Standing waves for weakly coupled nonlinear Schrödinger systems

Claudiney Goulart (UFG-Jataí), Elves A. B. Silva (UnB)
Universidad de Granada - España

Introduction

Ambrosetti-Colorado $(2006,2007)$ considered the system

$$
\begin{cases}-\Delta u+\lambda_{1} u=\mu_{1} u^{3}+\beta u v^{2}, & \text { in } \mathbb{R}^{N} \tag{1}\\ -\Delta v+\lambda_{2} v=\mu_{2} v^{3}+\beta u^{2} v, & \text { in } \mathbb{R}^{N},\end{cases}
$$

- $N=2,3$
- $\mu_{1}, \mu_{2}, \lambda_{1}, \lambda_{2}, \beta>0$
- They established the existence of positive constants Λ and Λ^{\prime}, such that System (1) has a positive solution for every $\beta \in(0, \Lambda)$ and a positive least energy solution for every $\beta \in\left(\Lambda^{\prime},+\infty\right)$.
- deFigueiredo-Lopes (2006) complemented the results derived by Ambrosetti-Colorado, including the case $N=1$.

Maia-Montefusco-Pellacci (2006) considered the following version of System (1)

$$
\left\{\begin{array}{l}
-\Delta u+u=|u|^{p-2} u+\beta|u|^{\frac{p}{2}-2} u|v|^{\frac{p}{2}}, \quad \text { in } \quad \mathbb{R}^{N} \tag{2}\\
-\Delta v+\omega^{2} v=|v|^{p-2} v+\beta|u|^{\frac{p}{2}}|v|^{\frac{p}{2}-2} v, \quad \text { in } \quad \mathbb{R}^{N}
\end{array}\right.
$$

- $N \geq 1$
- $\beta, \omega>0,2<p<2^{*}$
- $2^{*}=\infty$ if $N=2$ and $2^{*}=2 N /(N-2)$ if $N \geq 3$.
- Those authors established results on necessary and sufficient conditions for the existence of a positive least energy solution for System (2).
- Results related have been also proved by Mandel (2015).

We consider the existence of positive solutions for the weakly coupled nonlinear Schrödinger system

$$
\left\{\begin{array}{l}
-\Delta u+\lambda_{1} u=|u|^{p-2} u+\frac{2 \beta \alpha}{\alpha+\mu}|u|^{\alpha-2} u|v|^{\mu}, \quad \text { in } \mathbb{R}^{N}, \tag{3}\\
-\Delta v+\lambda_{2} v=|v|^{q-2} v+\frac{2 \beta \mu}{\alpha+\mu}|v|^{\mu-2} v|u|^{\alpha}, \quad \text { in } \mathbb{R}^{N},
\end{array}\right.
$$

- $N \geqslant 2$,
- $\beta, \lambda_{1}, \lambda_{2}>0, \alpha, \mu>1,2<p, q, \alpha+\mu<2^{*}$,
- $z_{0}=(0,0)$ is a trivial solution for System (3).
- System (3) has two semitrivial solutions $z_{1}=\left(u_{1}, 0\right)$ and $z_{2}=\left(0, v_{1}\right)$, where $u_{1}, v_{1}>0$ are the unique positive radial solutions of the nonlinear Schrödinger equations:

$$
\begin{equation*}
-\Delta u+\lambda_{1} u=|u|^{p-2} u, \quad-\Delta v+\lambda_{2} v=|v|^{q-2} v, \text { in } \mathbb{R}^{N} . \tag{4}
\end{equation*}
$$

- Our objective is to study the existence of positive solutions, i.e. $z=(u, v)$ a solution of (3) such that $u, v>0$ in \mathbb{R}^{N}.

Remarks

- The functional associated with System (1) is of class C^{2}
- Ambrosetti-Colorado used the structure of the scalar problems (4) to estimate the Morse indexes of the semitrivial solutions z_{1} and z_{2}.
- The functional associated with System (3) has not, in general, the same regularity as the one associated with System (1).
- We do not use the infinite dimensional Morse theory to establish local estimates on neighborhoods of z_{1} and z_{2}.
- Even though the coupling in System (3) should be considered superlinear given that $\alpha+\mu>2$, it may present distinct characteristics when we fix one of the variable.
- we say that the coupling is superlinear, linear or sublinear with respect to the variable u if $\alpha>2, \alpha=2$ or $1<\alpha<2$, respectively. Analogously, we define the superlinear, linear and sublinear coupling with respect to the variable v.
- The coupling in System (1) is linear with respect to both variables.
- The coupling in System (2) is sublinear, linear or superlinear with respect to both variables if $p<4, p=4$ or $p>4$, respectively.

Existence of a positive solution

Theorem 1

There exist $\beta_{0}, \beta_{1}>0$ such that System (3) has a positive solution for every $\beta \in\left[0, \beta_{0}\right)$ and a positive least energy solution for every $\beta \in\left(\beta_{1},+\infty\right)$.

- Theorem 1 holds independently of the type of coupling.
- For $\beta>0$ sufficiently small, The associated functional on the Nehari manifold satisfies the geometric hypotheses of the Mountain Pass Theorem.
- For $\beta>0$ sufficiently large, z_{1} and z_{2} are not global minimum of the associated functional restricted to the Nehari manifold.
- These facts allow us to apply either a minimax theorem or a minimization argument to prove Theorem 1.

sublinear coupling

Theorem 2

Suppose the coupling is sublinear with respect to one of the variables. Then there is $\beta_{0}>0$ such that System (3) has at least two positive solutions for every $0<\beta<\beta_{0}$.

- When $\beta>0$ is sufficiently small the proof of Theorem 1 provides the existence of a positive solution for System (3) via the Mountain Pass Theorem.
- If the coupling is sublinear with respect to the variable v or u, we may see that $z_{1}=(u, 0)$ or $z_{2}=(0, v)$, respectively, is not a point of local minimum of the functional associated on the Nehari manifold regardless of the value of $\beta>0$.
- That allows us to establish a second positive solution for System (3) as either a local minimum or a global minimum of the associated functional on the Nehari manifold.

doubly sublinear coupling

Theorem 3

Suppose the coupling is sublinear with respect to both variables． Then System（3）has a positive least energy solution for every $\beta>0$ ．Furthermore there is $\beta_{0}>0$ such that System（3）has at least three positive solutions for every $0<\beta<\beta_{0}$ ．

doubly superlinear coupling

Theorem 4

Suppose the coupling is superlinear with respect to both variables. Then System (3) has a positive solution for every $\beta>0$. Furthermore there is $\beta_{1}>0$ such that System (3) has at least two positive solutions for every $\beta>\beta_{1}$, being one of these a positive least energy solution.

- When the coupling is superlinear with respect to the variable v or u, we may verify that z_{1} or z_{2}, respectively, is a point of local minimum for the associated functional on the Nehari manifold for every $\beta>0$.
- We exploit the fact above mentioned to verify, via the Mountain Pass Theorem, the existence of a positive solution for System (3).
- As in Theorem 1, the existence of a positive least energy solution may be established by a global minimization argument whenever $\beta>0$ is sufficiently large.

Remarks

- Theorems 3 and 4 guarantee the existence of a positive solution for System (3) for every $\beta>0$ when the coupling is sublinear or superlinear with respect to both variables.
- In particular, this implies that System (2) has a positive solution for every $\beta>0$ whenever $p \neq 4$.
- When the dimension of \mathbb{R}^{N} is greater than or equal to 4 , Theorem 3 establishes the existence of a positive least energy solution for System (2) for every $\beta>0$,
- Such result has also been proved by Mandel (2015) by estimating the minimum value of the associated functional on the Nehari manifold.
- Theorem 3 also implies that System (3) has a positive least energy solution for every $\beta>0$ when the dimension of \mathbb{R}^{N} is greater or equal to 6 since, in this case, $\alpha, \mu<2$.
- Mandel established the existence of a positive solution for System (2) that it is not a least energy solution for every β in the interval $[0,(p-2) / 2)$ if $p>4$. Theorem 4 complements that result since it implies the existence of such solution for every $\beta>0$.
- Note that we may applied Theorem 4 for dimensions $N=2,3$ since we suppose that the coupling is doubly partially superlinear.

Coupling linear with respect to one variable

For simplicity we suppose $p=q$ in System (3).

$$
\left\{\begin{array}{l}
-\Delta u+\lambda_{1} u=|u|^{p-2} u+\frac{2 \beta \alpha}{\alpha+\mu}|u|^{\alpha-2} u|v|^{\mu}, \quad \text { in } \mathbb{R}^{N}, \tag{5}\\
-\Delta v+\lambda_{2} v=|v|^{p-2} v+\frac{2 \beta \mu}{\alpha+\mu}|v|^{\mu-2} v|u|^{\alpha}, \text { in } \mathbb{R}^{N},
\end{array}\right.
$$

Supposing the coupling is linear with respect to the variable v, we define

$$
\begin{equation*}
\gamma_{1, \alpha}^{2}=\inf _{\varphi \in H_{r a d}^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{(\alpha+2)\|\varphi\|_{2}^{2}}{4 \int_{\mathbb{R}^{N}}\left|u_{1}\right|^{\alpha}|\varphi|^{2}} \tag{6}
\end{equation*}
$$

Analogously, when the coupling is linear with respect to the variable u, we set

$$
\begin{equation*}
\gamma_{2, \mu}^{2}=\inf _{\varphi \in H_{r a d}^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{(\mu+2)\|\varphi\|_{1}^{2}}{4 \int_{\mathbb{R}^{N}}\left|v_{1}\right| \mu|\varphi|^{2}} \tag{7}
\end{equation*}
$$

Theorem 5

Suppose the coupling is linear with respect to one of the variables. Then
(1) System (5) has a positive solution under the following conditions:
(i) $\lambda_{2} \leq \lambda_{1}$, the coupling is linear with respect to the variable v, and $\beta \in\left[0, \gamma_{1, \alpha}^{2}\right)$;
(ii) $\lambda_{2} \geq \lambda_{1}$, the coupling is linear with respect to the variable u, and $\beta \in\left[0, \gamma_{2, \mu}^{2}\right)$.
(2) System (5) has a positive least energy solution under the following conditions:
(i) $\lambda_{2} \geq \lambda_{1}$, the coupling is linear with respect to the variable v, and $\beta \in\left(\gamma_{1, \alpha}^{2},+\infty\right)$;
(ii) $\lambda_{2} \leq \lambda_{1}$, the coupling is linear with respect to the variable u, and $\beta \in\left(\gamma_{2, \mu}^{2},+\infty\right)$.

- We observe that $\frac{4}{\alpha+2} \gamma_{1, \alpha}^{2}$ is the first eigenvalue of the problem
$-\Delta v+\lambda_{2} v=\theta\left|u_{1}\right|^{\mu} v, \quad v \in H_{r a d}^{1}\left(\mathbb{R}^{N}\right)$
and that a similar result holds to $\gamma_{2, \mu}^{2}$

Supposing that the coupling is doubly partially linear, we consider

$$
\Lambda=\min \left\{\gamma_{1,2}^{2}, \gamma_{2,2}^{2}\right\}
$$

and

$$
\Lambda^{\prime}=\max \left\{\gamma_{1,2}^{2}, \gamma_{2,2}^{2}\right\}
$$

$\gamma_{1,2}^{2}$ and $\gamma_{2,2}^{2}$ are given by (6) and (7) with $\alpha=2$ and $\mu=2$, respectively.
As a direct consequence of Theorem 5, we have

Corollary 1

Suppose the coupling is doubly partially linear. Then System (5) has a positive solution for every $\beta \in[0, \Lambda)$, and a positive least energy solution for every $\beta \in\left(\Lambda^{\prime},+\infty\right)$.

- Theorem 5 and Corollary 1 provide estimates for the values of β_{0} and β_{1}, given by Theorem 1, when the coupling is linear with respect to one or both variables.
- Corollary 1 provides the same values as those obtained in Ambrosetti-Colorado for System (1) without the assumption $p=q=4$.

Necessary condition for a least energy solution

We consider System (3) under the restriction $p=q=\alpha+\mu$. More specifically we consider the system

$$
\left\{\begin{align*}
-\Delta u+\lambda_{1} u & =|u|^{p-2} u+\frac{2 \beta \alpha}{p}|u|^{\alpha-2} u|v|^{p-\alpha}, \quad \text { in } \mathbb{R}^{N}, \tag{8}\\
-\Delta v+\lambda_{2} v & =|v|^{p-2} v+\frac{2 \beta(p-\alpha)}{p}|v|^{p-\alpha-2} v|u|^{\alpha}, \quad \text { in } \mathbb{R}^{N},
\end{align*}\right.
$$

with $2<p<2^{*}, 1<\alpha<p-1$.
We set $\omega^{2}=\lambda_{2} / \lambda_{1}$, the ratio of the frequencies λ_{1} and λ_{2} of System (8),

Supposing that $\alpha \geq p / 2$, we set $a=2$, if $p=4$, and

$$
a=a(\alpha, p)=\left[\left(2^{\frac{p}{2}}-2\right)^{2(p-(\alpha+2))}\left(\frac{p}{2}\right)^{(2 \alpha-p)}\right]^{\frac{1}{p-4}}, \text { if } p>4,
$$

Theorem 6

Suppose the coupling is linear or superlinear with respect to each one of the variables. If System (8) has a positive least energy solution, then

$$
2 \beta \geq a \max \left\{\omega^{-N\left(\frac{1}{p}-\frac{1}{2^{*}}\right) \alpha}, \omega^{N\left(\frac{1}{p}-\frac{1}{2^{*}}\right)(p-\alpha)}\right\} .
$$

- If $p \geq 4$ and System (2) has a positive least energy solution, Theorem 6 implies that

$$
\beta \geq\left(2^{\frac{p}{2}-1}-1\right) \max \left\{\omega^{-\frac{N}{2}\left(1-\frac{p}{2^{*}}\right)}, \omega^{\frac{N}{2}\left(1-\frac{p}{2^{*}}\right)}\right\},
$$

in accordance with the estimate derived by Mandel and Maia-Montefusco-Pellaci (for $p=4$).

- If System (8) is linear with respect to one of the variables and it has a positive least energy solution, Theorem 6 implies that

$$
2 \beta \geq \frac{p}{2} \max \left\{\omega^{-N\left(\frac{1}{p}-\frac{1}{2^{*}}\right)(p-2)}, \omega^{N\left(\frac{1}{p}-\frac{1}{2^{*}}\right) 2}\right\} .
$$

Variational Framework

Consider $\mathbb{E}_{j}, j=1,2$, the space of radially symmetric functions in the Sobolev space $H^{1}\left(\mathbb{R}^{\mathbb{N}}\right)$ endowed with the scalar product and the associated norm given, respectively, by

$$
\langle u, \phi\rangle_{j}=\int\left(\nabla u \nabla \phi+\lambda_{j} u \phi\right),\|u\|_{j}^{2}=\int\left(|\nabla u|^{2}+\lambda_{j} u^{2}\right), u, \phi \in \mathbb{E}_{j}
$$

Then we set $\mathbb{E}=\mathbb{E}_{1} \times \mathbb{E}_{2}$ endowed with the norm

$$
\|z\|^{2}=\|u\|_{1}^{2}+\|v\|_{2}^{2}, \quad z=(u, v) \in \mathbb{E}
$$

Given $z=(u, v)$, we set $z^{+}=\left(u^{+}, v^{+}\right)$. If $z=z^{+}$, we say that z is nonnegative.

Since we are looking for positive solutions, we associate with System (3) the functional $I=I_{\beta}: \mathbb{E} \rightarrow \mathbb{R}$, defined by

$$
\begin{equation*}
I(z)=\frac{1}{2}\|z\|^{2}-\frac{1}{p}\left|u^{+}\right|_{p}^{p}-\frac{1}{q}\left|v^{+}\right|_{q}^{q}-\frac{2 \beta}{\alpha+\mu} \int\left|u^{+}\right|^{\alpha}\left|v^{+}\right|^{\mu}, \tag{9}
\end{equation*}
$$

For every $z=(u, v) \in \mathbb{E}$. Standard argument implies that $I \in C^{1}(\mathbb{E}, \mathbb{R})$.

The following basic result will be used to find positive solutions for System (3).

Proposition 1

Suppose $z \in \mathbb{E}$ is a critical point of the functional I. Then z is a nonnegative solution of System (3). Moreover if z is not either trivial or semitrivial, then z is a positive solution of System (3).

Nehari Manifold

In order to introduce the Nehari manifold associated with the Functional I, we consider $\psi: \mathbb{E} \rightarrow \mathbb{R}$ defined by
$\psi(z)=\left\langle I^{\prime}(z), z\right\rangle=\|z\|^{2}-\left|u^{+}\right|_{p}^{p}-\left|v^{+}\right|_{q}^{q}-2 \beta \int\left|u^{+}\right|^{\alpha}\left|v^{+}\right|^{\mu}, \quad z \in \mathbb{E}$.
We also associate with the Problems (4) the functionals $J_{p} \in C^{2}\left(\mathbb{E}_{1}, \mathbb{R}\right)$ and $J_{q} \in C^{2}\left(\mathbb{E}_{2}, \mathbb{R}\right)$ given by

$$
\begin{align*}
J_{p}(u) & =\frac{1}{2}\|u\|_{1}^{2}-\frac{1}{p}\left|u^{+}\right|_{p}^{p}, \tag{11}\\
J_{q}(v) & =\frac{1}{2} \| v \mathbb{E}_{1}, \\
J_{2}^{2}-\frac{1}{q}\left|v^{+}\right|_{q}^{q}, & v \in \mathbb{E}_{2} .
\end{align*}
$$

Define

$$
\begin{aligned}
\psi_{p}(u) & =\left\langle J_{p}^{\prime}(u), u\right\rangle=\|u\|_{1}^{2}-\left|u^{+}\right|_{p}^{p}, \quad u \in \mathbb{E}_{1}, \\
\psi_{q}(v) & =\left\langle J_{q}^{\prime}(v), v\right\rangle=\|v\|_{2}^{2}-\left|v^{+}\right|_{q}^{q}, \\
& v \in \mathbb{E}_{2} .
\end{aligned}
$$

Under our hypotheses that $\psi \in C^{1}(\mathbb{E}, \mathbb{R}), \psi_{p} \in C^{2}\left(\mathbb{E}_{1}, \mathbb{R}\right)$ and $\psi_{q} \in C^{2}\left(\mathbb{E}_{2}, \mathbb{R}\right)$.

Define

$$
\begin{aligned}
\psi_{p}(u) & =\left\langle J_{p}^{\prime}(u), u\right\rangle=\|u\|_{1}^{2}-\left|u^{+}\right|_{p}^{p}, \\
\psi_{q}(v) & =\left\langle J_{q}^{\prime}(v), v\right\rangle=\|v\|_{2}^{2}-\left|v^{+}\right|_{q}^{q}, \\
& v \in \mathbb{E}_{2} .
\end{aligned}
$$

Under our hypotheses that $\psi \in C^{1}(\mathbb{E}, \mathbb{R}), \psi_{p} \in C^{2}\left(\mathbb{E}_{1}, \mathbb{R}\right)$ and $\psi_{q} \in C^{2}\left(\mathbb{E}_{2}, \mathbb{R}\right)$. The Nehari manifolds associated with I, J_{p} and J_{q}, are, respectively,

$$
\begin{align*}
& \mathcal{M}_{\beta}:=\{z \in \mathbb{E} \backslash\{0\} ; \psi(z)=0\} \\
& \mathcal{N}_{p}:=\left\{u \in \mathbb{E}_{1} \backslash\{0\} ; \psi_{p}(u)=0\right\} \tag{12}\\
& \mathcal{N}_{q}:=\left\{v \in \mathbb{E}_{2} \backslash\{0\} ; \psi_{q}(v)=0\right\}
\end{align*}
$$

In the standard Nehari manifold technique there exists a homeomorphism from S^{∞} onto \mathcal{M}_{β}. This is not the case in our setting.

Remark 1

The set $A^{\infty}:=\left\{w \in S^{\infty} ; w^{+} \not \equiv 0\right\}$ is open in S^{∞} and pathwise connected.

In the standard Nehari manifold technique there exists a homeomorphism from S^{∞} onto \mathcal{M}_{β}. This is not the case in our setting.

Remark 1

The set $A^{\infty}:=\left\{w \in S^{\infty} ; w^{+} \not \equiv 0\right\}$ is open in S^{∞} and pathwise connected.

Remark 2

Note also that $A_{p}^{\infty}:=\left\{u \in S_{p}^{\infty} ; u^{+} \not \equiv 0\right\}$, with S_{p}^{∞} the unit sphere of \mathbb{E}_{1}, is open in S_{p}^{∞} and pathwise connected. Using similar notation, it is also clear that A_{q} is open in S_{q}^{∞} and pathwise connected.

Lemma 7

Given $z \in A^{\infty}$, there exists a unique $t=t(z)>0$, depending on $\beta>0$, such that $t(z) z \in \mathcal{M}_{\beta}$. Moreover $z \mapsto t(z)$ is a continuous function on A^{∞} and the $\operatorname{map} \phi_{\beta}: A^{\infty} \rightarrow \mathcal{M}_{\beta}, \phi_{\beta}(z)=t(z) z$ defines a homeomorphism from A^{∞} onto \mathcal{M}_{β}.

Remark 3

1. Lemma 7 implies that given $z \in \mathbb{E}^{+}=\left\{z \in \mathbb{E}: z^{+} \not \equiv 0\right\}$, there is a unique $t=t(z)>0$, depending on $\beta>0$, such that $t(z) z \in \mathcal{M}_{\beta}$. Moreover the function $z \mapsto t(z), z \in \mathbb{E}^{+}$is continuous.
2. Lemma 7 is valid if we consider J_{p}, A_{p}^{∞} and \mathcal{N}_{p} or $J_{q}, A_{q}^{\infty}, \mathcal{N}_{q}$. In this case we denote the corresponding homeomorphisms by $\sigma_{p}(u)=t_{p}(u) u$ and $\sigma_{q}(u)=t_{q}(u) u$. The item (1) is also valid.

Lemma 8

(1) \mathcal{M}_{β} is a manifold of class C^{1} without boundary. Moreover, there is a constant $\eta>0$ such that $\left\langle\psi^{\prime}(z), z\right\rangle<-\eta$ for every $z \in \mathcal{M}_{\beta}$.
(2) There is $C>0$ such that $I(z) \geq C>0$ for every $z \in \mathcal{M}_{\beta}$. Moreover the functional I is coercive on \mathcal{M}_{β}.

As a direct consequence of the previous lemma and Lagrange Multipliers Theorem, we have

Proposition 2

$z \in \mathbb{E} \backslash\{0\}$ is a critical point of I if, and only if, $z \in \mathcal{M}_{\beta}$ and z is a critical point of I on \mathcal{M}_{β}.

Remark 4

Lemmas 8 and Proposition 2 remain valid if we consider the functionals J_{p} and J_{q} and the Nehari manifolds, \mathcal{N}_{p} and \mathcal{N}_{q} associated with these functionals. Moreover \mathcal{N}_{p} and \mathcal{N}_{q} are manifolds of class C^{2}.

Proposition 3

I satisfies the $(P S)$ condition on \mathcal{M}_{β}.

Remark 5

Proposition 3 is also valid if we consider the functional J_{p} and J_{q} on \mathcal{N}_{p} and \mathcal{N}_{q}, respectively.

Local Estimates on Nehari Manifold

Considering $u_{1}, v_{1}>0$, the radial and positive solutions of Problem (4), we set

$$
w_{1}=z_{1} /\left\|z_{1}\right\|=\left(\hat{u}_{1}, 0\right), \quad \hat{u}_{1}=u_{1} /\left\|u_{1}\right\|_{1}
$$

and

$$
w_{2}=z_{2} /\left\|z_{2}\right\|, \quad \hat{v}_{1}=v_{1} /\left\|v_{1}\right\|_{2}
$$

Lemma 9

Let $u_{1}>0$ be the unique radial and positive solution of the first equation given (4). Then, Given $d>0$ there exists $\delta>0$ such that

$$
J_{p}(u) \geq J_{p}\left(u_{1}\right)+\delta, \quad \text { for all } u \in \mathcal{N}_{p}, \quad\left\|u-u_{1}\right\|_{1} \geq d
$$

Given $\rho>0$, we consider $V_{\rho}^{i}=B_{\rho}\left(w_{i}\right) \cap A^{\infty}, i=1,2$. For a question of simplicity, we denote the boundary of V_{ρ}^{i} on A^{∞} by ∂V_{ρ}^{i}.

Lemma 10

Let $\sigma_{p}: \mathbb{E}_{1}^{+} \rightarrow \mathcal{N}_{p}$, be the application given by Remark 3-(2). Then
(1) There exists $\bar{\rho}>0$ such that $\hat{u} \in \mathbb{E}_{1}^{+}$, for every

$$
w=(\hat{u}, \hat{v}) \in V_{\bar{\rho}}^{1}=B_{\bar{\rho}}\left(w_{1}\right) \cap A^{\infty},
$$

(2) given $\rho \in(0, \bar{\rho})$, there exists $\epsilon>0$ such that

$$
\left\|\sigma_{p}(\hat{u})-u_{1}\right\|_{1} \geq \epsilon \text { for every } w \in \partial V_{\rho}^{1},\|\hat{v}\|_{2}<\epsilon
$$

Remark 6

Lemmas 9 and 10 are valid if we consider v_{1}, \mathcal{N}_{q} and \mathbb{E}_{2}^{+}instead u_{1}, \mathcal{N}_{p} and \mathbb{E}_{1}^{+}, respectively.

Proposition 4

Suppose $u_{1}>0$ is the radial solution of the first equation in (4). Then if the coupling is linear with respect to the variable v and $0<\beta<\gamma_{1, \alpha}^{2}$ or superlinear with respect to the variable v and $0<\beta<\infty$, there are $\delta>0$ and a neighborhood U_{β}^{1} of z_{1} in \mathcal{M}_{β}, with $z_{2} \notin U_{\beta}^{1}$, such that

$$
I(z) \geq I\left(z_{1}\right)+\delta, \text { for all } z \in \partial U_{\beta}^{1} .
$$

Arguing as in Proposition 4, we prove

Proposition 5

Suppose $v_{1}>0$ is the radial solution of the second equation in (4). Then if the coupling is linear with respect to the variable u and $0<\beta<\gamma_{2, \mu}^{2}$ or superlinear with respect to the variable u and $0<\beta<\infty$, there are $\delta>0$ and a neighborhood U_{β}^{2} of z_{2} in \mathcal{M}_{β}, with $z_{1} \notin U_{\beta}^{2}$, such that

$$
I(z) \geq I\left(z_{2}\right)+\delta, \text { for all } z \in \partial U_{\beta}^{2}
$$

Lemma 11

Let $\gamma_{1, \alpha}^{2}$ be given by (6). Then, $\gamma_{1, \alpha}^{2}>0$ and there is $\phi \in H_{r a d}^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}, \phi>0$, such that

$$
\begin{equation*}
\gamma_{1, \alpha}^{2}=\frac{(\alpha+2)\|\phi\|_{2}^{2}}{4 \int_{\mathbb{R}^{N}}\left|u_{1}\right|^{\alpha}|\phi|^{2}} \tag{13}
\end{equation*}
$$

Proof of Theorem 1

Let $c_{1}, c_{2}>0$ be the least energy levels associated with Problems (4):

$$
\begin{equation*}
I\left(z_{1}\right)=J_{p}\left(u_{1}\right)=c_{1}, \quad I\left(z_{2}\right)=J_{q}\left(v_{1}\right)=c_{2} . \tag{14}
\end{equation*}
$$

Define

$$
\begin{equation*}
c_{\beta}:=\inf _{z \in \mathcal{M}_{\beta}} I(z) \tag{15}
\end{equation*}
$$

In view of Lemma 8-(2) and Propositions 2 and 3, we have

Lemma 12

There is $z_{\beta} \in \mathcal{M}_{\beta}$ such that $I\left(z_{\beta}\right)=c_{\beta}$.

Lemma 13

Suppose $z_{\beta} \in \mathcal{M}_{\beta}$ is such that $I\left(z_{\beta}\right)=c_{\beta}$. Then

$$
I\left(z_{\beta}\right)=\inf \left\{I(z): z \in E \backslash\{0\}, z \geq 0 \text { and } I^{\prime}(z)=0\right\} .
$$

Lemma 14

Let $c_{1}, c_{2}>0$ be given by (14). Then there exists $\beta_{1}>0$ such that $0<c_{\beta}<\min \left\{c_{1}, c_{2}\right\}$ for every $\beta>\beta_{1}$.

A least energy solution

- In view of Lemma 12, there exists $z_{3}=z_{\beta}$, a critical point of $/$ on \mathcal{M}_{β}, such that $I\left(z_{3}\right)=\inf _{z \in \mathcal{M}_{\beta}} I(z)=c_{\beta}$.
- Taking $\beta_{1}>0$ given by Lemma 14 , we have that $I\left(z_{3}\right)<\min \left\{I\left(z_{1}\right), I\left(z_{2}\right)\right\}$ for every $\beta>\beta_{1}$.
- This estimate, Proposition 1 and Lemma 13 imply that z_{3} is a positive least energy solution of System (3).

A positive solution

The following proposition gives us a local estimate for I on the Nehari manifold when $\beta>0$ is sufficiently small.

Proposition 6

There exist $\beta_{0}, \delta>0$ such that, for every $\beta \in\left[0, \beta_{0}\right)$, we may find neighborhoods U_{β}^{1} and U_{β}^{2} in \mathcal{M}_{β} of z_{1} and z_{2}, respectively, satisfying $\overline{U_{\beta}^{1}} \cap \overline{U_{\beta}^{2}}=\emptyset$, and

$$
\begin{equation*}
I(z) \geq I\left(z_{i}\right)+\delta, i=1,2, \text { for all } z \in \partial U_{\beta}^{i} . \tag{16}
\end{equation*}
$$

Now we define the Mountain Pass critical level associated with the functional I on \mathcal{M}_{β} :

$$
\begin{equation*}
c_{\mathcal{M}_{\beta}}:=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I(\gamma(t)), \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma=\left\{\gamma \in C\left([0,1], \mathcal{M}_{\beta}\right): \gamma(0)=z_{1}, \quad \gamma(1)=z_{2}\right\} . \tag{18}
\end{equation*}
$$

- Fixed $0<\beta<\beta_{0}$, we Invoke Propositions 6 and 3 and the Mountain Pass Theorem to find z_{4}, a critical point of I on \mathcal{M}_{β}, such that

$$
\begin{equation*}
I\left(z_{4}\right)=c_{\mathcal{M}_{\beta}}>\max \left\{I\left(z_{1}\right), I\left(z_{2}\right)\right\} \tag{19}
\end{equation*}
$$

- In view of Propositions 1 and 2, we may assert that z_{4} is a positive solution of System (3).

Proof of Theorem 2

Given $0<\beta<\beta_{0}$, we take the neighborhoods U_{β}^{1} and U_{β}^{2}, in \mathcal{M}_{β}, of z_{1} and z_{2}, respectively, provided by Proposition 6 and we define

$$
\begin{equation*}
c_{i, \beta}:=\inf _{z \in \bar{U}_{\beta}^{i}} I(z), \quad i=1,2 \tag{20}
\end{equation*}
$$

As a consequence of Proposition 3 and the local deformation lemma, we have

Proposition 7

For every $0<\beta<\beta_{0}$ there is a critical point \bar{z}_{i} of I on \mathcal{M}_{β} such that $\bar{z}_{i} \in U_{\beta}^{i}$ and $I\left(\bar{z}_{i}\right)=c_{i, \beta}, i=1,2$.

Proposition 8

Suppose the coupling is sublinear with respect to the variable v or u, then, for every $\beta>0, z_{1}$ or z_{2} is not a local minimum of I on \mathcal{M}_{β}, respectively.

- Fixed $0<\beta<\beta_{0}$ and arguing as in the proof of Theorem 1, we find a critical point z_{3} of $/$ on \mathcal{M}_{β} such that

$$
\begin{equation*}
c_{\mathcal{M}_{\beta}}=I\left(z_{3}\right)>\max \left\{I\left(z_{1}\right), I\left(z_{2}\right)\right\}, \tag{21}
\end{equation*}
$$

- Next, assuming without loss of generality that the coupling is sublinear with respect to the variable v, we invoke Propositions 7 and 8 to find z_{4}, a critical point of I on \mathcal{M}_{β}, such that $z_{4} \in U_{\beta}^{1}$, and

$$
\begin{equation*}
I\left(z_{4}\right)==c_{1, \beta}=\inf _{z \in \overline{U_{\beta}^{1}}} I(z)<I\left(z_{1}\right)<I\left(z_{3}\right) \tag{22}
\end{equation*}
$$

- Since $\overline{U_{\beta}^{1}} \cap \overline{U_{\beta}^{2}}=\emptyset$, it is clear that $z_{4} \neq z_{2}$.
- we conclude that z_{4} and z_{3} are two distinct positive solutions of System (3).
- We first verify the existence of positive least energy solution
- Since the coupling is doubly partially sublinear, Proposition 8 implies that z_{1} and z_{2} are not local minimum of the functional I on \mathcal{M}_{β} for all $\beta>0$.
- Using this and invoking Lemma 12 , we get z_{3} such that

$$
I\left(z_{3}\right)=c_{\beta}=\inf _{z \in \mathcal{M}_{\beta}} I(z)<\min \left\{I\left(z_{1}\right), I\left(z_{2}\right)\right\}
$$

- z_{3} is a least energy solution for System (3).
- Now, we prove the existence of at least three positive solutions for $0<\beta<\beta_{0}, \beta_{0}>0$ given by Proposition 6.
- As in our earlier proofs, we obtain z_{4}, a critical point of I on \mathcal{M}_{β}, such that

$$
\begin{equation*}
I\left(z_{4}\right)=c_{\mathcal{M}_{\beta}}>\max \left\{I\left(z_{1}\right), I\left(z_{2}\right)\right\} \tag{23}
\end{equation*}
$$

- Moreover, using the same argument of the proof of Theorem 2, we find $z_{5} \in U_{\beta}^{1}$ e $z_{6} \in U_{\beta}^{2}$, critical points of I on \mathcal{M}_{β}, such that

$$
I\left(z_{5}\right)<I\left(z_{1}\right) \quad \text { and } \quad I\left(z_{6}\right)<I\left(z_{2}\right)
$$

- The above estimate and (23) imply that $z_{5}, z_{6} \notin\left\{z_{1}, z_{2}, z_{4}\right\}$. Moreover, since $\overline{U_{\beta}^{1}} \cap \overline{U_{\beta}^{2}}=\emptyset, z_{5} \neq z_{6}$.
- System (3) has at least three positive solutions.

E~ A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Math. Acad. Sci. Paris 342 (2006) 453-458.
A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations in \mathbb{R}^{N}, J. Lond. Math. Soc. 2 (2007) 67-82.
D. G. de Figueiredo and O. Lopes, Solitary waves for some nonlinear Schrödinger systems, Ann. I. H. Poincaré 25 (2008) 149-161.
目 C. Goulart and E. A. B. Silva, Standing waves for weakly coupled nonlinear Schrödinger systems, Comm. Cont. Math. to appear
(L. A. Maia, E. Montefusco and B. Pellaci, Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Differential Equations. 229 (2006) 743-767.

囯 R. Mandel, Minimal energy solutions for cooperative nonlinear Schrödinger systems, Nonlinear Differ. Equ. Appl. 22 (2015) 239-262.

