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Introduction

Ambrosetti-Colorado (2006, 2007) considered the system{
−∆u + λ1u = µ1u

3 + βuv2, in RN ,
−∆v + λ2v = µ2v

3 + βu2v , in RN ,
(1)

N = 2, 3

µ1, µ2, λ1, λ2, β > 0

They established the existence of positive constants Λ and Λ′,
such that System (1) has a positive solution for every
β ∈ (0,Λ) and a positive least energy solution for every
β ∈ (Λ′,+∞).

deFigueiredo-Lopes (2006) complemented the results derived
by Ambrosetti-Colorado, including the case N = 1.



Maia-Montefusco-Pellacci (2006) considered the following version
of System (1){

−∆u + u = |u|p−2u + β|u|
p
2
−2u|v |

p
2 , in RN ,

−∆v + ω2v = |v |p−2v + β|u|
p
2 |v |

p
2
−2v , in RN ,

(2)

N ≥ 1

β, ω > 0, 2 < p < 2∗

2∗ =∞ if N = 2 and 2∗ = 2N/(N − 2) if N ≥ 3.

Those authors established results on necessary and sufficient
conditions for the existence of a positive least energy solution
for System (2).

Results related have been also proved by Mandel (2015).



We consider the existence of positive solutions for the weakly
coupled nonlinear Schrödinger system

{
−∆u + λ1u = |u|p−2u + 2βα

α+µ |u|
α−2u|v |µ, in RN ,

−∆v + λ2v = |v |q−2v + 2βµ
α+µ |v |

µ−2v |u|α, in RN ,
(3)

N > 2,

β, λ1, λ2 > 0, α, µ > 1, 2 < p, q, α + µ < 2∗,



z0 = (0, 0) is a trivial solution for System (3).

System (3) has two semitrivial solutions z1 = (u1, 0) and
z2 = (0, v1), where u1, v1 > 0 are the unique positive radial
solutions of the nonlinear Schrödinger equations:

−∆u+λ1u = |u|p−2u, −∆v +λ2v = |v |q−2v , in RN . (4)

Our objective is to study the existence of positive solutions,
i.e. z = (u, v) a solution of (3) such that u, v > 0 in RN .



Remarks

The functional associated with System (1) is of class C 2

Ambrosetti-Colorado used the structure of the scalar problems
(4) to estimate the Morse indexes of the semitrivial solutions
z1 and z2.

The functional associated with System (3) has not, in general,
the same regularity as the one associated with System (1).

We do not use the infinite dimensional Morse theory to
establish local estimates on neighborhoods of z1 and z2.



Even though the coupling in System (3) should be considered
superlinear given that α + µ > 2, it may present distinct
characteristics when we fix one of the variable.

we say that the coupling is superlinear, linear or sublinear with
respect to the variable u if α > 2, α = 2 or 1 < α < 2,
respectively. Analogously, we define the superlinear, linear and
sublinear coupling with respect to the variable v .



The coupling in System (1) is linear with respect to both
variables.

The coupling in System (2) is sublinear, linear or superlinear
with respect to both variables if p < 4, p = 4 or p > 4,
respectively.



Existence of a positive solution

Theorem 1

There exist β0, β1 > 0 such that System (3) has a positive solution
for every β ∈ [0, β0) and a positive least energy solution for every
β ∈ (β1,+∞).



Theorem 1 holds independently of the type of coupling.

For β > 0 sufficiently small, The associated functional on the
Nehari manifold satisfies the geometric hypotheses of the
Mountain Pass Theorem.

For β > 0 sufficiently large, z1 and z2 are not global minimum
of the associated functional restricted to the Nehari manifold.

These facts allow us to apply either a minimax theorem or a
minimization argument to prove Theorem 1.



sublinear coupling

Theorem 2

Suppose the coupling is sublinear with respect to one of the
variables. Then there is β0 > 0 such that System (3) has at least
two positive solutions for every 0 < β < β0.



When β > 0 is sufficiently small the proof of Theorem 1
provides the existence of a positive solution for System (3) via
the Mountain Pass Theorem.

If the coupling is sublinear with respect to the variable v or u,
we may see that z1 = (u, 0) or z2 = (0, v), respectively, is not
a point of local minimum of the functional associated on the
Nehari manifold regardless of the value of β > 0.

That allows us to establish a second positive solution for
System (3) as either a local minimum or a global minimum of
the associated functional on the Nehari manifold.



doubly sublinear coupling

Theorem 3

Suppose the coupling is sublinear with respect to both variables.
Then System (3) has a positive least energy solution for every
β > 0. Furthermore there is β0 > 0 such that System (3) has at
least three positive solutions for every 0 < β < β0.



doubly superlinear coupling

Theorem 4

Suppose the coupling is superlinear with respect to both variables.
Then System (3) has a positive solution for every β > 0.
Furthermore there is β1 > 0 such that System (3) has at least two
positive solutions for every β > β1, being one of these a positive
least energy solution.



When the coupling is superlinear with respect to the variable
v or u, we may verify that z1 or z2, respectively, is a point of
local minimum for the associated functional on the Nehari
manifold for every β > 0.

We exploit the fact above mentioned to verify, via the
Mountain Pass Theorem, the existence of a positive solution
for System (3).

As in Theorem 1, the existence of a positive least energy
solution may be established by a global minimization
argument whenever β > 0 is sufficiently large.



Remarks

Theorems 3 and 4 guarantee the existence of a positive
solution for System (3) for every β > 0 when the coupling is
sublinear or superlinear with respect to both variables.

In particular, this implies that System (2) has a positive
solution for every β > 0 whenever p 6= 4.

When the dimension of RN is greater than or equal to 4,
Theorem 3 establishes the existence of a positive least energy
solution for System (2) for every β > 0,

Such result has also been proved by Mandel (2015) by
estimating the minimum value of the associated functional on
the Nehari manifold.

Theorem 3 also implies that System (3) has a positive least
energy solution for every β > 0 when the dimension of RN is
greater or equal to 6 since, in this case, α, µ < 2.



Mandel established the existence of a positive solution for
System (2) that it is not a least energy solution for every β in
the interval [0, (p − 2)/2) if p > 4. Theorem 4 complements
that result since it implies the existence of such solution for
every β > 0 .

Note that we may applied Theorem 4 for dimensions N = 2, 3
since we suppose that the coupling is doubly partially
superlinear.



Coupling linear with respect to one variable

For simplicity we suppose p = q in System (3).

{
−∆u + λ1u = |u|p−2u + 2βα

α+µ |u|
α−2u|v |µ, in RN ,

−∆v + λ2v = |v |p−2v + 2βµ
α+µ |v |

µ−2v |u|α, in RN ,
(5)

Supposing the coupling is linear with respect to the variable v , we
define

γ2
1,α = inf

ϕ∈H1
rad (RN)\{0}

(α + 2)||ϕ||22
4
∫
RN |u1|α|ϕ|2

. (6)

Analogously, when the coupling is linear with respect to the
variable u, we set

γ2
2,µ = inf

ϕ∈H1
rad (RN)\{0}

(µ+ 2)||ϕ||21
4
∫
RN |v1|µ|ϕ|2

. (7)



Theorem 5

Suppose the coupling is linear with respect to one of the variables.
Then

1 System (5) has a positive solution under the following
conditions:

(i) λ2 ≤ λ1, the coupling is linear with respect to the variable v ,
and β ∈ [0, γ2

1,α);
(ii) λ2 ≥ λ1, the coupling is linear with respect to the variable u,

and β ∈ [0, γ2
2,µ).

2 System (5) has a positive least energy solution under the
following conditions:

(i) λ2 ≥ λ1, the coupling is linear with respect to the variable v ,
and β ∈ (γ2

1,α,+∞);
(ii) λ2 ≤ λ1, the coupling is linear with respect to the variable u,

and β ∈ (γ2
2,µ,+∞).



We observe that
4

α + 2
γ2

1,α is the first eigenvalue of the

problem
−∆v + λ2v = θ|u1|µv , v ∈ H1

rad(RN)

and that a similar result holds to γ2
2,µ



Supposing that the coupling is doubly partially linear, we consider

Λ = min{γ2
1,2, γ

2
2,2}

and
Λ′ = max{γ2

1,2, γ
2
2,2},

γ2
1,2 and γ2

2,2 are given by (6) and (7) with α = 2 and µ = 2,
respectively.
As a direct consequence of Theorem 5, we have

Corollary 1

Suppose the coupling is doubly partially linear. Then System (5)
has a positive solution for every β ∈ [0,Λ), and a positive least
energy solution for every β ∈ (Λ′,+∞).



Theorem 5 and Corollary 1 provide estimates for the values of
β0 and β1, given by Theorem 1, when the coupling is linear
with respect to one or both variables.

Corollary 1 provides the same values as those obtained in
Ambrosetti-Colorado for System (1) without the assumption
p = q = 4.



Necessary condition for a least energy solution

We consider System (3) under the restriction p = q = α + µ.
More specifically we consider the system

{
−∆u + λ1u = |u|p−2u + 2βα

p |u|
α−2u|v |p−α, in RN ,

−∆v + λ2v = |v |p−2v + 2β(p−α)
p |v |p−α−2v |u|α, in RN ,

(8)

with 2 < p < 2∗, 1 < α < p − 1.
We set ω2 = λ2/λ1, the ratio of the frequencies λ1 and λ2 of
System (8),



Supposing that α ≥ p/2, we set a = 2, if p = 4, and

a = a(α, p) =

[(
2

p
2 − 2

)2(p−(α+2)) (p
2

)(2α−p)
] 1

p−4

, if p > 4,

Theorem 6

Suppose the coupling is linear or superlinear with respect to each
one of the variables. If System (8) has a positive least energy
solution, then

2β ≥ amax

ω
−N
(

1

p
− 1

2∗

)
α

, ω
N

(
1

p
− 1

2∗

)
(p−α)

 .



If p ≥ 4 and System (2) has a positive least energy solution,
Theorem 6 implies that

β ≥ (2
p
2
−1 − 1) max

{
ω−

N
2

(1− p
2∗ ), ω

N
2

(1− p
2∗ )
}
,

in accordance with the estimate derived by Mandel and
Maia-Montefusco-Pellaci (for p = 4).

If System (8) is linear with respect to one of the variables and
it has a positive least energy solution, Theorem 6 implies that

2β ≥ p

2
max

ω
−N
(

1

p
− 1

2∗

)
(p−2)

, ω
N

(
1

p
− 1

2∗

)
2

 .



Variational Framework

Consider Ej , j = 1, 2, the space of radially symmetric functions in
the Sobolev space H1(RN) endowed with the scalar product and
the associated norm given, respectively, by

〈u, φ〉j =

∫
(∇u∇φ+ λjuφ), ||u||2j =

∫ (
|∇u|2 + λju

2
)
, u, φ ∈ Ej .

Then we set E = E1 × E2 endowed with the norm

‖z‖2 = ‖u‖2
1 + ‖v‖2

2, z = (u, v) ∈ E.

Given z = (u, v), we set z+ = (u+, v+). If z = z+, we say that z
is nonnegative.



Since we are looking for positive solutions, we associate with
System (3) the functional I = Iβ : E→ R, defined by

I (z) =
1

2
||z ||2 − 1

p
|u+|pp −

1

q
|v+|qq −

2β

α + µ

∫
|u+|α|v+|µ, (9)

For every z = (u, v) ∈ E. Standard argument implies that
I ∈ C 1(E,R).



The following basic result will be used to find positive solutions for
System (3).

Proposition 1

Suppose z ∈ E is a critical point of the functional I . Then z is a
nonnegative solution of System (3). Moreover if z is not either
trivial or semitrivial, then z is a positive solution of System (3).



Nehari Manifold

In order to introduce the Nehari manifold associated with the
Functional I , we consider ψ : E→ R defined by

ψ(z) =
〈
I ′(z), z

〉
= ||z ||2−|u+|pp−|v+|qq−2β

∫
|u+|α|v+|µ, z ∈ E.

(10)
We also associate with the Problems (4) the functionals
Jp ∈ C 2(E1,R) and Jq ∈ C 2(E2,R) given by

Jp(u) = 1
2 ||u||

2
1 − 1

p |u
+|pp, u ∈ E1,

Jq(v) = 1
2 ||v ||

2
2 − 1

q |v
+|qq, v ∈ E2.

(11)



Define

ψp(u) =
〈
J ′p(u), u

〉
= ||u||21 − |u+|pp, u ∈ E1,

ψq(v) =
〈
J ′q(v), v

〉
= ||v ||22 − |v+|qq, v ∈ E2.

Under our hypotheses that ψ ∈ C 1(E,R), ψp ∈ C 2(E1,R) and
ψq ∈ C 2(E2,R).The Nehari manifolds associated with I , Jp and
Jq, are, respectively,

Mβ := {z ∈ E \ {0};ψ(z) = 0},
Np := {u ∈ E1 \ {0};ψp(u) = 0},
Nq := {v ∈ E2 \ {0};ψq(v) = 0}.

(12)



Define

ψp(u) =
〈
J ′p(u), u

〉
= ||u||21 − |u+|pp, u ∈ E1,

ψq(v) =
〈
J ′q(v), v

〉
= ||v ||22 − |v+|qq, v ∈ E2.

Under our hypotheses that ψ ∈ C 1(E,R), ψp ∈ C 2(E1,R) and
ψq ∈ C 2(E2,R).The Nehari manifolds associated with I , Jp and
Jq, are, respectively,

Mβ := {z ∈ E \ {0};ψ(z) = 0},
Np := {u ∈ E1 \ {0};ψp(u) = 0},
Nq := {v ∈ E2 \ {0};ψq(v) = 0}.

(12)



In the standard Nehari manifold technique there exists a
homeomorphism from S∞ onto Mβ. This is not the case in our
setting.

Remark 1

The set A∞ := {w ∈ S∞;w+ 6≡ 0} is open in S∞ and pathwise
connected.

Remark 2

Note also that A∞p := {u ∈ S∞p ; u+ 6≡ 0}, with S∞p the unit sphere
of E1, is open in S∞p and pathwise connected. Using similar
notation, it is also clear that Aq is open in S∞q and pathwise
connected.



In the standard Nehari manifold technique there exists a
homeomorphism from S∞ onto Mβ. This is not the case in our
setting.

Remark 1

The set A∞ := {w ∈ S∞;w+ 6≡ 0} is open in S∞ and pathwise
connected.

Remark 2

Note also that A∞p := {u ∈ S∞p ; u+ 6≡ 0}, with S∞p the unit sphere
of E1, is open in S∞p and pathwise connected. Using similar
notation, it is also clear that Aq is open in S∞q and pathwise
connected.



Lemma 7

Given z ∈ A∞, there exists a unique t = t(z) > 0, depending on
β > 0, such that t(z)z ∈Mβ. Moreover z 7→ t(z) is a continuous
function on A∞ and the map φβ : A∞ →Mβ, φβ(z) = t(z)z
defines a homeomorphism from A∞ onto Mβ.

Remark 3

1. Lemma 7 implies that given z ∈ E+ = {z ∈ E : z+ 6≡ 0}, there
is a unique t = t(z) > 0, depending on β > 0, such that
t(z)z ∈Mβ. Moreover the function z 7→ t(z), z ∈ E+ is
continuous.
2. Lemma 7 is valid if we consider Jp, A∞p and Np or Jq, A∞q , Nq.
In this case we denote the corresponding homeomorphisms by
σp(u) = tp(u)u and σq(u) = tq(u)u. The item (1) is also valid.



Lemma 8

1 Mβ is a manifold of class C 1 without boundary. Moreover,
there is a constant η > 0 such that 〈ψ′(z), z〉 < −η for every
z ∈Mβ.

2 There is C > 0 such that I (z) ≥ C > 0 for every z ∈Mβ.
Moreover the functional I is coercive on Mβ.



As a direct consequence of the previous lemma and Lagrange
Multipliers Theorem, we have

Proposition 2

z ∈ E \ {0} is a critical point of I if, and only if, z ∈Mβ and z is
a critical point of I on Mβ.

Remark 4

Lemmas 8 and Proposition 2 remain valid if we consider the
functionals Jp and Jq and the Nehari manifolds, Np and Nq

associated with these functionals. Moreover Np and Nq are
manifolds of class C 2.



Proposition 3

I satisfies the (PS) condition on Mβ.

Remark 5

Proposition 3 is also valid if we consider the functional Jp and Jq
on Np and Nq, respectively.



Local Estimates on Nehari Manifold

Considering u1, v1 > 0, the radial and positive solutions of Problem
(4), we set

w1 = z1/||z1|| = (û1, 0), û1 = u1/||u1||1,

and
w2 = z2/||z2||, v̂1 = v1/||v1||2.

Lemma 9

Let u1 > 0 be the unique radial and positive solution of the first
equation given (4). Then, Given d > 0 there exists δ > 0 such that

Jp(u) ≥ Jp(u1) + δ, for all u ∈ Np, ||u − u1||1 ≥ d .



Given ρ > 0, we consider V i
ρ = Bρ(wi ) ∩ A∞, i = 1, 2. For a

question of simplicity, we denote the boundary of V i
ρ on A∞ by

∂V i
ρ.

Lemma 10

Let σp : E+
1 → Np, be the application given by Remark 3-(2).

Then

1 There exists ρ̄ > 0 such that û ∈ E+
1 , for every

w = (û, v̂) ∈ V 1
ρ̄ = Bρ̄(w1) ∩ A∞,

2 given ρ ∈ (0, ρ̄), there exists ε > 0 such that
||σp(û)− u1||1 ≥ ε for every w ∈ ∂V 1

ρ , ||v̂ ||2 < ε.

Remark 6

Lemmas 9 and 10 are valid if we consider v1, Nq and E+
2 instead

u1, Np and E+
1 , respectively.



Proposition 4

Suppose u1 > 0 is the radial solution of the first equation in (4).
Then if the coupling is linear with respect to the variable v and
0 < β < γ2

1,α or superlinear with respect to the variable v and

0 < β <∞, there are δ > 0 and a neighborhood U1
β of z1 in Mβ,

with z2 /∈ U1
β, such that

I (z) ≥ I (z1) + δ, for all z ∈ ∂U1
β.



Arguing as in Proposition 4, we prove

Proposition 5

Suppose v1 > 0 is the radial solution of the second equation in (4).
Then if the coupling is linear with respect to the variable u and
0 < β < γ2

2,µ or superlinear with respect to the variable u and

0 < β <∞, there are δ > 0 and a neighborhood U2
β of z2 in Mβ,

with z1 /∈ U2
β, such that

I (z) ≥ I (z2) + δ, for all z ∈ ∂U2
β.

Lemma 11

Let γ2
1,α be given by (6). Then, γ2

1,α > 0 and there is

φ ∈ H1
rad(RN) \ {0}, φ > 0, such that

γ2
1,α =

(α + 2)||φ||22
4
∫
RN |u1|α|φ|2

. (13)



Proof of Theorem 1

Let c1, c2 > 0 be the least energy levels associated with Problems
(4):

I (z1) = Jp(u1) = c1, I (z2) = Jq(v1) = c2. (14)

Define

cβ := inf
z∈Mβ

I (z). (15)

In view of Lemma 8-(2) and Propositions 2 and 3, we have

Lemma 12

There is zβ ∈Mβ such that I (zβ) = cβ.



Lemma 13

Suppose zβ ∈Mβ is such that I (zβ) = cβ. Then

I (zβ) = inf{I (z) : z ∈ E \ {0}, z ≥ 0 and I ′(z) = 0}.

Lemma 14

Let c1, c2 > 0 be given by (14). Then there exists β1 > 0 such
that 0 < cβ < min{c1, c2} for every β > β1.



A least energy solution

In view of Lemma 12, there exists z3 = zβ, a critical point of I
on Mβ, such that I (z3) = inf

z∈Mβ

I (z) = cβ.

Taking β1 > 0 given by Lemma 14, we have that
I (z3) < min{I (z1), I (z2)} for every β > β1.

This estimate, Proposition 1 and Lemma 13 imply that z3 is a
positive least energy solution of System (3).



A positive solution

The following proposition gives us a local estimate for I on the
Nehari manifold when β > 0 is sufficiently small.

Proposition 6

There exist β0, δ > 0 such that, for every β ∈ [0, β0), we may find
neighborhoods U1

β and U2
β in Mβ of z1 and z2, respectively,

satisfying U1
β ∩ U2

β = ∅, and

I (z) ≥ I (zi ) + δ, i = 1, 2, for all z ∈ ∂U i
β. (16)



Now we define the Mountain Pass critical level associated with the
functional I on Mβ:

cMβ
:= inf

γ∈Γ
max
t∈[0,1]

I (γ(t)), (17)

where

Γ = {γ ∈ C ([0, 1],Mβ) : γ(0) = z1, γ(1) = z2}. (18)



Fixed 0 < β < β0, we Invoke Propositions 6 and 3 and the
Mountain Pass Theorem to find z4, a critical point of I on
Mβ, such that

I (z4) = cMβ
> max{I (z1), I (z2)}, (19)

In view of Propositions 1 and 2, we may assert that z4 is a
positive solution of System (3).



Proof of Theorem 2

Given 0 < β < β0, we take the neighborhoods U1
β and U2

β, in Mβ,
of z1 and z2, respectively, provided by Proposition 6 and we define

c
i,β

:= inf
z∈U i

β

I (z), i = 1, 2. (20)

As a consequence of Proposition 3 and the local deformation
lemma, we have

Proposition 7

For every 0 < β < β0 there is a critical point z̄i of I on Mβ such
that z̄i ∈ U i

β and I (z̄i ) = c
i,β

, i = 1, 2.



Proposition 8

Suppose the coupling is sublinear with respect to the variable v or
u, then, for every β > 0, z1 or z2 is not a local minimum of I on
Mβ, respectively.



Proof of Theorem 2

Fixed 0 < β < β0 and arguing as in the proof of Theorem 1,
we find a critical point z3 of I on Mβ such that

cMβ
= I (z3) > max{I (z1), I (z2)}, (21)

Next, assuming without loss of generality that the coupling is
sublinear with respect to the variable v , we invoke
Propositions 7 and 8 to find z4, a critical point of I on Mβ,
such that z4 ∈ U1

β, and

I (z4) == c
1,β

= inf
z∈U1

β

I (z) < I (z1) < I (z3). (22)

Since U1
β ∩ U2

β = ∅, it is clear that z4 6= z2.

we conclude that z4 and z3 are two distinct positive solutions
of System (3).



Proof of Theorem 3

We first verify the existence of positive least energy solution

Since the coupling is doubly partially sublinear, Proposition 8
implies that z1 and z2 are not local minimum of the functional
I on Mβ for all β > 0.

Using this and invoking Lemma 12, we get z3 such that

I (z3) = c
β

= inf
z∈Mβ

I (z) < min{I (z1), I (z2)},

z3 is a least energy solution for System (3).



Now, we prove the existence of at least three positive
solutions for 0 < β < β0, β0 > 0 given by Proposition 6.

As in our earlier proofs, we obtain z4, a critical point of I on
Mβ, such that

I (z4) = cMβ
> max{I (z1), I (z2)}. (23)

Moreover, using the same argument of the proof of Theorem
2, we find z5 ∈ U1

β e z6 ∈ U2
β, critical points of I on Mβ, such

that

I (z5) < I (z1) and I (z6) < I (z2).

The above estimate and (23) imply that z5, z6 /∈ {z1, z2, z4}.
Moreover, since U1

β ∩ U2
β = ∅, z5 6= z6.

System (3) has at least three positive solutions.
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