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A local Landesman-Lazer condition

We study, via variational methods, the existence, multiplicity and non
existence of solutions for the elliptic problem:

—Au= Mu+ ph(z,u) in Q,
u= 0 on 02,

A local Landesman-Lazer condition



A local Landesman-Lazer condition

We study, via variational methods, the existence, multiplicity and non
existence of solutions for the elliptic problem:

{—Au = Au+ ph(z,u) in Q, (L.1)

u= 0 on 01,

e O is a bounded smooth domain of RV, N > 1;
@ A >0 and p # 0 are real parameters;
e h:Q xR — Ris a Carathéodory function.
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Main results

there exist real numbers ¢1 and t9, t1 < tg, such that

(ng) /h(az,tlgol)cpldfv >0 > / h(z,tapr)prde,
Q Q
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Main results

there exist real numbers ¢1 and t9, t1 < tg, such that

(ng) /h(az,tlgol)cpldfv >0 > / h(z,tapr)prde,
Q Q

or

(Hy ) /h($7t1¢1)@1d$ <0< / h(z,tap1)prd;
Q Q

where 1 is a positive eigenfunction associated to A;.
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Main results
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Q Q
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Main results

there exist real numbers ¢1 and t9, t1 < tg, such that

(ng) /h(az,tlcpl)cpldx >0 > / h(z,tapr)prde,
Q Q

or

(Hy ) /h($7t1¢1)@1d$ <0< / h(z,tap1)prd;
Q Q

where 1 is a positive eigenfunction associated to A;.

(Hy) his locally L7 (2)-bounded, o > {1, N/2},

(H3) his locally L7(Q)-Lipschitz continuous with respect to the variable s,
o>{1,N/2}.

A local Landesman-Lazer condition



Existence of a solution

Suppose h satisfies (H;") and (Hy). Then there exist positive constants
p* and v* such that, for every p € (0, 1*) and |A — A\1| < pv*, Problem
(1.1) has a weak solution u,, = o1 + v, with t € (t1,t2) and v € (p1)*.
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Existence of a solution

Theorem 1.1

Suppose h satisfies (H;") and (Hy). Then there exist positive constants
p* and v* such that, for every p € (0, 1*) and |A — A\1| < pv*, Problem
(1.1) has a weak solution u,, = o1 + v, with t € (t1,t2) and v € (p1)*.

Theorem 1.2

Suppose h satisfies (H, ), (H1) and (Hz). Then there exist positive
constants p* and v* such that, for every € (0, u*) and |\ — A\q| < pv*,
Problem (1.1) has a weak solution u, = t¢1 + v, with ¢ € (¢1,t2) and

v € {p1).
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The projection of the solutions on the direction of ¢y is located between
t1p1 and tapg. J
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We do not impose any global growth restriction on the nonlinear term J
h.
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The projection of the solutions on the direction of ¢y is located between
t1p1 and taep1.

We do not impose any global growth restriction on the nonlinear term
h.The associated functional in H3(€2) may not be well defined.

Theorems 1.1 and 1.2 allow the function h to change sign in €, this
characterizes the Problem (1.1) as indefinite.
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The projection of the solutions on the direction of ¢y is located between
t1p1 and taep1.

We do not impose any global growth restriction on the nonlinear term
h.The associated functional in H3(€2) may not be well defined.

Theorems 1.1 and 1.2 allow the function h to change sign in €, this
characterizes the Problem (1.1) as indefinite.

e Alama and Tarantello (1993)
@ Berestycki, Capuzzo and Nirenberg (1994)
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Multiplicity of solutions

The projections of the solutions u,, on the direction of ¢ are located
between t1p1 and t21. Consider the following version of (HSE):

(Hy) there exist t; € R, t; < tj11,7=1,...,k, such that

[/Q h(x’tisal)wldx] [/Q h(xvti+1601)801d4 < 0.
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Multiplicity of solutions

The projections of the solutions u,, on the direction of ¢ are located
between t1p1 and t21. Consider the following version of (HSE):

(Hy) there exist t; € R, t; < tj11,7=1,...,k, such that

[/Q h(x’t“pl)wldx] [/Q h(xvti+1601)801d4 < 0.

As a direct consequence of Theorems 1.1 and 1.2 we may establish the
existence of multiple solutions for Problem (1.1).

Suppose h satisfies (Hy), (H1) and (Hz). Then there exist positive
constants p* and v* such that, for every 0 < |u| < p* and

A — A\1| < |u|v*, Problem (1.1) has k weak solutions u; = t;1 + v; , with
I?i S (tiati—l-l) and v; € <<,01>J‘, i=1,--- k.
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Remark 1.4

@ The solutions provided by Theorems 1.1-1.3 are of class C17(Q), if
N =1, and of class C%7(Q), if N > 2. If we assume (H1) holds with
o > N, those solutions are in C17(Q).
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Remark 1.4

@ The solutions provided by Theorems 1.1-1.3 are of class C17(Q), if
N =1, and of class C%7(Q), if N > 2. If we assume (H1) holds with
o > N, those solutions are in C17(Q).

Using this regularity, we may verify that:
o if 1

> 0, uy is positive in {;
o if to <0, uy is negative in ();
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Remark 1.4

@ The solutions provided by Theorems 1.1-1.3 are of class C17(Q), if
N =1, and of class C%7(Q), if N > 2. If we assume (H1) holds with
o > N, those solutions are in C17(Q).

Using this regularity, we may verify that:
e ifty >0, uy is positive in {;
o if to <0, uy is negative in ();

e for || > 0 sufficiently small, the solutions of Theorem 1.3 are ordered.

v
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Proofs of Theorems 1.1 and 1.2

Idea of the proofs of Theorems 1.1 and 1.2:
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Proofs of Theorems 1.1 and 1.2

Idea of the proofs of Theorems 1.1 and 1.2:

@ In order to apply variational methods we first truncate the nonlinear
term h;
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Proofs of Theorems 1.1 and 1.2

Idea of the proofs of Theorems 1.1 and 1.2:

@ In order to apply variational methods we first truncate the nonlinear
term h;

o under the hypothesis (H ), we find a point of minimum for the
functional associated with the truncated problem;
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Proofs of Theorems 1.1 and 1.2

Idea of the proofs of Theorems 1.1 and 1.2:

@ In order to apply variational methods we first truncate the nonlinear
term h;

o under the hypothesis (H ), we find a point of minimum for the
functional associated with the truncated problem;

@ supposing the hypothesis (H, ), we apply the Lyapunov-Schmidt
Reduction Method to prove the existence of a saddle point for the
functional associated with the truncated problem;
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Proofs of Theorems 1.1 and 1.2

Idea of the proofs of Theorems 1.1 and 1.2:

@ In order to apply variational methods we first truncate the nonlinear
term h;

o under the hypothesis (H ), we find a point of minimum for the
functional associated with the truncated problem;

@ supposing the hypothesis (H, ), we apply the Lyapunov-Schmidt
Reduction Method to prove the existence of a saddle point for the
functional associated with the truncated problem;

@ the existence of a solution for the Problem (1.1) is derived by an
approximation argument based on the bootstrap technique.
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The Lyapunov-Schmidt Reduction Method

The Lyapunov-Schmidt Reduction Method

@ reduces the search for critical points of I : H — R, H a Hilbert space
of infinite dimension, to the search for critical points of a functional
defined on a closed subspace of H, generally of finite dimension.
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The Lyapunov-Schmidt Reduction Method

The Lyapunov-Schmidt Reduction Method

@ reduces the search for critical points of I : H — R, H a Hilbert space
of infinite dimension, to the search for critical points of a functional
defined on a closed subspace of H, generally of finite dimension.

e Landesman, Lazer and Meyers (1975);
e Castro and Lazer (1979);
e Castro (1981) — First Latin American School of Differential Equations.
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Non existence of solution

(Hgz) there exists f € L7(Q2), o > {1, N/2} such that

h(z, 0)] < f@)(L+[t]), VIR,

(Hy) there exist real numbers ¢; and tg, with t; < t2, such that

/ h(x,tgol)cpld:c 75 O, Vite [tl,tQ].
Q
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Non existence of solution

(Hgz) there exists f € L7(Q2), o > {1, N/2} such that

h(z, 0)] < f@)(L+[t]), VIR,

(Hy) there exist real numbers ¢; and tg, with t; < t2, such that

/ h(x,tgol)cpld:c 75 0, Vite [tl,tQ].
Q

Suppose h satisfies (Hs) and (H4). Then there exist positive constants p*
and v* such that, for every 0 < |u| < p* and | — A\1| < |p|v*, Problem
(1.1) has no solution u,, = t@1 + v, with t € (t1,t2) and v € {p1)*.
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In 1970, Landesman and Lazer proved that the problem

(PLL)

—Lu= Mu+ f—g(u)in Q,
u= 0 on 0f),

where L is a second order symmetric uniformly elliptic operator,
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In 1970, Landesman and Lazer proved that the problem

{Lu = Mu+f—g(u)in Q, (PLL)

u= 0 on 0f),

where L is a second order symmetric uniformly elliptic operator,

has a solution provided
o fec L),
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In 1970, Landesman and Lazer proved that the problem

—Lu= Mu+f— in €,
U 1w+ f—gu)i (PLL)
u= 0 on 0f),
where L is a second order symmetric uniformly elliptic operator,
has a solution provided
o feL*Q);
@ g: R — R is a bounded continuous function satisfying
ng/ prdr < / ferdz <gi/ prde, (LL)
Q Q Q

where g7 1= lims_, o g(s) and g := lims_,00 g(5).
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Considering h = f(z) — g(s), with f € L?(Q) and g satisfying the
Landesman-Lazer condition, we have
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Considering h = f(z) — g(s), with f € L?(Q) and g satisfying the
Landesman-Lazer condition, we have

lim h(z,to1)prde = /(f — g )rdx > (<)0
Q Q

t——o00

and

m | ez, tor)prde = / (f - g )prdz < (>)0.
Q Q

t—+o0

Consequently, there exist real numbers t; < 0 < tg, such that the condition
(HF) (‘or (Hy)) is valid for t; and t2. We may say that hypotheses (H")
and (H,, ) are local versions of the Landesman-Lazer condition.

A local Landesman-Lazer condition



Considering h = f(z) — g(s), with f € L?(Q) and g satisfying the
Landesman-Lazer condition, we have

lim h(z,to1)prde = /(f — g )rdx > (<)0
Q Q

t——o00

and

m | ez, tor)prde = / (f - g )prdz < (>)0.
Q Q

t—+o0

Consequently, there exist real numbers t; < 0 < tg, such that the condition
(Hg") (or (Hy)) is valid for t; and to. We may say that hypotheses (H;")
and (H,, ) are local versions of the Landesman-Lazer condition.

Ahmad, Lazer and Paul (1976), Shaw (1977); Mawhin and Schmitt
(1988); Arcoya and Orsina (1996); Arcoya and Gamez (2001); among
others...
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Applications

—Au = Au+ pbi(x)u? 4 ba(x)uP in Q, e
u= 0 on 012, (12)
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Applications

—Au = Au+ pbi(x)u? 4 ba(x)uP in Q, (1.2)
u= 0 on 012, .

@ O is a bounded smooth domain of RY, N > 1:
@ )\, 3 > 0 are real parameters;

e p>q>0, with p#1;

@ by, be € L7(Q2), with o > N.
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Linear or superlinear at the origin and superlinear at infinity

Setting
r1 ::/b1¢‘f+1dw and 1o ::/chp’fHda:,
Q Q

we may state:
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Linear or superlinear at the origin and superlinear at infinity

Setting
r1 ::/b1<,0‘f+1dx and 1o ::/b24p’1’+1da:,
Q Q

we may state:

Proposition 1.6

Suppose 1 < ¢ < p and r172 < 0. Then there exist positive constants 5*
and v* such that Problem (1.2) has a positive weak solution for every

B € (0,6%) and |XA = Ai| < ﬂﬁy*_
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If 1 < g < p, Problem (1.2) is linear or superlinear at the origin and
superlinear at infinity.

A local Landesman-Lazer condition



If 1 < g < p, Problem (1.2) is linear or superlinear at the origin and
superlinear at infinity.

@ Alama and Tarantello — 1996 (¢ > 1)

—Au= Mu+ k(x)u? — h(z)uP in §,
u> 0 in €,
u= 0 on OS2
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Sublinear at the origin

Proposition 1.7

Suppose 71 > 0 > r9. Then

(1) if 0 < g <1 < p, there exist positive constants ] and v] such that
Problem (1.2) has a positive weak solution for every g € (0, 3}) and
=il
A= M| < Bravi.
(71) if 0 < g < p < 1, there exist positive constants /35 and v such that
Problem (1.2) has a positive weak solution for every 8 € (35, c0) and
=il
A=l < Bravs.
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If 0 < g <1, Problem (1.2) is sublinear at the origin. )
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If 0 < g <1, Problem (1.2) is sublinear at the origin. )

@ Ambrosetti, Brezis and Cerami — 1994 (p > 1)

—Au= Mf+u’ inQ,
u> 0 in €,
u= 0 on 0f).
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If 0 < g <1, Problem (1.2) is sublinear at the origin. )

@ Ambrosetti, Brezis and Cerami — 1994 (p > 1)

—Au= Mf+u’ inQ,
u> 0 in €,
u= 0 on 0f).

e De Figueiredo, Gossez and Ubilla 2003 (p > 1)

—Au= Ma(z)u? + b(z)uP in Q,
u> 0 in Q,
u= 0 on 0f).
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A Landesman-Lazer result

We consider the following problem:

{_M = X+ p(f(x) +g(w) in Q, (1.5)J
u= 0 on aQa
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A Landesman-Lazer result

We consider the following problem:

{_M = X+ p(f(x) +g(w) in Q, (1.5)J
u= 0 on aQa

e O is a bounded smooth domain of RY, N > 1:
@ A\, 1 > 0 are real parameters;
o fe L7(Q), with o > {1,N/2};
(G1) g:R — R is a continuous function such that, for some M > 0,
g(s) = —Mifs<0
and
g(s) < Mifs>0;
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(LLY) /(f +g; )prdz >0 > /(f + 93 )erde,
Q Q

where g; :=liminf, ,  g(s) and g := limsup,_,, . g(s).
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(LLY) /(f +g; )prdz >0 > /(f + 93 )erde,
Q Q

where g; :=liminf, ,  g(s) and g := limsup,_,, . g(s).

Proposition 1.9

Suppose f and g satisfy (G1) and (LL™"). Then there exist positive
constants p* and v* such that, for every o € (0, u*) and |\ — A\q| < pv*,
Problem (1.5) has a weak solution.
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(LLY) /(f +g; )prdz >0 > /(f + 93 ) prde,
Q Q

where g; :=liminf, ,  g(s) and g := limsup,_,, . g(s).

Proposition 1.9

Suppose f and g satisfy (G1) and (LL*). Then there exist positive
constants p* and v* such that, for every o € (0, u*) and |\ — A\q| < pv*,
Problem (1.5) has a weak solution.

Proposition 19 allows us to consider g such that g, = 400 and
g5 = —oo. Moreover, g may have unbounded oscillatory behavior.
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Application of Theorem 1.3

We consider that A : Q x R — R is a polynomial function in the variable s,
ie.,

m

where a; € L7(2), o > {1, N/2}.
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Application of Theorem 1.3

We consider that A : Q x R — R is a polynomial function in the variable s,
ie.,

where a; € L7(2), o > {1, N/2}.
O(t) = / h(z,to1)p1de = Zditi,
Q

1=0

where d; = / oz,-(:c)ap’i“d:r.
Q
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The existence of solutions provided by Theorem 1.3 depends on the
multiplicity of the roots of ®:

Proposition 1.12

Suppose h is a polynomial function in the variable s. If the function ® has
k roots of odd multiplicity, then there exist positive constants y* and v*
such that, for every 0 < |u| < p* and |\ — A\1| < |u|v*, Problem (1.1) has
k solutions.

Furthermore, if 71, ..., 7 are the roots of odd multiplicity of ® and

(A=A1)/p— 0, as pu — 0, the solutions converge to 7;¢1, as u — 0, for
i=1,....k
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A semilinear elliptic equations with dependence on the

gradient

{—Au = Au+ ph(z,u, Vu) in , 2.1)

u= 0 on 01,
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A semilinear elliptic equations with dependence on the

gradient

{—Au = Au+ ph(z,u,Vu) in Q, 2.1)

u= 0 on 01,

e  is a bounded smooth domain of RN, N > 1;
@ A >0 and p # 0 are real parameters;

o h: QxR xRN 5 Risa Carathéodory function.
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Hy)o there exist real numbers ¢; and t9, t; < t2, such that

{/ h(x,t1¢1,t1V<p1)<p1dx] {/ h(x, tap1, 2Vr)prde | <0,
Q Q

where 1 is a positive eigenfunction associated to ;.
Hvy)1 his locally L?-bounded, o > {2, N};

Hy)2 his locally L7-Lipschitz continuous with respect to the second and
the third variables, o > {2, N'}.
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Main results

Suppose h satisfies (Hv )o, (Hv)1 and (Hy)2. Then there exist positive
constants p* and v* such that, for every |u| € (0, ") and
A — A1| < |p|v*, Problem (2.1) has a weak solution u,, = typ1 + v, with

t e (tl,tg) and v € <(p1>J‘.
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Remark 2.2

@ In Theorem 2.1, we do not impose any global growth restriction on
the nonlinear term h.




Remark 2.2

@ In Theorem 2.1, we do not impose any global growth restriction on
the nonlinear term h. Moreover, Problem (2.1) is not variational.




Remark 2.2

@ In Theorem 2.1, we do not impose any global growth restriction on
the nonlinear term h. Moreover, Problem (2.1) is not variational.

@ The solution u,, given in Theorem 2.1, is positive or negative in 2
provided t; > 0 or to < 0.

@ Hypotheses (Hy)o is Landesman-Lazer type.

@ The projection of the solution u, on the direction of ; is located
between t1p1 and tap;.
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Multiplicity

A~

:Hv)() there exist t; € R, t; < tiy1, 0 =1,..., k, such that

[/ h(l‘,tiwl,tivwl)(pldl‘] |:/ h(l‘,ti+1g01,ti+1vg01)<p1d$:| < 0.
Q Q
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Multiplicity

A~

:Hv)() there exist t; € R, t; < tiy1, 0 =1,..., k, such that

|:/ h(l‘,tiwl,tivwl)(pldl‘] |:/ h(l‘,ti+1g01,ti+1vg01)<p1d$:| < 0.
Q Q

Proposition 2.3

Suppose h satisfies (Hy )o, (Hy)1 and (Hy)a. Then there exist positive
constants p* and v* such that, for every 0 < |u| < p* and

A — \i| < |u|v*, Problem (2.1) has k weak solutions u; = £;p1 + v;, with
fi € (ti,ti+1) and v; € <g01>J‘, i=1,--- k.
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Multiplicity

A~

:Hv)() there exist t; € R, t; < tiy1, 0 =1,..., k, such that

|:/ h(l‘,tiwl,tivwl)(pldl‘] |:/ h(l‘,ti+1g01,ti+1vg01)<p1d$:| < 0.
Q Q

Proposition 2.3

Suppose h satisfies (Hy )o, (Hy)1 and (Hy)a. Then there exist positive
constants p* and v* such that, for every 0 < |u| < p* and

A — \i| < |u|v*, Problem (2.1) has k weak solutions u; = £;p1 + v;, with
fi € (ti,ti+1) and v; € <g01>J‘, i=1,--- k.

e For |u| > 0 sufficiently small, the solutions u; are ordered.
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Proof of Theorem 2.1

@ Problem (2.1) is not variational;
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Proof of Theorem 2.1

@ Problem (2.1) is not variational;

o Firstly we prove a version of Theorem 2.1 when the function A
satisfies (Hv)o, (Hv)2 and there exists f € L7(f2) such that

(2,5, )] < f(x), (2.2)

for every s €R, £ € RY, a. e. z € Q, instead of (Hv);1.
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Proof of Theorem 2.1

@ Problem (2.1) is not variational;

o Firstly we prove a version of Theorem 2.1 when the function A
satisfies (Hv)o, (Hv)2 and there exists f € L7(f2) such that

(2,5, )] < f(x), (2.2)

for every s €R, £ € RY, a. e. z € Q, instead of (Hv);1.

How do we do it?
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Proof of Theorem 2.1

@ Problem (2.1) is not variational;

o Firstly we prove a version of Theorem 2.1 when the function A
satisfies (Hv)o, (Hv)2 and there exists f € L7(f2) such that

(2,5, )] < f(x), (2.2)

for every s €R, £ € RY, a. e. z € Q, instead of (Hv);1.

How do we do it?

1) Inspired by the Lyapunov-Schmidt Reduction Method we solve
Problem (2.1) on (1), for t € [t1, o] fixed, considering

{—Av = v+ ph(z,ter +v,tVep1 + Vo) in Q,
)

)

ve (o1
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2) As this problem is not variational, we associate, with the problem
(2.3), a family of problems that do not depend on the gradient of the
solution. More specifically, for each w € (1), we consider

—Av = v+ ph(z,ter +v,tVe1 + Vw) in Q,
ve (o)t
(2.4)
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2) As this problem is not variational, we associate, with the problem
(2.3), a family of problems that do not depend on the gradient of the
solution. More specifically, for each w € (1), we consider

—Av = v+ ph(z,ter +v,tVe1 + Vw) in Q,
ve (o)t

(2.4)

3) We solve (2.4) using a minimization argument and an approximation
method based on the bootstrap technique.
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2) As this problem is not variational, we associate, with the problem
(2.3), a family of problems that do not depend on the gradient of the
solution. More specifically, for each w € (1), we consider

—Av = v+ ph(z,ter +v,tVe1 + Vw) in Q,
ve (p)*
(2.4)
3) We solve (2.4) using a minimization argument and an approximation
method based on the bootstrap technique.

4) Now we solve (2.3), for each ¢ € [t1, 2] fixed, using the iterative
technique given by De Figueiredo, Girardi and Matzeu.
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2) As this problem is not variational, we associate, with the problem
(2.3), a family of problems that do not depend on the gradient of the
solution. More specifically, for each w € (1), we consider

—Av = v+ ph(z,ter +v,tVe1 + Vw) in Q,
ve (o)t

(2.4)

3) We solve (2.4) using a minimization argument and an approximation
method based on the bootstrap technique.

4) Now we solve (2.3), for each ¢ € [t1, 2] fixed, using the iterative
technique given by De Figueiredo, Girardi and Matzeu.
5) Now we solve Problem (2.1) on (¢1).
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2) As this problem is not variational, we associate, with the problem
(2.3), a family of problems that do not depend on the gradient of the
solution. More specifically, for each w € (1), we consider

{—AU = v+ ph(x,tp; +v,tVe + Vw) in Q,

ve (p1)"
(2.4)

3) We solve (2.4) using a minimization argument and an approximation
method based on the bootstrap technique.

4) Now we solve (2.3), for each ¢ € [t1, 2] fixed, using the iterative
technique given by De Figueiredo, Girardi and Matzeu.

5) Now we solve Problem (2.1) on (¢1).

@ Truncation argument

@ Approximation argument via bootstrap method.
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Non existence of solution

Hy)s there exists f € L7(Q2), with o > {2, N}, such that

A, t,8)] < (@) (1 + [t + &),

foreveryt c R, £ € RN a. e. 2 € Q.
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Non existence of solution

Hy)s there exists f € L7(Q2), with o > {2, N}, such that

[h(@,t,8)] < f(x)(1 + [¢] + [€]),
foreveryt c R, £ € RN a. e. 2 € Q.

Hy )4 there exist real numbers ¢ and t3, with ¢; < 2, such that

/ h(z,tp1,tV1)prdx # 0, for every t € [t1, o).
Q
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Non existence of solution

Hy)s there exists f € L7(Q2), with o > {2, N}, such that

[h(@,t,8)] < f(x)(1 + [¢] + [€]),
foreveryt c R, £ € RN a. e. 2 € Q.

Hy )4 there exist real numbers ¢ and t3, with ¢; < 2, such that

/ h(z,tp1,tV1)prdx # 0, for every t € [t1, o).
Q

Suppose h satisfies (Hy)3 and (Hy)s. Then there exist positive constants
p* and v* such that, for each 0 < |u| < p* and |\ — A1| < |u|v*, Problem
(2.1) has no weak solution u,, = tp1 + v, with t € [t1,%2] and v € (1)
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Applications

—Au=Au+ Bbi(z)u?|Vu|? + ba(z)uP*|VulP? in Q, "
u= 0 on 012, 23)
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Applications

—Au=Au+ Bbi(z)u?|Vu|? + ba(z)uP*|VulP? in Q,
(2.3)
u= 0 on 99,

e O is a bounded smooth domain of RY, N > 1:
@ )\, 3 > 0 are real parameters;

@ by, by € L7(2), with o > {2, N}.
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Setting

71 ::/blgo(fﬁl]Vgol]qux and 79 ::/bggojfl+1|Vg01|p2dx,
Q Q

we may present the following result:




Setting

71 ::/blgo(fﬁl]Vgol]qux and 79 ::/bggpjfl+1|Vg01|p2dx,
Q Q

we may present the following result:

Proposition 2.4

Suppose p =p1 +p2, ¢ = q1 + G2, 1, P2, 1, g2 > 1, p > g and ri7r2 < 0.
Then there exist positive constants 5* and v* such that Problem (2.3) has

=1
a positive weak solution, for every 5 € (0,5*) and |A — \| < ﬂhy*.
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Inspired by the paper of Brezis and Nirenberg (1983), we can give another
application of Theorem 2.3:

{—Au = Au+ b(x)uP|Vul|P? in Q, (2.4)

u= 0 on OS2,
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Inspired by the paper of Brezis and Nirenberg (1983), we can give another
application of Theorem 2.3:

{—Au = Au+ b(x)uPt|VulP? in Q, (2.4)

u= 0 on OS2,

e O is a bounded smooth domain of RV, N > 1:
o\ < A\

° p1,p2>1
e be L7(NN), with o > {2, N}.
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Assuming that
/ b(z) T |V [P2dz > 0, (2.5)
Q

we have

Proposition 2.5

Suppose b satisfies (2.5), with p1, p2 > 1, then there exists A such that
Problem (2.4) has a positive solution, for every A < A < A;.
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Landesman—Lazer Result

Motivated by Shaw (1977), we also consider the problem

{_Au = Au+p[f(z) +g(u) + I'(z,u, Vu)] in Q, (2.6)J
ue 0 on 09,
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Landesman—Lazer Result

Motivated by Shaw (1977), we also consider the problem

{_Au = Au+p[f(z) +g(u) + I'(z,u, Vu)] in Q, (2.6)J
ue 0 on 09,

e O is a bounded smooth domain of RY, N > 1:
@ A >0 and u # 0 are real parameters;

e feL7(Q), with o > {2,N}.
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We also suppose that
(G1) g:R — Ris a locally Lipschitz function and there exists M > 0 such

that
g(s) = —M, if s<0and g(s) <M, if s > 0;
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We also suppose that

(G1) g:R — Ris a locally Lipschitz function and there exists M > 0 such
that
g(s) = —M, if s<0and g(s) <M, if s > 0;

(1) T:Q xR xRY = Ris a locally Lipschitz function and there exists
« > 0 such that, for every x €  and £ € R,

[(z,s,§) > —a, if s<0and I'(z,s,¢) <a, if s >0.
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Denoting by g; := liminf,,_ g(s) and by g7 := limsup,_,, ., g(s) and
assuming

(LLy) /Q (f+9 —a)prdr > 0> /Q (f + g +a)prde,
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Denoting by g; := liminf,,_ g(s) and by g7 := limsup,_,, ., g(s) and
assuming

(LLy) /Q (f+9 —a)prdr > 0> /Q (f + g +a)prde,

we may state

Proposition 2.6

Suppose (G1), (I'1) and (LLy) are satisfied. Then there exist positive
constants p* and v* such that, for every p € (0, £*) and |A — A\y| < pv*,
Problem (2.6) has a weak solution u, = t¢1 + v, with ¢ € R and

v € (1)t
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Application of Proposition 2.3

We consider i : @ x R x RV — R given by

m

h(z,t,€) = Z )t €p, (2.7)

where «a;; € L7(Q),with 0 > {2, N}. Therefore

q)v(t) = /Qh(a:,tgol,thol)goldx = Z dz‘jti+j,
4,7=0
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The existence of solutions provided by Theorem 2.3 depends on the
multiplicity of the roots of ®y:

Proposition 2.7

Suppose h is given by (2.7). If the function ®y has 71, ..., 7 roots of
multiplicity odd, then there exist positive constants p* and v* such that,
for every 0 <[u| < p* and [A — A1| < |p|v”, Problem (2.1) has k solutions
u; = tip1 + v; of class C17(Q), with £; € R and v; € (p1)t, i=1,--- k.
Furthermore, if (A —A1)/u — 0, as u — 0, the solutions converge to 71,
as u— 0, fori=1,... k.

v
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Brasil

Brasilia,
the capital city
of Brazil




== UnB

« Landmark in the history of town planning

* Shaped as a bird (airplane?)




E’ UnB




== UnB

* Many modernist
(and geometrical!)
buildings...




* Many modernist
(and geometrical!)
palaces...



E’ UnB

* Because of all that (and more!),
Brasilia is listed as a World
Heritage Site




iMuchas gracias!
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