega)\right) \text { and strongly in } L^{1}(Q),
$$

$$
T_{k}\left(v^{\varepsilon}\right) \rightharpoonup T_{k}(v) \text { weakly } L^{p}\left(0, T_{;} W_{0}^{1, p}(\Omega)\right) \text { and a.e. in } Q \text {, }
$$

$$
\nabla v^{\varepsilon} \longrightarrow \nabla v \text { a.e. in } Q .
$$

- $T_{k}\left(v^{\varepsilon}\right) \longrightarrow T_{k}(v)$ Strongly in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$.

In which the main ingredient relies in showing that

$$
\limsup _{\varepsilon \rightarrow 0} \int_{Q} a\left(t, x, \nabla u^{\varepsilon}\right) \cdot \nabla T_{k}\left(v^{\varepsilon}\right) d x d t \leq \int_{Q} a(t, x, \nabla u) \cdot \nabla T_{k}(v) d x d t \text {. }
$$

## Basic steps in the proof of existence

The proof is very technical and can just be summarized as follows:

- Approximation of the measure $\mu^{\varepsilon}=f^{\varepsilon}-\operatorname{div}\left(G^{\varepsilon}\right)+g_{t}^{\varepsilon}+\lambda_{\oplus}^{\varepsilon}-\lambda_{\ominus}^{\varepsilon}$,
- Basic estimates

$$
\left\|v^{\varepsilon}\right\|_{L \infty\left(0, T ; L^{1}(\Omega)\right)} \leq C, \quad \int_{Q}\left|\nabla T_{k}\left(v^{\varepsilon}\right)\right|^{p} d x d t \leq C(k+1) .
$$

- Compactness

$$
v^{\varepsilon} \longrightarrow v \text { a.e. in } Q \text { weakly } L^{q}\left(0, T ; W_{0}^{1, q}(\Omega)\right) \text { and strongly in } L^{1}(Q),
$$

$$
T_{k}\left(v^{\varepsilon}\right) \rightharpoonup T_{k}(v) \text { weakly } L^{p}\left(0, T_{;} W_{0}^{1, p}(\Omega)\right) \text { and a.e. in } Q \text {, }
$$

$$
\nabla v^{\varepsilon} \longrightarrow \nabla v \text { a.e. in } Q .
$$

- $T_{k}\left(v^{\varepsilon}\right) \longrightarrow T_{k}(v)$ Strongly in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$.

In which the main ingredient relies in showing that

$$
\limsup _{\varepsilon \rightarrow 0} \int_{Q} a\left(t, x, \nabla u^{\varepsilon}\right) \cdot \nabla T_{k}\left(v^{\varepsilon}\right) d x d t \leq \int_{Q} a(t, x, \nabla u) \cdot \nabla T_{k}(v) d x d t \text {. }
$$

- Passing to the limit in the approximated problems.

The presence of the term $g$

## The presence of the term $g$

As we said before, if $\mu \in \mathcal{M}(Q)$ then

$$
\mu=f+g_{t}+h+\mu_{s} \quad \text { in } \mathcal{D}^{\prime}(Q)
$$

with $g \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$.

## The presence of the term $g$

As we said before, if $\mu \in \mathcal{M}(Q)$ then

$$
\mu=f+g_{t}+h+\mu_{s} \quad \text { in } \mathcal{D}^{\prime}(Q)
$$

with $g \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$.
With the stronger assumption that $g$ can be chosen to be bounded one can prove several interesting properties about the measure $\mu$ and the solution of the related parabolic problem.

## The presence of the term $g$

As we said before, if $\mu \in \mathcal{M}(Q)$ then

$$
\mu=f+g_{t}+h+\mu_{s} \text { in } \mathcal{D}^{\prime}(Q),
$$

with $g \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$.
With the stronger assumption that $g$ can be chosen to be bounded one can prove several interesting properties about the measure $\mu$ and the solution of the related parabolic problem.
Among the others, as we will talk about in a while

- Representation Theorem for measures in $\mathcal{M}_{0}(Q)$ (P.-Ponce-Porretta)


## The presence of the term $g$

As we said before, if $\mu \in \mathcal{M}(Q)$ then

$$
\mu=f+g_{t}+h+\mu_{s} \text { in } \mathcal{D}^{\prime}(Q),
$$

with $g \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$.
With the stronger assumption that $g$ can be chosen to be bounded one can prove several interesting properties about the measure $\mu$ and the solution of the related parabolic problem.
Among the others, as we will talk about in a while

- Representation Theorem for measures in $\mathcal{M}_{0}(Q)$ (P.-Ponce-Porretta)
- Inverse maximum principle for general monotone operators (P., '07).


## Example of essentially unbounded $g$

Unfortunately, in general, this is false!

## Example of essentially unbounded g

Unfortunately, in general, this is false!

## Example

Take $\mu=\delta_{t_{0}} \otimes f$, with $f \in L^{1}(\Omega), f \notin L^{\infty}(\Omega)$.

## Example of essentially unbounded $g$

Unfortunately, in general, this is false!

## Example

Take $\mu=\delta_{t_{0}} \otimes f$, with $f \in L^{1}(\Omega), f \notin L^{\infty}(\Omega)$. Consider
$u \in L^{2}\left(t_{0}, T ; H_{0}^{1}(\Omega)\right) \cap C\left(\left[t_{0}, T\right] ; L^{1}(\Omega)\right)$ as the solution of problem

$$
\begin{cases}u_{t}-\Delta u+|\nabla u|^{2}=0 & \text { in }\left(t_{0}, T\right) \times \Omega, \\ u\left(t_{0}, x\right)=f & \text { in } \Omega,\end{cases}
$$

which exists.

## Example of essentially unbounded $g$

Unfortunately, in general, this is false!

## Example

Take $\mu=\delta_{t_{0}} \otimes f$, with $f \in L^{1}(\Omega), f \notin L^{\infty}(\Omega)$. Consider
$u \in L^{2}\left(t_{0}, T ; H_{0}^{1}(\Omega)\right) \cap C\left(\left[t_{0}, T\right] ; L^{1}(\Omega)\right)$ as the solution of problem

$$
\begin{cases}u_{t}-\Delta u+|\nabla u|^{2}=0 & \text { in }\left(t_{0}, T\right) \times \Omega \\ u\left(t_{0}, x\right)=f & \text { in } \Omega\end{cases}
$$

which exists. Moreover, $\tilde{u}=\left\{\begin{array}{ll}0 & \text { if } t<t_{0} \\ u & \text { if } t \geq t_{0} .\end{array}\right.$ solves

$$
\begin{cases}\tilde{u}_{t}-\Delta \tilde{u}+|\nabla \tilde{u}|^{2}=\delta_{t_{0}} \otimes f & \text { in }(0, T) \times \Omega, \\ \tilde{u}(x, 0)=0 & \text { in } \Omega,\end{cases}
$$

and $\tilde{u} \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$, so that $\tilde{u}$ realizes a good decomposition for $\mu$.

## Example of essentially unbounded $g$

Unfortunately, in general, this is false!

## Example

Take $\mu=\delta_{t_{0}} \otimes f$, with $f \in L^{1}(\Omega), f \notin L^{\infty}(\Omega)$. Consider
$u \in L^{2}\left(t_{0}, T ; H_{0}^{1}(\Omega)\right) \cap C\left(\left[t_{0}, T\right] ; L^{1}(\Omega)\right)$ as the solution of problem

$$
\begin{cases}u_{t}-\Delta u+|\nabla u|^{2}=0 & \text { in }\left(t_{0}, T\right) \times \Omega \\ u\left(t_{0}, x\right)=f & \text { in } \Omega\end{cases}
$$

which exists. Moreover, $\tilde{u}=\left\{\begin{array}{ll}0 & \text { if } t<t_{0} \\ u & \text { if } t \geq t_{0} .\end{array}\right.$ solves

$$
\begin{cases}\tilde{u}_{t}-\Delta \tilde{u}+|\nabla \tilde{u}|^{2}=\delta_{t_{0}} \otimes f & \text { in }(0, T) \times \Omega, \\ \tilde{u}(x, 0)=0 & \text { in } \Omega,\end{cases}
$$

and $\tilde{u} \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$, so that $\tilde{u}$ realizes a good decomposition for $\mu$. Suppose, by contradiction, that $\mu$ admits a decomposition with $g \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap L^{\infty}(Q)$;

## Example of essentially unbounded $g$

Unfortunately, in general, this is false!

## Example

Take $\mu=\delta_{t_{0}} \otimes f$, with $f \in L^{1}(\Omega), f \notin L^{\infty}(\Omega)$. Consider
$u \in L^{2}\left(t_{0}, T ; H_{0}^{1}(\Omega)\right) \cap C\left(\left[t_{0}, T\right] ; L^{1}(\Omega)\right)$ as the solution of problem

$$
\begin{cases}u_{t}-\Delta u+|\nabla u|^{2}=0 & \text { in }\left(t_{0}, T\right) \times \Omega \\ u\left(t_{0}, x\right)=f & \text { in } \Omega\end{cases}
$$

which exists. Moreover, $\tilde{u}=\left\{\begin{array}{ll}0 & \text { if } t<t_{0} \\ u & \text { if } t \geq t_{0} .\end{array}\right.$ solves

$$
\begin{cases}\tilde{u}_{t}-\Delta \tilde{u}+|\nabla \tilde{u}|^{2}=\delta_{t_{0}} \otimes f & \text { in }(0, T) \times \Omega, \\ \tilde{u}(x, 0)=0 & \text { in } \Omega,\end{cases}
$$

and $\tilde{u} \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$, so that $\tilde{u}$ realizes a good decomposition for $\mu$. Suppose, by contradiction, that $\mu$ admits a decomposition with $g \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap L^{\infty}(Q)$; by a result of $\quad, \tilde{u}-g \in C\left([0, T] ; L^{1}(\Omega)\right)$, which brings to a contradiction.

## The best one can do...

In some sense, the best one can expect is contained in the following strong approximation result

## The best one can do...

In some sense, the best one can expect is contained in the following strong approximation result

## Theorem ( )

Let $\mu \geq 0$ be diffuse measure with respect to the parabolic $p$-capacity, then, for any $\varepsilon>0$, there exists a diffuse measure $\nu$ such that

$$
\|\mu-\nu\|_{\mathcal{M}(Q)} \leq \varepsilon \text { and } \nu=v_{t}-\Delta_{p} v
$$

where $v \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \cap L^{\infty}(Q)$.

## The best one can do...

In some sense, the best one can expect is contained in the following strong approximation result

## Theorem (

Let $\mu \geq 0$ be diffuse measure with respect to the parabolic $p$-capacity, then, for any $\varepsilon>0$, there exists a diffuse measure $\nu$ such that

$$
\|\mu-\nu\|_{\mathcal{M}(Q)} \leq \varepsilon \text { and } \nu=v_{t}-\Delta_{p} v
$$

where $v \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \cap L^{\infty}(Q)$.
The proof of this result is based on a new estimate on the sets where $u$ is large

## The best one can do...

In some sense, the best one can expect is contained in the following strong approximation result

## Theorem (

)
Let $\mu \geq 0$ be diffuse measure with respect to the parabolic $p$-capacity, then, for any $\varepsilon>0$, there exists a diffuse measure $\nu$ such that

$$
\|\mu-\nu\|_{\mathcal{M}(Q)} \leq \varepsilon \text { and } \nu=v_{t}-\Delta_{p} v
$$

where $v \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \cap L^{\infty}(Q)$.
The proof of this result is based on a new estimate on the sets where $u$ is large

## Lemma (

 )Let $\mu \geq 0$ be in $\mathcal{M}(Q) \cap L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$ and let $u$ be the solution of problem

$$
\begin{cases}u_{t}-\Delta_{p} u=\mu & \text { in }(0, T) \times \Omega, \\ u(0, x)=u_{0} \in L^{1}(\Omega) & \text { in } \Omega,\end{cases}
$$

Then $\operatorname{cap}_{p}(\{u \geq k\}) \leq C\left(\|\mu\|_{\mathcal{M}(Q)},\left\|u_{0}\right\|_{L^{1}(\Omega)}\right) \max \left\{\frac{1}{k^{\frac{1}{p}}}, \frac{1}{k^{\frac{1}{p^{\prime}}}}\right\}, \quad \forall k>0$.

## Idea of the proof of the capacitary Lemma

The main steps in the proof of the capacitary estimates are

## Idea of the proof of the capacitary Lemma

The main steps in the proof of the capacitary estimates are

- $\left\|\frac{T_{k}(u)}{k}\right\|_{L^{\infty}\left(0, T ; L^{2}(\Omega)\right)}^{2} \leq \frac{C}{k}$ and $\left\|\frac{T_{k}(u)}{k}\right\|_{L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)}^{p} \leq \frac{C}{k^{p-1}}$


## Idea of the proof of the capacitary Lemma

The main steps in the proof of the capacitary estimates are

- $\left\|\frac{T_{k}(u)}{k}\right\|_{L^{\infty}\left(0, T_{;} L^{2}(\Omega)\right)}^{2} \leq \frac{C}{k}$ and $\left\|\frac{T_{k}(u)}{k}\right\|_{L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)}^{p} \leq \frac{C}{k^{p-1}}$
- Let $\Psi_{k}(u)=\frac{T_{k}(u)}{k}$, and consider $z$ as the solution of the backward problem

$$
\begin{cases}-z_{t}-\Delta_{p} z=-2 \Delta_{p} \Psi_{k}(u) & \text { in }(0, T) \times \Omega \\ z(T, x)=\Psi_{k}(u)(T) & \text { in } \Omega, \\ z(t, x)=0 & \text { on }(0, T) \times \partial \Omega\end{cases}
$$

Then,

$$
\|z\| w \leq C \max \left\{\frac{1}{k^{\frac{1}{p}}}, \frac{1}{k^{\frac{1}{p^{\prime}}}}\right\} .
$$

## Idea of the proof of the capacitary Lemma

The main steps in the proof of the capacitary estimates are

- $\left\|\frac{T_{k}(u)}{k}\right\|_{L^{\infty}\left(0, T ; L^{2}(\Omega)\right)}^{2} \leq \frac{C}{k}$ and $\left\|\frac{T_{k}(u)}{k}\right\|_{L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)}^{p} \leq \frac{C}{k^{p-1}}$
- Let $\Psi_{k}(u)=\frac{T_{k}(u)}{k}$, and consider $z$ as the solution of the backward problem

$$
\begin{cases}-z_{t}-\Delta_{p} z=-2 \Delta_{p} \Psi_{k}(u) & \text { in }(0, T) \times \Omega \\ z(T, x)=\Psi_{k}(u)(T) & \text { in } \Omega, \\ z(t, x)=0 & \text { on }(0, T) \times \partial \Omega\end{cases}
$$

Then,

$$
\|z\| w \leq C \max \left\{\frac{1}{k^{\frac{1}{p}}}, \frac{1}{k^{\frac{1}{p^{\prime}}}}\right\}
$$

- By suitable comparison $z \geq \Psi_{k}(u)$ and so it can be use to test the capacity of $\{u \geq k\}$


## Basics for the proof of the approximation result I

As we said the proof of the approximation result relies on the capacitary Lemma and on the following

```
Proposition ( )
Let }\mu=f+\mp@subsup{g}{t}{}-\operatorname{div}(G)\mathrm{ in D}\mp@subsup{\mathcal{D}}{}{\prime}(Q)\mathrm{ be a measure in }\mathcal{M}(Q)\mathrm{ , with
f\in\mp@subsup{L}{}{1}(Q),g\in\mp@subsup{L}{}{p}(0,T;\mp@subsup{W}{0}{1,p}(\Omega)), and G\in(\mp@subsup{L}{}{\mp@subsup{p}{}{\prime}}(Q)\mp@subsup{)}{}{N}\mathrm{ . If}
g\inL'⿱}(|)\mathrm{ then }\mu\mathrm{ is diffuse.
```


## Basics for the proof of the approximation result I

As we said the proof of the approximation result relies on the capacitary Lemma and on the following

```
Proposition ( )
Let }\mu=f+\mp@subsup{g}{t}{}-\operatorname{div}(G)\mathrm{ in D}\mp@subsup{\mathcal{D}}{}{\prime}(Q)\mathrm{ be a measure in }\mathcal{M}(Q)\mathrm{ , with
f\in\mp@subsup{L}{}{1}(Q),g\in\mp@subsup{L}{}{p}(0,T;\mp@subsup{W}{0}{1,p}(\Omega)), and G\in(\mp@subsup{L}{}{\mp@subsup{p}{}{\prime}}(Q)\mp@subsup{)}{}{N}\mathrm{ . If}
g\inL'⿱
```

As a consequence, this result leads to the proof the inverse maximum principle for the p-laplace operator which, roughly speaking, asserts that, if $\left(\partial_{t}-\Delta_{p}\right) u$ is a measure and $u \geq 0$ a.
e. on $Q$, then

$$
\left[\left(\partial_{t}-\Delta_{p}\right) u\right]_{c} \geq 0
$$

## Proof of the approximation result II

Let us introduce the following notion

## Definition

A sequence of measures $\mu_{n}$ is $p$-equidiffuse if $\left\{\mu_{n}\right\}$ is bounded on $Q$ and, moreover, given $\varepsilon>0$, there exists $\eta>0$ such that

$$
\operatorname{cap}_{p}(E)<\eta \Rightarrow\left|\mu_{n}\right|(E)<\varepsilon, \quad \forall n \geq 1
$$

## Proof of the approximation result II

Let us introduce the following notion

## Definition

A sequence of measures $\mu_{n}$ is $p$-equidiffuse if $\left\{\mu_{n}\right\}$ is bounded on $Q$ and, moreover, given $\varepsilon>0$, there exists $\eta>0$ such that

$$
\operatorname{cap}_{p}(E)<\eta \Rightarrow\left|\mu_{n}\right|(E)<\varepsilon, \quad \forall n \geq 1
$$

## We have

## Proposition ( $p$-Equidiffusion)

Let $\mu$ be a diffuse measure and $\rho_{n}$ a sequence of mollifiers. Then $\rho_{n} * \mu$ is $p$-equidiffuse.

## Sketches from: The Proof

Take $\mu_{n}=\mu * \rho_{n}$, and let us fix a small $\delta>0$; define

$$
S_{k, \delta}(s)=\left\{\begin{array}{ll}
1 & \text { if }|s| \leq k, \\
0 & \text { if }|s|>k+\delta, \\
\text { affine } & \text { otherwise }
\end{array} \quad T_{k, \delta}(s)=\int_{0}^{s} S_{k, \delta}(\sigma) d \sigma .\right.
$$

## Sketches from: The Proof

Take $\mu_{n}=\mu * \rho_{n}$, and let us fix a small $\delta>0$; define

$$
S_{k, \delta}(s)=\left\{\begin{array}{ll}
1 & \text { if }|s| \leq k, \\
0 & \text { if }|s|>k+\delta, \\
\text { affine } & \text { otherwise }
\end{array} \quad T_{k, \delta}(s)=\int_{0}^{s} S_{k, \delta}(\sigma) d \sigma .\right.
$$

We have

$$
\begin{aligned}
& T_{k, \delta}\left(u_{n}\right)_{t}-\operatorname{div}\left(S_{k, \delta}\left(u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}\right) \\
& =S_{k, \delta}\left(u_{n}\right) \mu_{n}+\frac{1}{\delta}\left|\nabla u_{n}\right|^{p} \chi_{\left\{k \leq u_{n}<k+\delta\right\}}, \text { in } \mathcal{D}^{\prime}(Q)
\end{aligned}
$$

and,

## Sketches from: The Proof

Take $\mu_{n}=\mu * \rho_{n}$, and let us fix a small $\delta>0$; define

$$
S_{k, \delta}(s)= \begin{cases}1 & \text { if }|s| \leq k, \\ 0 & \text { if }|s|>k+\delta, \quad T_{k, \delta}(s)=\int_{0}^{s} S_{k, \delta}(\sigma) d \sigma . \\ \text { affine } & \text { otherwise }\end{cases}
$$

We have

$$
\begin{aligned}
& T_{k, \delta}\left(u_{n}\right)_{t}-\operatorname{div}\left(S_{k, \delta}\left(u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}\right) \\
& =S_{k, \delta}\left(u_{n}\right) \mu_{n}+\frac{1}{\delta}\left|\nabla u_{n}\right|^{p} \chi_{\left\{k \leq u_{n}<k+\delta\right\}}, \text { in } \mathcal{D}^{\prime}(Q)
\end{aligned}
$$

and, multiplying the equation solved by $u_{n}$ by $1-S_{k, \delta}\left(u_{n}\right)$,

$$
\frac{1}{\delta} \int_{\left\{k \leq u_{n}<k+\delta\right\}}\left|\nabla u_{n}\right|^{p} \leq \int_{Q} B_{k, \delta}\left(u_{n}\right) \mu_{n} \leq \int_{\left\{u_{n}>k\right\}} \mu_{n} .
$$

## Sketches from: The Proof

Take $\mu_{n}=\mu * \rho_{n}$, and let us fix a small $\delta>0$; define

$$
S_{k, \delta}(s)= \begin{cases}1 & \text { if }|s| \leq k, \\ 0 & \text { if }|s|>k+\delta, \quad T_{k, \delta}(s)=\int_{0}^{s} S_{k, \delta}(\sigma) d \sigma . \\ \text { affine } & \text { otherwise }\end{cases}
$$

We have

$$
\begin{aligned}
& T_{k, \delta}\left(u_{n}\right)_{t}-\operatorname{div}\left(S_{k, \delta}\left(u_{n}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}\right) \\
& =S_{k, \delta}\left(u_{n}\right) \mu_{n}+\frac{1}{\delta}\left|\nabla u_{n}\right|^{p} \chi_{\left\{k \leq u_{n}<k+\delta\right\}}, \text { in } \mathcal{D}^{\prime}(Q)
\end{aligned}
$$

and, multiplying the equation solved by $u_{n}$ by $1-S_{k, \delta}\left(u_{n}\right)$,

$$
\frac{1}{\delta} \int_{\left\{k \leq u_{n}<k+\delta\right\}}\left|\nabla u_{n}\right|^{p} \leq \int_{Q} B_{k, \delta}\left(u_{n}\right) \mu_{n} \leq \int_{\left\{u_{n}>k\right\}} \mu_{n} .
$$

So that, $\nu_{n}^{k} \equiv T_{k}\left(u_{n}\right)_{t}-\Delta_{p} T_{k}\left(u_{n}\right)$ is a measure and satisfies, after computations,

$$
\int_{Q}\left|\nu_{n}^{k}-\mu_{n}\right| \leq 2 \int_{u_{n}>k} \mu_{n},
$$

Let us define $\nu^{k}$ as the $*$-weak in the sense of measures, as $n$ tends to infinity of $\nu_{n}^{k}$, that is

$$
\nu_{n}^{k} \xrightarrow{*} \nu^{k}
$$

Let us define $\nu^{k}$ as the $*$-weak in the sense of measures, as $n$ tends to infinity of $\nu_{n}^{k}$, that is

$$
\nu_{n}^{k} \xrightarrow{*} \nu^{k} .
$$

Now, using the fact that (up to subsequences) $\nabla u_{n}$ converges to $\nabla u$ a.e. on $Q$ (see [BDGO]) we have that $T_{k}\left(u_{n}\right)$ converges to $T_{k}(u)$ weakly in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ and

$$
\Delta_{p} T_{k}\left(u_{n}\right) \longrightarrow \Delta_{p} T_{k}(u)
$$

weakly in $L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$; so that $\nu^{k}=T_{k}(u)_{t}-\Delta_{p} T_{k}(u)$.

Let us define $\nu^{k}$ as the $*$-weak in the sense of measures, as $n$ tends to infinity of $\nu_{n}^{k}$, that is

$$
\nu_{n}^{k} \xrightarrow{*} \nu^{k}
$$

Now, using the fact that (up to subsequences) $\nabla u_{n}$ converges to $\nabla u$ a.e. on $Q$ (see [BDGO]) we have that $T_{k}\left(u_{n}\right)$ converges to $T_{k}(u)$ weakly in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ and

$$
\Delta_{p} T_{k}\left(u_{n}\right) \longrightarrow \Delta_{p} T_{k}(u)
$$

weakly in $L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$; so that $\nu^{k}=T_{k}(u)_{t}-\Delta_{p} T_{k}(u)$. So, thanks to capacitary lemma and the $p$-equidiffiusion result, for fixed $\varepsilon>0$, we can choose $k_{\varepsilon}$ large enough such that,

$$
\left\|\nu^{k_{\varepsilon}}-\mu\right\|_{\mathcal{M}(Q)} \leq \varepsilon
$$

with

$$
\nu^{k_{\varepsilon}}=T_{k_{\varepsilon}}(u)_{t}-\Delta_{p} T_{k_{\varepsilon}}(u),
$$

and this concludes the proof of the approximation theorem.

## MUCHAS GRACIAS!!!!

