Some Neumann problems with asymmetric nonlinearities

Francisco Odair de Paiva
(Federal University of São Carlos)

Brazilian PDE Days

Universidad de Granada

Let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ continuous and consider the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=g(x, u)+t \text { in } \Omega, \tag{1}\\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ continuous and consider the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=g(x, u)+t \text { in } \Omega, \tag{1}\\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Assume

$$
\lim _{s \rightarrow-\infty} \frac{g(x, s)}{|s|^{p-2} s}<0<\lim _{s \rightarrow \infty} \frac{g(x, s)}{|s|^{p-2} s}
$$

Let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ continuous and consider the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=g(x, u)+t \text { in } \Omega \tag{1}\\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega
\end{array}\right.
$$

Assume

$$
\lim _{s \rightarrow-\infty} \frac{g(x, s)}{|s|^{p-2} s}<0<\lim _{s \rightarrow \infty} \frac{g(x, s)}{|s|^{p-2} s}
$$

for all $M>0$ there exists $\lambda>0$ such that

$$
g(x, u)+\lambda|u|^{p-2} u \text { is non-decreasing in } u \text { on }[-\mathrm{M}, \mathrm{M}],
$$

and

$$
|g(x, u)| \leq C\left(1+|t|^{p-1}\right)
$$

Let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ continuous and consider the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=g(x, u)+t \text { in } \Omega \tag{1}\\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega
\end{array}\right.
$$

Assume

$$
\lim _{s \rightarrow-\infty} \frac{g(x, s)}{|s|^{p-2} s}<0<\lim _{s \rightarrow \infty} \frac{g(x, s)}{|s|^{p-2} s}
$$

for all $M>0$ there exists $\lambda>0$ such that

$$
g(x, u)+\lambda|u|^{p-2} u \text { is non-decreasing in } u \text { on }[-\mathrm{M}, \mathrm{M}],
$$

and

$$
|g(x, u)| \leq C\left(1+|t|^{p-1}\right)
$$

Then Then there exist t_{1} such that (1) has zero, at least one and at least two solutions according to $t>t_{1}, t=t_{1}$ and $t<t_{1}$.

Let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ continuous and consider the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=g(x, u)+t \text { in } \Omega \tag{1}\\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega
\end{array}\right.
$$

Assume

$$
\lim _{s \rightarrow-\infty} \frac{g(x, s)}{|s|^{p-2} s}<0<\lim _{s \rightarrow \infty} \frac{g(x, s)}{|s|^{p-2} s}
$$

for all $M>0$ there exists $\lambda>0$ such that

$$
g(x, u)+\lambda|u|^{p-2} u \text { is non-decreasing in } u \text { on }[-\mathrm{M}, \mathrm{M}]
$$

and

$$
|g(x, u)| \leq C\left(1+|t|^{p-1}\right)
$$

Then Then there exist t_{1} such that (1) has zero, at least one and at least two solutions according to $t>t_{1}, t=t_{1}$ and $t<t_{1}$.
F.O. de P, M. Montenegro (Unicamp) (2012)

Consider the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=g(x, u)+t \varphi \text { in } \Omega, \\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega,
\end{array}\right.
$$

Consider the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=g(x, u)+t \varphi \text { in } \Omega \\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega,
\end{array}\right.
$$

with

$$
\varphi \geq 0
$$

Consider the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=g(x, u)+t \varphi \text { in } \Omega \\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega,
\end{array}\right.
$$

with

$$
\varphi \geq 0
$$

and/or

$$
\lim _{s \rightarrow|\infty|} g(x, s)=\infty
$$

Consider the problem

$$
\left\{\begin{array}{l}
-\Delta u=g(x, u)+t \text { in } \Omega, \tag{2}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Consider the problem

$$
\left\{\begin{array}{l}
-\Delta u=g(x, u)+t \text { in } \Omega \tag{2}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega
\end{array}\right.
$$

Teorema (Mawhin -1987)
Assume

$$
\lim _{|s| \rightarrow \infty} g(x, s)=\infty
$$

Consider the problem

$$
\left\{\begin{array}{l}
-\Delta u=g(x, u)+t \text { in } \Omega \tag{2}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega
\end{array}\right.
$$

Teorema (Mawhin -1987)
Assume

$$
\lim _{|s| \rightarrow \infty} g(x, s)=\infty
$$

and

$$
|g(x, s)| \leq C\left(|s|^{q}+1\right), \quad\left(1 \leq q<\frac{N}{N-2}\right)
$$

Consider the problem

$$
\left\{\begin{array}{l}
-\Delta u=g(x, u)+t \text { in } \Omega \tag{2}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega
\end{array}\right.
$$

Teorema (Mawhin -1987)

Assume

$$
\lim _{|s| \rightarrow \infty} g(x, s)=\infty
$$

and

$$
|g(x, s)| \leq C\left(|s|^{q}+1\right), \quad\left(1 \leq q<\frac{N}{N-2}\right)
$$

Then there exist t_{1} such that (2) has zero, at least one and at least two solutions according to $t>t_{1}, t=t_{1}$ and $t<t_{1}$.

Consider the problem

$$
\left\{\begin{array}{l}
-\Delta u=g(u)+t \text { in } \Omega, \tag{3}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Consider the problem

$$
\left\{\begin{array}{l}
-\Delta u=g(u)+t \text { in } \Omega \tag{3}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Teorema (Kannan-Ortega - 1987)
Assume $|g(s)| \leq M$ for all $s \geq 0$,

$$
\lim _{s \rightarrow-\infty} g(s)=\infty
$$

Consider the problem

$$
\left\{\begin{array}{l}
-\Delta u=g(u)+t \text { in } \Omega \tag{3}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Teorema (Kannan-Ortega - 1987)
Assume $|g(s)| \leq M$ for all $s \geq 0$,

$$
\lim _{s \rightarrow-\infty} g(s)=\infty
$$

and

$$
|g(s)| \leq C\left(|s|^{q}+1\right), \quad\left(1 \leq q<\frac{N}{N-2}\right)
$$

Consider the problem

$$
\left\{\begin{array}{l}
-\Delta u=g(u)+t \text { in } \Omega, \tag{3}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Teorema (Kannan-Ortega - 1987)
Assume $|g(s)| \leq M$ for all $s \geq 0$,

$$
\lim _{s \rightarrow-\infty} g(s)=\infty
$$

and

$$
|g(s)| \leq C\left(|s|^{q}+1\right), \quad\left(1 \leq q<\frac{N}{N-2}\right)
$$

Then there exist t_{1} such that (3) has zero and at least one solution according to $t>t_{1}$ and $t<t_{1}$.

Consider the problem

$$
\left\{\begin{array}{l}
-\Delta u=\lambda_{1} u+\left(u^{+}\right)^{q}+f(x) \text { in } \Omega \tag{4}\\
B u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Consider the problem

$$
\left\{\begin{array}{l}
-\Delta u=\lambda_{1} u+\left(u^{+}\right)^{q}+f(x) \text { in } \Omega, \tag{4}\\
B u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Ward (1982), Neumann case - existence of solution when $1 \leq q<\frac{N}{N-2}, f \in L^{1}$ and $\int f<0$.

Consider the problem

$$
\left\{\begin{array}{l}
-\Delta u=\lambda_{1} u+\left(u^{+}\right)^{q}+f(x) \text { in } \Omega, \tag{4}\\
B u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Ward (1982), Neumann case - existence of solution when $1 \leq q<\frac{N}{N-2}, f \in L^{1}$ and $\int f<0$.

Cuesta, De Figueiredo and Srikanth (2003), Dirichlet case existence of solution when $1<q<\frac{N+1}{N-1}, f \in L^{r}, r>N$, and $\int f \varphi_{1}<0$.

Consider the problem

$$
\left\{\begin{array}{l}
-\Delta u=\lambda_{1} u+\left(u^{+}\right)^{q}+f(x) \text { in } \Omega, \tag{4}\\
B u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Ward (1982), Neumann case - existence of solution when $1 \leq q<\frac{N}{N-2}, f \in L^{1}$ and $\int f<0$.

Cuesta, De Figueiredo and Srikanth (2003), Dirichlet case existence of solution when $1<q<\frac{N+1}{N-1}, f \in L^{r}, r>N$, and $\int f \varphi_{1}<0$.

The p-Laplacian case is a open problem.

Teorema (de P-Presoto-2016)

Let $\varphi \in C(\bar{\Omega}) \backslash\{0\}$ be a nonnegative bounded function. Consider the semilinear problem

$$
\left\{\begin{array}{l}
-\Delta u=g(x, u, \nabla u)+t \varphi \text { in } \Omega, \tag{N}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Assume that g is continuous and diferenciable in u and ∇u.

Teorema (de P-Presoto-2016)

Let $\varphi \in C(\bar{\Omega}) \backslash\{0\}$ be a nonnegative bounded function. Consider the semilinear problem

$$
\left\{\begin{array}{l}
-\Delta u=g(x, u, \nabla u)+t \varphi \text { in } \Omega, \tag{N}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Assume that g is continuous and diferenciable in u and ∇u. Suppose that $g(x, u, \nabla u) \geq \bar{g}(x, u)$

Teorema (de P-Presoto-2016)

Let $\varphi \in C(\bar{\Omega}) \backslash\{0\}$ be a nonnegative bounded function. Consider the semilinear problem

$$
\left\{\begin{array}{l}
-\Delta u=g(x, u, \nabla u)+t \varphi \text { in } \Omega \tag{N}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Assume that g is continuous and diferenciable in u and ∇u. Suppose that $g(x, u, \nabla u) \geq \bar{g}(x, u)$ with

$$
\lim _{|s| \rightarrow \infty} \bar{g}(x, s)=\infty
$$

Teorema (de P-Presoto-2016)

Let $\varphi \in C(\bar{\Omega}) \backslash\{0\}$ be a nonnegative bounded function. Consider the semilinear problem

$$
\left\{\begin{array}{l}
-\Delta u=g(x, u, \nabla u)+t \varphi \text { in } \Omega \tag{N}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Assume that g is continuous and diferenciable in u and ∇u. Suppose that $g(x, u, \nabla u) \geq \bar{g}(x, u)$ with

$$
\lim _{|s| \rightarrow \infty} \bar{g}(x, s)=\infty
$$

and

$$
|g(x, s, p)| \leq C\left(|s|^{\alpha}+|p|^{\beta}+1\right), \quad 0<\alpha, \beta<\frac{N}{N-1}
$$

Teorema (de P-Presoto-2016)

Let $\varphi \in C(\bar{\Omega}) \backslash\{0\}$ be a nonnegative bounded function. Consider the semilinear problem

$$
\left\{\begin{array}{l}
-\Delta u=g(x, u, \nabla u)+t \varphi \text { in } \Omega \tag{N}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega
\end{array}\right.
$$

Assume that g is continuous and diferenciable in u and ∇u. Suppose that $g(x, u, \nabla u) \geq \bar{g}(x, u)$ with

$$
\lim _{|s| \rightarrow \infty} \bar{g}(x, s)=\infty
$$

and

$$
|g(x, s, p)| \leq C\left(|s|^{\alpha}+|p|^{\beta}+1\right), \quad 0<\alpha, \beta<\frac{N}{N-1}
$$

Then there exist t_{1} such that (N) has zero, at least one and at least two solutions according to $t>t_{1}, t=t_{1}$ and $t<t_{1}$.

Teorema (de P-Presoto-2016)
Let $\varphi \in C(\bar{\Omega}) \backslash\{0\}$ be a nonnegative bounded function. Consider the semilinear problem

$$
\left\{\begin{array}{l}
-\Delta u=g(x, u, \nabla u)+t \varphi \text { in } \Omega \tag{N}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Assume that g is continuous and diferenciable in u and ∇u.

Teorema (de P-Presoto-2016)
Let $\varphi \in C(\bar{\Omega}) \backslash\{0\}$ be a nonnegative bounded function. Consider the semilinear problem

$$
\left\{\begin{array}{l}
-\Delta u=g(x, u, \nabla u)+t \varphi \text { in } \Omega \tag{N}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega
\end{array}\right.
$$

Assume that g is continuous and diferenciable in u and ∇u. Suppose that $g(x, u, \nabla u) \geq \bar{g}(x, u)$

Teorema (de P-Presoto-2016)
Let $\varphi \in C(\bar{\Omega}) \backslash\{0\}$ be a nonnegative bounded function. Consider the semilinear problem

$$
\left\{\begin{array}{l}
-\Delta u=g(x, u, \nabla u)+t \varphi \text { in } \Omega \tag{N}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Assume that g is continuous and diferenciable in u and ∇u. Suppose that $g(x, u, \nabla u) \geq \bar{g}(x, u)$ with

$$
\lim _{s \rightarrow-\infty} \bar{g}(x, s)=\infty, \quad|g(x, u, \nabla u)| \leq M, \quad \forall u \geq 0
$$

Teorema (de P-Presoto-2016)
Let $\varphi \in C(\bar{\Omega}) \backslash\{0\}$ be a nonnegative bounded function. Consider the semilinear problem

$$
\left\{\begin{array}{l}
-\Delta u=g(x, u, \nabla u)+t \varphi \text { in } \Omega \tag{N}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Assume that g is continuous and diferenciable in u and ∇u. Suppose that $g(x, u, \nabla u) \geq \bar{g}(x, u)$ with

$$
\lim _{s \rightarrow-\infty} \bar{g}(x, s)=\infty, \quad|g(x, u, \nabla u)| \leq M, \quad \forall u \geq 0
$$

and

$$
|g(x, s, p)| \leq C\left(|s|^{\alpha}+|p|^{\beta}+1\right), \quad 0<\alpha, \beta<\frac{N}{N-1}
$$

Teorema (de P-Presoto-2016)
Let $\varphi \in C(\bar{\Omega}) \backslash\{0\}$ be a nonnegative bounded function. Consider the semilinear problem

$$
\left\{\begin{array}{l}
-\Delta u=g(x, u, \nabla u)+t \varphi \text { in } \Omega \tag{N}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega
\end{array}\right.
$$

Assume that g is continuous and diferenciable in u and ∇u. Suppose that $g(x, u, \nabla u) \geq \bar{g}(x, u)$ with

$$
\lim _{s \rightarrow-\infty} \bar{g}(x, s)=\infty, \quad|g(x, u, \nabla u)| \leq M, \quad \forall u \geq 0
$$

and

$$
|g(x, s, p)| \leq C\left(|s|^{\alpha}+|p|^{\beta}+1\right), \quad 0<\alpha, \beta<\frac{N}{N-1}
$$

Then there exist t_{1} such that (N) has zero and at least one solution according to $t>t_{1}$ and $t<t_{1}$.

Teorema (de P-Nascimento-preprint)
Let $\varphi \in C(\bar{\Omega}) \backslash\{0\}$ be a nonnegative bounded function. Consider the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=g(x, u)+t \varphi \text { in } \Omega, \tag{Q}\\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Teorema (de P-Nascimento-preprint)
Let $\varphi \in C(\bar{\Omega}) \backslash\{0\}$ be a nonnegative bounded function. Consider the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=g(x, u)+t \varphi \text { in } \Omega, \tag{Q}\\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Assume that g is continuous,

$$
\lim _{s \rightarrow-\infty} \frac{g(x, s)}{|s|^{p-2} s}<0<\lim _{s \rightarrow \infty} \frac{g(x, s)}{|s|^{p-2} s}
$$

Teorema (de P-Nascimento-preprint)
Let $\varphi \in C(\bar{\Omega}) \backslash\{0\}$ be a nonnegative bounded function. Consider the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=g(x, u)+t \varphi \text { in } \Omega, \tag{Q}\\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Assume that g is continuous,

$$
\lim _{s \rightarrow-\infty} \frac{g(x, s)}{|s|^{p-2} s}<0<\lim _{s \rightarrow \infty} \frac{g(x, s)}{|s|^{p-2} s}
$$

and

$$
|g(x, u)| \leq C\left(1+|t|^{p-1}\right)
$$

Teorema (de P-Nascimento-preprint)
Let $\varphi \in C(\bar{\Omega}) \backslash\{0\}$ be a nonnegative bounded function. Consider the problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=g(x, u)+t \varphi \text { in } \Omega, \tag{Q}\\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Assume that g is continuous,

$$
\lim _{s \rightarrow-\infty} \frac{g(x, s)}{|s|^{p-2} s}<0<\lim _{s \rightarrow \infty} \frac{g(x, s)}{|s|^{p-2} s}
$$

and

$$
|g(x, u)| \leq C\left(1+|t|^{p-1}\right)
$$

Then there exist $t_{1} \geq t_{2}$ such that (Q) has zero, at least one and at least two solutions according to $t>t_{1}, t_{2}<t \leq t_{1}$ and $t \leq t_{2}$.

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=f(u)+v(x) \text { in } \Omega \tag{D}\\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=f(u)+v(x) \text { in } \Omega, \tag{D}\\
u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Teorema (Ambrosetti-Prodi-1972)
If

$$
0<\lim _{s \rightarrow-\infty} \frac{f(s)}{s}<\lambda_{1}<\lim _{s \rightarrow \infty} \frac{f(s)}{s}<\lambda_{2}
$$

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=f(u)+v(x) \text { in } \Omega, \tag{D}\\
u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Teorema (Ambrosetti-Prodi-1972)
If

$$
0<\lim _{s \rightarrow-\infty} \frac{f(s)}{s}<\lambda_{1}<\lim _{s \rightarrow \infty} \frac{f(s)}{s}<\lambda_{2}
$$

and

$$
f^{\prime \prime}(s)>0 \quad \forall s \in \mathbb{R},
$$

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=f(u)+v(x) \text { in } \Omega, \tag{D}\\
u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Teorema (Ambrosetti-Prodi-1972)
If

$$
0<\lim _{s \rightarrow-\infty} \frac{f(s)}{s}<\lambda_{1}<\lim _{s \rightarrow \infty} \frac{f(s)}{s}<\lambda_{2}
$$

and

$$
f^{\prime \prime}(s)>0 \quad \forall s \in \mathbb{R}
$$

then there exists a connected manifold $M_{1} \subset C^{\alpha}(\bar{\Omega})$ of codimension 1

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=f(u)+v(x) \text { in } \Omega, \tag{D}\\
u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Teorema (Ambrosetti-Prodi-1972)
If

$$
0<\lim _{s \rightarrow-\infty} \frac{f(s)}{s}<\lambda_{1}<\lim _{s \rightarrow \infty} \frac{f(s)}{s}<\lambda_{2}
$$

and

$$
f^{\prime \prime}(s)>0 \quad \forall s \in \mathbb{R},
$$

then there exists a connected manifold $M_{1} \subset C^{\alpha}(\bar{\Omega})$ of codimension 1 such that $C^{\alpha}(\bar{\Omega}) \backslash M=M_{0} \cup M_{2}$

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=f(u)+v(x) \text { in } \Omega, \tag{D}\\
u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Teorema (Ambrosetti-Prodi-1972)

If

$$
0<\lim _{s \rightarrow-\infty} \frac{f(s)}{s}<\lambda_{1}<\lim _{s \rightarrow \infty} \frac{f(s)}{s}<\lambda_{2}
$$

and

$$
f^{\prime \prime}(s)>0 \quad \forall s \in \mathbb{R}
$$

then there exists a connected manifold $M_{1} \subset C^{\alpha}(\bar{\Omega})$ of codimension 1 such that $C^{\alpha}(\bar{\Omega}) \backslash M=M_{0} \cup M_{2}$ and (D) has exactly zero, one or two solutions according as v is in M_{0}, M_{1} ou M_{2}.

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=f(u)+t \varphi_{1}+h(x) \text { in } \Omega, \tag{D}\\
u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=f(u)+t \varphi_{1}+h(x) \text { in } \Omega, \tag{D}\\
u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Teorema (Berger-Podolak-1975)
If

$$
0<\lim _{s \rightarrow-\infty} \frac{f(s)}{s}<\lambda_{1}<\lim _{s \rightarrow \infty} \frac{f(s)}{s}<\lambda_{2}
$$

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=f(u)+t \varphi_{1}+h(x) \text { in } \Omega, \tag{D}\\
u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Teorema (Berger-Podolak-1975)
If

$$
0<\lim _{s \rightarrow-\infty} \frac{f(s)}{s}<\lambda_{1}<\lim _{s \rightarrow \infty} \frac{f(s)}{s}<\lambda_{2}
$$

and

$$
f^{\prime \prime}(s)>0 \quad \forall s \in \mathbb{R}
$$

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=f(u)+t \varphi_{1}+h(x) \text { in } \Omega, \tag{D}\\
u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Teorema (Berger-Podolak-1975)
If

$$
0<\lim _{s \rightarrow-\infty} \frac{f(s)}{s}<\lambda_{1}<\lim _{s \rightarrow \infty} \frac{f(s)}{s}<\lambda_{2}
$$

and

$$
f^{\prime \prime}(s)>0 \quad \forall s \in \mathbb{R}
$$

then there exists t_{1}

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=f(u)+t \varphi_{1}+h(x) \text { in } \Omega, \tag{D}\\
u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Teorema (Berger-Podolak-1975)
If

$$
0<\lim _{s \rightarrow-\infty} \frac{f(s)}{s}<\lambda_{1}<\lim _{s \rightarrow \infty} \frac{f(s)}{s}<\lambda_{2}
$$

and

$$
f^{\prime \prime}(s)>0 \quad \forall s \in \mathbb{R}
$$

then there exists t_{1} such that
(i) if $t>t_{1}$, (D) has no solution;

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=f(u)+t \varphi_{1}+h(x) \text { in } \Omega, \tag{D}\\
u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Teorema (Berger-Podolak-1975)
If

$$
0<\lim _{s \rightarrow-\infty} \frac{f(s)}{s}<\lambda_{1}<\lim _{s \rightarrow \infty} \frac{f(s)}{s}<\lambda_{2}
$$

and

$$
f^{\prime \prime}(s)>0 \quad \forall s \in \mathbb{R}
$$

then there exists t_{1} such that
(i) if $t>t_{1}$, (D) has no solution;
(ii) if $t=t_{1},(D)$ has exactly one solution;

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=f(u)+t \varphi_{1}+h(x) \text { in } \Omega, \tag{D}\\
u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Teorema (Berger-Podolak-1975)
If

$$
0<\lim _{s \rightarrow-\infty} \frac{f(s)}{s}<\lambda_{1}<\lim _{s \rightarrow \infty} \frac{f(s)}{s}<\lambda_{2}
$$

and

$$
f^{\prime \prime}(s)>0 \quad \forall s \in \mathbb{R}
$$

then there exists t_{1} such that
(i) if $t>t_{1}$, (D) has no solution;
(ii) if $t=t_{1}$, (D) has exactly one solution;
(iii) if $t<t_{1}$, (D) has exactly two solutions.

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=f(u)+t \varphi_{1}+h(x) \text { in } \Omega, \tag{D}\\
u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=f(u)+t \varphi_{1}+h(x) \text { in } \Omega, \tag{D}\\
u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Teorema (Amann-Hess-1979)
If

$$
\limsup _{s \rightarrow-\infty} \frac{f(s)}{s}<\lambda_{1}<\liminf _{s \rightarrow \infty} \frac{f(s)}{s} \leq \limsup _{s \rightarrow \infty} \frac{f(s)}{s}<\infty
$$

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=f(u)+t \varphi_{1}+h(x) \text { in } \Omega, \tag{D}\\
u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Teorema (Amann-Hess-1979)
If

$$
\limsup _{s \rightarrow-\infty} \frac{f(s)}{s}<\lambda_{1}<\liminf _{s \rightarrow \infty} \frac{f(s)}{s} \leq \limsup _{s \rightarrow \infty} \frac{f(s)}{s}<\infty
$$

then there exists t_{1}

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=f(u)+t \varphi_{1}+h(x) \text { in } \Omega, \tag{D}\\
u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Teorema (Amann-Hess-1979)
If

$$
\limsup _{s \rightarrow-\infty} \frac{f(s)}{s}<\lambda_{1}<\liminf _{s \rightarrow \infty} \frac{f(s)}{s} \leq \limsup _{s \rightarrow \infty} \frac{f(s)}{s}<\infty
$$

then there exists t_{1} such that
(i) if $t>t_{1}$, (D) has no solution;

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=f(u)+t \varphi_{1}+h(x) \text { in } \Omega, \tag{D}\\
u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Teorema (Amann-Hess-1979)
If

$$
\limsup _{s \rightarrow-\infty} \frac{f(s)}{s}<\lambda_{1}<\liminf _{s \rightarrow \infty} \frac{f(s)}{s} \leq \limsup _{s \rightarrow \infty} \frac{f(s)}{s}<\infty
$$

then there exists t_{1} such that
(i) if $t>t_{1}$, (D) has no solution;
(ii) if $t=t_{1},(D)$ has at least one solution;

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=f(u)+t \varphi_{1}+h(x) \text { in } \Omega, \tag{D}\\
u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Teorema (Amann-Hess-1979)
If

$$
\limsup _{s \rightarrow-\infty} \frac{f(s)}{s}<\lambda_{1}<\liminf _{s \rightarrow \infty} \frac{f(s)}{s} \leq \limsup _{s \rightarrow \infty} \frac{f(s)}{s}<\infty
$$

then there exists t_{1} such that
(i) if $t>t_{1}$, (D) has no solution;
(ii) if $t=t_{1},(D)$ has at least one solution;
(iii) if $t<t_{1},(D)$ has at least two solutions.

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=g(x, u)+t \varphi_{1}+h(x) \text { in } \Omega \tag{D}\\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=g(x, u)+t \varphi_{1}+h(x) \text { in } \Omega, \tag{D}\\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

Teorema (Kannan-Ortega-1984)
If

$$
\lim _{|s| \rightarrow \infty}\left[g(x, s)-\lambda_{1} s\right]=\infty
$$

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=g(x, u)+t \varphi_{1}+h(x) \text { in } \Omega, \tag{D}\\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

Teorema (Kannan-Ortega-1984)
If

$$
\begin{gathered}
\lim _{|s| \rightarrow \infty}\left[g(x, s)-\lambda_{1} s\right]=\infty \\
\lim _{s \rightarrow-\infty} g(x, s)=\infty
\end{gathered}
$$

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=g(x, u)+t \varphi_{1}+h(x) \text { in } \Omega, \tag{D}\\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

Teorema (Kannan-Ortega-1984)
If

$$
\begin{gathered}
\lim _{|s| \rightarrow \infty}\left[g(x, s)-\lambda_{1} s\right]=\infty \\
\lim _{s \rightarrow-\infty} g(x, s)=\infty
\end{gathered}
$$

and

$$
|g(x, s)| \leq C\left(|s|^{\frac{N+1}{N-1}}+1\right)
$$

Consider the semilinear Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u=g(x, u)+t \varphi_{1}+h(x) \text { in } \Omega, \tag{D}\\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

Teorema (Kannan-Ortega-1984)
If

$$
\begin{gathered}
\lim _{|s| \rightarrow \infty}\left[g(x, s)-\lambda_{1} s\right]=\infty \\
\lim _{s \rightarrow-\infty} g(x, s)=\infty
\end{gathered}
$$

and

$$
|g(x, s)| \leq C\left(|s|^{\frac{N+1}{N-1}}+1\right)
$$

then there exist t_{1} such that (D) has zero, at least one or at least two solutions according to $t>t_{1}, t=t_{1}$ and $t<t_{1}$.

Consider the ODE Dirichlet problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=g(u)+t \varphi_{1}+h(x) \text { in }[0, \pi], \tag{D}\\
u(0)=u(\pi)=0 .
\end{array}\right.
$$

Consider the ODE Dirichlet problem

$$
\left\{\begin{align*}
-u^{\prime \prime} & =g(u)+t \varphi_{1}+h(x) \text { in }[0, \pi], \tag{D}\\
u(0) & =u(\pi)=0
\end{align*}\right.
$$

Teorema (Chiappinelli-Mawhin-Nugari-1987) If

$$
\lim _{|s| \rightarrow \infty}\left[g(x, s)-\lambda_{1} s\right]=\infty
$$

Consider the ODE Dirichlet problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=g(u)+t \varphi_{1}+h(x) \text { in }[0, \pi] \tag{D}\\
u(0)=u(\pi)=0
\end{array}\right.
$$

Teorema (Chiappinelli-Mawhin-Nugari-1987) If

$$
\lim _{|s| \rightarrow \infty}\left[g(x, s)-\lambda_{1} s\right]=\infty
$$

then there exist $t_{0} \leq t_{1}$ such that (D) has zero, at least one or at least two solutions according to $t>t_{1}, t \in\left[t_{0}, t_{1}\right]$ and $t<t_{0}$.

Consider the ODE Dirichlet problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=g(u)+t \varphi_{1}+h(x) \text { in }[0, \pi] \tag{D}\\
u(0)=u(\pi)=0
\end{array}\right.
$$

Teorema (Chiappinelli-Mawhin-Nugari-1987)
If

$$
\lim _{|s| \rightarrow \infty}\left[g(x, s)-\lambda_{1} s\right]=\infty
$$

then there exist $t_{0} \leq t_{1}$ such that (D) has zero, at least one or at least two solutions according to $t>t_{1}, t \in\left[t_{0}, t_{1}\right]$ and $t<t_{0}$. Moreover, if $s \rightarrow M s+g(s)$ is nondecreasing in a neighborhood of 0 for some M, then $t_{0}=t_{1}$.

Steps in the proof

1. (D) has no solution for $t \gg 1$;

Steps in the proof

1. (D) has no solution for $t \gg 1$;
2. (D) has a subsolution for all t;

Steps in the proof

1. (D) has no solution for $t \gg 1$;
2. (D) has a subsolution for all t;
3. (D) has a supersolution for $t \ll-1$;

Steps in the proof

1. (D) has no solution for $t \gg 1$;
2. (D) has a subsolution for all t;
3. (D) has a supersolution for $t \ll-1$;
4. $t_{1}=\sup \{t ;(D)$ has a solution $\}$;

Steps in the proof

1. (D) has no solution for $t \gg 1$;
2. (D) has a subsolution for all t;
3. (D) has a supersolution for $t \ll-1$;
4. $t_{1}=\sup \{t ;(D)$ has a solution $\}$;
5. the solutions of (D) are bounded for t in a bounded set;

Steps in the proof

1. (D) has no solution for $t \gg 1$;
2. (D) has a subsolution for all t;
3. (D) has a supersolution for $t \ll-1$;
4. $t_{1}=\sup \{t ;(D)$ has a solution $\} ;$
5. the solutions of (D) are bounded for t in a bounded set;
6. (D) has a solution for all $t \leq t_{1}$;

Steps in the proof

1. (D) has no solution for $t \gg 1$;
2. (D) has a subsolution for all t;
3. (D) has a supersolution for $t \ll-1$;
4. $t_{1}=\sup \{t ;(D)$ has a solution $\} ;$
5. the solutions of (D) are bounded for t in a bounded set;
6. (D) has a solution for all $t \leq t_{1}$;
7. (D) has two solution for all $t<t_{2} \leq t_{1}$.

Let $\varphi \in C(\bar{\Omega}) \backslash\{0\}$ be a nonnegative bounded function. Consider the semilinear problem

$$
\left\{\begin{array}{l}
-\Delta u=f(x, u)+t \varphi \text { in } \Omega \tag{B}\\
B u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Let $\varphi \in C(\bar{\Omega}) \backslash\{0\}$ be a nonnegative bounded function. Consider the semilinear problem

$$
\left\{\begin{array}{l}
-\Delta u=f(x, u)+t \varphi \text { in } \Omega \tag{B}\\
B u=0 \text { on } \partial \Omega
\end{array}\right.
$$

Teorema (Hess-1980; Hofer-1981; Berestycki-Lions-1981) If
$-\infty<\limsup _{s \rightarrow-\infty} \frac{f(x, s)}{s}<\lambda_{1}<\liminf _{s \rightarrow \infty} \frac{f(x, s)}{s} \leq \limsup _{s \rightarrow \infty} \frac{f(x, s)}{s}<\infty$,

Let $\varphi \in C(\bar{\Omega}) \backslash\{0\}$ be a nonnegative bounded function. Consider the semilinear problem

$$
\left\{\begin{array}{l}
-\Delta u=f(x, u)+t \varphi \text { in } \Omega \tag{B}\\
B u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Teorema (Hess-1980; Hofer-1981; Berestycki-Lions-1981) If
$-\infty<\limsup _{s \rightarrow-\infty} \frac{f(x, s)}{s}<\lambda_{1}<\liminf _{s \rightarrow \infty} \frac{f(x, s)}{s} \leq \limsup _{s \rightarrow \infty} \frac{f(x, s)}{s}<\infty$,
then there exist t_{1} such that (B) has zero, at least one and least two solutions according to $t>t_{1}, t=t_{1}$ and $t<t_{1}$.

Problems involving the p-Laplace operator, $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$:

Problems involving the p-Laplace operator, $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$:
Arcoya-Ruiz-2006, $\varphi \succ 0$;

Problems involving the p-Laplace operator, $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$:
Arcoya-Ruiz-2006, $\varphi \succ 0$;
Koizumi-Schmitt-2005, $\varphi \geq 0$ and $\varphi \geq c>0$;

Problems involving the p-Laplace operator, $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$:
Arcoya-Ruiz-2006, $\varphi \succ 0$;
Koizumi-Schmitt-2005, $\varphi \geq 0$ and $\varphi \geq c>0$;
Mawhin-2006 - periodic ODE;

Problems involving the p-Laplace operator, $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$:
Arcoya-Ruiz-2006, $\varphi \succ 0$;
Koizumi-Schmitt-2005, $\varphi \geq 0$ and $\varphi \geq c>0$;
Mawhin-2006 - periodic ODE;
Arias-Cuesta-2010, superlinear;

Problems involving the p-Laplace operator, $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$:
Arcoya-Ruiz-2006, $\varphi \succ 0$;
Koizumi-Schmitt-2005, $\varphi \geq 0$ and $\varphi \geq c>0$;
Mawhin-2006 - periodic ODE;
Arias-Cuesta-2010, superlinear;
Miotto -2010, superlinear;

Problems involving the p-Laplace operator, $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$:
Arcoya-Ruiz-2006, $\varphi \succ 0$;
Koizumi-Schmitt-2005, $\varphi \geq 0$ and $\varphi \geq c>0$;
Mawhin-2006 - periodic ODE;
Arias-Cuesta-2010, superlinear;
Miotto -2010, superlinear;
Vélez-Santiago-2015, 2017, 2018 - nonlocal boundary conditions.

Ambrosetti-Prodi type result

Let $\varphi \in C(\bar{\Omega}) \backslash\{0\}$ be a nonnegative bounded function. Consider the semilinear problem

$$
\left\{\begin{array}{l}
-\Delta u=g(x, u)+t \varphi \text { in } \Omega \tag{t}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Assume

$$
\lim _{|s| \rightarrow \infty} g(x, s)=\infty
$$

Ambrosetti-Prodi type result

Let $\varphi \in C(\bar{\Omega}) \backslash\{0\}$ be a nonnegative bounded function. Consider the semilinear problem

$$
\left\{\begin{array}{l}
-\Delta u=g(x, u)+t \varphi \text { in } \Omega \tag{t}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Assume

$$
\lim _{|s| \rightarrow \infty} g(x, s)=\infty
$$

and

$$
|g(x, s)| \leq C\left(|s|^{p}+1\right), \quad 1<p<\frac{N}{N-2}
$$

Ambrosetti-Prodi type result

Let $\varphi \in C(\bar{\Omega}) \backslash\{0\}$ be a nonnegative bounded function. Consider the semilinear problem

$$
\left\{\begin{array}{l}
-\Delta u=g(x, u)+t \varphi \text { in } \Omega \tag{t}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega
\end{array}\right.
$$

Assume

$$
\lim _{|s| \rightarrow \infty} g(x, s)=\infty
$$

and

$$
|g(x, s)| \leq C\left(|s|^{p}+1\right), \quad 1<p<\frac{N}{N-2}
$$

Then there exist t_{1} such that (N) has zero, at least one and at least two solutions according to $t>t_{1}, t=t_{1}$ and $t<t_{1}$.

Step 1
$\left(N_{t}\right)$ has no solution for $t \gg 1$.

Step 1
$\left(N_{t}\right)$ has no solution for $t \gg 1$.
Let u be a solution of $\left(N_{t}\right)$,

Step 1
$\left(N_{t}\right)$ has no solution for $t \gg 1$.
Let u be a solution of $\left(N_{t}\right)$, then

$$
0=\int-\Delta u=\int g(x, u)+t \int \varphi .
$$

Step 1
$\left(N_{t}\right)$ has no solution for $t \gg 1$.
Let u be a solution of $\left(N_{t}\right)$, then

$$
0=\int-\Delta u=\int g(x, u)+t \int \varphi .
$$

It follows that

$$
g_{0}|\Omega| \leq \int g(x, u)=-t \int \varphi,
$$

where $g_{0}=\inf g(x, u)$,

Step 1
$\left(N_{t}\right)$ has no solution for $t \gg 1$.
Let u be a solution of $\left(N_{t}\right)$, then

$$
0=\int-\Delta u=\int g(x, u)+t \int \varphi .
$$

It follows that

$$
g_{0}|\Omega| \leq \int g(x, u)=-t \int \varphi
$$

where $g_{0}=\inf g(x, u)$, i.e.

$$
t \leq-\frac{g_{0}|\Omega|}{\int \varphi}
$$

Step 1

$\left(N_{t}\right)$ has no solution for $t \gg 1$.
Let u be a solution of $\left(N_{t}\right)$, then

$$
0=\int-\Delta u=\int g(x, u)+t \int \varphi .
$$

It follows that

$$
g_{0}|\Omega| \leq \int g(x, u)=-t \int \varphi
$$

where $g_{0}=\inf g(x, u)$, i.e.

$$
t \leq-\frac{g_{0}|\Omega|}{\int \varphi}
$$

Thus $\left(N_{t}\right)$ has no solution for $t \gg 1$.

Step 2

$\left(N_{t}\right)$ has a negative lower solution for all t.

Step 2

$\left(N_{t}\right)$ has a negative lower solution for all t.
Since $g(x, t) \rightarrow \infty$ as $t \rightarrow-\infty$,

Step 2

$\left(N_{t}\right)$ has a negative lower solution for all t.
Since $g(x, t) \rightarrow \infty$ as $t \rightarrow-\infty$, there exists a $M_{t}>0$ such that

$$
g\left(x,-M_{t}\right) \geq|t|\|\phi\|_{\infty}
$$

Step 2

$\left(N_{t}\right)$ has a negative lower solution for all t.
Since $g(x, t) \rightarrow \infty$ as $t \rightarrow-\infty$, there exists a $M_{t}>0$ such that

$$
g\left(x,-M_{t}\right) \geq|t|\|\phi\|_{\infty}
$$

Thus

$$
-\Delta\left(-M_{t}\right)=0 \leq g\left(x,-M_{t}\right)+t \phi
$$

Step 2

$\left(N_{t}\right)$ has a negative lower solution for all t.
Since $g(x, t) \rightarrow \infty$ as $t \rightarrow-\infty$, there exists a $M_{t}>0$ such that

$$
g\left(x,-M_{t}\right) \geq|t|\|\phi\|_{\infty}
$$

Thus

$$
-\Delta\left(-M_{t}\right)=0 \leq g\left(x,-M_{t}\right)+t \phi
$$

So, $-M_{t}$ is a negative subsolution of $\left(N_{t}\right)$.

Step 2

$\left(N_{t}\right)$ has a negative lower solution for all t.
Since $g(x, t) \rightarrow \infty$ as $t \rightarrow-\infty$, there exists a $M_{t}>0$ such that

$$
g\left(x,-M_{t}\right) \geq|t|\|\phi\|_{\infty}
$$

Thus

$$
-\Delta\left(-M_{t}\right)=0 \leq g\left(x,-M_{t}\right)+t \phi
$$

So, $-M_{t}$ is a negative subsolution of $\left(N_{t}\right)$.

Notice that M_{t} can be large as we want.

Given $v \in C(\bar{\Omega})$, consider the following auxiliar problem

$$
\left\{\begin{array}{l}
-\Delta u+\gamma(x, u)=g(x, v)+\gamma(x, v)+t \varphi \text { in } \Omega, \tag{P}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Given $v \in C(\bar{\Omega})$, consider the following auxiliar problem

$$
\left\{\begin{array}{l}
-\Delta u+\gamma(x, u)=g(x, v)+\gamma(x, v)+t \varphi \text { in } \Omega \tag{P}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

where

$$
\gamma(x, s)=\int_{0}^{s}\left[\operatorname{sign}\left(g_{s}(x, u)-\left|g_{s}(x, u)\right|\right) g_{s}(x, u)\right] d u+s
$$

Given $v \in C(\bar{\Omega})$, consider the following auxiliar problem

$$
\left\{\begin{array}{l}
-\Delta u+\gamma(x, u)=g(x, v)+\gamma(x, v)+t \varphi \text { in } \Omega, \tag{P}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

where

$$
\gamma(x, s)=\int_{0}^{s}\left[\operatorname{sign}\left(g_{s}(x, u)-\left|g_{s}(x, u)\right|\right) g_{s}(x, u)\right] d u+s
$$

We can show that
$s \rightarrow \gamma(x, s)$ and $s \rightarrow \gamma(x, s)+g(x, s)$ are strictly increasing.

Given $v \in C(\bar{\Omega})$, consider the following auxiliar problem

$$
\left\{\begin{array}{l}
-\Delta u+\gamma(x, u)=g(x, v)+\gamma(x, v)+t \varphi \text { in } \Omega, \tag{P}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

where

$$
\gamma(x, s)=\int_{0}^{s}\left[\operatorname{sign}\left(g_{s}(x, u)-\left|g_{s}(x, u)\right|\right) g_{s}(x, u)\right] d u+s
$$

We can show that
$s \rightarrow \gamma(x, s)$ and $s \rightarrow \gamma(x, s)+g(x, s)$ are strictly increasing.
(P) has a unique solution u,

Given $v \in C(\bar{\Omega})$, consider the following auxiliar problem

$$
\left\{\begin{array}{l}
-\Delta u+\gamma(x, u)=g(x, v)+\gamma(x, v)+t \varphi \text { in } \Omega, \tag{P}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

where

$$
\gamma(x, s)=\int_{0}^{s}\left[\operatorname{sign}\left(g_{s}(x, u)-\left|g_{s}(x, u)\right|\right) g_{s}(x, u)\right] d u+s
$$

We can show that
$s \rightarrow \gamma(x, s)$ and $s \rightarrow \gamma(x, s)+g(x, s)$ are strictly increasing.
(P) has a unique solution u, and so we can define the following operator

$$
T: \mathbb{R} \times C(\bar{\Omega}) \rightarrow C(\bar{\Omega}) ; \quad v \mapsto u(t, v)
$$

Moreover, T is compact and increasing.

Step 3

$\left(N_{t}\right)$ has a solution for some $t=t_{0}$.

Step 3

$\left(N_{t}\right)$ has a solution for some $t=t_{0}$.
Claim 1: There exists $t_{0}<0$ such that $u\left(t_{0}, 0\right)<0$.

Step 3

$\left(N_{t}\right)$ has a solution for some $t=t_{0}$.
Claim 1: There exists $t_{0}<0$ such that $u\left(t_{0}, 0\right)<0$.
Claim 2: $u\left(t_{0},-M\right)>-M$.

Step 3

$\left(N_{t}\right)$ has a solution for some $t=t_{0}$.
Claim 1: There exists $t_{0}<0$ such that $u\left(t_{0}, 0\right)<0$.
Claim 2: $u\left(t_{0},-M\right)>-M$.
Thus

$$
T_{t_{0}}:[-M, 0]_{C(\bar{\Omega})} \rightarrow[-M, 0]_{C(\bar{\Omega})} .
$$

Step 3

$\left(N_{t}\right)$ has a solution for some $t=t_{0}$.
Claim 1: There exists $t_{0}<0$ such that $u\left(t_{0}, 0\right)<0$.
Claim 2: $u\left(t_{0},-M\right)>-M$.
Thus

$$
T_{t_{0}}:[-M, 0]_{C(\bar{\Omega})} \rightarrow[-M, 0]_{C(\bar{\Omega})} .
$$

Therefore $T_{t_{0}}$ has a fixed point.

Step 4

There is t_{1} such that $\left(N_{t}\right)$ has a solution for $t<t_{1}$ and no solution for $t>t_{1}$.

Step 4

There is t_{1} such that $\left(N_{t}\right)$ has a solution for $t<t_{1}$ and no solution for $t>t_{1}$.

Define

$$
t_{1}=\sup \{t ;(N) \text { has a sotulion }\} .
$$

Step 4

There is t_{1} such that $\left(N_{t}\right)$ has a solution for $t<t_{1}$ and no solution for $t>t_{1}$.

Define

$$
t_{1}=\sup \{t ;(N) \text { has a sotulion }\} .
$$

For $t<t_{1}$, take t^{\prime} such that $t<t^{\prime}<t_{1}$ and $\left(N_{t^{\prime}}\right)$ has a solution u^{\prime}.

Step 4

There is t_{1} such that $\left(N_{t}\right)$ has a solution for $t<t_{1}$ and no solution for $t>t_{1}$.

Define

$$
t_{1}=\sup \{t ;(N) \text { has a sotulion }\} .
$$

For $t<t_{1}$, take t^{\prime} such that $t<t^{\prime}<t_{1}$ and $\left(N_{t^{\prime}}\right)$ has a solution u^{\prime}.

This solution u^{\prime} is a upper solution of $\left(N_{t}\right)$.

Step 4

There is t_{1} such that $\left(N_{t}\right)$ has a solution for $t<t_{1}$ and no solution for $t>t_{1}$.

Define

$$
t_{1}=\sup \{t ;(N) \text { has a sotulion }\} .
$$

For $t<t_{1}$, take t^{\prime} such that $t<t^{\prime}<t_{1}$ and $\left(N_{t^{\prime}}\right)$ has a solution u^{\prime}.

This solution u^{\prime} is a upper solution of $\left(N_{t}\right)$.
Now, $\left(N_{t}\right)$ has a subsolution $-M_{t}$, and we can assume that $-M_{t}<u^{\prime}$.

Step 4

There is t_{1} such that $\left(N_{t}\right)$ has a solution for $t<t_{1}$ and no solution for $t>t_{1}$.

Define

$$
t_{1}=\sup \{t ;(N) \text { has a sotulion }\} .
$$

For $t<t_{1}$, take t^{\prime} such that $t<t^{\prime}<t_{1}$ and $\left(N_{t^{\prime}}\right)$ has a solution u^{\prime}.

This solution u^{\prime} is a upper solution of $\left(N_{t}\right)$.
Now, $\left(N_{t}\right)$ has a subsolution $-M_{t}$, and we can assume that $-M_{t}<u^{\prime}$.

Therefore, $\left(N_{t}\right)$ has a solution.

Step 5
Let u_{n} be a solution of $\left(N_{t_{n}}\right)$ with $t_{n} \in[a, b]$

Step 5
Let u_{n} be a solution of $\left(N_{t_{n}}\right)$ with $t_{n} \in[a, b]$, then $\left\|u_{n}\right\|_{C^{1, \alpha}}$ is bounded.

Step 5

Let u_{n} be a solution of $\left(N_{t_{n}}\right)$ with $t_{n} \in[a, b]$, then $\left\|u_{n}\right\|_{C^{1, \alpha}}$ is bounded.

Claim: If $u=u^{1}+u^{0}, u_{0}=\frac{1}{|\Omega|} \int u$, is a solution of (N) with $|t| \leq T$,

Step 5

Let u_{n} be a solution of $\left(N_{t_{n}}\right)$ with $t_{n} \in[a, b]$, then $\left\|u_{n}\right\|_{C^{1, \alpha}}$ is bounded.

Claim: If $u=u^{1}+u^{0}, u_{0}=\frac{1}{|\Omega|} \int u$, is a solution of (N) with $|t| \leq T$,then

$$
\left\|u^{1}\right\|_{C^{1, \alpha}} \leq C\left(1+\left|u^{0}\right|^{\tau}\right), \quad 0<\tau<1
$$

Step 5

Let u_{n} be a solution of $\left(N_{t_{n}}\right)$ with $t_{n} \in[a, b]$, then $\left\|u_{n}\right\|_{C^{1, \alpha}}$ is bounded.

Claim: If $u=u^{1}+u^{0}, u_{0}=\frac{1}{|\Omega|} \int u$, is a solution of (N) with $|t| \leq T$,then

$$
\left\|u^{1}\right\|_{C^{1, \alpha}} \leq C\left(1+\left|u^{0}\right|^{\tau}\right), \quad 0<\tau<1
$$

Now, suppose that u_{n} is a solution of (N) with $t_{n} \in[a, b]$

Step 5

Let u_{n} be a solution of $\left(N_{t_{n}}\right)$ with $t_{n} \in[a, b]$, then $\left\|u_{n}\right\|_{C^{1, \alpha}}$ is bounded.

Claim: If $u=u^{1}+u^{0}, u_{0}=\frac{1}{|\Omega|} \int u$, is a solution of (N) with $|t| \leq T$,then

$$
\left\|u^{1}\right\|_{C^{1, \alpha}} \leq C\left(1+\left|u^{0}\right|^{\tau}\right), \quad 0<\tau<1
$$

Now, suppose that u_{n} is a solution of (N) with $t_{n} \in[a, b]$, with

$$
\left\|u_{n}\right\|_{C^{1, \alpha}} \rightarrow \infty
$$

Step 5

Let u_{n} be a solution of $\left(N_{t_{n}}\right)$ with $t_{n} \in[a, b]$, then $\left\|u_{n}\right\|_{C^{1, \alpha}}$ is bounded.

Claim: If $u=u^{1}+u^{0}, u_{0}=\frac{1}{|\Omega|} \int u$, is a solution of (N) with $|t| \leq T$,then

$$
\left\|u^{1}\right\|_{C^{1, \alpha}} \leq C\left(1+\left|u^{0}\right|^{\tau}\right), \quad 0<\tau<1
$$

Now, suppose that u_{n} is a solution of (N) with $t_{n} \in[a, b]$, with

$$
\left\|u_{n}\right\|_{C^{1, \alpha}} \rightarrow \infty
$$

By the Claim, $\left|u_{n}^{0}\right| \rightarrow \infty$.

Step 5

Let u_{n} be a solution of $\left(N_{t_{n}}\right)$ with $t_{n} \in[a, b]$, then $\left\|u_{n}\right\|_{C^{1, \alpha}}$ is bounded.

Claim: If $u=u^{1}+u^{0}, u_{0}=\frac{1}{|\Omega|} \int u$, is a solution of (N) with $|t| \leq T$,then

$$
\left\|u^{1}\right\|_{C^{1, \alpha}} \leq C\left(1+\left|u^{0}\right|^{\tau}\right), \quad 0<\tau<1
$$

Now, suppose that u_{n} is a solution of (N) with $t_{n} \in[a, b]$, with

$$
\left\|u_{n}\right\|_{C^{1, \alpha}} \rightarrow \infty
$$

By the Claim, $\left|u_{n}^{0}\right| \rightarrow \infty$. Set $v_{n}=\frac{u_{n}}{\left|u_{n}^{0}\right|}$,

Step 5

Let u_{n} be a solution of $\left(N_{t_{n}}\right)$ with $t_{n} \in[a, b]$, then $\left\|u_{n}\right\|_{C^{1, \alpha}}$ is bounded.

Claim: If $u=u^{1}+u^{0}, u_{0}=\frac{1}{|\Omega|} \int u$, is a solution of (N) with $|t| \leq T$,then

$$
\left\|u^{1}\right\|_{C^{1, \alpha}} \leq C\left(1+\left|u^{0}\right|^{\tau}\right), \quad 0<\tau<1
$$

Now, suppose that u_{n} is a solution of (N) with $t_{n} \in[a, b]$, with

$$
\left\|u_{n}\right\|_{C^{1, \alpha}} \rightarrow \infty
$$

By the Claim, $\left|u_{n}^{0}\right| \rightarrow \infty$. Set $v_{n}=\frac{u_{n}}{\left|u_{n}^{0}\right|}$, we have

$$
v_{n}=\frac{u_{n}^{1}}{\left|u_{n}^{0}\right|}+\frac{u_{n}^{0}}{\left|u_{n}^{0}\right|} \rightarrow \pm 1 \text { a.e. in } \Omega .
$$

Step 5

Let u_{n} be a solution of $\left(N_{t_{n}}\right)$ with $t_{n} \in[a, b]$, then $\left\|u_{n}\right\|_{C^{1, \alpha}}$ is bounded.

Claim: If $u=u^{1}+u^{0}, u_{0}=\frac{1}{|\Omega|} \int u$, is a solution of (N) with $|t| \leq T$,then

$$
\left\|u^{1}\right\|_{C^{1, \alpha}} \leq C\left(1+\left|u^{0}\right|^{\tau}\right), \quad 0<\tau<1
$$

Now, suppose that u_{n} is a solution of (N) with $t_{n} \in[a, b]$, with

$$
\left\|u_{n}\right\|_{C^{1, \alpha}} \rightarrow \infty
$$

By the Claim, $\left|u_{n}^{0}\right| \rightarrow \infty$. Set $v_{n}=\frac{u_{n}}{\left|u_{n}^{0}\right|}$, we have

$$
v_{n}=\frac{u_{n}^{1}}{\left|u_{n}^{0}\right|}+\frac{u_{n}^{0}}{\left|u_{n}^{0}\right|} \rightarrow \pm 1 \text { a.e. in } \Omega .
$$

Thus $u_{n} \rightarrow \pm \infty$,

Step 5

Let u_{n} be a solution of $\left(N_{t_{n}}\right)$ with $t_{n} \in[a, b]$, then $\left\|u_{n}\right\|_{C^{1, \alpha}}$ is bounded.

Claim: If $u=u^{1}+u^{0}, u_{0}=\frac{1}{|\Omega|} \int u$, is a solution of (N) with $|t| \leq T$,then

$$
\left\|u^{1}\right\|_{C^{1, \alpha}} \leq C\left(1+\left|u^{0}\right|^{\tau}\right), \quad 0<\tau<1
$$

Now, suppose that u_{n} is a solution of (N) with $t_{n} \in[a, b]$, with

$$
\left\|u_{n}\right\|_{C^{1, \alpha}} \rightarrow \infty
$$

By the Claim, $\left|u_{n}^{0}\right| \rightarrow \infty$. Set $v_{n}=\frac{u_{n}}{\left|u_{n}^{0}\right|}$, we have

$$
v_{n}=\frac{u_{n}^{1}}{\left|u_{n}^{0}\right|}+\frac{u_{n}^{0}}{\left|u_{n}^{0}\right|} \rightarrow \pm 1 \text { a.e. in } \Omega
$$

Thus $u_{n} \rightarrow \pm \infty$, and so

$$
-t_{n} \int \varphi=\int g\left(x, u_{n}\right) \rightarrow \infty
$$

Step 5

Let u_{n} be a solution of $\left(N_{t_{n}}\right)$ with $t_{n} \in[a, b]$, then $\left\|u_{n}\right\|_{C^{1, \alpha}}$ is bounded.

Claim: If $u=u^{1}+u^{0}, u_{0}=\frac{1}{|\Omega|} \int u$, is a solution of (N) with $|t| \leq T$,then

$$
\left\|u^{1}\right\|_{C^{1, \alpha}} \leq C\left(1+\left|u^{0}\right|^{\tau}\right), \quad 0<\tau<1
$$

Now, suppose that u_{n} is a solution of (N) with $t_{n} \in[a, b]$, with

$$
\left\|u_{n}\right\|_{C^{1, \alpha}} \rightarrow \infty
$$

By the Claim, $\left|u_{n}^{0}\right| \rightarrow \infty$. Set $v_{n}=\frac{u_{n}}{\left|u_{n}^{0}\right|}$, we have

$$
v_{n}=\frac{u_{n}^{1}}{\left|u_{n}^{0}\right|}+\frac{u_{n}^{0}}{\left|u_{n}^{0}\right|} \rightarrow \pm 1 \text { a.e. in } \Omega .
$$

Thus $u_{n} \rightarrow \pm \infty$, and so

$$
-t_{n} \int \varphi=\int g\left(x, u_{n}\right) \rightarrow \infty
$$

which is a contradiction.

Step 6 If $t<t_{0}$, then (N) has at least two solutions.

Step 6 If $t<t_{0}$, then (N) has at least two solutions.
Let $t<t_{0}$, and let $\underline{u}<\bar{u}$ be lower and upper solutions.

Step 6 If $t<t_{0}$, then (N) has at least two solutions.
Let $t<t_{0}$, and let $\underline{u}<\bar{u}$ be lower and upper solutions.
Consider the interior of $[\underline{u}, \bar{u}]$ in $C^{1}(\bar{\Omega})$, denoted by $A, v_{0} \in A$, and the map $T_{\eta}: \mathcal{C}(\bar{\Omega}) \rightarrow \mathcal{C}(\bar{\Omega})$ given by

$$
T_{\eta}(v)=\eta T_{t}(v)+(1-\eta) v_{0}
$$

Step 6 If $t<t_{0}$, then (N) has at least two solutions.
Let $t<t_{0}$, and let $\underline{u}<\bar{u}$ be lower and upper solutions.
Consider the interior of $[\underline{u}, \bar{u}]$ in $C^{1}(\bar{\Omega})$, denoted by $A, v_{0} \in A$, and the map $T_{\eta}: \mathcal{C}(\bar{\Omega}) \rightarrow \mathcal{C}(\bar{\Omega})$ given by

$$
T_{\eta}(v)=\eta T_{t}(v)+(1-\eta) v_{0}
$$

We have

$$
\operatorname{deg}\left(I-T_{t}, A, 0\right)=\operatorname{deg}\left(I-T_{\eta}, A, 0\right)=\operatorname{deg}\left(I-T_{0}, A, 0\right)=1
$$

Step 6 If $t<t_{0}$, then (N) has at least two solutions.
Let $t<t_{0}$, and let $\underline{u}<\bar{u}$ be lower and upper solutions.
Consider the interior of $[\underline{u}, \bar{u}]$ in $C^{1}(\bar{\Omega})$, denoted by $A, v_{0} \in A$, and the map $T_{\eta}: \mathcal{C}(\bar{\Omega}) \rightarrow \mathcal{C}(\bar{\Omega})$ given by

$$
T_{\eta}(v)=\eta T_{t}(v)+(1-\eta) v_{0}
$$

We have

$$
\operatorname{deg}\left(I-T_{t}, A, 0\right)=\operatorname{deg}\left(I-T_{\eta}, A, 0\right)=\operatorname{deg}\left(I-T_{0}, A, 0\right)=1
$$

By the other hand

$$
\operatorname{deg}\left(I-T_{t}, K B, 0\right)=\operatorname{deg}\left(I-T_{t_{0}+1}, K B, 0\right)=0
$$

Step 6 If $t<t_{0}$, then (N) has at least two solutions.
Let $t<t_{0}$, and let $\underline{u}<\bar{u}$ be lower and upper solutions.
Consider the interior of $[\underline{u}, \bar{u}]$ in $C^{1}(\bar{\Omega})$, denoted by $A, v_{0} \in A$, and the map $T_{\eta}: \mathcal{C}(\bar{\Omega}) \rightarrow \mathcal{C}(\bar{\Omega})$ given by

$$
T_{\eta}(v)=\eta T_{t}(v)+(1-\eta) v_{0}
$$

We have

$$
\operatorname{deg}\left(I-T_{t}, A, 0\right)=\operatorname{deg}\left(I-T_{\eta}, A, 0\right)=\operatorname{deg}\left(I-T_{0}, A, 0\right)=1
$$

By the other hand

$$
\operatorname{deg}\left(I-T_{t}, K B, 0\right)=\operatorname{deg}\left(I-T_{t_{0}+1}, K B, 0\right)=0
$$

Thus
$\operatorname{deg}\left(I-T_{t}, K B \backslash A, 0\right)=\operatorname{deg}\left(I-T_{t}, K B, 0\right)-\operatorname{deg}\left(I-T_{t}, A, 0\right)=-1$.

Ambrosetti-Prodi type result

Let $\varphi \in C(\bar{\Omega}) \backslash\{0\}$ be a nonnegative bounded function. Consider the semilinear problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=g(x, u)+t \varphi \text { in } \Omega, \tag{t}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Assume that g is continuous,

$$
\lim _{s \rightarrow-\infty} \frac{g(x, s)}{|s|^{p-2} s}<0<\lim _{s \rightarrow \infty} \frac{g(x, s)}{|s|^{p-2} s}
$$

Ambrosetti-Prodi type result

Let $\varphi \in C(\bar{\Omega}) \backslash\{0\}$ be a nonnegative bounded function. Consider the semilinear problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=g(x, u)+t \varphi \text { in } \Omega, \tag{t}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Assume that g is continuous,

$$
\lim _{s \rightarrow-\infty} \frac{g(x, s)}{|s|^{p-2} s}<0<\lim _{s \rightarrow \infty} \frac{g(x, s)}{|s|^{p-2} s}
$$

and

$$
|g(x, u)| \leq \lambda\left(1+|t|^{p-1}\right)
$$

Ambrosetti-Prodi type result

Let $\varphi \in C(\bar{\Omega}) \backslash\{0\}$ be a nonnegative bounded function. Consider the semilinear problem

$$
\left\{\begin{array}{l}
-\Delta_{p} u=g(x, u)+t \varphi \text { in } \Omega \tag{t}\\
\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Assume that g is continuous,

$$
\lim _{s \rightarrow-\infty} \frac{g(x, s)}{|s|^{p-2} s}<0<\lim _{s \rightarrow \infty} \frac{g(x, s)}{|s|^{p-2} s}
$$

and

$$
|g(x, u)| \leq \lambda\left(1+|t|^{p-1}\right)
$$

Then there exist $t_{1} \geq t_{2}$ such that (Q) has zero, at least one and at least two solutions according to $t>t_{1}, t_{2}<t \leq t_{1}$ and $t \leq t_{2}$.

Claim: There exisits τ_{1} such that $\left(P_{t}\right)$ has a solution for all $t \leq \tau_{1}$.

Claim: There exisits τ_{1} such that $\left(P_{t}\right)$ has a solution for all $t \leq \tau_{1}$.
Step 1: Define the solution operator $S: L^{\infty} \rightarrow C^{1, \alpha}(\bar{\Omega}), K(f)$, being the unique solution of

$$
\left\{\begin{aligned}
-\Delta_{p} u+\lambda|u|^{p-2} u & =f(x) & & \text { in } \Omega \\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} & =0 & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Claim: There exisits τ_{1} such that $\left(P_{t}\right)$ has a solution for all $t \leq \tau_{1}$.
Step 1: Define the solution operator $S: L^{\infty} \rightarrow C^{1, \alpha}(\bar{\Omega}), K(f)$, being the unique solution of

$$
\left\{\begin{aligned}
-\Delta_{p} u+\lambda|u|^{p-2} u & =f(x) & & \text { in } \Omega \\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} & =0 & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Now define

$$
K_{t}(u)=S\left(g(\cdot, u)+\lambda|u|^{p-2} u+t \varphi\right)
$$

Step 2: To given $R>0$ there exists $t(R)$ such that
$v \neq \eta K_{t} v, \quad \forall v \in C(\bar{\Omega})$ with $\left\|v^{+}\right\|=R, \forall \eta \in[0,1]$ and $\forall t \leq t(R)$.

Step 2: To given $R>0$ there exists $t(R)$ such that
$v \neq \eta K_{t} v, \quad \forall v \in C(\bar{\Omega})$ with $\left\|v^{+}\right\|=R, \forall \eta \in[0,1]$ and $\forall t \leq t(R)$.
Step 3: For each $t \in \mathbb{R}$, there exists $R=R(t)$ such that

$$
v \neq \eta K_{t} v, \quad \forall v \in C(\bar{\Omega}) \text { with }\left\|v^{-}\right\|=R \text { and } \forall \eta \in[0,1] .
$$

Step 2: To given $R>0$ there exists $t(R)$ such that
$v \neq \eta K_{t} v, \quad \forall v \in C(\bar{\Omega})$ with $\left\|v^{+}\right\|=R, \forall \eta \in[0,1]$ and $\forall t \leq t(R)$.
Step 3: For each $t \in \mathbb{R}$, there exists $R=R(t)$ such that

$$
v \neq \eta K_{t} v, \quad \forall v \in C(\bar{\Omega}) \text { with }\left\|v^{-}\right\|=R \text { and } \forall \eta \in[0,1] .
$$

Step 4: Given $R>0$, fix $t \leq t(R)$, and take $R(t)$ and let

$$
\Lambda_{t}=\left\{v \in C(\bar{\Omega}) ;\left\|v^{+}\right\|<R,\left\|v^{-}\right\|<R(t)\right\} .
$$

We have

$$
v \neq \eta K_{t} v, \quad \forall v \in \partial \Lambda_{t} \quad \text { and } \forall \eta \in[0,1] .
$$

Step 2: To given $R>0$ there exists $t(R)$ such that
$v \neq \eta K_{t} v, \quad \forall v \in C(\bar{\Omega})$ with $\left\|v^{+}\right\|=R, \forall \eta \in[0,1]$ and $\forall t \leq t(R)$.
Step 3: For each $t \in \mathbb{R}$, there exists $R=R(t)$ such that

$$
v \neq \eta K_{t} v, \quad \forall v \in C(\bar{\Omega}) \text { with }\left\|v^{-}\right\|=R \text { and } \forall \eta \in[0,1] .
$$

Step 4: Given $R>0$, fix $t \leq t(R)$, and take $R(t)$ and let

$$
\Lambda_{t}=\left\{v \in C(\bar{\Omega}) ;\left\|v^{+}\right\|<R,\left\|v^{-}\right\|<R(t)\right\} .
$$

We have

$$
v \neq \eta K_{t} v, \quad \forall v \in \partial \Lambda_{t} \quad \text { and } \forall \eta \in[0,1] .
$$

Then

$$
\operatorname{deg}\left(I-K_{t}, \Lambda_{t}, 0\right)=\operatorname{deg}\left(I-K_{t}, \eta \Lambda_{t}, 0\right)=\operatorname{deg}\left(I, \Lambda_{t}, 0\right)=1
$$

Step 2: To given $R>0$ there exists $t(R)$ such that
$v \neq \eta K_{t} v, \quad \forall v \in C(\bar{\Omega})$ with $\left\|v^{+}\right\|=R, \forall \eta \in[0,1]$ and $\forall t \leq t(R)$.
Step 3: For each $t \in \mathbb{R}$, there exists $R=R(t)$ such that

$$
v \neq \eta K_{t} v, \quad \forall v \in C(\bar{\Omega}) \text { with }\left\|v^{-}\right\|=R \text { and } \forall \eta \in[0,1] .
$$

Step 4: Given $R>0$, fix $t \leq t(R)$, and take $R(t)$ and let

$$
\Lambda_{t}=\left\{v \in C(\bar{\Omega}) ;\left\|v^{+}\right\|<R,\left\|v^{-}\right\|<R(t)\right\} .
$$

We have

$$
v \neq \eta K_{t} v, \quad \forall v \in \partial \Lambda_{t} \quad \text { and } \forall \eta \in[0,1] .
$$

Then

$$
\operatorname{deg}\left(I-K_{t}, \Lambda_{t}, 0\right)=\operatorname{deg}\left(I-K_{t}, \eta \Lambda_{t}, 0\right)=\operatorname{deg}\left(I, \Lambda_{t}, 0\right)=1
$$

Obrigado!

