Standing waves for weakly coupled nonlinear Schrödinger systems

Claudiney Goulart (UFG-Jataí), Elves A. B. Silva (UnB)

Universidad de Granada - España

Ambrosetti-Colorado (2006, 2007) considered the system

$$\begin{cases} -\Delta u + \lambda_1 u = \mu_1 u^3 + \beta u v^2, & \text{in } \mathbb{R}^N, \\ -\Delta v + \lambda_2 v = \mu_2 v^3 + \beta u^2 v, & \text{in } \mathbb{R}^N, \end{cases}$$
(1)

- *N* = 2, 3
- $\mu_1, \mu_2, \lambda_1, \lambda_2, \beta > 0$
- They established the existence of positive constants Λ and Λ', such that System (1) has a positive solution for every β ∈ (0, Λ) and a positive least energy solution for every β ∈ (Λ', +∞).
- deFigueiredo-Lopes (2006) complemented the results derived by Ambrosetti-Colorado, including the case N = 1.

Maia-Montefusco-Pellacci (2006) considered the following version of System (1)

$$\begin{cases} -\Delta u + u = |u|^{p-2}u + \beta |u|^{\frac{p}{2}-2}u|v|^{\frac{p}{2}}, & \text{in } \mathbb{R}^{N}, \\ -\Delta v + \omega^{2}v = |v|^{p-2}v + \beta |u|^{\frac{p}{2}}|v|^{\frac{p}{2}-2}v, & \text{in } \mathbb{R}^{N}, \end{cases}$$
(2)

N ≥ 1

•
$$eta, \omega >$$
 0, 2 $<$ p $<$ 2*

- $2^* = \infty$ if N = 2 and $2^* = 2N/(N-2)$ if $N \ge 3$.
- Those authors established results on necessary and sufficient conditions for the existence of a positive least energy solution for System (2).
- Results related have been also proved by Mandel (2015).

We consider the existence of positive solutions for the weakly coupled nonlinear Schrödinger system

$$\begin{cases} -\Delta u + \lambda_1 u = |u|^{p-2}u + \frac{2\beta\alpha}{\alpha+\mu}|u|^{\alpha-2}u|v|^{\mu}, & \text{in } \mathbb{R}^N, \\ -\Delta v + \lambda_2 v = |v|^{q-2}v + \frac{2\beta\mu}{\alpha+\mu}|v|^{\mu-2}v|u|^{\alpha}, & \text{in } \mathbb{R}^N, \end{cases}$$
(3)

N ≥ 2,

• $\beta, \ \lambda_1, \ \lambda_2 > 0, \ \alpha, \mu > 1, \ 2 < p, \ q, \ \alpha + \mu < 2^*,$

- $z_0 = (0,0)$ is a trivial solution for System (3).
- System (3) has two semitrivial solutions $z_1 = (u_1, 0)$ and $z_2 = (0, v_1)$, where $u_1, v_1 > 0$ are the unique positive radial solutions of the nonlinear Schrödinger equations:

$$-\Delta u + \lambda_1 u = |u|^{p-2} u, \quad -\Delta v + \lambda_2 v = |v|^{q-2} v, \text{ in } \mathbb{R}^N.$$
 (4)

• Our objective is to study the existence of positive solutions, i.e. z = (u, v) a solution of (3) such that u, v > 0 in \mathbb{R}^N .

- The functional associated with System (1) is of class C^2
- Ambrosetti-Colorado used the structure of the scalar problems
 (4) to estimate the Morse indexes of the semitrivial solutions z₁ and z₂.
- The functional associated with System (3) has not, in general, the same regularity as the one associated with System (1).
- We do not use the infinite dimensional Morse theory to establish local estimates on neighborhoods of z_1 and z_2 .

- Even though the coupling in System (3) should be considered superlinear given that α + μ > 2, it may present distinct characteristics when we fix one of the variable.
- we say that the coupling is superlinear, linear or sublinear with respect to the variable u if $\alpha > 2$, $\alpha = 2$ or $1 < \alpha < 2$, respectively. Analogously, we define the superlinear, linear and sublinear coupling with respect to the variable v.

- The coupling in System (1) is linear with respect to both variables.
- The coupling in System (2) is sublinear, linear or superlinear with respect to both variables if p < 4, p = 4 or p > 4, respectively.

There exist $\beta_0, \beta_1 > 0$ such that System (3) has a positive solution for every $\beta \in [0, \beta_0)$ and a positive least energy solution for every $\beta \in (\beta_1, +\infty)$.

- Theorem 1 holds independently of the type of coupling.
- For β > 0 sufficiently small, The associated functional on the Nehari manifold satisfies the geometric hypotheses of the Mountain Pass Theorem.
- For $\beta > 0$ sufficiently large, z_1 and z_2 are not global minimum of the associated functional restricted to the Nehari manifold.
- These facts allow us to apply either a minimax theorem or a minimization argument to prove Theorem 1.

Suppose the coupling is sublinear with respect to one of the variables. Then there is $\beta_0 > 0$ such that System (3) has at least two positive solutions for every $0 < \beta < \beta_0$.

- When β > 0 is sufficiently small the proof of Theorem 1 provides the existence of a positive solution for System (3) via the Mountain Pass Theorem.
- If the coupling is sublinear with respect to the variable v or u, we may see that $z_1 = (u, 0)$ or $z_2 = (0, v)$, respectively, is not a point of local minimum of the functional associated on the Nehari manifold regardless of the value of $\beta > 0$.
- That allows us to establish a second positive solution for System (3) as either a local minimum or a global minimum of the associated functional on the Nehari manifold.

Suppose the coupling is sublinear with respect to both variables. Then System (3) has a positive least energy solution for every $\beta > 0$. Furthermore there is $\beta_0 > 0$ such that System (3) has at least three positive solutions for every $0 < \beta < \beta_0$.

Suppose the coupling is superlinear with respect to both variables. Then System (3) has a positive solution for every $\beta > 0$. Furthermore there is $\beta_1 > 0$ such that System (3) has at least two positive solutions for every $\beta > \beta_1$, being one of these a positive least energy solution.

- When the coupling is superlinear with respect to the variable ν or u, we may verify that z₁ or z₂, respectively, is a point of local minimum for the associated functional on the Nehari manifold for every β > 0.
- We exploit the fact above mentioned to verify, via the Mountain Pass Theorem, the existence of a positive solution for System (3).
- As in Theorem 1, the existence of a positive least energy solution may be established by a global minimization argument whenever $\beta > 0$ is sufficiently large.

Remarks

- Theorems 3 and 4 guarantee the existence of a positive solution for System (3) for every β > 0 when the coupling is sublinear or superlinear with respect to both variables.
- In particular, this implies that System (2) has a positive solution for every β > 0 whenever p ≠ 4.
- When the dimension of ℝ^N is greater than or equal to 4, Theorem 3 establishes the existence of a positive least energy solution for System (2) for every β > 0,
- Such result has also been proved by Mandel (2015) by estimating the minimum value of the associated functional on the Nehari manifold.
- Theorem 3 also implies that System (3) has a positive least energy solution for every β > 0 when the dimension of ℝ^N is greater or equal to 6 since, in this case, α, μ < 2.

- Mandel established the existence of a positive solution for System (2) that it is not a least energy solution for every β in the interval [0, (p - 2)/2) if p > 4. Theorem 4 complements that result since it implies the existence of such solution for every β > 0.
- Note that we may applied Theorem 4 for dimensions N = 2,3 since we suppose that the coupling is doubly partially superlinear.

Coupling linear with respect to one variable

For simplicity we suppose p = q in System (3).

$$\begin{cases} -\Delta u + \lambda_1 u = |u|^{p-2}u + \frac{2\beta\alpha}{\alpha+\mu}|u|^{\alpha-2}u|v|^{\mu}, & \text{in } \mathbb{R}^N, \\ -\Delta v + \lambda_2 v = |v|^{p-2}v + \frac{2\beta\mu}{\alpha+\mu}|v|^{\mu-2}v|u|^{\alpha}, & \text{in } \mathbb{R}^N, \end{cases}$$
(5)

Supposing the coupling is linear with respect to the variable v, we define

$$\gamma_{1,\alpha}^2 = \inf_{\varphi \in H^1_{rad}(\mathbb{R}^N) \setminus \{0\}} \frac{(\alpha+2)||\varphi||_2^2}{4\int_{\mathbb{R}^N} |u_1|^{\alpha}|\varphi|^2}.$$
 (6)

Analogously, when the coupling is linear with respect to the variable u, we set

$$\gamma_{2,\mu}^{2} = \inf_{\varphi \in H_{rad}^{1}(\mathbb{R}^{N}) \setminus \{0\}} \frac{(\mu+2)||\varphi||_{1}^{2}}{4 \int_{\mathbb{R}^{N}} |v_{1}|^{\mu} |\varphi|^{2}}.$$
(7)

Suppose the coupling is linear with respect to one of the variables. Then

- System (5) has a positive solution under the following conditions:
 - (i) λ₂ ≤ λ₁, the coupling is linear with respect to the variable v, and β ∈ [0, γ²_{1,α});
 - (ii) $\lambda_2 \ge \lambda_1$, the coupling is linear with respect to the variable u, and $\beta \in [0, \gamma_{2,\mu}^2)$.
- **2** System (5) has a positive least energy solution under the following conditions:
 - (i) $\lambda_2 \ge \lambda_1$, the coupling is linear with respect to the variable v, and $\beta \in (\gamma_{1,\alpha}^2, +\infty)$;
 - (ii) λ₂ ≤ λ₁, the coupling is linear with respect to the variable u, and β ∈ (γ²_{2,μ}, +∞).

• We observe that $\frac{4}{\alpha + 2}\gamma_{1,\alpha}^2$ is the first eigenvalue of the problem

 $-\Delta v + \lambda_2 v = heta |u_1|^{\mu} v, \quad v \in H^1_{rad}(\mathbb{R}^N)$

and that a similar result holds to $\gamma^2_{2,\mu}$

Supposing that the coupling is doubly partially linear, we consider

$$\Lambda = \min\{\gamma_{1,2}^2, \gamma_{2,2}^2\}$$

and

$$\Lambda'=\max\{\gamma_{1,2}^2,\gamma_{2,2}^2\},$$

 $\gamma_{1,2}^2$ and $\gamma_{2,2}^2$ are given by (6) and (7) with $\alpha = 2$ and $\mu = 2$, respectively.

As a direct consequence of Theorem 5, we have

Corollary 1

Suppose the coupling is doubly partially linear. Then System (5) has a positive solution for every $\beta \in [0, \Lambda)$, and a positive least energy solution for every $\beta \in (\Lambda', +\infty)$.

- Theorem 5 and Corollary 1 provide estimates for the values of β₀ and β₁, given by Theorem 1, when the coupling is linear with respect to one or both variables.
- Corollary 1 provides the same values as those obtained in Ambrosetti-Colorado for System (1) without the assumption p = q = 4.

We consider System (3) under the restriction $p = q = \alpha + \mu$. More specifically we consider the system

$$\begin{cases} -\Delta u + \lambda_1 u = |u|^{p-2}u + \frac{2\beta\alpha}{p}|u|^{\alpha-2}u|v|^{p-\alpha}, & \text{in } \mathbb{R}^N, \\ -\Delta v + \lambda_2 v = |v|^{p-2}v + \frac{2\beta(p-\alpha)}{p}|v|^{p-\alpha-2}v|u|^{\alpha}, & \text{in } \mathbb{R}^N, \end{cases}$$

$$(8)$$

with $2 , <math>1 < \alpha < p - 1$. We set $\omega^2 = \lambda_2/\lambda_1$, the ratio of the frequencies λ_1 and λ_2 of System (8),

・ロト・西ト・西ト・西・ うんの

Supposing that $\alpha \geq p/2$, we set a = 2, if p = 4, and

$$a = a(\alpha, p) = \left[\left(2^{\frac{p}{2}} - 2 \right)^{2(p - (\alpha + 2))} \left(\frac{p}{2} \right)^{(2\alpha - p)} \right]^{\frac{1}{p - 4}}, \text{ if } p > 4,$$

Theorem 6

Suppose the coupling is linear or superlinear with respect to each one of the variables. If System (8) has a positive least energy solution, then

$$2\beta \geq a \max\left\{ \omega^{-N} \left(\frac{1}{p} - \frac{1}{2^*}\right)^{\alpha}, \ \omega^{N} \left(\frac{1}{p} - \frac{1}{2^*}\right)^{(p-\alpha)} \right\}.$$

・ロ・・母・・出・・ 日・ うらの

 If p ≥ 4 and System (2) has a positive least energy solution, Theorem 6 implies that

$$\beta \geq (2^{\frac{p}{2}-1}-1) \max\left\{ \omega^{-\frac{N}{2}(1-\frac{p}{2^*})}, \ \omega^{\frac{N}{2}(1-\frac{p}{2^*})} \right\},$$

in accordance with the estimate derived by Mandel and Maia-Montefusco-Pellaci (for p = 4).

• If System (8) is linear with respect to one of the variables and it has a positive least energy solution, Theorem 6 implies that

$$2\beta \geq \frac{p}{2} \max\left\{ \omega^{-N\left(\frac{1}{p} - \frac{1}{2^*}\right)(p-2)}, \ \omega^{N\left(\frac{1}{p} - \frac{1}{2^*}\right)^2} \right\}.$$

Consider \mathbb{E}_j , j = 1, 2, the space of radially symmetric functions in the Sobolev space $H^1(\mathbb{R}^N)$ endowed with the scalar product and the associated norm given, respectively, by

$$\langle u,\phi\rangle_j=\int (\nabla u\nabla \phi+\lambda_j u\phi), \ ||u||_j^2=\int (|\nabla u|^2+\lambda_j u^2), \ u,\phi\in\mathbb{E}_j.$$

Then we set $\mathbb{E}=\mathbb{E}_1\times\mathbb{E}_2$ endowed with the norm

$$||z||^2 = ||u||_1^2 + ||v||_2^2, \ z = (u, v) \in \mathbb{E}.$$

Given z = (u, v), we set $z^+ = (u^+, v^+)$. If $z = z^+$, we say that z is nonnegative.

Since we are looking for positive solutions, we associate with System (3) the functional $I = I_{\beta} : \mathbb{E} \to \mathbb{R}$, defined by

$$I(z) = \frac{1}{2} ||z||^2 - \frac{1}{p} |u^+|_p^p - \frac{1}{q} |v^+|_q^q - \frac{2\beta}{\alpha + \mu} \int |u^+|^\alpha |v^+|^\mu, \quad (9)$$

For every $z = (u, v) \in \mathbb{E}$. Standard argument implies that $l \in C^1(\mathbb{E}, \mathbb{R})$.

The following basic result will be used to find positive solutions for System (3).

Proposition 1

Suppose $z \in \mathbb{E}$ is a critical point of the functional *I*. Then *z* is a nonnegative solution of System (3). Moreover if *z* is not either trivial or semitrivial, then *z* is a positive solution of System (3).

In order to introduce the Nehari manifold associated with the Functional I, we consider $\psi : \mathbb{E} \to \mathbb{R}$ defined by

$$\psi(z) = \left\langle I'(z), z \right\rangle = ||z||^2 - |u^+|_p^p - |v^+|_q^q - 2\beta \int |u^+|^\alpha |v^+|^\mu, \ z \in \mathbb{E}.$$
(10)

We also associate with the Problems (4) the functionals $J_p \in C^2(\mathbb{E}_1, \mathbb{R})$ and $J_q \in C^2(\mathbb{E}_2, \mathbb{R})$ given by

$$\begin{array}{rcl} J_{p}(u) & = & \frac{1}{2} ||u||_{1}^{2} - \frac{1}{p} |u^{+}|_{p}^{p}, & u \in \mathbb{E}_{1}, \\ J_{q}(v) & = & \frac{1}{2} ||v||_{2}^{2} - \frac{1}{q} |v^{+}|_{q}^{q}, & v \in \mathbb{E}_{2}. \end{array}$$
 (11)

Define

$$\begin{array}{rcl} \psi_p(u) &=& \left\langle J'_p(u), u \right\rangle = ||u||_1^2 - |u^+|_p^p, & u \in \mathbb{E}_1, \\ \psi_q(v) &=& \left\langle J'_q(v), v \right\rangle = ||v||_2^2 - |v^+|_q^q, & v \in \mathbb{E}_2. \end{array}$$

Under our hypotheses that $\psi \in C^1(\mathbb{E}, \mathbb{R})$, $\psi_p \in C^2(\mathbb{E}_1, \mathbb{R})$ and $\psi_q \in C^2(\mathbb{E}_2, \mathbb{R})$. The Nehari manifolds associated with I, J_p and J_q , are, respectively,

$$\mathcal{M}_{\beta} := \{ z \in \mathbb{E} \setminus \{0\}; \psi(z) = 0 \}, \\ \mathcal{N}_{p} := \{ u \in \mathbb{E}_{1} \setminus \{0\}; \psi_{p}(u) = 0 \}, \\ \mathcal{N}_{q} := \{ v \in \mathbb{E}_{2} \setminus \{0\}; \psi_{q}(v) = 0 \}.$$

$$(12)$$

Define

$$\begin{array}{rcl} \psi_p(u) &=& \left\langle J'_p(u), u \right\rangle = ||u||_1^2 - |u^+|_p^p, & u \in \mathbb{E}_1, \\ \psi_q(v) &=& \left\langle J'_q(v), v \right\rangle = ||v||_2^2 - |v^+|_q^q, & v \in \mathbb{E}_2. \end{array}$$

Under our hypotheses that $\psi \in C^1(\mathbb{E}, \mathbb{R})$, $\psi_p \in C^2(\mathbb{E}_1, \mathbb{R})$ and $\psi_q \in C^2(\mathbb{E}_2, \mathbb{R})$. The Nehari manifolds associated with *I*, J_p and J_q , are, respectively,

$$\mathcal{M}_{\beta} := \{ z \in \mathbb{E} \setminus \{0\}; \psi(z) = 0 \}, \\ \mathcal{N}_{p} := \{ u \in \mathbb{E}_{1} \setminus \{0\}; \psi_{p}(u) = 0 \}, \\ \mathcal{N}_{q} := \{ v \in \mathbb{E}_{2} \setminus \{0\}; \psi_{q}(v) = 0 \}.$$

$$(12)$$

In the standard Nehari manifold technique there exists a homeomorphism from S^{∞} onto \mathcal{M}_{β} . This is not the case in our setting.

Remark 1

The set $A^{\infty} := \{ w \in S^{\infty}; w^+ \not\equiv 0 \}$ is open in S^{∞} and pathwise connected.

Remark 2

Note also that $A_p^{\infty} := \{ u \in S_p^{\infty}; u^+ \not\equiv 0 \}$, with S_p^{∞} the unit sphere of \mathbb{E}_1 , is open in S_p^{∞} and pathwise connected. Using similar notation, it is also clear that A_q is open in S_q^{∞} and pathwise connected.

In the standard Nehari manifold technique there exists a homeomorphism from S^{∞} onto \mathcal{M}_{β} . This is not the case in our setting.

Remark 1

The set $A^{\infty} := \{ w \in S^{\infty}; w^+ \not\equiv 0 \}$ is open in S^{∞} and pathwise connected.

Remark 2

Note also that $A_p^{\infty} := \{u \in S_p^{\infty}; u^+ \neq 0\}$, with S_p^{∞} the unit sphere of \mathbb{E}_1 , is open in S_p^{∞} and pathwise connected. Using similar notation, it is also clear that A_q is open in S_q^{∞} and pathwise connected.

Lemma 7

Given $z \in A^{\infty}$, there exists a unique t = t(z) > 0, depending on $\beta > 0$, such that $t(z)z \in \mathcal{M}_{\beta}$. Moreover $z \mapsto t(z)$ is a continuous function on A^{∞} and the map $\phi_{\beta} : A^{\infty} \to \mathcal{M}_{\beta}, \phi_{\beta}(z) = t(z)z$ defines a homeomorphism from A^{∞} onto \mathcal{M}_{β} .

Remark 3

1. Lemma 7 implies that given $z \in \mathbb{E}^+ = \{z \in \mathbb{E} : z^+ \neq 0\}$, there is a unique t = t(z) > 0, depending on $\beta > 0$, such that $t(z)z \in \mathcal{M}_{\beta}$. Moreover the function $z \mapsto t(z), z \in \mathbb{E}^+$ is continuous.

2. Lemma 7 is valid if we consider J_p , A_p^{∞} and \mathcal{N}_p or J_q , A_q^{∞} , \mathcal{N}_q . In this case we denote the corresponding homeomorphisms by $\sigma_p(u) = t_p(u)u$ and $\sigma_q(u) = t_q(u)u$. The item (1) is also valid.

Lemma 8

- M_β is a manifold of class C¹ without boundary. Moreover, there is a constant η > 0 such that ⟨ψ'(z), z⟩ < −η for every z ∈ M_β.
- 2 There is C > 0 such that I(z) ≥ C > 0 for every z ∈ M_β.
 Moreover the functional I is coercive on M_β.

As a direct consequence of the previous lemma and Lagrange Multipliers Theorem, we have

Proposition 2

 $z \in \mathbb{E} \setminus \{0\}$ is a critical point of I if, and only if, $z \in \mathcal{M}_{\beta}$ and z is a critical point of I on \mathcal{M}_{β} .

Remark 4

Lemmas 8 and Proposition 2 remain valid if we consider the functionals J_p and J_q and the Nehari manifolds, \mathcal{N}_p and \mathcal{N}_q associated with these functionals. Moreover \mathcal{N}_p and \mathcal{N}_q are manifolds of class C^2 .

Proposition 3

I satisfies the (PS) condition on \mathcal{M}_{β} .

Remark 5

Proposition 3 is also valid if we consider the functional J_p and J_q on N_p and N_q , respectively.

Local Estimates on Nehari Manifold

Considering $u_1, v_1 > 0$, the radial and positive solutions of Problem (4), we set

$$w_1 = z_1/||z_1|| = (\hat{u}_1, 0), \quad \hat{u}_1 = u_1/||u_1||_1,$$

and

$$w_2 = z_2/||z_2||, \quad \hat{v}_1 = v_1/||v_1||_2.$$

Lemma 9

Let $u_1 > 0$ be the unique radial and positive solution of the first equation given (4). Then, Given d > 0 there exists $\delta > 0$ such that

 $J_{\rho}(u) \ge J_{\rho}(u_1) + \delta$, for all $u \in \mathcal{N}_{\rho}$, $||u - u_1||_1 \ge d$.

Given $\rho > 0$, we consider $V_{\rho}^{i} = B_{\rho}(w_{i}) \cap A^{\infty}$, i = 1, 2. For a question of simplicity, we denote the boundary of V_{ρ}^{i} on A^{∞} by ∂V_{ρ}^{i} .

Lemma 10

Let $\sigma_p : \mathbb{E}_1^+ \to \mathcal{N}_p$, be the application given by Remark 3-(2). Then

• There exists $\bar{\rho} > 0$ such that $\hat{u} \in \mathbb{E}_1^+$, for every $w = (\hat{u}, \hat{v}) \in V^1_{\bar{\rho}} = B_{\bar{\rho}}(w_1) \cap A^{\infty}$,

2 given
$$\rho \in (0, \bar{\rho})$$
, there exists $\epsilon > 0$ such that
 $||\sigma_{\rho}(\hat{u}) - u_{1}||_{1} \ge \epsilon$ for every $w \in \partial V_{\rho}^{1}$, $||\hat{v}||_{2} < \epsilon$.

Remark 6

Lemmas 9 and 10 are valid if we consider v_1 , \mathcal{N}_q and \mathbb{E}_2^+ instead u_1 , \mathcal{N}_p and \mathbb{E}_1^+ , respectively.

Proposition 4

Suppose $u_1 > 0$ is the radial solution of the first equation in (4). Then if the coupling is linear with respect to the variable v and $0 < \beta < \gamma_{1,\alpha}^2$ or superlinear with respect to the variable v and $0 < \beta < \infty$, there are $\delta > 0$ and a neighborhood U_{β}^1 of z_1 in \mathcal{M}_{β} , with $z_2 \notin U_{\beta}^1$, such that

 $I(z) \ge I(z_1) + \delta$, for all $z \in \partial U^1_{\beta}$.

Arguing as in Proposition 4, we prove

Proposition 5

Suppose $v_1 > 0$ is the radial solution of the second equation in (4). Then if the coupling is linear with respect to the variable u and $0 < \beta < \gamma_{2,\mu}^2$ or superlinear with respect to the variable u and $0 < \beta < \infty$, there are $\delta > 0$ and a neighborhood U_{β}^2 of z_2 in \mathcal{M}_{β} , with $z_1 \notin U_{\beta}^2$, such that

$$I(z) \ge I(z_2) + \delta$$
, for all $z \in \partial U_{\beta}^2$.

Lemma 11

Let $\gamma_{1,\alpha}^2$ be given by (6). Then, $\gamma_{1,\alpha}^2 > 0$ and there is $\phi \in H^1_{rad}(\mathbb{R}^N) \setminus \{0\}, \phi > 0$, such that

$$\gamma_{1,\alpha}^2 = \frac{(\alpha+2)||\phi||_2^2}{4\int_{\mathbb{R}^N} |u_1|^{\alpha} |\phi|^2}.$$

(13)

Let $c_1, c_2 > 0$ be the least energy levels associated with Problems (4):

$$I(z_1) = J_p(u_1) = c_1, \quad I(z_2) = J_q(v_1) = c_2.$$
 (14)

Define

$$c_{\beta} := \inf_{z \in \mathcal{M}_{\beta}} I(z).$$
(15)

In view of Lemma 8-(2) and Propositions 2 and 3, we have

Lemma 12

There is $z_{\beta} \in \mathcal{M}_{\beta}$ such that $I(z_{\beta}) = c_{\beta}$.

(日) 《聞) 《聞) 《聞) 《聞) 《日

Lemma 13

Suppose $z_{\beta} \in \mathcal{M}_{\beta}$ is such that $I(z_{\beta}) = c_{\beta}$. Then

$$I(z_{eta}) = \inf\{I(z) : z \in E \setminus \{0\}, z \ge 0 \text{ and } I'(z) = 0\}.$$

Lemma 14

Let c_1 , $c_2 > 0$ be given by (14). Then there exists $\beta_1 > 0$ such that $0 < c_\beta < \min\{c_1, c_2\}$ for every $\beta > \beta_1$.

- In view of Lemma 12, there exists z₃ = z_β, a critical point of I on M_β, such that I(z₃) = inf_{z∈M_β} I(z) = c_β.
- Taking $\beta_1 > 0$ given by Lemma 14, we have that $I(z_3) < \min\{I(z_1), I(z_2)\}$ for every $\beta > \beta_1$.
- This estimate, Proposition 1 and Lemma 13 imply that z_3 is a positive least energy solution of System (3).

The following proposition gives us a local estimate for I on the Nehari manifold when $\beta > 0$ is sufficiently small.

Proposition 6

There exist $\beta_0, \delta > 0$ such that, for every $\beta \in [0, \beta_0)$, we may find neighborhoods U_{β}^1 and U_{β}^2 in \mathcal{M}_{β} of z_1 and z_2 , respectively, satisfying $\overline{U_{\beta}^1} \cap \overline{U_{\beta}^2} = \emptyset$, and

$$I(z) \ge I(z_i) + \delta, \ i = 1, \ 2, \ \text{for all } z \in \partial U^i_{\beta}.$$
 (16)

Now we define the Mountain Pass critical level associated with the functional I on \mathcal{M}_{β} :

$$c_{\mathcal{M}_{\beta}} := \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} I(\gamma(t)), \tag{17}$$

where

$$\Gamma = \{ \gamma \in C([0,1], \mathcal{M}_{\beta}) : \gamma(0) = z_1, \ \gamma(1) = z_2 \}.$$
(18)

 Fixed 0 < β < β₀, we Invoke Propositions 6 and 3 and the Mountain Pass Theorem to find z₄, a critical point of *I* on M_β, such that

$$I(z_4) = c_{\mathcal{M}_{\beta}} > \max\{I(z_1), I(z_2)\},$$
 (19)

In view of Propositions 1 and 2, we may assert that z₄ is a positive solution of System (3).

Given $0 < \beta < \beta_0$, we take the neighborhoods U_{β}^1 and U_{β}^2 , in \mathcal{M}_{β} , of z_1 and z_2 , respectively, provided by Proposition 6 and we define

$$c_{i,\beta} := \inf_{z \in \overline{U_{\beta}^{i}}} I(z), \quad i = 1, 2.$$

$$(20)$$

As a consequence of Proposition 3 and the local deformation lemma, we have

Proposition 7

For every $0 < \beta < \beta_0$ there is a critical point \bar{z}_i of I on \mathcal{M}_β such that $\bar{z}_i \in U^i_\beta$ and $I(\bar{z}_i) = c_{i,\beta}$, i = 1, 2.

Proposition 8

Suppose the coupling is sublinear with respect to the variable v or u, then, for every $\beta > 0$, z_1 or z_2 is not a local minimum of I on \mathcal{M}_{β} , respectively.

臣

伺 ト イヨト イヨト

Proof of Theorem 2

 Fixed 0 < β < β₀ and arguing as in the proof of Theorem 1, we find a critical point z₃ of I on M_β such that

$$c_{\mathcal{M}_{\beta}} = I(z_3) > \max\{I(z_1), I(z_2)\},$$
 (21)

Next, assuming without loss of generality that the coupling is sublinear with respect to the variable *v*, we invoke Propositions 7 and 8 to find *z*₄, a critical point of *I* on *M*_β, such that *z*₄ ∈ *U*¹_β, and

$$I(z_4) == c_{1,\beta} = \inf_{z \in \overline{U_{\beta}^1}} I(z) < I(z_1) < I(z_3).$$
(22)

- Since $\overline{U_{\beta}^{1}} \cap \overline{U_{\beta}^{2}} = \emptyset$, it is clear that $z_{4} \neq z_{2}$.
- we conclude that z_4 and z_3 are two distinct positive solutions of System (3).

- We first verify the existence of positive least energy solution
- Since the coupling is doubly partially sublinear, Proposition 8 implies that z₁ and z₂ are not local minimum of the functional *I* on M_β for all β > 0.
- Using this and invoking Lemma 12, we get z_3 such that

$$I(z_3) = c_{\beta} = \inf_{z \in \mathcal{M}_{\beta}} I(z) < \min\{I(z_1), I(z_2)\},\$$

• z_3 is a least energy solution for System (3).

- Now, we prove the existence of at least three positive solutions for 0 < β < β₀, β₀ > 0 given by Proposition 6.
- As in our earlier proofs, we obtain z_4 , a critical point of I on \mathcal{M}_β , such that

$$I(z_4) = c_{\mathcal{M}_{\beta}} > \max\{I(z_1), I(z_2)\}.$$
 (23)

Moreover, using the same argument of the proof of Theorem
 2, we find z₅ ∈ U¹_β e z₆ ∈ U²_β, critical points of I on M_β, such that

$$I(z_5) < I(z_1)$$
 and $I(z_6) < I(z_2)$.

- The above estimate and (23) imply that z₅, z₆ ∉ {z₁, z₂, z₄}. Moreover, since U_β¹ ∩ U_β² = ∅, z₅ ≠ z₆.
- System (3) has at least three positive solutions.

- A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Math. Acad. Sci. Paris 342 (2006) 453-458.
- A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations in ℝ^N, J. Lond. Math. Soc. 2 (2007) 67-82.
- D. G. de Figueiredo and O. Lopes, Solitary waves for some nonlinear Schrödinger systems, Ann. I. H. Poincaré 25 (2008) 149-161.
- C. Goulart and E. A. B. Silva, Standing waves for weakly coupled nonlinear Schrödinger systems, Comm. Cont. Math. to appear

- L. A. Maia, E. Montefusco and B. Pellaci, Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Differential Equations. 229 (2006) 743-767.
- R. Mandel, Minimal energy solutions for cooperative nonlinear Schrödinger systems, Nonlinear Differ. Equ. Appl. 22 (2015) 239-262.