# Standing waves for some linear and nonlinearly coupled nonlinear Schrödinger equations 

Eduardo Colorado

Department of Mathematical Analysis, University of Granada, 18071-Granada, Spain colorado@ugr.es

Along this talk, will be presented some existence results, among others, for the two following systems of linear and nonlinearly coupled nonlinear Schrödinger equations:

$$
\begin{cases}-\Delta u+\lambda_{1} u=\mu_{1} u^{3}+\beta u v^{2}, & u \in W^{1,2}\left(\mathbb{R}^{N}\right)  \tag{1}\\ -\Delta v+\lambda_{2} v=\mu_{2} v^{3}+\beta u^{2} v, & v \in W^{1,2}\left(\mathbb{R}^{N}\right)\end{cases}
$$

where $\lambda_{i}, \mu_{i}>0, i=1,2, \beta$ is a real parameter and $x \in \mathbb{R}^{N}, N=2,3$.

$$
\begin{cases}-\Delta u+u=u^{3}+\lambda v, & u \in W^{1,2}\left(\mathbb{R}^{N}\right)  \tag{2}\\ -\Delta v+v=v^{3}+\lambda u, & v \in W^{1,2}\left(\mathbb{R}^{N}\right)\end{cases}
$$

where $\lambda>0$ and $N=1,2,3$.
The details can be seen in $[2,3,4]$, see also [1] for related results and applications to nonlinear optics.
[1] N. Akhmediev \& A. Ankiewicz, "Solitons, nonlinear pulses and beams", Champman \& Hall, London, 1997.
[2] A. Ambrosetti \& E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Math. Acad. Sci. Paris 342 (2006), no. 2, 453-458.
[3] A. Ambrosetti \& E. Colorado, Standing Waves of Some Coupled Nonlinear Schrödinger Equations, J. Lond. Math. Soc. (2) 75 (2007), no.1, 67-82.
[4] A. Ambrosetti, E. Colorado \& D. Ruiz, Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations 30, no. 1 (2007), 85-112.

