Multiplicity of solutions for stationary problems with some classes of degenerate nonlocal terms

Joint works with D. Arcoya, L. Gasiński, G. Siciliano and A. Suárez

João R. Santos Júniora ${ }^{\text {a }}$
joaojunior@ufpa.br

Instituto de Ciências Exatas e Naturais
Universidade Federal do Pará
Granada, January 17, 2019

[^0]
Table of contents

The concerned problems
Kirchhoff problems
A brief background
The degenerate case
Santos Jr-Siciliano's result
Arcoya-Santos Jr-Suárez's result
Carrier problems
Preliminary comments
The degenerate case
Gasiński-Santos Jr’s result

Kirchhoff-Carrier type problems

In this lecture we are interested in the following kind of problems

$$
\begin{cases}-a\left(\int_{\Omega}|\nabla u|^{2} d x\right) \Delta u=f(u) & \text { in } \Omega, \tag{KP}\\ u>0 & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

and

$$
\begin{cases}-a\left(\int_{\Omega} u^{p} d x\right) \Delta u=f(u) & \text { in } \Omega \tag{CP}\\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded smooth domain, a and f are continuous functions and $p \geq 1$.

The Kirchhoff Model

A brief background

- G. Kirchhoff (1883)

$$
\rho \frac{\partial^{2} u}{\partial t^{2}}-\left(\frac{P_{0}}{h}+\frac{E}{2 L} \int_{0}^{L}\left|\frac{\partial u}{\partial x}\right|^{2} d x\right) \frac{\partial^{2} u}{\partial x^{2}}=0
$$

L - string length
h - cross-sectional area
E - Young modulus
ρ - mass density
P_{0} - initial tension
$u(x, t)$ - displacement at x with regard the rest position $(1 / 2) \int_{0}^{L}(\partial u / \partial x)^{2} d x$ - string length variation.

- J. L. Lions, Mathematics Studies, (1978).

A brief background

The stationary equation in higher dimensions

$$
\begin{cases}-a\left(\int_{\Omega}|\nabla u|^{2} d x\right) \Delta u=f(u) & \text { in } \Omega, \tag{1}\\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

- Cited 317 times: Alves, Correa and Ma, Comput. Math. Appl., (2005).
- Hundreds of authors: Rivera and Ma (2003), Perera and Zhang (2006), He and Zou (2009), Chen et al (2011), Azzollini (2012), Figueiredo and Santos Jr (2012), Suarez et al (2014), Pucci et al (2015), ...

REMARK: All previous papers consider a positive and away from zero!

The degenerate case

Recent papers by A. Ambrosetti and D. Arcoya

1. Remarks on non homogeneous elliptic Kirchhoff equations, Nonlinear Differ. Equ. Appl., (2016).
2. Positive solutions of elliptic Kirchhoff equations, Advanced Nonlinear Studies, 17, (2017).

Some classical results about sign-changing nonlinearities

1. Brown and Budin, On the existence of positive solutions for a class of semilinear elliptic boundary value problems, SIAM J. Math. Anal., (1979).
2. Hess, On multiple positive solutions of nonlinear elliptic eigenvalue problems, Comm. Partial Diff. Eqs., (1981).

The degenerate case

Previous articles raise a natural question:
What happens if a vanishes in K positive points?
ANSWER 1: There exist at least K positive solutions!

- Santos Júnior and Siciliano, Positive solutions for a Kirchhoff problem with vanishing nonlocal term, JDE, (2018).

ANSWER 2: There exist at least $2 K$ positive solutions!

- Arcoya, Santos Júnior and Suárez, Positive solutions for a Kirchhoff problem with vanishing nonlocal term II, PREPRINT, (2019).

Santos Jr-Siciliano's result Assumptions

We require the following conditions on functions a and f :
(a) there exist positive numbers $0<t_{1}<t_{2}<\ldots<t_{K}$ such that

- $a\left(t_{k}\right)=0$ for all $k \in\{1, \ldots, K\}$,
- $a>0$ in $\left(t_{k-1}, t_{k}\right)$, for all $k \in\{1, \ldots, K\}$; we agreed that $t_{0}=0$,
(f) there exists $s_{*}>0$ such that $f(t)>0$ in $\left[0, s_{*}\right)$ and $f\left(s_{*}\right)=0$.

We define the following truncation of function f :

$$
f_{*}(t)= \begin{cases}f(0) & \text { if } t<0, \tag{2}\\ f(t) & \text { if } 0 \leq t<s_{*}, \\ 0 & \text { if } s_{*} \leq t .\end{cases}
$$

which is of course continuous, and let $F_{*}(t)=\int_{0}^{t} f_{*}(s) d s$.

Santos Jr-Siciliano's result

Consider the numbers

$$
\begin{equation*}
\alpha_{k}:=\max _{u \in H_{0}^{1}(\Omega),\|u\| \leq t_{k}^{1 / 2}} \int_{\Omega} F_{*}(u) d x, \quad k \in\{1, \ldots K\} . \tag{3}
\end{equation*}
$$

Next Lemma provides a useful property of the numbers α_{k}. Lemma
For each $k \in\{1, \ldots, K\}$, the following holds:

$$
0<\alpha_{k}<F\left(s_{*}\right)|\Omega| .
$$

Santos Jr-Siciliano's result
 Main theorem

Our last assumption on the data involves an area condition on a and f, more specifically
(A) $\alpha_{k}<\frac{1}{2} \int_{t_{k-1}}^{t_{k}} a(s) d s \leq F\left(s_{*}\right)|\Omega|$, for all $k \in\{1, \ldots, K\}$.

Now we are able to state our main result.

Theorem

Suppose that (a), (f) and (A) hold. Then, problem (KP) possesses at least K nontrivial positive solutions. Furthermore, these solutions are ordered in the $H_{0}^{1}(\Omega)$-norm, i.e.,

$$
0<\left\|u_{1}\right\|^{2}<t_{1}<\left\|u_{2}\right\|^{2}<t_{2}<\ldots<t_{K-1}<\left\|u_{K}\right\|^{2}<t_{k} .
$$

Santos Jr-Siciliano's result Sketch of the proof

We denote by I: $H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ the energy functional associated to problem (KP), which is given by

$$
I(u)=\frac{1}{2} A\left(\|u\|^{2}\right)-\int_{\Omega} F(u) d x
$$

where $A(t)=\int_{0}^{t} a(s) d s, F(t)=\int_{0}^{t} f(s) d s$. Clearly, $I \in C^{1}\left(H_{0}^{1}(\Omega) ; \mathbb{R}\right)$ and

$$
I^{\prime}(u)[v]=a\left(\|u\|^{2}\right) \int_{\Omega} \nabla u \nabla v d x-\int_{\Omega} f(u) v d x .
$$

Hence, critical points u of I are weak solutions of problem (KP), i.e.,

$$
a\left(\|u\|^{2}\right) \int_{\Omega} \nabla u \nabla v d x=\int_{\Omega} f(u) v d x, \forall v \in H_{0}^{1}(\Omega) .
$$

Santos Jr-Siciliano's result Sketch of the proof

Let us recall the well known Mountain Pass Theorem, which just requires compactness at the mountain pass value.

Theorem (Mountain Pass)

Let X be a Banach space and $I \in C^{1}(X ; \mathbb{R})$. Suppose that
(i) $I(0)=0$;
(ii) there exist positive constants ρ and δ such that $I(u) \geq \delta$ whatever $\|u\|=\rho ;$
(iii) there exists $e \in X$ with $\|e\|>\rho$ and $I(e)<\delta$.
(iv) I satisfies the $(P S)_{c}$ condition with $c=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I(\gamma(t))$, where

$$
\Gamma=\{\gamma \in C([0,1], X): \gamma(0)=0 \text { and } \gamma(1)=e\} .
$$

Then, $c \geq \delta$ and c is a critical value of I.

Santos Jr-Siciliano's result Sketch of the proof

(1) Suitable truncated problems

Define the continuous map:

$$
a_{k}(t)= \begin{cases}m(t) & \text { if } t_{k-1} \leq t<t_{k}, \\ 0 & \text { otherwise },\end{cases}
$$

agreeing as usual that $t_{0}=0$.
Let us consider the truncated problem:

$$
\begin{cases}-a_{k}\left(\|u\|^{2}\right) \Delta u=f_{*}(u) & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

where f_{*} is defined in (2).

Santos Jr-Siciliano's result Sketch of the proof

By a weak solution of $\left(P_{k}\right)$ we mean a function $u_{k} \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
a_{k}\left(\left\|u_{k}\right\|^{2}\right) \int_{\Omega} \nabla u_{k} \nabla v d x=\int_{\Omega} f_{*}\left(u_{k}\right) v d x, \forall v \in H_{0}^{1}(\Omega) \tag{4}
\end{equation*}
$$

The energy functional associated to the problem $\left(P_{k}\right)$ is $I_{k}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
I_{k}(u)=\frac{1}{2} A_{k}\left(\|u\|^{2}\right)-\int_{\Omega} F_{*}(u) d x
$$

where $A_{k}(t)=\int_{0}^{t} a_{k}(s) d s$. It is clear that $I_{k} \in C^{1}\left(H_{0}^{1}(\Omega) ; \mathbb{R}\right)$ and critical points of I_{k} are weak solutions of $\left(P_{k}\right)$.
It is important to note that

$$
I_{k}(u)=\left\{\begin{array}{l}
I(u), \text { if } t_{k-1} \leq\|u\|^{2} \leq t_{k} \text { and } 0 \leq u \leq s_{*} \tag{5}\\
\frac{1}{2} \int_{t_{k-1}}^{t_{k}} a(s) d s-\int_{\Omega} F_{*}(u) d x, \text { if } t_{k} \leq\|u\|^{2}
\end{array}\right.
$$

Santos Jr-Siciliano's result Sketch of the proof

(2) A priori estimates

Lemma

Suppose that (a) and (f) hold. If u_{k} is a nontrivial weak solution of $\left(P_{k}\right)$, then
(i) $t_{k-1}<\left\|u_{k}\right\|^{2}<t_{k}$;
(ii) $0 \leq u_{k}(x) \leq s_{*}$, a.e. in Ω.

In particular previous Lemma tell us that if u_{k} is a nontrivial weak solution of problem $\left(P_{k}\right)$, then u_{k} is a nontrivial weak solution of problem (KP). Moreover, if $k \neq j$ then $u_{k} \neq u_{j}$.

Santos Jr-Siciliano's result Sketch of the proof

Lemma

Suppose that (a), (f) and (A) hold. Then,
(i) there exist positive numbers δ_{k} and ρ_{k} such that $I_{k}(u) \geq \delta_{k}$ whenever $\|u\|=\rho_{k}$;
(ii) there exists $e \in H_{0}^{1}(\Omega)$ with $\|e\|>\delta_{k}$ such that $I_{k}(e) \leq 0$.

Proof: (i) For each $u \in H_{0}^{1}(\Omega)$ with $\|u\|=t_{k}^{1 / 2}>0$

$$
I_{k}(u)=\frac{1}{2} \int_{t_{k-1}}^{t_{k}} a(s) d s-\int_{\Omega} F_{*}(u) d x \geq \frac{1}{2} \int_{t_{k-1}}^{t_{k}} a(s) d s-\alpha_{k}=: \delta_{k}>0 .
$$

(ii) Fixed $u \in H_{0}^{1}(\Omega)$ with $\|u\|=1$ and $u \geq 0$,

$$
\lim _{t \rightarrow \infty} I_{k}(t u)=\frac{1}{2} \int_{t_{k-1}}^{t_{k}} a(s) d s-|\Omega| F\left(s_{*}\right)<0
$$

Santos Jr-Siciliano's result Sketch of the proof

Then we define

$$
c_{k}:=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I_{k}(\gamma(t))
$$

where

$$
\Gamma=\left\{\gamma \in C\left([0,1], H_{0}^{1}(\Omega)\right): \gamma(0)=0 \text { and } \gamma(1)=e\right\}
$$

and e is the function obtained in the item (iii) of lemma 3.
The next two results guarantee compactness.
Lemma
Suppose that (a) and (A) hold. Then,

$$
c_{k}<\frac{1}{2} \int_{t_{k-1}}^{t_{k}} a(s) d s
$$

Santos Jr-Siciliano's result Sketch of the proof

Lemma

Suppose that (a) and (f) hold. Then, the functional I_{k} satisfies the $(P S)_{c}$ condition for

$$
c \in\left(0, \frac{1}{2} \int_{t_{k-1}}^{t_{k}} a(s) d s\right) .
$$

Proof:

(a) Any $(P S)_{c}$ sequence is bounded in $H_{0}^{1}(\Omega)$, otherwise $c=\frac{1}{2} \int_{t_{k-1}}^{t_{k}} a(s) d s-|\Omega| F\left(s_{*}\right) \leq 0$ holds.
(b) Up to a subsequence, there exists $u \in H_{0}^{1}(\Omega), s_{*} \geq 0$ such that

$$
\begin{equation*}
u_{n} \rightharpoonup u \quad \text { and } \quad\left\|u_{n}\right\| \rightarrow s_{*}^{1 / 2} \tag{6}
\end{equation*}
$$

One shows that $t_{k-1}<s_{*}<t_{k}$.
(c) Previous item implies that $\|u\|=s_{*}^{1 / 2}$. \square

Santos Jr-Siciliano's result Sketch of the proof

Proposition

Suppose that (a), (f) and (A) hold. Then, the truncated problem $\left(P_{k}\right)$ has a nontrivial solution u_{k} such that:
(i) $t_{k-1}<\left\|u_{k}\right\|^{2}<t_{k}$;
(ii) $0 \leq u_{k} \leq s_{*}$;
(iii) $I_{k}\left(u_{k}\right)=c_{k} \geq \delta_{k}>0$.

It follows from a priori bounds that u_{k} is a solution of (KP).

Arcova-santos Jr-suarez's result Main theorem

Let us consider the additional assumptions:
(f^{\prime}) there exists $s_{*}>0$ such that $f(t)>0$ in $\left(0, s_{*}\right)$ and $f\left(s_{*}\right)=0$;
(A') $\alpha_{k} \leq \frac{1}{2} \int_{t_{k-1}}^{t_{k}} a(s) d s$;
(af) there exists $\gamma:=\lim _{t \rightarrow 0^{+}} f(t) / t \in(0, \infty]$ and $a(0)<\gamma / 2 \lambda_{1}$.

Theorem

Suppose that (a), (f^{\prime}) and (A^{\prime}) hold. Then,
(i) problem (KP) possesses at least K - 1 positive solutions which are ordered in $H_{0}^{1}(\Omega)$-norm, i.e.,

$$
t_{1}<\left\|v_{2}\right\|^{2}<t_{2}<\ldots<t_{K-1}<\left\|v_{K}\right\|^{2}<t_{K} .
$$

(ii) Furthermore, if (af) holds, then there exists one more positive solution $v_{1} \in H_{0}^{1}(\Omega)$ with

$$
0<\left\|v_{1}\right\|^{2}<t_{1} .
$$

Arcoya-Santos Jr-Suarez's result Main theorem

Theorem

(iii) Moreover, for each $\lambda>0$, denote by $\left(P_{\lambda}\right)$ the problem (KP) with $F\left(s_{*}\right)=\lambda$ and by $v_{k, \lambda}, k=1, \ldots, K$, the solutions of $\left(P_{\lambda}\right)$ obtained in the first part of this theorem. Then,

$$
\lim _{\lambda \rightarrow 0}\left\|v_{k, \lambda}\right\|^{2}=t_{k-1}, \forall k=1, \ldots, K
$$

Remark

If a and f satisfy the same conditions of Santos Jr-Siciliano, then problem (KP) has $2 K$ positive solutions. In fact, if $u_{k, \lambda}, k=1, \ldots, K$, stands for the solutions provided in Santos Jr-Siciliano, then $I_{k}\left(v_{k, \lambda}\right)<0<I_{k}\left(u_{k, \lambda}\right)$.

Arcoya-Santos Jr-Suarez's result A technical lemma

Lemma

Suppose that (f^{\prime}) holds. Let $\alpha:[0, \infty) \rightarrow \mathbb{R}$ defined by

$$
\alpha(t)=\max _{u \in H_{0}^{1}(\Omega),\|u\| \leq t^{1 / 2}} \int_{\Omega} F_{*}(u) d x .
$$

Then,
(i) the map α is well defined. In particular, for each $t \in(0, \infty)$, the set $M_{t}:=\left\{u \in H_{0}^{1}(\Omega):\|u\|^{2} \leq t\right.$ and $\left.\int_{\Omega} F_{*}(u)=\alpha(t)\right\}$ is nonempty. Moreover, if $u \in M_{t}$, then $\|u\|^{2}=t, 0<u \leq s_{*}$, $u \in C^{2, \beta}(\bar{\Omega})$ for some $\beta \in(0,1)$ and $\partial u / \partial \eta<0$ on $\partial \Omega$, where η stands for the outward unit normal vector;
(ii) the map $(0, \infty) \ni t \mapsto \alpha(t) \in \mathbb{R}$ is continuous;

Arcoya-Santos Jr-Suarez's result
 A technical lemma

Lemma

(iii) the map α is differentiable, $\alpha^{\prime}(t)=(1 / 2 t) \max _{u \in M_{t}} \int_{\Omega} f_{*}(u) u d x$ and α^{\prime} is upper semicontinuous. In particular, α is increasing. Moreover, for each $s_{*}>0$

$$
\liminf _{t \rightarrow 0^{+}} \alpha^{\prime}(t) \geq \gamma /\left(2 \lambda_{1}\right) \text { and } \liminf _{t \rightarrow s_{*}} \alpha^{\prime}(t)>0 \text { for all } k=2, \ldots, K
$$

(iv) suppose further that (a) holds. For each $k \in\{2, \ldots, K\}$, there exist $\delta_{k-1}>0$ such that the $\operatorname{map} g_{k}(t)=(1 / 2) A_{k}(t)-\alpha(t)$ is decreasing in $\left(0, t_{k-1}+\delta_{k-1}\right)$. Moreover, if (af) holds, the same is true in the case $k=1$.

Arcoya-Santos Jr-Suarez's result Sketch of the proof: existence

- I_{k} is locally bounded from bellow: It is sufficient to note that by (a) and (f^{\prime})

$$
-\infty<b_{k}:=\inf _{u \in H_{0}^{1}(\Omega),\|u\| \leq t_{k}^{1 / 2}} I_{k}(u) .
$$

- $b_{k}<0$: By items (i) and (iv) of the technical Lemma

$$
\begin{equation*}
b_{k}=\inf _{0<t \leq t_{k}}\left\{\inf _{u \in H_{0}^{\prime}(\Omega),\|u\|^{2}=t} I_{k}(u)\right\}=\inf _{0<t \leq t_{k}} g_{k}(t)<g_{k}\left(t_{k-1}\right) \leq 0 . \tag{7}
\end{equation*}
$$

- b_{k} is attained: Let $\left\{u_{n}\right\} \subset H_{0}^{1}(\Omega)$ be a sequence such that

$$
\begin{equation*}
I_{k}\left(u_{n}\right) \rightarrow b_{k} \text { and }\left\|u_{n}\right\| \leq t_{k}^{1 / 2} \tag{8}
\end{equation*}
$$

Hence, up to a subsequence, there exists $v_{k} \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
u_{n} \rightharpoonup v_{k} \text { in } H_{0}^{1}(\Omega) \tag{9}
\end{equation*}
$$

Arcoya-Santos Jr-Suarez's result Sketch of the proof: existence

$$
\begin{equation*}
\left\|v_{k}\right\| \leq \liminf _{n \rightarrow \infty}\left\|u_{n}\right\| \leq t_{k}^{1 / 2} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega} F_{*}\left(u_{n}\right) d x \rightarrow \int_{\Omega} F_{*}\left(v_{k}\right) d x \tag{11}
\end{equation*}
$$

By (8) and (10) is sufficient to show that

$$
\begin{equation*}
u_{n} \rightarrow v_{k} \text { in } H_{0}^{1}(\Omega) \tag{12}
\end{equation*}
$$

For this, note that up to a subsequence, there exists $\gamma_{k} \geq 0$ such that

$$
\begin{equation*}
\left\|u_{n}\right\| \rightarrow \gamma_{k}^{1 / 2} \tag{13}
\end{equation*}
$$

Observe that if

$$
\begin{equation*}
\gamma_{k}^{1 / 2}=\left\|v_{k}\right\| \tag{14}
\end{equation*}
$$

then by (9), the convergence in (12) holds.

Arcoya-Santos Jr-Suarez's result Sketch of the proof: existence

It remains for us to prove (14). For this, note that

$$
\begin{equation*}
t_{k-1}<\gamma_{k} . \tag{15}
\end{equation*}
$$

Otherwise, that is, if $\gamma_{k} \leq t_{k-1}$, then by first inequality in (10) and (13)

$$
\begin{equation*}
\left\|v_{k}\right\| \leq t_{k-1}^{1 / 2} . \tag{16}
\end{equation*}
$$

Now, by passing to the limit as $n \rightarrow \infty$ in

$$
I_{k}\left(u_{n}\right)=\frac{1}{2} M_{k}\left(\left\|u_{n}\right\|^{2}\right)-\int_{\Omega} F_{*}\left(u_{n}\right) d x
$$

we conclude from (8), (30) and (13) that

$$
\begin{equation*}
b_{k}=-\int_{\Omega} F_{*}\left(v_{k}\right) d x \tag{17}
\end{equation*}
$$

On the other hand, by (7), (33) and (17), it follows that

$$
b_{k}<g_{k}\left(t_{k-1}\right)=-\alpha_{k-1} \leq b_{k} .
$$

It leads us to a contradiction.

Arcoya-Santos Jr-Suarez's result Sketch of the proof: existence

Finally, suppose that (14) does not hold. It follows from (10) and (13) that $\left\|v_{k}\right\|<\gamma_{k}^{1 / 2}$. Then, by (8), (30), (13), (15) and (a), we obtain

$$
b_{k}=\lim _{n \rightarrow \infty} I_{k}\left(u_{n}\right)=\frac{1}{2} M_{k}\left(\gamma_{k}\right)-\int_{\Omega} F_{*}\left(v_{k}\right)>I_{k}\left(v_{k}\right) \geq b_{k} .
$$

Last inequality leads us again to a contradiction. Therefore b_{k} is attained.

- v_{k} is a solution of (KP): Suppose that $\left\|v_{k}\right\|=t_{k}^{1 / 2}$. Then, by (A')

$$
\begin{equation*}
b_{k}=I_{k}\left(v_{k}\right) \geq \frac{1}{2} \int_{t_{k-1}}^{t_{k}} m(s) d s-\alpha_{k} \geq 0 \tag{18}
\end{equation*}
$$

Since (18) contradicts what we have proven before, it follows that $\left\|v_{k}\right\|<t_{k}^{1 / 2}$. Therefore v_{k} is a critical point of I_{k} and, consequently, a weak solution of (KP).

Arcoya-Santos Jr-Suarez's result Sketch of the proof: concentration phenomena

Let us denote by f_{λ} a function f which satisfies (f),(af), (A') and $F\left(s_{*}\right)=\lambda$ and $\left(P_{k, \lambda}\right)$ the problem $\left(P_{k}\right)$ with f replaced by f_{λ}, where λ is a positive parameter. Before proving the main result of this section, we need the following lemma

Lemma

Let

$$
b_{k, \lambda}=\inf _{u \in H_{0}^{1}(\Omega),\|u\| \leq t_{k}^{1 / 2}} I_{k, \lambda}(u),
$$

where $I_{k, \lambda}$ is the truncated functional associated to the problem ($P_{k, \lambda}$). Then,

$$
\lim _{\lambda \rightarrow 0} b_{k, \lambda}=0, \forall k=1, \ldots, K .
$$

Arcoya-Santos Jr-Suarez's result Sketch of the proof: concentration phenomena

Fix $k=1, \ldots, K$. Since

$$
\begin{equation*}
t_{k-1}<\left\|v_{k, \lambda}\right\|^{2}<t_{k}, \forall \lambda>0 \tag{19}
\end{equation*}
$$

there exists $v_{k, 0} \in H_{0}^{1}(\Omega)$ such that, up to a subsequence, as λ tend to zero, we obtain

$$
\begin{equation*}
v_{k, \lambda} \rightharpoonup v_{k, 0} \text { in } H_{0}^{1}(\Omega) \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega} F_{*, \lambda}\left(v_{k, \lambda}\right) d x \rightarrow 0 \tag{21}
\end{equation*}
$$

Let $\left\{v_{k, \lambda}\right\}$ be a subsequence such that

$$
\begin{equation*}
\left\|v_{k, \lambda}\right\| \rightarrow \gamma_{k-1}^{1 / 2}, \text { as } \lambda \rightarrow 0 \tag{22}
\end{equation*}
$$

for some $t_{k-1} \leq \gamma_{k-1} \leq t_{k}$ (see (32)). Suppose that

$$
\begin{equation*}
t_{k-1}<\gamma_{k-1} . \tag{23}
\end{equation*}
$$

Arcoya-Santos Jr-Suarez's result Sketch of the proof: concentration phenomena

Then, it follows from Lemma 8, (21), (22), (a) that

$$
\begin{aligned}
0=\lim _{\lambda \rightarrow 0} b_{k, \lambda} & =\lim _{\lambda \rightarrow 0} I_{k, \lambda}\left(v_{k, \lambda}\right) \\
& =\lim _{\lambda \rightarrow 0}\left[\frac{1}{2} M_{k}\left(\left\|v_{k, \lambda}\right\|^{2}\right)-\int_{\Omega} F_{*, \lambda}\left(v_{k, \lambda}\right) d x\right] \\
& =\frac{1}{2} M_{k}\left(\gamma_{k-1}\right)>\frac{1}{2} M_{k}\left(t_{k-1}\right)=0
\end{aligned}
$$

Last inequality does not make sense. Therefore

$$
\begin{equation*}
\gamma_{k-1}=t_{k-1} \tag{24}
\end{equation*}
$$

The proof follows by comparing (22) and (24).

The Carrier Model

Preliminary comments

$$
\begin{cases}-a\left(\int_{\Omega} u^{p} d x\right) \Delta u=f(u) & \text { in } \Omega \tag{CP}\\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

($p=1$) Model for dispersion of biological populations:

- Chipot and Rodrigues, RAIRO Modél. Math. Anal. Numér., (1992).
- Chipot and Lovat, Positivity, (1999).
($p=2$) Model for deformation of elastic membranes:
- Carrier, Q. J. Appl. Math., (1945).
$(p>0)$ Recent papers studying (CP) or more general operators:
- Chipot and Correa, Bull. Braz. Math. Soc., (2009).
- Chipot and Roy, DIE, (2014).
- Yan and Ma, BVP, (2016).
- Figueiredo-Sousa, Rodrigo-Morales and Suárez, Calc. Var., (2018).

REMARK: Previous papers consider a positive and away from zero!

The degenerate case

An interesting question to be addressed here is:
What happens if a is allowed to vanish in many positive points? that is, once broken the variational structure of problem (KP) (by a change in the nonlocal term type), should we still hope the existence of multiple "ordered solutions"?

ANSWER: Yes! There exist at least as solutions as the number of degeneracy points of a.

- L. Gasiński and J. R. Santos Júnior, PREPRINT, (2019).

Gasiński-Santos Jr's result

Along this section, λ_{1} is the first eigenvalue of the minus Laplacian operator with zero Dirichlet boundary condition, φ_{1} is the positive eigenfunction associated to λ_{1} normalized in $H_{0}^{1}(\Omega)$-norm, e_{1} is the positive eigenfunction associated to λ_{1} normalized in $L^{\infty}(\Omega)$-norm and C_{1} stands for best constant of the Sobolev embedding from $H_{0}^{1}(\Omega)$ into $L^{1}(\Omega)$.

We suppose that a and f satisfy (a), (f^{\prime}) and
$\underline{\left(H_{1}\right)}$ the map $\left(0, s_{*}\right) \ni t \mapsto f(t) / t$ is decreasing;
$\left(H_{2}\right) t_{K}<s_{*}^{p} \int_{\Omega} e_{1}^{p} d x$;
$\underline{\left(H_{3}\right)} \max _{t \in\left[0, t_{k}\right]} a(t)<\gamma / \lambda_{1}$, where $\gamma=\lim _{t \rightarrow 0^{+}} f(t) / t$;
$\underline{\left(H_{4}\right)} \max _{t \in\left[0, s_{*}\right]} f(t) s_{*}^{p-1}<\left(\lambda_{1}^{1 / 2} / C_{1}|\Omega|^{1 / 2}\right) \max _{t \in\left[t_{k-1}, t_{k}\right]} a(t) t$, for all $k \in\{1, \ldots, K\}$.

Gasiński-Santos Jr's result

Assumptions

Figura: Geometry of $a(t)$ and $a(t) t$ satisfying $\left(H_{1}\right),\left(H_{3}\right)$ and $\left(H_{4}\right)$.

Gasiński-Santos Jr's result

Main result

Theorem

If conditions (a), (f^{\prime}) and $\left(H_{1}\right)-\left(H_{4}\right)$ hold, then problem (CP) has at least 2 Kclassical positive solutions with ordered L^{ρ}-norms, namely
$\int_{\Omega} u_{1,1}^{p} d x<\int_{\Omega} u_{1,2}^{p} d x<t_{1}<\ldots<t_{K-1}<\int_{\Omega} u_{K, 1}^{p} d x<\int_{\Omega} u_{K, 2}^{p} d x<t_{K}$.
Along of this talk, the following auxiliary problem will play an important role: for each $k \in\{1, \ldots, K\}$ and any $\alpha \in\left(t_{k-1}, t_{k}\right)$ fixed, consider

$$
\begin{cases}-a(\alpha) \Delta u=f_{*}(u) & \text { in } \Omega \\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Gasiński-Santos Jr's result

The proof of previous Theorem is divided into the following three steps:

1. Existence of a unique solution to problem ($P_{\alpha, k}$) satisfying $0<u_{\alpha} \leq s_{*}$;
2. Continuity of the map $\left(t_{k-1}, t_{k}\right) \ni \alpha \mapsto \mathcal{P}_{k}(\alpha)=\int_{\Omega} u_{\alpha}^{p} d x$;
3. Existence of fixed points for the map \mathcal{P}_{k}.

Gasiński-Santos Jr's result

 Sketch of the proofStep I: Existence and uniqueness of positive solution to $\left(P_{\alpha, k}\right)$.

Proposition

If conditions (a), (f^{\prime}), $\left(H_{1}\right)$, and $\left(H_{3}\right)$ hold, then for each $k \in\{1, \ldots, K\}$ and $\alpha \in\left(t_{k-1}, t_{k}\right)$ fixed, problem ($P_{\alpha, k}$) has a unique classical solution $0<u_{\alpha} \leq s_{*}$.

Proof: Since f_{*} is bounded and continuous, it is standard to prove that the energy functional

$$
I_{k}(u)=a(\alpha) \frac{1}{2}\|u\|^{2}-\int_{\Omega} F_{*}(u) d x
$$

corresponding to problem ($P_{\alpha, k}$) is coercive and weakly lower semicontinuous (where $\left.F_{*}(s)=\int_{0}^{s} f_{*}(\sigma) d \sigma\right)$. Therefore I_{k} has a minimum point u_{α} which is a weak solution of $\left(P_{\alpha, k}\right)$.

Gasiński-Santos Jr's result Sketch of the proof

Moreover, it follows from conditions $\left(H_{1}\right)$ and $\left(H_{3}\right)$ that

$$
\frac{I_{k}\left(t \varphi_{1}\right)}{t^{2}}=\frac{1}{2} a(\alpha)-\int_{\Omega} \frac{F_{*}\left(t \varphi_{1}\right)}{\left(t \varphi_{1}\right)^{2}} \varphi_{1}^{2} d x \rightarrow \frac{1}{2}\left(a(\alpha)-\frac{\gamma}{\lambda_{1}}\right)<0 \text { as } t \rightarrow 0^{+} .
$$

The last inequality implies that the minimum point u_{α} of I_{k} is nontrivial, because for $t>0$ small enough

$$
I_{k}\left(u_{\alpha}\right) \leq I_{k}\left(t \varphi_{1}\right)=\left(I_{k}\left(t \varphi_{1}\right) / t^{2}\right) t^{2}<0 .
$$

It is easy to see that any nontrivial weak solution u_{α} of problem $\left(P_{\alpha, k}\right)$ satisfies $0 \leq u_{\alpha} \leq s_{*}$. It follows that problem ($P_{\alpha, k}$) has a nontrivial weak solution which is unique by condition $\left(H_{1}\right)$ (see Brezis and Oswald). Since $f_{*}\left(u_{\alpha}\right)=f\left(u_{\alpha}\right)$ is bounded and f is locally Lipschitz continuous, it follows from elliptic regularity that u is a classical solution. Finally, maximum principle completes the proof (see Theorem 3.1 of Gilbarg and Trudinger).

Gasiński-Santos Jr's result Sketch of the proof

Step II: Continuity of the map \mathcal{P}_{k}.
Since, by condition $\left(H_{1}\right)$, the map $\left(0, s_{*}\right) \ni t \mapsto \psi(t)=f_{*}(t) / t$ is decreasing, there exists the inverse $\psi^{-1}:(0, \gamma) \rightarrow\left(0, s_{*}\right)$. Thereby, by condition $\left(H_{3}\right)$, for each $\varepsilon \in\left(0, \gamma-\lambda_{1} a(\alpha)\right)$, it makes sense to consider function

$$
y_{\alpha}:=\psi^{-1}\left(\lambda_{1} a(\alpha)+\varepsilon\right) e_{1} .
$$

Lemma
If conditions (a), (f), $\left(H_{1}\right)$ and $\left(H_{3}\right)$ hold, $\alpha \in\left(t_{k-1}, t_{k}\right)$ and $c_{\alpha}=\inf _{u \in H_{0}^{1}(\Omega)} I_{k}(u)$, then for each $\varepsilon \in\left(0, \gamma-\lambda_{1} a(\alpha)\right)$, we have

$$
\begin{equation*}
c_{\alpha} \leq-\frac{1}{2} \varepsilon \psi^{-1}\left(\lambda_{1} a(\alpha)+\varepsilon\right)^{2} \int_{\Omega} e_{1}^{2} d x \tag{25}
\end{equation*}
$$

Gasiński-Santos Jr's result Sketch of the proof

Proposition

If conditions $(a),(f),\left(H_{1}\right)$, and $\left(H_{3}\right)$ hold, then for each
$k \in\{1,2, \ldots, K\}$, map $\mathcal{P}_{k}:\left(t_{k-1}, t_{k}\right) \rightarrow \mathbb{R}$ defined by

$$
\mathcal{P}_{k}(\alpha)=\int_{\Omega} u_{\alpha}^{p} d x,
$$

where $p \geq 1$ and u_{α} is obtained in Proposition 2, is continuous.
Proof: Let $\left\{\alpha_{n}\right\} \subset\left(t_{k-1}, t_{k}\right)$ be a sequence such $\alpha_{n} \rightarrow \alpha_{*}$, for some $\alpha_{*} \in\left(t_{k-1}, t_{k}\right)$. Denote by u_{n} the positive solution of ($P_{\alpha, k}$) with $\alpha=\alpha_{n}$. One shows that

$$
\begin{equation*}
u_{n} \rightarrow u_{*} \text { in } H_{0}^{1}(\Omega) . \tag{26}
\end{equation*}
$$

Moreover we have $u_{*} \neq 0$. In fact, by previous Lemma,

$$
I_{k}\left(u_{*}\right) \leq-\frac{1}{2} \varepsilon \psi^{-1}\left(\lambda_{1} a\left(\alpha_{*}\right)+\varepsilon\right)^{2} \int_{\Omega} e_{1}^{2} d x<0
$$

Gasiński-Santos Jr's result Sketch of the proof

By arguing as in the proof of previous Proposition we can show that u_{*} is a positive classical solution of $\left(P_{\alpha, k}\right)$ with $\alpha=\alpha_{*}$. Since such a solution is unique, we conclude that $u_{*}=u_{\alpha_{*}}$. Consequently,

$$
\begin{equation*}
-\Delta\left(u_{n}-u_{*}\right)=\frac{a\left(\alpha_{n}\right)-a\left(\alpha_{*}\right)}{a\left(\alpha_{n}\right)} \Delta u_{*}+\frac{f_{*}\left(u_{n}\right)-f_{*}\left(u_{*}\right)}{a\left(\alpha_{n}\right)}=: g_{n}(x) \quad \forall n \in \mathbb{N} \tag{27}
\end{equation*}
$$

Since f_{*} is bounded and $a\left(\alpha_{n}\right)$ is away from zero, there exists a positive constant C, such that

$$
\begin{equation*}
\left|g_{n}\right|_{\infty} \leq C \quad \forall n \in \mathbb{N} . \tag{28}
\end{equation*}
$$

Thus, by elliptic regularity and compact embedding, we can show that, up to a subsequence, we have

$$
\begin{equation*}
u_{n} \rightarrow u_{*} \text { in } C^{1}(\bar{\Omega}) . \tag{29}
\end{equation*}
$$

Convergence in (29) and inequality

$$
\|\left. u_{n}\right|_{p}-\left|u_{*}\right| p\left|\leq\left|u_{n}-u_{*}\right|_{p} \leq|\Omega|^{1 / p}\right| u_{n}-\left.u_{*}\right|_{\infty} . \square
$$

Gasiński-Santos Jr's result Sketch of the proof

Step III: Existence of fixed points to \mathcal{P}_{k}.
Lemma
If conditions (a), (f) (H_{1}) and (H_{3}) hold, then

$$
\begin{equation*}
u_{\alpha} \geq z_{\alpha}:=\psi^{-1}\left(\lambda_{1} a(\alpha)\right) e_{1} \quad \forall \alpha \in\left(t_{k-1}, t_{k}\right) . \tag{30}
\end{equation*}
$$

Proposition

If conditions $(a),(f),\left(H_{1}\right)-\left(H_{4}\right)$ hold, then the map \mathcal{P}_{k} has at least two fixed points $t_{k-1}<\alpha_{1, k}<\alpha_{2, k}<t_{k}$.

Proof: Observe that $\lim _{\alpha \rightarrow t_{k-1}^{+}} \mathcal{P}_{k}(\alpha)>t_{k-1}$ and $\lim _{\alpha \rightarrow t_{k}^{-}} \mathcal{P}_{k}(\alpha)>t_{k}$.
Indeed, from previous Lemma, we have

$$
\mathcal{P}_{k}(\alpha) \geq\left(\psi^{-1}\left(\lambda_{1} a(\alpha)\right)\right)^{p} \int_{\Omega} e_{1}^{p} d x \quad \forall \alpha \in\left(t_{k-1}, t_{k}\right)
$$

Gasiński-Santos Jr's result Sketch of the proof

Hence, by condition $\left(\mathrm{H}_{2}\right)$, we have

$$
\begin{aligned}
\lim _{\alpha \rightarrow t_{k-1}^{+}} \mathcal{P}_{k}(\alpha) & \geq s_{*}^{p} \int_{\Omega} e_{1}^{p} d x>t_{k}>t_{k-1} \\
\lim _{\alpha \rightarrow t_{k}^{-}} \mathcal{P}_{k}(\alpha) & \geq s_{*}^{p} \int_{\Omega} e_{1}^{p} d x>t_{k}>t_{k}
\end{aligned}
$$

On the other hand, there exists $\alpha \in\left(t_{k-1}, t_{k}\right)$ such that $\mathcal{P}_{k}(\alpha)<\alpha$. In effect, for $\alpha \in\left(t_{k-1}, t_{k}\right)$, let w_{α} be the unique solution (which is positive) of the problem

$$
\begin{cases}-\Delta u=u_{\alpha}^{p-1} & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

where u_{α} is the unique positive solution of $\left(P_{\alpha, k}\right)$. Hence, multiplying by u_{α} and integrating by parts, we have

$$
\int_{\Omega} \nabla w_{\alpha} \nabla u_{\alpha} d x=\int_{\Omega} u_{\alpha}^{p} d x=\mathcal{P}_{k}(\alpha) .
$$

Gasiński-Santos Jr's result Sketch of the proof

Moreover, by the definition of u_{α}, we get

$$
\begin{equation*}
\mathcal{P}_{k}(\alpha)=\frac{1}{a(\alpha)} \int_{\Omega} f_{*}\left(u_{\alpha}\right) w_{\alpha} d x \tag{31}
\end{equation*}
$$

thus,

$$
\begin{equation*}
\mathcal{P}_{k}(\alpha) \leq \frac{1}{a(\alpha)}\left(\max _{\left[0, s_{*}\right]} f(t)\right) C_{1}\left\|w_{\alpha}\right\|, \tag{32}
\end{equation*}
$$

where $C_{1}>0$ is the best constant of the Sobolev embedding from $H_{0}^{1}(\Omega)$ into $L^{1}(\Omega)$. From the definition of w_{α}, the fact that $0<u_{\alpha} \leq s_{*}$ and Hölder's inequality, we obtain

$$
\begin{equation*}
\left\|w_{\alpha}\right\| \leq\left(1 / \lambda_{1}^{1 / 2}\right)\left(\int_{\Omega} u_{\alpha}^{2(p-1)} d x\right)^{1 / 2} \leq\left(1 / \lambda_{1}^{1 / 2}\right) s_{*}^{p-1}|\Omega|^{1 / 2} \tag{33}
\end{equation*}
$$

Applying (33) in (32), we obtain

$$
\mathcal{P}_{k}(\alpha) \leq \frac{1}{a(\alpha)}\left(\max _{\left[0, s_{k}\right]} f(t)\right)\left(C_{1} / \lambda_{1}^{1 / 2}\right) s_{*}^{p-1}|\Omega|^{1 / 2} \quad \forall \alpha \in\left(t_{k-1}, t_{k}\right) .
$$

Gasiński-Santos Jr's result

 Sketch of the proofUsing condition $\left(H_{4}\right)$ we get the conclusion.

Thank you very much for your attention!

[^0]: ${ }^{\text {a S Supported by CNPq-302698/2015-9 and CAPES-88881.120045/2016-01, Brazil }}$

