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Introduction

Ambrosetti-Colorado (2006, 2007) considered the system

{—Au—i—)\lu = wud+pu?, in RN, (1)

—Av+ v = uvi+BuPv, in RV,

o N=23

@ U1, M2, )\17 /\2,5 >0

@ They established the existence of positive constants A and A/,
such that System (1) has a positive solution for every
B € (0,A) and a positive least energy solution for every
B e (N,+00).

o deFigueiredo-Lopes (2006) complemented the results derived
by Ambrosetti-Colorado, including the case N = 1.



Maia-Montefusco-Pellacci (2006) considered the following version
of System (1)

{—Au + u=|uP2u+ Blu)?2ulv|Z, in RN, 2)

—Av 4+ w?v=|v|P2v + Blulf|v]Z 2y, in RNV,

N>1

Byw>0,2<p<2*

2* =00 if N=2and 2* =2N/(N —2) if N > 3.

Those authors established results on necessary and sufficient

conditions for the existence of a positive least energy solution
for System (2).

@ Results related have been also proved by Mandel (2015).



We consider the existence of positive solutions for the weakly
coupled nonlinear Schrodinger system

—Aut A = |ulPPu+ e ul*2ulv]r, in RY, -
—Av+ v = |v|97 2v+§i‘;] [#=2v|u|®, in RN,
o N=>2

°IBJ Al? A2>0’a7/’b>172<ﬁ)7q?a—’_l’l’<2*7



@ z5 = (0,0) is a trivial solution for System (3).
@ System (3) has two semitrivial solutions z; = (u1,0) and

7z = (0, v1), where ug, vi > 0 are the unique positive radial
solutions of the nonlinear Schrodinger equations:

—Au+u = |ulP2u, —Av+dv = |v]92v, in RN, (4)

@ Our objective is to study the existence of positive solutions,
i.e. z=(u,v) a solution of (3) such that u,v > 0 in RV.



@ The functional associated with System (1) is of class C?

@ Ambrosetti-Colorado used the structure of the scalar problems
(4) to estimate the Morse indexes of the semitrivial solutions
z1 and z.

@ The functional associated with System (3) has not, in general,
the same regularity as the one associated with System (1).

@ We do not use the infinite dimensional Morse theory to
establish local estimates on neighborhoods of z; and z.



@ Even though the coupling in System (3) should be considered
superlinear given that o + p > 2, it may present distinct
characteristics when we fix one of the variable.

@ we say that the coupling is superlinear, linear or sublinear with
respect to the variable v if a > 2, a=2o0r 1l < a < 2,
respectively. Analogously, we define the superlinear, linear and
sublinear coupling with respect to the variable v.



@ The coupling in System (1) is linear with respect to both
variables.

@ The coupling in System (2) is sublinear, linear or superlinear
with respect to both variables if p < 4, p =4 or p > 4,
respectively.



Existence of a positive solution

There exist o, 51 > 0 such that System (3) has a positive solution
for every B € [0, Bo) and a positive least energy solution for every

B € (B1,+00).




Theorem 1 holds independently of the type of coupling.

For 8 > 0 sufficiently small, The associated functional on the
Nehari manifold satisfies the geometric hypotheses of the
Mountain Pass Theorem.

For 8 > 0 sufficiently large, z; and z, are not global minimum
of the associated functional restricted to the Nehari manifold.

These facts allow us to apply either a minimax theorem or a
minimization argument to prove Theorem 1.



sublinear coupling

Suppose the coupling is sublinear with respect to one of the
variables. Then there is By > 0 such that System (3) has at least
two positive solutions for every 0 < 3 < Bo.




@ When g > 0 is sufficiently small the proof of Theorem 1
provides the existence of a positive solution for System (3) via
the Mountain Pass Theorem.

@ If the coupling is sublinear with respect to the variable v or u,
we may see that z; = (u,0) or z» = (0, v), respectively, is not
a point of local minimum of the functional associated on the
Nehari manifold regardless of the value of 5 > 0.

@ That allows us to establish a second positive solution for
System (3) as either a local minimum or a global minimum of
the associated functional on the Nehari manifold.



doubly sublinear coupling

Suppose the coupling is sublinear with respect to both variables.
Then System (3) has a positive least energy solution for every
B > 0. Furthermore there is By > 0 such that System (3) has at
least three positive solutions for every 0 < 5 < fp.




doubly superlinear coupling

Theorem 4

Suppose the coupling is superlinear with respect to both variables.
Then System (3) has a positive solution for every 5 > 0.
Furthermore there is 31 > 0 such that System (3) has at least two
positive solutions for every 3 > (1, being one of these a positive
least energy solution.




@ When the coupling is superlinear with respect to the variable
v or u, we may verify that z; or z», respectively, is a point of
local minimum for the associated functional on the Nehari
manifold for every 5 > 0.

@ We exploit the fact above mentioned to verify, via the
Mountain Pass Theorem, the existence of a positive solution
for System (3).

@ As in Theorem 1, the existence of a positive least energy
solution may be established by a global minimization
argument whenever 5 > 0 is sufficiently large.



@ Theorems 3 and 4 guarantee the existence of a positive
solution for System (3) for every 5 > 0 when the coupling is
sublinear or superlinear with respect to both variables.

@ In particular, this implies that System (2) has a positive
solution for every 8 > 0 whenever p # 4.

@ When the dimension of RN is greater than or equal to 4,
Theorem 3 establishes the existence of a positive least energy
solution for System (2) for every § > 0,

@ Such result has also been proved by Mandel (2015) by
estimating the minimum value of the associated functional on
the Nehari manifold.

@ Theorem 3 also implies that System (3) has a positive least
energy solution for every 8 > 0 when the dimension of RV is
greater or equal to 6 since, in this case, o, p < 2.



@ Mandel established the existence of a positive solution for
System (2) that it is not a least energy solution for every [ in
the interval [0, (p — 2)/2) if p > 4. Theorem 4 complements
that result since it implies the existence of such solution for
every > 0.

@ Note that we may applied Theorem 4 for dimensions N =2,3
since we suppose that the coupling is doubly partially
superlinear.



Coupling linear with respect to one variable

For simplicity we suppose p = q in System (3).

—Au+du = |ulP~2u+ 22 ule2ulvfE, in RV, )
—Av+ v = |v|p*2v+%]v|/‘*2v|u|a, in RN,
Supposing the coupling is linear with respect to the variable v, we

define
. (o +2)[¢ll3
Vea= _ inf : (6)

peHL (RV\{0} 4 [pn [u1||p[?

Analogously, when the coupling is linear with respect to the
variable u, we set

. w4 2)||el?
peHL (RV)\{0} 4 [pn [Vi]#|¢]



Theorem 5

Suppose the coupling is linear with respect to one of the variables.
Then
@ System (5) has a positive solution under the following
conditions:
(i) A2 < A1, the coupling is linear with respect to the variable v,
and € [0,73 ,);
(i) A2 > A1, the coupling is linear with respect to the variable u,
and B € [0,73,,).
@ System (5) has a positive least energy solution under the
following conditions:
(i) A2 = A1, the coupling is linear with respect to the variable v,
and 3 € (7%,00 +00);
(i) A2 < A1, the coupling is linear with respect to the variable u,
and 8 € (’y%u,qLoo).




4 . .
@ We observe that ?vfa is the first eigenvalue of the
a :

problem
—Av+ Xv = 0lur|tv, ve Hrlad(RN)

and that a similar result holds to fy%yu



Supposing that the coupling is doubly partially linear, we consider

A =min{7i2,752}

and
N = max{y%,% 7%,2}7
73, and 73, are given by (6) and (7) with & =2 and pu = 2,
respectively.
As a direct consequence of Theorem 5, we have

Suppose the coupling is doubly partially linear. Then System (5)
has a positive solution for every B € [0,\), and a positive least
energy solution for every 3 € (N, +00).




@ Theorem 5 and Corollary 1 provide estimates for the values of
Bo and B, given by Theorem 1, when the coupling is linear
with respect to one or both variables.

@ Corollary 1 provides the same values as those obtained in
Ambrosetti-Colorado for System (1) without the assumption

p=q=4



Necessary condition for a least energy solution

We consider System (3) under the restriction p = g = a + p.
More specifically we consider the system

—Au+Mu = |u|p_2u+2*67a|u|a_2u|v|p_a, in RV,
—Av+ v = |v\”_2v+726(';_a)\v|p_a_2v\u\a, in RV,

(8)

with2<p<2: 1<a<p-1.
We set w? = A2/A1, the ratio of the frequencies A; and A of
System (8),



Supposing that a > p/2, we set a =2, if p =4, and

1

s=alap) = (282 () e

Theorem 6

Suppose the coupling is linear or superlinear with respect to each
one of the variables. If System (8) has a positive least energy
solution, then

N(l 1> N<1 1)( )
2B > amax{ w p 2 w \P 2

9




@ If p > 4 and System (2) has a positive least energy solution,
Theorem 6 implies that

8> (25_1 — 1) max {w‘g(l_z%), w%(l_?)} ,

in accordance with the estimate derived by Mandel and
Maia-Montefusco-Pellaci (for p = 4).

o If System (8) is linear with respect to one of the variables and
it has a positive least energy solution, Theorem 6 implies that

N<1 1>( 2 N<1 1>2
Y] i P I _ =
ZBzgmax w \p 2 L w P2



Variational Framework

Consider E;, j = 1,2, the space of radially symmetric functions in
the Sobolev space H!(RY) endowed with the scalar product and
the associated norm given, respectively, by

(w.0); = [ (V0 + o), [l = [ (Vuf +3a). .6 < B
Then we set E = [E; x E, endowed with the norm
21> = [lull + [Iv[l3, z=(u,v) €E.

Given z = (u,v), we set z" = (u™,vT). If z=z", we say that z
is nonnegative.



Since we are looking for positive solutions, we associate with
System (3) the functional | = Iz : E — R, defined by

1 1 1 23
1(z) = Slzl]? = =|u*[5 = =vHg — —— [ [u*]*[vF]", (9)
2 p q a+p

For every z = (u,v) € E. Standard argument implies that
I € CYE,R).



The following basic result will be used to find positive solutions for
System (3).

Proposition 1

Suppose z € E is a critical point of the functional I. Then z is a
nonnegative solution of System (3). Moreover if z is not either
trivial or semitrivial, then z is a positive solution of System (3).




Nehari Manifold

In order to introduce the Nehari manifold associated with the
Functional /, we consider ¢ : E — R defined by

b(2) = (I'(2), 2) = ||2|]2~|u* |5~ v |9—28 / ut| v, z € E.

(10)
We also associate with the Problems (4) the functionals
Jp € C?(E1,R) and J; € C?(Ey,R) given by
Jp(U) = %HUH2 |u+’P7 u e El? (11)
Jo(v) = 3lIVIIE - 1!V*!qa v e Eo.



Define

vp(u) = (Jp(u),u) =|ullf = |u"|p, ueE,
va(v) = (Jg(v),v) =Vl = IvF]§, veEs.

Under our hypotheses that ¢ € C}(E,R), ¥, € C?(E1,R) and



Define

vp(u) = (Jp(u),u) =|ullf = |u"|p, ueE,
va(v) = (Jg(v),v) =Vl = IvF]§, veEs.

Under our hypotheses that ¢ € C}(E,R), ¥, € C?(E1,R) and
g € C?(Ep,R).The Nehari manifolds associated with /, J, and
Jg, are, respectively,

Mg = {z € E\{0};4(z) = 0},
Np i={u e Eq\{0}; ¢¥p(u

(u) =0}, (12)
Ng = {v € E2\ {0} g(v) = 0}.



In the standard Nehari manifold technique there exists a
homeomorphism from $° onto Mg. This is not the case in our
setting.

The set A := {w € S, wt #£ 0} is open in S> and pathwise
connected.




In the standard Nehari manifold technique there exists a
homeomorphism from $° onto Mg. This is not the case in our
setting.

Remark 1

The set A := {w € S, wt #£ 0} is open in S> and pathwise
connected.

| A

Remark 2

Note also that A>° := {u € S°; ut # 0}, with S3° the unit sphere
of [E1, is open in S;° and pathwise connected. Using similar
notation, it is also clear that Aq is open in 5¢° and pathwise
connected.

A\




Lemma 7

Given z € A, there exists a unique t = t(z) > 0, depending on
B > 0, such that t(z)z € Mg. Moreover z — t(z) is a continuous
function on A and the map ¢g : A% — Mg, ¢p(z) = t(z)z
defines a homeomorphism from A> onto Mg.

Remark 3

1. Lemma 7 implies that given z € E* = {z € E : z+ #£ 0}, there
is a unique t = t(z) > 0, depending on 3 > 0, such that

t(z)z € Mgp. Moreover the function z — t(z),z € ET is
continuous.

2. Lemma 7 is valid if we consider Jp, AY® and N, or Jgq, A, Nj.
In this case we denote the corresponding homeomorphisms by
op(u) = tp(u)u and o4(u) = tg(u)u. The item (1) is also valid.




Q@ Mg is a manifold of class C! without boundary. Moreover,
there is a constant 1) > 0 such that ()'(z),z) < —n for every
raS Mﬁ.

@ There is C > 0 such that I(z) > C > 0 for every z € Mg.
Moreover the functional | is coercive on Mg.




As a direct consequence of the previous lemma and Lagrange
Multipliers Theorem, we have

Proposition 2

z € E\ {0} is a critical point of I if, and only if, z € Mg and z is
a critical point of | on Mg.

Remark 4

Lemmas 8 and Proposition 2 remain valid if we consider the
functionals J, and Jgq and the Nehari manifolds, N}, and N
associated with these functionals. Moreover N, and Ny are
manifolds of class C?.

| A

A\




Proposition 3

| satisfies the (PS) condition on Mg.

| A\

Remark 5

Proposition 3 is also valid if we consider the functional J, and J,
on N, and Ny, respectively.




Local Estimates on Nehari Manifold

Considering u1, v1 > 0, the radial and positive solutions of Problem
(4), we set

w1 = zi/||z1]| = (61,0), &1 = w1 /[|t]l1,

and
w2 = zo/l|z||, V1 = vi/[|va]]2.

Let u; > 0 be the unique radial and positive solution of the first
equation given (4). Then, Given d > 0 there exists 6 > 0 such that

Jo(u) > Jp(u1) + 6, forallueN,, |lu—wll1 >d.




Given p > 0, we consider V/;' = B,(w;)NA>®, i=1,2. Fora
question of simplicity, we denote the boundary of Vfﬁ on A% by
A%

Lemma 10

Let op : Ef — N, be the application given by Remark 3-(2).
Then
© There exists p > 0 such that i1 € Ef for every
w = (0,0) € V3 = Bs(w1) N A®,
@ given p € (0, p), there exists € > 0 such that
llop(&) — u1]|1 > € for every w € 8Vpl, [|7]]2 < e.

Remark 6

Lemmas 9 and 10 are valid if we consider vi, Ng and IE;r instead
u1, N and E, respectively.

| \

\




Proposition 4

Suppose uy > 0 is the radial solution of the first equation in (4).
Then if the coupling is linear with respect to the variable v and
0<pB< 'yia or superlinear with respect to the variable v and

0 < B < o0, there are § > 0 and a neighborhood Ué of z1 in Mg,
with zy ¢ Ué, such that

I(z) > I(z1) + 6, forall z € 8Ué.




Arguing as in Proposition 4, we prove

Proposition 5

Suppose v1 > 0 is the radial solution of the second equation in (4).
Then if the coupling is linear with respect to the variable u and
0<pB< 'y%“ or superlinear with respect to the variable u and

0 < B < oo, there are § > 0 and a neighborhood Ué of zp in Mg,
with z; ¢ UE, such that

I(z) > I(z2) + 9, forall z € 8U§.

Lemma 11

Let 43, be given by (6). Then, 73, > 0 and there is
¢ € HL4(RY)\ {0}, ¢ > 0, such that

» _ (at2)lllB
Lo = 3 fow lin[]]2

(13)




Proof of Theorem 1

Let ¢1, ¢ > 0 be the least energy levels associated with Problems

(4):

/(Zl) = Jp(ul) = (1, /(22) = Jq(vl) = Co. (14)
Define

g = ZEir)\Eg I(z). (15)

In view of Lemma 8-(2) and Propositions 2 and 3, we have

There is zz € Mg such that I(zg) = cg.




Suppose zz € Mg is such that I(z3) = cg. Then

I(zg) = inf{l(z) : z€ E\ {0},z >0 and I'(z) = 0}.

Let ¢1, ¢ > 0 be given by (14). Then there exists f1 > 0 such
that 0 < cg < min{cy, o} for every 3 > 1.




A least energy solution

@ In view of Lemma 12, there exists z3 = z, a critical point of /
on Mg, such that /(z3) = inf [(z) = cs.
ZGM;}
e Taking 81 > 0 given by Lemma 14, we have that
1(z3) < min{l(z1),(z2)} for every 8 > 1.
@ This estimate, Proposition 1 and Lemma 13 imply that z3 is a
positive least energy solution of System (3).



A positive solution

The following proposition gives us a local estimate for / on the
Nehari manifold when 3 > 0 is sufficiently small.

Proposition 6

There exist $y,6 > 0 such that, for every 8 € [0, Bo), we may find
neighborhoods Ué and UE in Mg of z; and z, respectively,

satisfying UT% N Ué = (), and

I(z) > I(zi)+6, i=1, 2, forall z € 0Uj. (16)




Now we define the Mountain Pass critical level associated with the
functional / on Mg:

Cony = ;réfr tg}gﬁ]/(’Y(t))v (17)

where

M={yec(0,1], Mp) : 7(0) = 21, ~(1) =2z}  (18)



e Fixed 0 < B < [y, we Invoke Propositions 6 and 3 and the
Mountain Pass Theorem to find z4, a critical point of / on
Mg, such that

1(z4) = Crmy > max{/(z), (z)}, (19)

@ In view of Propositions 1 and 2, we may assert that z; is a
positive solution of System (3).



Proof of Theorem 2

Given 0 < 8 < fBg, we take the neighborhoods Ué and UE, in Mg,
of z; and z, respectively, provided by Proposition 6 and we define

¢, = inf I(z), i=1,2. (20)
zEUb

As a consequence of Proposition 3 and the local deformation
lemma, we have

Proposition 7

For every 0 < 3 < B there is a critical point Z; of | on Mg such
that z; € Uy and I(Z;) = ¢, ,, i = 1,2.




Proposition 8

Suppose the coupling is sublinear with respect to the variable v or
u, then, for every 3 > 0, z; or z» is not a local minimum of | on

Mg, respectively.




Proof of Theorem 2

@ Fixed 0 < 8 < By and arguing as in the proof of Theorem 1,
we find a critical point z3 of / on Mg such that

Cui, = 1(23) > max{i(21), I(22)}, (21)

@ Next, assuming without loss of generality that the coupling is
sublinear with respect to the variable v, we invoke
Propositions 7 and 8 to find z, a critical point of / on Mg,
such that z € U/‘}, and

I(z4) ==c, , = in%l(z) < I(z1) < I(z3). (22)
zeUz

@ Since @QUE =0, it is clear that z; # z.

@ we conclude that z; and z3 are two distinct positive solutions
of System (3).



Proof of Theorem 3

@ We first verify the existence of positive least energy solution

@ Since the coupling is doubly partially sublinear, Proposition 8
implies that z; and z are not local minimum of the functional
I on Mg for all 3> 0.

@ Using this and invoking Lemma 12, we get z3 such that

I(z3) = c, = (z) < min{l(z1),1(z2)},

inf [/
zeMg

@ z3 is a least energy solution for System (3).



@ Now, we prove the existence of at least three positive
solutions for 0 < 8 < B, Bo > 0 given by Proposition 6.

@ As in our earlier proofs, we obtain z4, a critical point of / on
Mg, such that

1(z4) = Crmy > max{/(z1), 1(z)}. (23)

@ Moreover, using the same argument of the proof of Theorem
2, we find z5 € Ué e zg € Ué, critical points of / on Mg, such
that

I(z5) < I(z1) and [I(z) < I(22).

® The above estimate and (23) imply that z5, 26 ¢ {z1, 22, z}.
Moreover, since Ué N Ug =0, z5s # z.

@ System (3) has at least three positive solutions.
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