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Bu =0 on 092.

Ward (1982), Neumann case - existence of solution when
and [f <O0.

Cuesta, De Figueiredo and Srikanth (2003) , Dirichlet case -
existence of solution when 1 < g < NH ,fel’ r>N,and
f ngl < 0.

The p-Laplacian case is a open problem.
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Let o € C(Q2) \ {0} be a nonnegative bounded function. Consider
the problem
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Then there exist t; > ty such that (Q) has zero, at least one and
at least two solutions according tot > t1, th < t <ty and t < ty.
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Teorema (Ambrosetti-Prodi-1972)

If
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f(s)

< AZ?

and
f"(s) >0 VseR,

then there exists a connected manifold My C C*(Q) of
codimension 1 such that C%(Q) \ M = My U My and (D) has
exactly zero, one or two solutions according as v is in Mg, My ou
Ms.
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{ o(0) = ulr)— 0. (D)

Teorema (Chiappinelli-Mawhin-Nugari-1987)
If

lim [g(x,s) — A1s] = o0,

|s|—o0

then there exist ty < t1 such that (D) has zero, at least one or at
least two solutions according to t > t1, t € [to, t1] and t < tp.
Moreover, if s — Ms + g(s) is nondecreasing in a neighborhood of
0 for some M, then ty = ty.
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Steps in the proof

1. (D) has no solution for t >> 1;

2. (D) has a subsolution for all t;

3. (D) has a supersolution for t << —1;

4. t; = sup{t; (D) has a solution};

5. the solutions of (D) are bounded for t in a bounded set;
6. (D) has a solution for all t < ty;

7. (D) has two solution for all t < t» < t7.
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the semilinear problem

—Au=f(x,u)+tyin Q, (B)
Bu =0 on 012.

Teorema (Hess-1980; Hofer-1981; Berestycki-Lions-1981)
If

f(x,s)
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—00 < IimsupM <A < IimimcM <limsup ——= < o0,
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then there exist t; such that (B) has zero, at least one and at least
two solutions according tot > t1, t =1t; and t < t3.
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Problems involving the p-Laplace operator, div(|Vu|[P~2Vu):
Arcoya-Ruiz-2006, ¢ > 0;

Koizumi-Schmitt-2005, ¢ > 0 and ¢ > ¢ > 0;

Mawhin-2006 - periodic ODE;

Arias-Cuesta-2010, superlinear;

Miotto -2010, superlinear;

Vélez-Santiago-2015, 2017, 2018 - nonlocal boundary conditions.
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Let o € C(Q) \ {0} be a nonnegative bounded function. Consider
the semilinear problem

—Au=g(x,u)+tyin Q, (V)
gu = 0 on 0. ‘
Assume
lim g(x,s) =00
|s| =00
and

g(x,s)| < C(IslP +1), 1<p<

N-—2
Then there exist t; such that (N) has zero, at least one and at
least two solutions according to t > t;, t = t; and t < t7.
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(N¢) has no solution for t >> 1.

Let u be a solution of (N;),then

0:/—Au:/g(x,u)—|-t/g0.
go\QIS/g(XM):—t/so,

where go = inf g(x, u), i.e.

It follows that

89|

t <
e

Thus (N;) has no solution for t >> 1.
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Step 2
(N;) has a negative lower solution for all t.

Since g(x,t) — oo as t — —oo, there exists a M; > 0 such that

g(x, =M) = [t][|¢]|oo-

Thus
—A(—=M;) =0 < g(x, —M;) + to.

So, —M; is a negative subsolution of (N;).

Notice that M; can be large as we want.
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Given v € C(Q), consider the following auxiliar problem

{ —Au+7(x,u) = g(x,v) +y(x, v) + o in 2,

% =0 on 09Q. (P)

where
19) = [ [sign(es(x, 1) — |gs(x, 0))gs(x, w)]du + 5.

We can show that

s = 7(x,s) and s — y(x,s)+ g(x,s) are strictly increasing.

(P) has a unique solution u,and so we can define the following
operator

T:RxC(Q)— C(Q); v u(t,v),

Moreover, T is compact and increasing.
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Step 3
(N;) has a solution for some t = tp.

Claim 1: There exists tg < 0 such that u(tp,0) < 0.
Claim 2: u(ty, —M) > —M.
Thus

Tty [=M, 0] () = [=M, 0 (-

Therefore Ty, has a fixed point.
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Step 4
There is t; such that (N;) has a solution for t < t; and no solution
for t > t.

Define
t; = sup{t; (N) has a sotulion}.

For t < t;, take t’ such that t < t/ < t; and (Ny) has a solution

u'.

This solution ' is a upper solution of (N;).

Now, (N;) has a subsolution —M;, and we can assume that
—Mt < U/.

Therefore, (N;) has a solution. O
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Step 5
Let u, be a solution of (N;,) with t, € [a, b], then ||up||c1a is
bounded.

Claim: If u = u* + u°, uo = 1 [ u, is a solution of (N) with
|t| < T,then

lut||cra < C(L+[7), 0<7 <L
Now, suppose that u, is a solution of (N) with t, € [a, b], with
l|unl|cr.e — o00.

By the Claim, |ud] — co. Set v, = ﬁl’—g‘ we have

1 0
Vp = ug + ug — 41 a.e. in Q.
I

Thus u, — o0, and so

_tn/(p:/g(x,u,,)%oo,

which is a contradiction.
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Step 6 If t < tp, then (N) has at least two solutions.

Let t < tg, and let u < U be lower and upper solutions.

Consider the interior of [u, 7] in C*(Q), denoted by A, v € A, and

the map T,, : C(Q2) — C(2) given by
Ty(v) = nTe(v) + (1 = n)w,
We have
deg (/ — T¢,A,0) =deg(/ — T,,A,0) =deg (I — Tp,A,0) =1.
By the other hand
deg (I — T+, KB,0) = deg (I — T¢,+1,KB,0) = 0.
Thus
deg (I — T+, KB\ A,0) = deg(/ — T+, KB,0)—deg (/ — T+, A,0) = —1.

Bl
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Ambrosetti-Prodi type result

Let p € C(Q) \ {0} be a nonnegative bounded function. Consider
the semilinear problem

—Apu = g(x,u) + ty in Q, (V)
%zOon 1. t

Assume that g is continuous,

s——o00 |5|P 25 s~>oo |5‘ p—2g’

and
g (x, u)] < AL+ [e]P7H).

Then there exist t; > t, such that (Q) has zero, at least one and
at least two solutions according to t > t1, th < t < t; and t < to.
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Claim: There exisits 7 such that (P;) has a solution for all t < 7y.

Step 1: Define the solution operator S : L — C1%(Q), K(f),
being the unique solution of

—Apu+ANulP2u=f(x) inQ

du

p—2
|Vul 5

=0 on 0N.
Now define

Ke(u) = S(g(,u) + AulP~?u + ty).
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Step 3: For each t € R, there exists R = R(t) such that
v#nKev, YV veC(Q)with|lvT||=R and ¥V n€0,1].
Step 4: Given R > 0, fix t < t(R), and take R(t) and let
Ae={ve CQ) IV <RIVl < (D)}
We have
v#nKiv, VY veoN and Ve |[0,1].
Then

deg(l — K¢, Ar, 0) = deg(/ — K¢, A, 0) = deg(/,A,0) =1. O



Obrigado!



