Construction of free boundary CMC annuli in geodesic balls

Alberto Cerezo*, Isabel Fernández, Pablo Mira (*) cerezocid@ugr.es

Introduction

Let \mathbb{B}^3 be a **geodesic ball** in a space form \mathbb{M}^3 , that is, $\mathbb{M}^3 = \mathbb{R}^3$, \mathbb{S}^3 , \mathbb{H}^3 . We say that a constant mean curvature (CMC) surface $\Sigma \subset \mathbb{B}^3$ is **free boundary** in \mathbb{B}^3 if Σ meets the sphere $\partial \mathbb{B}^3$ **orthogonally**.

Free boundary CMC surfaces appear naturally as solutions of the **partitioning problem**, which asks to find the critical points of the area functional among all surfaces dividing \mathbb{B}^3 into two pieces of **prescribed volumes**.

In recent years, free boundary problems have received significant attention, specially in the study of **minimal** surfaces (H=0) in the unit ball of Euclidean space. However, even in this particular situation, important questions remain open, such as the **critical catenoid conjecture**, which asks whether an embedded free boundary minimal annulus must be a piece of a catenoid. Our results show that the conjecture does not hold when we relax the minimal hypothesis to CMC.

Previous results & questions

Theorem (Nitsche, 1985) [N]: any free boundary CMC **disk** must be totally umbilic. In particular, it must be **rotational**.

Question 1 (Nitsche, 1985): are Delaunay surfaces the only free boundary CMC annuli in \mathbb{B}^3 ?

Theorem (Wente, 1995) [W]: In \mathbb{R}^3 , there exist **immersed** free boundary CMC ($H \neq 0$) annuli which are **not rotational**. In particular, this gives a negative answer to Question 1 in the Euclidean case.

Question 2 (Wente, 1995): are Delaunay surfaces the only embedded free boundary CMC annuli in \mathbb{B}^3 ?

Theorem (Fernández-Hauswirth-Mira, 2022) [FHM]: In \mathbb{R}^3 , there exist immersed free boundary minimal annuli which are not rotational.

Our results

We prove the following existence theorems:

Theorem [CFM1]: in \mathbb{R}^3 , there exist **embedded** free boundary CMC ($H \neq 0$) annuli which are **not rotational**.

Theorem [CFM2]: in \mathbb{S}^3 , for any $H \geq 0$ there exist **non-rotational** CMC-H annuli which are free boundary in some geodesic ball. If $H \geq 1/\sqrt{3}$, they are **embedded**.

Theorem [CFM2]: in \mathbb{H}^3 , for any H>1 there exist **non-rotational**, **embedded** CMC-H annuli which are free boundary in some geodesic ball.

In particular, we give a negative answer to Question 2 posed by Wente. Moreover, we extend the answer to Question 1 by generalizing the results in [FHM,W] to the case of geodesic balls in space forms.

All these annuli appear as 1-parameter **deformations** of a free boundary piece of a Delaunay surface. Moreover, their symmetry group is **prismatic** and they are foliated by spherical curvature lines.

We summarize the known examples of non-rotational free boundary annuli in the table below. Our constructions are highlighted in green:

	\mathbb{S}^3	R 3	∭3
Minimal	Immersed [CFM2]	Immersed [FHM]	Work in progress!
CMC	Embedded [CFM2]	Embedded [CFM1]	Embedded [CFM2]

Idea of the construction for the Euclidean case

Let \mathcal{F} be the set of **conformal** CMC immersions $\psi(u,v): \mathbb{R}^2 \to \mathbb{R}^3$ **parametrized by curvature lines** such that each v-line $v \mapsto \psi(u_0,v)$ is contained in some **sphere** $\mathbb{S}(u_0)$. \mathcal{F} constitutes a 4-parameter family of CMC surfaces. One can check that (a) the intersection angle of the surfaces with each sphere $\mathbb{S}(u)$ is **constant** (Joachimsthal's Theorem), and (b) the centers of the spheres $\mathbb{S}(u)$ lie on a **vertical** axis L; see **Figure 1**.

We will find our free boundary annuli within \mathcal{F} . To do so, we consider slices of immersions $\Sigma_{\tau}:=\psi([- au, au] imes\mathbb{R})$ satisfying several properties:

- 1. Horizontal symmetry: we want the immersion to have a horizontal symmetry plane P; see Figure 1.
- 2. **Annular** condition: we ask the v-lines to be closed, so that Σ_{τ} is an annulus whose boundary components lie on the spheres $\mathbb{S}(\tau)$, $\mathbb{S}(-\tau)$.
- 3. **Orthogonality** condition: we choose $\tau > 0$ so that Σ_{τ} meets the boundary spheres $\mathbb{S}(\tau)$, $\mathbb{S}(-\tau)$ orthogonally; see **Figure 1**.
- 4. **Spherical boundary:** we ask the two boundary spheres to coincide. Due to the symmetry in P, this is achieved when the center of $\mathbb{S}(\tau)$ lies in $L \cap P$. In such a case, both boundary components of Σ_{τ} lie on $\mathbb{S}(\tau) \equiv \mathbb{S}(-\tau)$.

Let Σ_0 be an annulus satisfying properties 1-4. If, moreover, Σ_0 is contained in the ball \mathbb{B}^3 whose boundary is $\mathbb{S}(\tau)$, then the annulus is **free boundary** in \mathbb{B}^3 .

It can be shown that the family of annuli $\Upsilon \subset \mathcal{F}$ satisfying the aforementioned properties is analytic and 1-parametric. Moreover, in Υ we detect an **embedded** piece of nodoid contained in its corresponding ball, so it is free boundary in it; see **Figure 2**. By analyticity, any annulus in Υ near this nodoid will also be embedded and free boundary in a certain ball.

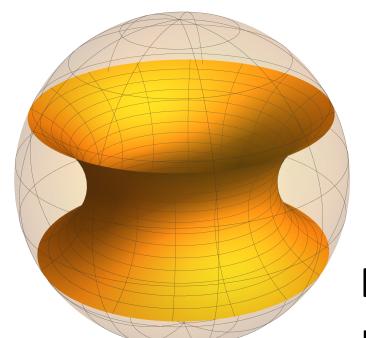


Figure 2. Free boundary nodoid in Υ .

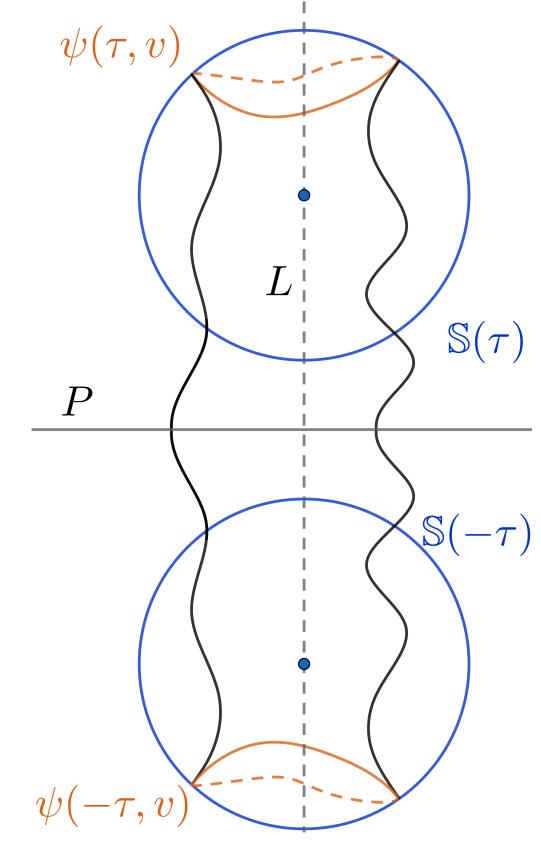


Figure 1. Annulus Σ_{τ} .

References

[CFM1] A. Cerezo, I. Fernández, P. Mira: Annular solutions to the partitioning problem in a ball (2022).

[CFM2] A. Cerezo, I. Fernández, P. Mira: Free boundary CMC annuli in spherical and hyperbolic balls (2024).

[FHM] I. Fernández, L. Hauswirth, P. Mira: Free boundary minimal annuli immersed in the unit ball (2023).

[N] J.C.C. Nitsche: Stationary partitioning of convex bodies (1985).

[W] H.C. Wente: Tubular capillary surfaces in a convex body (1995).

Acknowledgements & contact

Research financially supported by Project PID2020-118137GB-I00 funded by MCIN/AEI /10.13039/501100011033 and by ESF+.

