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1. Preguntas iniciales

Antes de comenzar con los contenidos propios de estas notas, nos planteamos una se-
rie de cuestiones que nos ayudarán a situar lo aprendido en este bloque de la asignatura
Complementos para la formación en matemáticas dentro de la práctica docente:

1. ¿Para qué se enseña matemáticas?

2. ¿Cómo se enseña en general, y en particular matemáticas?

3. ¿Qué impresión se tiene sobre las matemáticas?

4. ¿Cuáles son las principales dificultades de enseñar matemáticas? ¿Y de aprenderlas?

5. A propósito de la LOMLOE, ¿Cuáles son los principales cambios frente al sistema
anterior? ¿Cómo se entiende conceptos como objetivos, competencias clave y espećıficas,
productos finales y situaciones de aprendizajes?

No pretendemos dar respuesta a estas preguntas en estas notas. Algunas de ellas están
recogidas en la normativa vigente y otras implicaŕıan analizar investigaciones sobre el tema.
El propósito con ellas es llamarnos la atención sobre cuestiones básicas para plantear una
propuesta docente. En estas notas vamos a ver herramientas matemáticas que nos servirán
para proponer situaciones de aprendizaje al alumnado de secundaria y/o bachillerato.

Acabamos esta sección recordando las competencias espećıficas de matemáticas para la
Educación Secundaria Obligatoria1 para tenerlas presentes en las actividades que pudieran
derivarse de lo aprendido en esta parte de la asignatura.

1. Interpretar, modelizar y resolver problemas de la vida cotidiana y propios de las ma-
temáticas, aplicando diferentes estrategias y formas de razonamiento, para explorar
distintas maneras de proceder y obtener posibles soluciones.

2. Analizar las soluciones de un problema usando diferentes técnicas y herramientas, eva-
luando las respuestas obtenidas, para verificar su validez e idoneidad desde un punto
de vista matemático y su repercusión global.

1Instrucción conjunta 1/2022, de 23 de junio, de la Dirección General de Ordenación Y Eva-
luación Educativa y de la Dirección General de Formación Profesional, por la que se estable-
cen aspectos de organización y funcionamiento para los centros que impartan Educación Secundaria
Obligatoria para el curso 2022/2023. https://anpeandalucia.es/openFile.php?link=notices/att/1/
instruccion1-2022organizacioneso_t1657715309_1_3.pdf
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3. Formular y comprobar conjeturas sencillas o plantear problemas de forma autónoma,
reconociendo el valor del razonamiento y la argumentación, para generar nuevo cono-
cimiento.

4. Utilizar los principios del pensamiento computacional organizando datos, descompo-
niendo en partes, reconociendo patrones, interpretando, modificando y creando algorit-
mos para modelizar situaciones y resolver problemas de forma eficaz.

5. Reconocer y utilizar conexiones entre los diferentes elementos matemáticos interconec-
tando conceptos y procedimientos para desarrollar una visión de las matemáticas como
un todo integrado.

6. Identificar las matemáticas implicadas en otras materias, en situaciones reales y en
el entorno, susceptibles de ser abordadas en términos matemáticos, interrelacionando
conceptos y procedimientos, para aplicarlos en situaciones diversas.

7. Representar, de forma individual y colectiva, conceptos, procedimientos, información y
resultados matemáticos, usando diferentes tecnoloǵıas, para visualizar ideas y estruc-
turar procesos matemáticos.

8. Comunicar de forma individual y colectiva conceptos, procedimientos y argumentos
matemáticos, usando lenguaje oral, escrito o gráfico, utilizando la terminoloǵıa ma-
temática apropiada, para dar significado y coherencia a las ideas matemáticas.

9. Desarrollar destrezas personales, identificando y gestionando emociones, poniendo en
práctica estrategias de aceptación del error como parte del proceso de aprendizaje y
adaptándose ante situaciones de incertidumbre, para mejorar la perseverancia en la
consecución de objetivos y el disfrute en el aprendizaje de las matemáticas.

10. Desarrollar destrezas sociales, reconociendo y respetando las emociones y experien-
cias de los demás, participando activa y reflexivamente en proyectos en equipos hete-
rogéneos con roles asignados, para construir una identidad positiva como estudiante
de matemáticas, para fomentar el bienestar personal y grupal y para crear relaciones
saludables.

Antes de empezar con el contenido propio de estas notas, planteamos dos situaciones, en
principio, ajenas las matemáticas, para pensar y discutir, en clase, en qué medida se trabajan
las competencias espećıficas que acabamos de enumerar.

1. Supongamos que en un banco nos dan el 0.1% de interés mensual compuesto si durante
12 meses no retiramos el capital depositado.

a) ¿Cuánto será nuestro capital pasados 12 meses si inicialmente hacemos un depósito
de 1000 euros?

b) ¿Cuánto hemos ganado con el depósito?

c) ¿Cuántos meses deben pasar para duplicar nuestro capital?

d) ¿Podŕıas dar una fórmula matemática para saber cuánto capital tenemos cada
mes?
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Solución: Que el interés sea compuesto significa que los intereses generados se suman
al capital inicial, y sobre esa nueva suma se calculan los nuevos intereses. Entonces,
nuestro capital pasados 12 meses si inicialmente hacemos un depósito de 1000 euros es:
Primer mes: 1000 + 0,001 ∗ 1000 = 1001.
Segundo mes: 1001 + 0,001 ∗ 1001 = 1002,001.

Y aśı podŕıamos seguir, vemos que cada mes se tiene un capital Cn, que depende del
capital en el mes anterior Cn−1

Cn = Cn−1

(
1 +

0,1

100

)
.

Entonces Cn = C0

(
1 + 0,1

100

)n
. Luego C12 = C0

(
1 + 0,1

100

)12
= 1012,06622 euros. Es

decir, hemos ganado 12,06622 euros.

Para saber cuántos meses deben pasar para duplicar nuestro capital inicial, vemos que
debemos encontrar n para que

Cn = 2C0,

es decir,

C0

(
1 +

0,1

100

)n

= 2C0,

y por tanto

n =
log(2)

log
(
1 + 0,1

100

) ,
es decir, deben pasar 693,4936964 meses, 57,79114137 años.

2. Supongamos que estamos analizando una población de bacterias aislada en un laborato-
rio. Cada d́ıa contamos las bacterias que tenemos. A la vista de nuestras observaciones
pensamos que con respecto al d́ıa anterior nacen a razón de 0,25 y mueren un tercio
de las que teńıamos el d́ıa anterior.

a) Si inicialmente hay 100 bacterias, ¿cuántas debeŕıamos observar pasado un d́ıa,
si nuestras hipótesis son ciertas?

b) Y en general ¿cómo cambia el número de bacterias con respecto al d́ıa anterior?

c) ¿Qué ocurrirá con el número de bacterias cuando vayan pasando los d́ıas?

d) ¿Podŕıas dar una fórmula matemática para saber cuántas bacterias habrá, si nues-
tras hipótesis son ciertas?

Solución: Si inicialmente tenemos 100 bacterias, el d́ıa siguiente tendremos

100 + nace−mueren = 100 + 100 ∗ 0,25− 100

3
= 91,66666667.

Vemos que pasado un d́ıa se ha reducido el número de bacterias, como las tasas de nacimientos
y muertes son constantes es razonable pensar que la población de bacterias a largo plazo se
va a ir reduciendo. Lo comprobamos encontrando una expresión para el número de bacterias
como función de los d́ıas. Si denotamos por pn el número de bacterias en el d́ıa n, vemos que
podemos determinarlo en función del número de bacterias en el d́ıa anterior, pn−1:

pn = pn−1

(
1 + 0,25− 1

3

)
.
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Y por tanto

pn = p0

(
1 + 0,25− 1

3

)n

.

Como 1 + 0,25 − 1
3
< 1 vemos que la población decrece, concretamente se reduce aproxi-

madamente un 0.0833 por ciento cada d́ıa. Por lo que la población de bacterias tiende a la
extinción.

A la vista de estas situaciones nos preguntamos:

1. Pensando en el alumnado de secundaria o bachillerato, ¿se entienden los enunciados?
¿Hay dificultad para encontrar las “fórmulas”?

2. ¿Qué herramientas matemáticas se han empleado?

3. ¿Se pueden unificar ambas situaciones en un mismo “ámbito matemático”?

4. ¿Qué competencias espećıficas se trabajan?

2. Introducción

Una de las principales dificultades que presenta la enseñanza de las matemáticas en ESO,
Bachillerato y FP es la aparente desconexión que percibe el alumnado, entre la realidad y
las matemáticas. Éste parece considerar las matemáticas como una serie de algoritmos y
abstracciones complejas, que solo valen para aprobar la asignatura de matemáticas. Por otro
lado, cuando se plantean situaciones cotidianas, que acerquen la realidad y las matemáticas,
aparece la dificultad de pasar el lenguaje verbal, en el que se plantea la situación sujeta a
análisis, al lenguaje matemático.

Con este bloque de la asignatura Complementos para la formación en matemáticas que-
remos mostrar una serie de aplicaciones sencillas originadas en otras ciencias, como por
ejemplo la bioloǵıa y la economı́a. Estos ejemplos nos servirán para resaltar la importancia
de las sucesiones, las funciones, las derivadas de funciones y las matrices. Aśı como, destacar
la importancia del modelado como clave imprescindible en el uso de la matemáticas para
resolver problemas en otras disciplinas: f́ısica, bioloǵıa, geoloǵıa, economı́a,. . .

Comenzaremos analizando en la sección 3 el uso de las sucesiones de números y de las fun-
ciones en el estudio de la dinámica de poblaciones. Concretamente, derivaremos el modelo de
Malthus, partiendo de premisas muy elementales, para entender bajo qué condiciones el mo-
delo puede ser válido, y bajo cuáles otras tiene carencias. En este último caso, propondremos
un modelo que supla algunas de dichas carencias (modelo loǵıstico).

En la sección 4 veremos las matrices como una herramienta sencilla para estudiar la
dinámica de una población estructura en grupos de edad (modelo de Leslie).

La segunda parte de este bloque la dedicaremos a dos aspectos distintos. En la sección
5 veremos cómo debemos tener cuidado con los usos informáticos que empleemos. Para ello
analizaremos cómo se emplean las hojas de cálculo para encontrar la mejor función exponen-
cial que ajusta a una nube de puntos bajo el criterio de tener el menor error cuadrático. En
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la sección 6 veremos algunos ejemplos de optimización y cómo se pueden resolver con hojas
de cálculo.

Finalmente, en la sección 7 presentamos las hojas de cálculo como una herramienta
sencilla y muy útil para ilustrar todo lo aprendido en las secciones anteriores. Completamos
estas notas de clase con dos apéndices en los que se profundiza un poco más sobre ciertos
aspectos matemáticos relacionados con las secciones anteriores.

3. Sucesiones y funciones en dinámica de poblaciones

Imaginemos que estamos estudiando el tamaño (número de miembros) de una población
determinada, mediante recuentos, por ejemplo podŕıan ser anuales. Cada recuento tendrá
asociado un número (el de miembros de la población en ese recuento). Aśı, podemos denotar
por pn el número de miembros de la población en el recuento n, entendiendo que n =
0 denota el recuento inicial. Observamos de este modo que {pn}n≥0 es una sucesión de
números. Una pregunta natural seŕıa ¿podemos conocer el tamaño de la población a largo
plazo? Evidentemente la respuesta a esta pregunta está supeditada a tener más información
sobre la población. Y constituye más un problema biológico que matemático. En la siguiente
subsección veremos cómo partiendo de distintas premisas biológicas llegamos a plantear
diferentes modelos matemáticos que pueden dar respuesta a la pregunta anterior.

3.1. Modelo de Malthus

Supongamos que queremos plantear un modelo matemático que describa el tamaño de
una población aislada (ni llegan, ni se marchan miembros). Para ello, representamos por
pn el número de miembros en el recuento n. Conocido este número podemos pensar que el
tamaño de la población en el recuento siguiente n+ 1 será

pn+1 = pn + nacen−mueren.

¿Cómo determinar el número de nacimientos y defunciones?

nacen = f pn , mueren = mpn,

donde f y m son los ı́ndices de natalidad y mortalidad, respectivamente2. Por tanto, encon-
tramos que

pn+1 = (1 + (f −m))pn. (1)

Esta ecuación es la que se conoce como modelo de Malthus discreto y lo propuso Malthus,
cuando estudió la población de Estados Unidos entre los años 1790 y 1860.

La ecuación (1) nos permite hacer las siguientes observaciones:

1. Conocido p0, tamaño de la población inicialmente, se conoce el tamaño de la población
en todos los recuentos posteriores, puesto que:

p1 = (1 + (f −m))p0, p2 = (1 + (f −m))p1 = (1 + (f −m))2p0, . . .

2La ecuación pn+1 = (1+(f−m))pn ¿tiene sentido biológico para cualesquiera f y m constantes positivas?
(en el sentido de que para cada n, pn sea una cantidad no negativa).
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en general, se llega a:
pn = (1 + (f −m))np0.

Por tanto las soluciones de (1) son sucesiones, cuyos términos siguen una progresión
geométrica de razón (1 + (f −m)).

2. Puesto que pn = (1 + (f −m))np0 observamos que, considerando p0 ̸= 0:

Si f > m, la población crece con el tiempo.

Si f < m, la población decrece.

Si f = m la población se mantiene constante.

Biológicamente es obvio, ya que si el ı́ndice de natalidad es superior al de mortalidad
la población debe crecer y en caso contrario decrecer. Si ambos ı́ndices son iguales la
población tendŕıa siempre el mismo tamaño.

3. ¿Es razonable este modelo para aproximar poblaciones con miembros grandes?

Este modelo condena a las poblaciones a la extinción o al crecimiento ilimitado. El cre-
cimiento ilimitado en un espacio finito parece poco razonable. Sin embargo, el modelo
puede ser válido, por ejemplo, para bacterias, ya que en función de su tamaño el espa-
cio limitado, pero suficientemente grande, supongamos la Tierra, no es un problema.
También puede ser válido para predicciones en periodos cortos de tiempo, incluso para
poblaciones con miembros grandes.

4. ¿Qué ha fallado en el modelo? El modelo no tiene en cuenta que la Tierra es finita,
ni los fenómenos migratorios, ni que las tasa de natalidad y mortalidad no pueden ser
constantes.

5. ¿Cómo planteaŕıamos un modelo más realista?

Antes de pasar a proponer un modelo más realista, hacemos unos comentarios sobre el modelo
de Malthus en su versión continua, es decir, considerando que se quiere conocer el tamaño
de la población en todo instante de tiempo:

P ′(t) = (f̃ − m̃)P (t). (2)

En ese caso, la solución no es una sucesión de números, sino una función real que toma
valores positivos3. Observamos que en la versión continua también se describe una población
que crece ilimitadamente si f̃ > m̃ y decrece tendiendo a la extinción si f̃ < m̃ ¿por qué?

3La justificación del modelo continuo es como sigue: representamos por P (t) el número de miembros en el
instante t. Como razonábamos antes, conocido este número podemos pensar que el tamaño de la población,
pasado un tiempo ∆t será

P (t+∆t) = P (t) + nacen−mueren.

pero en este caso representamos las tasa de natalidad y mortalidad teniendo en cuenta el tiempo transcurrido,
es decir, ∆t:

nacen = f̃ ∆t P (t) , mueren = m̃∆t P (t),

donde f̃ y m̃ son los ı́ndices de natalidad y mortalidad, respectivamente. Por tanto, encontramos que

P (t+∆t) = P (t) + f̃ ∆t P (t)− m̃∆t P (t)

o, escrito de otro modo,
P (t+∆t)− P (t)

∆t
= (f̃ − m̃)P (t). (3)
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A la vista de los dos modelos de Malthus presentados, modelo discreto (1) y modelo
continuo (2) podemos señalar los siguientes comentarios:

1. Ambos modelos pretenden describir la evolución del tamaño de una determinada po-
blación.

2. Desde un punto de vista biológico la diferencia entre ambos modelos está en la depen-
dencia temporal de su tamaño. En el modelo discreto, el tiempo se mide en ciertos
instantes, dependiendo de la periodicidad de los recuentos (d́ıas, semanas, meses, años
. . . ), mientras que en el modelo continuo se podŕıa conocer el tamaño de la población
en todo instante de tiempo.

3. La concepción diferente del tiempo, discreta o continua, provoca que la solución de
la ecuación matemática planteada tenga una naturaleza distinta: sucesión o función,
respectivamente.

4. En el caso de la aproximación de Malthus, ambos modelos tienen un comportamiento
parecido, sin embargo, hay otros modelos que tienen un comportamiento muy distinto
en sus versiones discreta y continua. Por tanto, es importante saber cuál es la naturaleza
del problema estudiado, es decir, si el tiempo es una variable continua o discreta. Por
ejemplo, si se piensa en aves migratorias en un determinado humedal ¿cómo se debe
modelar el tiempo, continuo o discreto?

3.2. Ecuación loǵıstica

Buscamos una ecuación en diferencias (ecuación del tipo pn+1 = f(pn) con f una función
real, véase el apéndice A para más detalles) que corrija las deficiencias de la ecuación discreta
de Malthus pn+1 = r pn, donde hemos agrupado todas las constantes, tomando r = 1+(f−m).
Esas deficiencias vienen de suponer que las tasas de fertilidad y natalidad son constantes, o
dicho de otro modo que la tasa de crecimiento

pn+1

pn

es constante. Para evitar el crecimiento ilimitado o la extinción, nos planteamos una tasa
de crecimiento que no sea constante, y una primera aproximación es considerar una tasa de
crecimiento lineal, que se haga más pequeña cuando aumente el tamaño de la población.
Es decir, la tasa de crecimiento no es una constante, sino una recta como función de pn
decreciente4:

pn+1

pn
= a− b pn , a, b > 0. (5)

Si el paso del tiempo ∆t se hace muy pequeño (es decir, ∆t→ 0) la velocidad media se convierte en velocidad
instantánea, que no es otra cosa que la derivada de P . De este modo, de la ecuación discreta obtenemos la
ecuación continua de Malthus (ecuación diferencial)

P ′(t) = (f̃ − m̃)P (t).

4La motivación biológica de la ecuación (5) es la siguiente: los ı́ndices de natalidad y mortalidad no son
constantes (como pasaba en el modelo de Malthus), son de la forma α− β p para la natalidad y λ+ γ p para
la mortalidad, siendo α, β, λ y γ ciertas constantes positivas. Esto significa que:

El número de nacimientos en función de pn es (α− β pn) pn. De este modo si hay muchos miembros
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Pasando pn al término de la derecha en la ecuación (5) obtenemos la ecuación loǵıstica:

pn+1 = (a− bpn)pn. (6)

Para garantizar la positividad de pn+1 debe verificarse que a− b pn > 0, es decir, pn < a
b
, por

tanto la población no puede crecer ilimitadamente. En la sección 3.2.1 se demuestra que si
0 < a ≤ 4 y 0 < p0 <

a
b
, entonces 0 < pn < a

b
y por tanto se garantiza la positividad de pn

en todos los recuentos.
Nuevamente, una solución de la ecuación (6) es una sucesión de números, donde cada

término se relaciona con el anterior mediante la fórmula que indica dicha ecuación. Sin em-
bargo, para esta sucesión, en general5, si partimos de p0 no podemos encontrar una expresión
para su término general, pn, dependiente de las constantes a, b y p0

6.

Una pregunta más sencilla seŕıa ¿existe un tamaño N tal que la población siempre tenga
ese número de miembros en todos los recuentos? Esta pregunta traducida a nuestro ambiente
matemático seŕıa ¿existe un dato inicial p0 = N tal que para todo n, pn = p0 = N? O dicho
de otro modo, la pregunta es ¿tiene la ecuación loǵıstica alguna solución constante?, es decir,
¿existe una sucesión de números, con todo sus términos iguales a N tal que sea solución de
la ecuación (6)? Para responder a estas preguntas basta resolver la ecuación

N = pn+1 = (a− bpn)pn = (a− bN)N

es decir, N = (a − bN)N , que tiene como soluciones N = 0 y N = a−1
b
. Vemos que para

que a−1
b

tengan sentido biológico, es decir, nos ofrezca un tamaño de la población, debe ser
un valor positivo, por lo que a debe ser mayor que 1. Como ya hemos dicho, si tomamos p0
igual a esos valores tendremos que durante todos los recuentos el número de miembros es el
mismo.

Pero ¿qué pasa si tomamos valores próximos a esas cantidades constantes? La respuesta
a esta pregunta requiere de los conceptos de estabilidad y estabilidad asintótica de soluciones
constantes. Los detalles se pueden encontrar en el apéndice A, aqúı solo mencionaremos la
idea intuitiva, que además se puede entender bien con una hoja de cálculo. El concepto de
estabilidad da una idea de cómo se comportan las soluciones con datos iniciales próximos a

en el instante n el número de nacimientos es menor, puesto que α− β p es una función decreciente en
p.

El número de defunciones en función de pn es (λ+ γ pn)Pn, lo que significa que la probabilidad de
muerte aumenta a medida que aumenta el tamaño de la población.

El número de miembros en el instante n+ 1 es el número de miembros que hab́ıa en el instante ante-
rior n, más los nacimientos, menos las muertes, es decir:

pn+1 = pn︸︷︷︸
la/e/os que hab́ıa

+ (α− β pn) Pn︸ ︷︷ ︸
la/e/os que nacen

− (λ+ γ pn) Pn︸ ︷︷ ︸
la/e/os que mueren

. (4)

Podemos ordenar los términos de la ecuación (4) y obtenemos:

pn+1 = (1 + α− λ) pn − (β + γ) p2n = ((1 + α− λ)− (β + γ) pn) pn,

que tiene la forma de la ecuación (6) escogiendo a = 1 + α− λ y b = β + γ.
5Hay casos particulares en los que śı se puede encontrar el término general, ¿podŕıas encontrar alguno?
6Escribe los 3 primeros términos de la solución de la ecuación loǵıstica en función del recuento inicial p0.
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la solución constante. Aśı, en el caso de la ecuación loǵıstica se sabe que cuando 0 < a ≤ 1 la
solución constantemente 0 es asintóticamente estable, es decir, si se empieza cerca del valor
0 la solución tiene a 0 a largo plazo. O dicho de otro modo, si inicialmente el tamaño de la
población es pequeño, a largo plazo la población se extinguirá. Sin embargo, si 1 < a < 3, la
solución constantemente 0 se vuelve inestable. Es decir, en general, si inicialmente el tamaño
de la población es pequeño, a largo plazo aumenta porque se aleja del valor 0. En ese rango
de valores de a (1 < a < 3) la solución constantemente a−1

b
es asintóticamente estable, es

decir, si inicialmente el número de miembros ronda el valor a−1
b
, a largo plazo, el tamaño de

la población se aproximará exactamente al valor a−1
b
.

Pero la “simple” ecuación loǵıstica, esconde soluciones con un comportamiento mucho
más complejo que el descrito hasta ahora (se pueden consultar los detalles en la sección
3.2.1). Concretamente, para 3 < a ≤ 4 existen soluciones periódicas y aparece el fenómeno
de caos, que tiene como consecuencia el efecto mariposa. Todos estos comportamientos se
pueden observar con una simple hoja de cálculo. Y con los siguiente programas disponibles
en la red.

Programas para simular la ecuación loǵıstica en diferencias

Algunos programas disponibles en la red para estudiar la ecuación loǵıstica discreta:

Programa del Prof. Juan Campos (UGR):
http://www.ugr.es/~arobles/FBAI/logdsc03.exe

WolframAlpha analiza todos los aspectos de la ecuación:
http://www.wolframalpha.com/input/?i=logistic+map+

Programa para ver la evolución de la población:
http://www.geom.uiuc.edu/~math5337/ds/applets/iteration/Iteration.html

Pograma para ver el diagrama de bifurcación y los valores de los distintos recuentos:
http://math.bu.edu/DYSYS/applets/bif-dgm/Logistic.html

Puedes descubrir más entre los enlaces de arriba y por supuesto navegando en la red
... pero no olvides que ¡tú puedes hacer tu propio programa con una simple hoja de
cálculo!

Para acabar este breve repaso sobre la ecuación loǵıstica (invitamos a la persona interesada
en más detalles a leer la sección 3.2.1) señalamos que la versión continua de este modelo, es
decir, la ecuación diferencial

P ′(t) = (A−B P (t)) P (t), (7)

describe un comportamiento mucho más sencillo, ya que esta ecuación tiene también dos
soluciones constantes, que son estables o inestables en función del signo de los coeficientes
A y B, pero no tienen soluciones ćıclicas, ni presenta el fenómeno de caos. Hacemos este
comentario porque nos lleva a reflexionar sobre el concepto de derivada

P ′(t) = ĺım
∆t→0

P (t+∆t)− P (t)

∆t
. (8)

Fijando el incremento de tiempo ∆t y aproximando P ′(t) por su cociente incremental
P (t+∆t)−P (t)

∆t
, podemos llegar, como se hizo en la sección anterior con el modelo de Malthus, a
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la ecuación loǵıstica diferencial (7). Cuando ese incremento de tiempo es grande pueden apa-
recer valores del correspodiente a (en la ecuación en diferencias (6)) grandes de forma que la
ecuación en diferencias puede tener ciclos o caos. Por tanto, solo se tiene un comportamiento
parecido entre ambos modelos, discreto y continuo (en diferencias y diferencial), cuando el
paso de tiempo es muy pequeño, es decir, cuando realmente el cociente incremental es una
buena aproximación de la derivada.

3.2.1. Algunos detalles sobre la ecuación loǵıstica

Incluimos en esta sección algunos detalles un poco más complejos sobre la ecuación
loǵıstica discreta, ecuación (6), pero que podŕıan servir como ideas para proponer actividades
de profundización para un alumnado más motivado en las matemáticas, tanto en ESO como
Bachillerato.

Sacando factor común a en (6) nos queda

pn+1 = a

(
1− b pn

a

)
pn,

que puede escribirse de forma más sencilla haciendo el cambio xn = b pn
a
. De este modo

xn+1 =
b pn+1

a
=

b

a
a

(
1− b pn

a

)
pn = a

(
1− b pn

a

)
b pn
a

= a (1− xn)xn,

llegando aśı a la ecuación
xn+1 = a (1− xn)xn. (9)

Observamos que xn es una cantidad sin unidades7, que toma valores entre cero y uno. Si
toma el valor cero significa que no hay miembros en la población y si toma el valor 1, la
población tiene el tamaño máximo permitido: a/b.

Consideraciones previas sobre la ecuación

Antes de pasar a estudiar en detalle la ecuación loǵıstica discreta (9), analizamos las condi-
ciones que debe cumplir para que tenga sentido biológico.

Para que el término derecho de la ecuación sea positivo debe ocurrir que 0 ≤ xn ≤ 1 y
a > 0. Pero ... ¿es esto suficiente?

Para que en todo instante xn esté entre cero y uno, la parábola f(x) = a (1−x)x debe
tomar valores entre cero y uno, si la variable x toma valores entre cero y uno. f es una
párabola que corta al eje de abscisas en los puntos 0 y 1 y tiene el vértice en el punto
(1
2
, a
4
) (es decir, x = 1

2
e y = f(1

2
) = a

4
). Esto quiere decir que la función es creciente

desde 0 hasta 1
2
y decreciente desde 1

2
hasta 1. Por tanto, el valor máximo de la función

es el alcanzado en el vértice, que sabemos es a
4
. Puesto que la función f(x) debe tomar

valores entre 0 y 1 (si x ∈ [0, 1]), el valor del máximo debe ser a lo sumo 1, es decir
a
4
≤ 1, lo que significa que a ≤ 4. En la figura 1 podemos ver la gráfica de la parábola

para distintos valores de a.

Concluimos, de este modo, que las condiciones que debemos imponer son: 0 ≤ a ≤ 4 y
0 ≤ x0 ≤ 1.

7¿Por qué?
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0,2 0,4 0,6 0,8 1

0,5

1

1,5

x

f(x) a = 0,5
a = 2
a = 4
a = 5

Figura 1: Función f(x) = ax(1 − x) para distintos valores de a. Se observa que para a = 5
la gráfica de f sobrepasa el valor 1.

Soluciones constantes. Estabilidad

Recordamos que las soluciones constantes de una ecuación en diferencias xn+1 = f(xn)
se encuentran localizando los puntos fijos de la función f . Aśı pues, nuestro objetivo es
determinar los puntos fijos de la función f(x) = a (1 − x)x o, dicho de otro modo, resolver
la ecuación

x = a (1− x)x.

Esta ecuación es sencilla y vemos que sus soluciones son 0 y 1− 1
a
. Por tanto, las soluciones

constantes de la ecuación loǵıstica en diferencias son:

xn = 0 para cualquier valor de n.

xn = 1 − 1
a
para cualquier valor de n. Esta solución tiene sentido biológico solo si

1− 1
a
> 0, es decir, si a > 1.

Resumimos la situación:

0 < a ≤ 1 Una única solución constante: 0
1 < a ≤ 4 Dos soluciones constantes: 0 y 1− 1

a

Una vez conocidas las soluciones constantes del modelo, la siguiente cuestión natural es
preguntarse sobre la estabilidad: ¿serán estables o inestables estas soluciones?

Para ello, utilizando el criterio de la primera derivada (se puede consultar en el apéndice
A), debemos calcular la derivada de f y evaluarla en los puntos fijos. La derivada de f es

f ′(x) = a(1− 2x) ,

que evaluada en cero queda
f ′(0) = a

y en 1− 1
a

f ′
(
1− 1

a

)
= a− 2 a

(
1− 1

a

)
= a− 2 a+ 2 = 2− a.

Por tanto:
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0 es asintóticamente estable si 0 < a < 1 e inestable si a > 1, es decir, 0 es estable solo
si es la única solución constante, con sentido biológico.

1 − 1
a
es asintóticamente estable si 1 < a < 3 e inestable si a > 3 (no contemplamos

aqúı la posibilidad de que a < 1 ya que en ese caso el punto 1− 1
a
no es positivo y no

tiene sentido biológico8).

Resumimos la situación9:

0 < a ≤ 1 0 es asintóticamente estable
1 < a ≤ 3 0 es inestable y 1− 1

a
asintóticamente estable

3 < a ≤ 4 0 y 1− 1
a
son inestables

Ciclos

Una ecuación de apariencia tan simple no hace sospechar que puede presentar una dinámica
tan compleja. Dependiendo del valor de a pueden aparecer n-ciclos. Estudiar esta cuestión con
detalle no es nada sencillo y por supuesto se escapa del nivel de estas notas. Aqúı indicaremos,
simplemente, los rangos de a para los que se sabe qué tipo de n-ciclos aparecen. Con la ayuda
de programas disponibles en la red, o con una simple hoja de cálculo, se pueden descubrir
estos n-ciclos. Pero antes de hacer este esbozo de resultados, observamos un cálculo sencillo
que nos muestra qué condición debe cumplir a para que aparezcan 2-ciclos. xn es un 2-ciclo
si verifica:

x0, x1 = f(x0), x2 = f(x1) = x0, . . . .

Por tanto

x0 = f(x1) = f(f(x0)) (x0 es un punto fijo para la función f 2) ,

que es una ecuación para x0 que podemos escribir de la siguiente forma:

x0 = f(x1) = a (1− x1)x1 = a (1− a (1− x0)x0) a (1− x0)x0

o, llevando todo al término de la izquierda,

x0 − a (1− a (1− x0)x0) a (1− x0)x0 = 0

y sacando factor común de x0:

x0

[
1− a2 (1− a (1− x0)x0) (1− x0)

]
= 0

Esta ecuación es de cuarto orden que después de hacer algunas cuentas 10 se puede escribir
de la siguiente forma:

x0 [a x0 − (a− 1)]
[
a2 x2

0 − a (a+ 1)x0 + (a+ 1)
]
= 0 ,

de donde se deduce que
x0 = 0 o a x0 − (a− 1) = 0 o

8¿Qué ocurre si a < 1?
9En la tabla se incluyen los casos a = 1 y a = 3, que no se pueden demostrar utilizando el criterio de la

primera derivada. ¿Cómo podŕıamos justificarlos?
10Sabemos que las soluciones constantes de la ecuación, en particular, son 2-ciclos. Por tanto, la expresión

se obtiene dividiendo el polinomio 1− a2 (1− x) (1− a x (1− x)) por el monomio x−
(
1− 1

a

)
.
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a2 x2
0 − a (a+ 1)x0 + (a+ 1) = 0.

Esto quiere decir que las soluciones, es decir, datos iniciales para los que la solución es un
2-ciclo, son

x0 = 0, x0 =
a− 1

a
= 1− 1

a
y

x±
0 =

a (a+ 1)±
√

a2 (a+ 1)2 − 4 a2 (a+ 1)

2 a2
=

(a+ 1)±
√

(a+ 1) (a− 3)

2 a
.

Las dos primeras soluciones no deben sorprendernos porque corresponden a las soluciones
constantes, y es claro que una solución constante en particular cumple que es un 2-ciclo. Por
tanto las soluciones novedosas son las producidas por la tercera expresión. Aqúı vemos que
puede haber dos posibilidades. La primera observación que hacemos es que esta expresión
tiene sentido (real) si el discriminante es no negativo, es decir, si a ≥ 3. Por tanto, si a > 3
hay 2-ciclos (que no son soluciones constantes), basta tomar como dato inicial el encontrado.
Se puede comprobar que si tomamos x0 = x+

0 , x1 = f(x0) = x−
0
11.

El estudio de n-ciclos se complica si incrementamos el valor de n. Los resultados que se
conocen al respecto son los siguientes (que podremos observar con ayuda de una hoja de
cálculo):

Existe un valor cŕıtico para a, que vamos a llamar ac tal que si a > ac aparecen 3-ciclos.
Se puede demostrar (Li y Yorke (1975)) que la presencia de 3-ciclos implica que existen
n-ciclos para cualquier n. ac es aproximadamente 3.828.

Si 3 < a < ac aparecen 2n-ciclos: en un rango de a aparecen 2-ciclos, en un rango
que incluye al anterior aparecen 2-ciclos y 4-ciclos y aśı sucesivamente. Cuando solo
existen 2-ciclos estos son estables, pero cuando aparecen 4-ciclos los 2-ciclos dejan de
ser estables mientras que los 4-ciclos śı lo son. Pasa lo mismo para el resto de 2n-ciclos.

• Si 3 < a <3.45 aparecen 2-ciclos y son estables.

• Si 3.45≤ a <3.54 aparecen 4-ciclos estables y los 2-ciclos son inestables.

En el diagrama de bifurcación se observan estos resultados. Este diagrama fue descrito
por primera vez por May y Oster (1976).

Caos

Sabemos que la palabra caos (sin ninguna connotación matemática) significa confusión,
desorden. Cuando observamos el comportamiento de la ecuación loǵıstica en diferencias para
a > ac en la que aparecen n-ciclos para cualquier n puede que la palabra que evoque nuestra
mente para representar este modelo sea justamente caos. El concepto de caos matemático es
mucho más complejo que simplemente hablar de confusión o desorden. No vamos a entrar

11Actividades que se pueden hacer con hojas de cálculo:

Comenzar con estos datos iniciales y ver que se obtienen los 2-ciclos.

Observar que si se empieza con la elección de x+
0 se obtiene también x−

0 .

Empezar cerca de estos datos iniciales para estudiar la estabilidad de los ciclos (dependiendo del rango
de a serán estables o inestables).
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aqúı a exponer la teoŕıa del caos matemático, porque es demasiado complicada para las
intenciones de estas notas, y porque incluso la comunidad matemática no se pone de acuerdo
en una definición. Pero śı vamos a tratar de explicar, de palabra, una serie de propiedades
que cumple el modelo que estamos estudiando (para ese rango cŕıtico de a) y que, a veces,
se dan como definición de caos. Estas propiedades son:

Existen n-ciclos para cualquier número natural n.

Podemos encontrar una solución que está tan cerca como se quiera de todos los n-ciclos.

Efecto mariposa: Si partimos de dos condiciones iniciales que no son iguales pero que son
tan parecidas como queramos, las soluciones que producen estos datos iniales pasado
un tiempo (quizá grande) no se parecerán en nada, es más, no se volverán a parecer
nunca12.

3.3. Aplicaciones a las matemáticas de secundaria y bachillerato

En esta sección hemos visto que las sucesiones y las funciones son herramientas empleadas
en el estudio de dinámica de poblaciones. Concretamente, se podŕıan realizar actividades del
siguiente tipo, y con la ayuda de hojas de cálculo:

Analizar las progresiones geométricas en función de su razón, en ejemplos concretos,
como soluciones de la ecuación de Malthus discreta (ver ecuación (1)).

Presentar las soluciones de la ecuación loǵıstica discreta (6) como ejemplos de sucesio-
nes, aplicados a la ecoloǵıa, para los que no se puede dar un término general.

Entender los diferentes aspectos del modelado entre la ecuación de Malthus discreta
(1) y la ecuación loǵıstica discreta (6).

Analizar, mediante una hoja de cálculo, el cociente incremental en la definición de la
derivada (ver (8)), en función de ∆t para ver que el modelo loǵıstico discreto

P (t+∆t)− P (t)

∆t
= (A−BP (t))P (t)

se parece al continuo si ∆t tiende a 0.

Explicar el efecto mariposa, con sus posibles aplicaciones, por ejemplo, en criptograf́ıa
[8].

Determinar sucesiones constantes que sean solución de modelos que describen dinámi-
cas de una población.

Análisis similares se pueden hacer para modelos aplicados a las economı́a, por ejemplo,
para cálculo de intereses o de hipotecas.

12Se puede observar tomando a = 4 y partiendo de dos datos iniciales tan próximos como x0 = 0,1 y
x0 = 0,1001.

15



4. Matrices en dinámica de poblaciones

En los modelos estudiados hasta el momento, hemos visto cómo utilizar las sucesiones de
números para describir, por ejemplo, la evolución en el tiempo del tamaño de una población.
En la segunda parte de estas notas vamos a estudiar otros modelos discretos que se usan para
investigar la dinámica de poblaciones, que están estructuradas en grupos. En estos modelos
la herramienta principal serán las matrices. Concretamente, nos centraremos en poblaciones
estructuradas por edad (modelo de Leslie) y poblaciones estructuradas por estados (procesos
de Markov)13.

4.1. Poblaciones estructuradas por edad: modelo de Leslie

Supongamos que estamos estudiando una población que se puede dividir en grupos de
edades disjuntos:

13Estos modelos son casos particulares de sistemas de ecuaciones en diferencias lineales. Representaremos
estos sistemas de forma matricial:

Xn+1 = AXn (10)

donde Xn =


X1

n

X2
n

...
Xm

n

 es el término n-ésimo de la sucesión de vectores solución del sistema (10) y A es la

matriz del sistema (matriz cuadrada con m filas y m columnas). Entendido el marco general en el que se
engloban nuestros modelos, podemos hacer las siguientes observaciones:

Si nos reducimos al caso de una única ecuación en diferencias el sistema (10) es una ecuación en
diferencias del mismo tipo que la ecuación de Malthus discreta.

En este caso los problemas de valores iniciales se escriben de la siguiente forma:

(PVI)

{
Xn+1 = AXn

X0 = a, a ∈ IRm.

La solución de este problema se conoce fácilmente y es Xn = AnX0, para todo n, es decir, Xn = Ana.
En este caso la solución es una sucesión de vectores, cuyo término general es el vector Xn ∈ IRm.

Puesto que las soluciones del sistema (10) son de la forma Xn = AnX0, todo recae en saber calcular
la potencia n-ésima de la matriz A.

Saber si la matriz A es diagonalizable es muy útil en el cálculo de sus potencias, para lo que es
necesario analizar sus valores y vectores propios.

Si la matriz A tiene valor propio dominante el comportamiento de la solución a largo plazo se estudia
fácilmente.

El método de las potencias es una potente herramienta que ayuda a encontrar de forma aproximada
el valor propio dominante de una matriz, si ésta lo tiene.

Para los dos modelos biológicos que estudiamos a continuación, daremos criterios para saber si la
matriz asociada al problema tiene valor propio dominate, sin necesidad de tener que hacer un estudio
de la diagonalización o, en general, de la descomposición de Jordan de dicha matriz.
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Grupos Rango de edades

Grupo 1 [0, L)
Grupo 2 [L, 2L)
Grupo 3 [2L, 3L)
Grupo 4 [3L, 4L)
... ...
Grupo m [(m− 1)L,mL)

donde cada grupo (o clase) constituye un rango de L unidades de tiempo (años, meses,
semanas, d́ıas . . . ) y se supone que la vida media de esta población es de mL unidades
de tiempo (sus miembros tienen esa vida media). Por ejemplo, imaginemos que queremos
estudiar una población, cuya vida media son 10 años, podŕıamos estructurar la población en
grupos de 2 años cada uno, es decir, L seŕıa 2 años y por tanto, la tabla anterior quedaŕıa:

Grupos Rango de edades

Grupo 1 [0, 2)
Grupo 2 [2, 4)
Grupo 3 [4, 6)
Grupo 4 [6, 8)
Grupo 5 [8, 10)

Normalmente cuando se habla de modelos de Leslie para poblaciones estructuradas por
edades, realmente se hace referencia al número de hembras en cada uno de las clases o
grupos de edades, entendiendo que se conoce la dinámica de la población en función del
número de hembras de la misma. En estos modelos se asume que los recuentos del número
de hembras se hacen cada L unidades de tiempo. Para determinar el número de hembras en
un instante de observación posterior se tienen en cuenta dos tipos de parámetros para cada
grupo de edad: las tasas de fertilidad de las hembras y las probabilidades de supervivencia de
las hembras. Denotaremos por:

fi ≥ 0, con i = 1, . . . ,m, al número medio de cŕıas hembras que tiene una hembra del
grupo i-ésimo en ese periodo de L unidades de tiempo,

0 < pi ≤ 1, con i = 1, . . . ,m − 1, a la probabilidad de que una hembra del grupo
i-ésimo esté viva en el siguiente recuento, es decir, formará parte del grupo i+ 1,

P i
n, con i = 1, . . . ,m, al número de hembras en el grupo i.

Con esta notación ¿podŕıas saber el número de hembras en cada grupo de edad, sabiendo su
número en el recuento anterior?

La información que conocemos son las tasas de fertilidad y las probabilidades de super-
vivencia, por tanto, el número de hembras en el recuento n + 1 en el primer grupo de edad
vendrá determinado por el número de nacimientos que tengan las hembras del recuento n:

P 1
n+1 = f1 P

1
n + f2 P

3
n + . . .+ fm Pm

n ,

el primer sumando corresponde a los nacimientos de las hembras del grupo 1, el segundo a
los nacimientos del segundo y aśı sucesivemente, hasta el último sumando que nos indica los
nacimientos de las hembras del último grupo.
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Para el resto de sectores de edad, la ecuación es bastante más sencilla:

P i
n+1 = pi−1 P

i−1
n , i = 2, . . . ,m ,

tras L unidades de tiempo, en el grupo i estarán las que sobrevivan del grupo i−1, y tendrán
L unidades de tiempo más.

Tenemos, entonces, un sistema de ecuaciones en diferencias lineales. En este ambiente las
matrices son una herramienta muy útil, porque simplifica mucho la escritura y la resolución
del problema. Los sistemas de ecuaciones en diferencias lineales se pueden escribir14 como
sigue:

Pn+1 = APn,

donde

Pn =


P 1
n

P 2
n

...
Pm
n

 y A una matriz cuadrada de orden m.

En nuestro caso la matriz A se llama matriz de Leslie, y la población en el recuento n+1 se
obtiene de la población en el recuento n mediante esa matriz:

Pn+1︸︷︷︸
Población en el instante n+1

= A︸︷︷︸
Matriz de Leslie

Pn︸︷︷︸
Población en el instante n

.

¿Cómo es la matriz de Leslie? La matriz de Leslie, también llamada matriz de proyección
poblacional tiene esta forma:

A =


f1 f2 f3 . . . fm
p1 0 0 . . . 0
0 p2 0 . . . 0
...

...
...

...
...

0 0 . . . pm−1 0

 . (11)

Por tanto el modelo de Leslie viene dado por un sistema de ecuaciones en diferencias lineales,
donde la matriz que lo determina es la matriz de Leslie (11)

Pn+1 = APn, (12)

donde

Pn =


P 1
n

P 2
n

...
Pm
n

 y A la matriz de Leslie (11).

Sabemos que si la población inicial está representada por un vector P0, entonces la población
está perfectamente determinada en cada instante de la observación y su valor es:

Pn = AnP0.

14Hemos usado la notación que estamos empleando para la descripción del número de hembras de esta
población.
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De este modo, toda la información del modelo está concentrada en las potencias n-ésimas
de la matriz A15. Hay herramientas matemáticas para determinar el comportamiento a largo
plazo de los distintos grupos, en los que está estructurada la población, que se basan en el
estudio de la matriz de Leslie. De una forma intuitiva estas propiedades se pueden “descubrir”
partiendo de distribuciones iniciales particulares. Por ejemplo, supongamos una población
dividida en dos grupos de edad, de forma que en el grupo de menor edad la tasa de fertilidad
es 1 y en el segundo es 2 y todas las hembras pasan al grupo de edad mayor:

¿Qué ocurre con una población que inicialmente tiene 20 hembras en el grupo de edad
más pequeña y 10 en el de edad mayor?

¿Qué ocurre con una población que inicialmente tiene 10 hembras en el grupo de edad
más pequeña y 20 en el de edad mayor?

A la vista de estos resultados podemos concluir que hay condiciones iniciales de nuestro
problema que provocan un comportamiento más fácil de estudiar que otros16.

Para entender mejor qué ocurre con una población que sigue el modelo de Leslie a largo
plazo, vamos a definir algunos ı́ndices biológicos del modelo.

Índices biológicos

Representamos por ∥Pn∥ al número total de hembras de la población17, es decir, es la
suma

∥Pn∥ = P 1
n + . . .+ Pm

n .

Llamamos pirámide de edad de la población, de una población no nula, en el recuento
n-ésimo al cociente

Pn

∥Pn∥
.

Puesto que, para cada instante de la observación, ∥Pn∥ es el número total de hembras en
la población, Pn

∥Pn∥ es un vector en el que cada componente es el número de hembras en la
franja de edad correspondiente, dividido por el número total de hembras de la población. Es
por tanto, un vector que nos indica la proporción de hembras en cada franja de edad.

En ciertos casos, por ejemplo, si existen dos tasas de fertilidad consecutivas no nulas, se
sabe que para n suficientemente grande (pasado un tiempo largo) las pirámides de edades
de la población tienden a ser todas iguales, ver el apéndice B para más detalles.

Llamamos tasa de crecimiento de la población tras n periodos al cociente:

∥Pn∥ − ∥Pn−1∥
∥Pn−1∥

,

15Por ello, si la matriz es diagonalizable estas potencias serán caculadas fácilmente y si la matriz tiene
valor propio dominante podremos conocer la dinámica de la población a largo plazo.

16Lo que subyace es el concepto de valor y vector propio asociado a la matriz A. Podŕıas buscar los valores
propios y comprobar que la matriz es diagolalizable, para ver cómo son las potencias n-ésimas de la matriz.

17Vemos que ∥Pn∥ es la norma-1 del vector Pn, ya que cada una de sus componentes son mayores o iguales
a 0.
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es decir, la variación del número total de hembras (en los periodos n y n−1) entre el número
total de hembras en el periodo anterior.

Para acabar nos hacemos la siguiente pregunta: ¿Podemos conocer el comportamiento de
la población solo conociendo las tasas de fertilidad y las probabilidades de pasar de un grupo
a otro?

La respuesta es śı y la ofrece un parámetro que se puede calcular con una simple fórmula,
a partir de las tasas de fertilidad y las probabilidades de supervivencia. Ese parámetro es la
tasa neta de reproducción

R = f1 + f2 p1 + . . .+ fm p1 . . . pm−1

que representa el número medio de cŕıas que tiene cada hembra a lo largo de toda su vida.
Concretamente, se verifica:

Si R < 1 la población se extingue.

Si R > 1 la población crece ilimitadamente.

Si R = 1 la población tiende al equilibrio.

Si R ≥ 1 se dice que hay reemplazamiento generacional.

4.2. Poblaciones estructuradas por estados

La dinámica de poblaciones estructuradas por estados también se puede analizar em-
pleando sistemas de ecuaciones en diferencias lineales. Los ejemplos de esta situación pueden
ser muy variados, desde el análisis de la evolución de los genotipos en un problema de genéti-
ca, hasta un estudio sobre el peso de una población... El denominador común de todos estos
problemas es el uso de sistemas de ecuaciones en diferencias lineales, cuya matriz asociada
es una matriz de probabilidad (matriz positiva cuyas columnas suman 1)18.

En este caso, al estar la población estructurada por estados es claro que el tamaño de la
población es siempre el mismo, ya que lo que se estudia es cómo se distribuyen sus miembros
en los distintos estados. Veamos un ejemplo para entender mejor estos modelos:

En un parque natural, en el que hay cabras montesas en semilibertad, existen tres abre-
vaderos, A, B y C. El personal del parque han observado que la distribución de las cabras
cada mañana en los diferentes abrevaderos viene determinada por la expresión An+1

Bn+1

Cn+1

 =

 0,2 0,6 0,3
0,4 0 0,2
0,4 0,4 0,5

 An

Bn

Cn

 ,

18Estos problemas se engloban dentro del marco general de cadenas de Markov. Para estos modelos los
resultados principales que debemos recordar son los siguientes:

El valor 1 es siempre valor propio de una matriz de probabilidad, aunque no necesariamente dominante.

Si la matriz de probabilidad es ergódica entonces el valor 1 es el valor propio dominante y además es
el único que admite un vector propio asociado con todas sus componentes positivas.

Recordamos que una matriz cuadrada con todas sus entradas no negativas es ergódica si existe una potencia
de ella de forma que tenga todas sus entradas estrictamente positivas.
El resultado que hemos enunciado para las matrices de probabilidad ergódicas es un caso particular del

Teorema de Perron-Frobenius.
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donde An, Bn y Cn denotan, respectivamente, las cabras que han bebido en A, B y C en un
determinado d́ıa.

1. ¿Qué proporción de cabras que un d́ıa beben en B y al siguiente se van a A?

2. ¿Qué proporción de cabras que un d́ıa beben en B y al siguiente se van a C?

3. ¿Qué proporción de cabras que un d́ıa beben en C y al siguiente vuelven a C?

4. Si dispones de 9 toneladas de comida para ayudar a la alimentación de las cabras en
una época de seqúıa, ¿cómo debes distribuir la comida entre los abrevaderos para que
el reparto sea equitativo?

4.3. Sistemas de ecuaciones en diferencias lineales con el ordena-
dor

Simular con un ordenador un sistema de ecuaciones en diferencias lineales, no demasiado
grande, es una tarea sencilla que puede ser hecha fácilmente con una simple hoja de cálculo.
Destacamos en estas notas el programa Populus19, muy usado en investigaciones en bioloǵıa,
que tiene programado resolutores para una amplia gama de problemas de dinámica de po-
blaciones, no solo basados en ecuaciones en diferencias lineales. Además, este programa sirve
como herramienta pedagógica, ya que es un programa que es de fácil uso, pero con la apa-
riencia de hacer complicados algoritmos, de este modo cuando las personas que se piensan
poco hábiles con las matemáticas se dan cuenta de que son capaces de hacer con una hoja de
cálculo lo mismo que un programa como el Populus, adquieren confianza en ellas mismas y
motivación para seguir estudiando matemáticas.

Con la ayuda de una hoja de cálculo se puede:

Obtener la evolución de los recuentos a lo largo del tiempo.

Determinar, empleando el método de las potencias, el valor propio dominante, si la
matriz lo tiene, y con ello saber el comportamiento a largo plazo de la población.

Dibujar la evolución de las pirámides de edad o estados a lo largo de los distintos
recuentos.

4.4. Aplicaciones a las matemáticas de bachillerato

En esta sección hemos visto que las matrices y los vectores son herramientas empleadas
en el estudio de dinámica de poblaciones. Concretamente, se podŕıan realizar actividades del
siguiente tipo, y con la ayuda de hojas de cálculo:

Importancia de las matrices como herramienta para simplificar mucho la escritura ma-
temática. Para ello se puede mostrar el modelo de Lesie como una “serie de sucesiones
de números relacionadas” (sistemas de ecuaciones en diferencias) y mediante su escri-
tura matricial.

19Se puede descargar en el siguiente enlace: http://www.cbs.umn.edu/populus/.
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Producto de matrices. En particular, una matriz por un vector y la potencia n-ésima
de una matriz.

Descubrir de modo intuitivo la importancia de los vectores propios de una matriz,
observando que se determina de forma muy sencilla la dinámica de una población
descrita por el modelo de Leslie.

Descubrir de modo intuitivo la importancia de las matrices diagonales, observando que
se determina de forma muy sencilla la dinámica de una población que se rige por el
modelo de Leslie.

Presentar las matrices de probabilidad mediante dinámicas de poblaciones según sus
estados.

Emplear la inversa de una matriz para descubrir la distribución que teńıa una población
en un recuento anterior, sabiendo la distribución que tiene en el recuento actual.

Análisis similares se pueden hacer para otros modelos, por ejemplo, los aplicados a la
genética.

5. Ajuste por mı́nimos cuadrados

Uno de los problemas más frecuentes en la investigación cient́ıfica es tratar de determinar
la función (matemática) que mejor se aproxima a los datos derivados de los experimentos.
Supongamos por ejemplo, que estamos estudiando una población de una determinada especie
y hemos registrado en una tabla los valores recontados en las distintas observaciones.

Tiempos de observación, ti Valores observados, yi
(en años) (en miles)
1 4,5
2 4,1
3 5,3
4 6,2
5 6,4

Nos gustaŕıa conocer una función que se ajuste a esos datos lo mejor posible, para de ese
modo poder predecir los valores en los años en los que no se hicieron observaciones, o poder
predecir lo que ocurrirá en el futuro. Decir la mejor posible implica demasiada ambigüedad,
es por ello que hay una extensa teoŕıa matemática que trata de precisar esa expresión tan
general. En nuestro caso, buscaremos la función que mejor se aproxime a nuestros datos,
de entre una familia de funciones fija, en el sentido de minimizar el error cuadrático (que
definiremos más adelante).

La tabla de datos podemos representarla gráficamente y dibujar lo que se conoce como
nube de puntos, ver figura 2.

La pregunta que nos planteamos es: de entre la familia de funciones reales de variable
real, F , ¿podemos determinar la función f que mejor se aproxima a esta nube de puntos, en
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8

Tiempo

Valores observados

Figura 2: Nube de puntos.

el sentido de mı́nimos cuadrados (discretos)? O dicho de otro modo, ¿quién es la función f
de la familia F que hace mı́nimo el error cuadrático,

Ef = Σn
i=1(f(ti)− yi)

2 (13)

(en nuestro caso n = 5)?

En dinámica de poblaciones los modelos continuos más básicos son Malthus, loǵıstica y
Gompertz. Vamos a considerar aqúı las familias dadas por las soluciones de esos modelos. An-
tes de pasar a analizar la solución en cada una de estas familias, señalamos tres observaciones
que pueden surgir en relación al problema planteado:

Podŕıamos plantearnos buscar funciones que hagan este error exactamente cero, es
decir, que tomen exactamente los mismos valores observados. Esto es justo lo que
hace la teoŕıa de interpolación. Sin embargo la motivación es diferente en el caso que
abordamos aqúı, ya que la función aśı encontrada casi con seguridad no pertenece a la
familia que buscamos. Y además el hecho de usar como criterio el que tome exactamente
el mismo valor observado no necesariamente produce una función que aproxime bien
a la nube de puntos. Puesto que siempre la toma de datos implica un error, bien de
quien observa, bien del instrumental utilizado para ello.

Otra cuestión que nos podemos hacer es por qué elegimos la expresión del error (13) y
no otra. Podŕıamos considerar, por ejemplo

Ef = Σn
i=1(f(ti)− yi).

Pero esta es una mala elección, porque queremos que Ef nos de una idea de si la
función elegida es buena, o no, como aproximación, es decir, queremos que si Ef = 0
eso indique que la aproximación f es la mejor obtenida, la función toma exactamente
los valores observados. Sin embargo, este error no nos ofrece esa información, porque
los sumandos podŕıan ser positivos y negativos, y por tanto, la suma ser cero, y sin
embargo, que la función diese una aproximación maĺısima.
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La segunda observación nos lleva a pensar que si queremos cambiar la expresión del
error, el error debe ser medido sin depender del signo, es decir, sin diferenciar si el
error se comete por exceso o por defecto. Siguiendo esta idea, podŕıamos plantear la
siguiente expresión para el error:

Ef = Σn
i=1|f(ti)− yi|.

Esta podŕıa ser una buena elección, sin embargo, no se suele trabajar con ella porque
el problema matemático, asociado a la búsqueda de la mejor aproximación sujeto a
que este error sea mı́nimo, es bastante más complicado que el que surge al usar el error
cuadrático. Ya que la función valor absoluto tiene menos regularidad, que la función
elevar al cuadrado20.

5.1. Cómo se encuentra la mejor aproximación por mı́nimos cua-
drados

Supongamos que tenemos una nube de puntos (por ejemplo, como la mostrada anterior-
mente) y una familia de funciones en la que pensamos que existe una función que se ajusta
a nuestros datos. Entonces, la estrategia para encontra la función es la siguiente:

Determinamos el número de parámetros que describe nuestra familia de funciones
reales de variable real. Y denotamos por f(x, a1, a2, ..., am) una función cualquiera de
la familia considerada en la que estamos indicando que depende de m parámetros y de
la variable x. Por ejemplo, la familia de rectas viene determinada por dos parámetros, a1
y a2, ya que toda recta se puede escribir de la forma y = a1x+a2. Entonces una función
cualquiera de esta familia seŕıa f(x, a1, a2) = a1x + a2. (Por simplificar la escritura,
cuando la familia considerada dependa de pocos parámetros usaremos diversas letras,
por ejemplo, a, b, c. . . , para evitar los sub́ındices).

Construimos la función error cuadrático que queremos minimizar

Ef [a1, . . . , am] = Σn
i=1(f(ti)− yi)

2.

En el caso de considerar la familia de rectas tendŕıamos:

Ef [a, b] = Σn
i=1(ati + b− yi)

2.

Si el problema planteado tiene solución, los m parámetros que hacen que Ef [a1, . . . , am]
tome el valor mı́nimo son la solución del siguiente sistema

(S)


Σn

i=1(f(ti)− yi)
∂f(ti)
∂a1

= 0
...

Σn
i=1(f(ti)− yi)

∂f(ti)
∂am

= 0,

donde ∂f(ti)
∂aj

representa la derivada parcial de f con respecto al parámetro aj evaluada

en ti. Observamos que el sistema tiene tantas ecuaciones como parámetros tenga la
familia de funciones considerada.

20¿Verdad?
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A este sistema se le suele llamar, en el ambiente estad́ıstico, ecuaciones normales. En general,
resolver el sistema anterior no será sencillo, puesto que será un sistema no lineal. Sin embargo,
hay herramientas numéricas que aproximan los valores de estos parámetros, con la precisión
que se quiera.

Llamaremos E2 al error cuadrático mı́nimo, es decir, al error cuadrático cometido por la
función determinada, al resolver el sistema de ecuaciones normales del modelo. Este número
no nos ofrece un indicador preciso del error cometido, ya que no sabremos si es pequeño o
grande, si no lo comparamos con algún referente. Es por ello que definimos el siguiente error
medio en %:

100
√

E2

n

Σn
i=0yi
n

,

es decir, el error medio (en el numerador), dividido entre el valor medio de valores observados
(en el denominador), y todo multiplicado por 100, para obtener el tanto por ciento. Operando
un poco en el cociente podemos encontrar la siguiente expresión simplificada:

100
√
nE2

Σn
i=0yi

. (14)

Este indicativo de error está bien definido, ya que en nuestros modelos los valores yi serán
cantidades positivas.

5.1.1. Familia lineal

Si consideramos la familia de funciones lineales:

F = {f(t, a, b) = a t+ b, a, b ∈ IR},

el sistema (S) se escribe, como sigue:{
Σn

i=1(a ti + b− yi)ti = 0
Σn

i=1(a ti + b− yi) = 0

5.1.2. Familia exponencial

Consideramos la familia de funciones solución de la ecuación de Malthus X ′(t) = cX(t):

F = {f(t, a, c, t0) = a ec(t−t0) : a, t0, c ∈ IR},

donde:

a representa el valor de f en t0 (f(t0) = a),

t0 el punto medio de los datos,

c la tasa de crecimiento del modelo (X ′/X) y

ac la pendiente de X en t0 (X ′(t0)).
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El valor t0 lo fijaremos, y por tanto no lo entendemos como parámetro.

En este caso el sistema (S) se escribe, como sigue:{
Σn

i=1(a e
c(ti−t0) − yi)e

c(ti−t0) = 0
Σn

i=1(a e
c(ti−t0) − yi)a (ti − t0)e

c(ti−t0) = 0
,

equivalentemente, {
Σn

i=1(a e
c(ti−t0) − yi)e

c(ti−t0) = 0
Σn

i=1(a e
c(ti−t0) − yi)a tie

c(ti−t0) = 0
.

5.1.3. Familia sigmoidal

Consideramos la familia de funciones solución de la ecuación de loǵısticaX ′(t) = cX(t)(1−
X(t)
a

):

F = {f(t, a, b, t0) =
a

1 + ec(t−t0)
: a, t0, c ∈ IR},

donde:

a es el valor ĺımite cuando t→∞,

t0 es el punto de inflexión (ya que es el instante en el que la solución alcanza la mitad
de la capacidad de carga),

c
2
es la tasa de crecimiento en t0 (X ′(t0)/X(t0)) y

ac
4
es la pendiente en t0 (X ′(t0)).

Estas funciones se llaman funciones sigmoides, por lo que cuando se aproxima una nube de
puntos en esta familia, se habla de aproximación sigmoidal.

5.1.4. Familia de Gompertz

Consideramos la familia de funciones solución de la ecuación de Gompertz X ′(t) =
cX(t) ln a

X(t)
:

F = {f(t, a, b, t0) = a e−e−c(t−t0) : a, t0, c ∈ IR},

donde:

a es el valor ĺımite cuando t→∞ si c > 0,

t0 es el punto de inflexión,

c es la tasa de crecimiento en t0 (X ′(t0)/X(t0)) y

ac
e
es la pendiente en t0 (X ′(t0)).

Se propone como ejercicio encontrar los correspondientes sistemas (S) para las familias
sigmoidal y de Gompertz.
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5.2. Aproximación por mı́nimos cuadrados mediante cambios de
variables

En las aproximaciones exponenciales y sigmoidales el sistema de ecuaciones normales
es no lineal, por lo que no es fácil encontrar su solución. Sin embargo hay herramientes
matemáticas que pueden encontrar aproximaciones tan buenas como se desee. Esta dificultad
hace que muchos de los programas que dicen hacer aproximaciones por mı́nimos cuadrados
en estas familias, realmente no encuentra la función que mejor se aproxima a la nube de
puntos, con el criterio del error cuadrático mı́nimo, sino que determinan otra función bajo
un criterio parecido, pero no igual. Veámoslo con un ejemplo concreto. Supongamos que
queremos aproximar la siguiente tabla de puntos:

Tiempos de observación, ti Valores observados, yi
(en años) (en miles)
1 0,135335
2 0,367879
3 2
4 2,71828
5 7,38906

cuya nube de puntos está representada en la figura 3.

1 2 3 4 5

2

4

6

8

Tiempo

Valores observados

Figura 3: Nube de puntos.

Queremos aproximar esta nube de puntos por una función exponencial del tipo

f(t) = eat+b.

(Observamos que esta es otra posible escritura de la familia exponencial, considerada ante-
riormente).

Para evitar resolver el sistema no lineal que aparece al plantear las ecuaciones normales del
problema, se hace un cambio en los datos y se considera, en lugar de los valores observados,
el logaritmo neperiano de esos valores. De este modo ahora se busca la mejor aproximación
en la familia de rectas h(t) = at + b. Por tanto nuestro problema original se transforma en
un nuevo problema con datos:
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Tiempos de observación, ti ln(Valores observados), ln(yi)
(en años)
1 ln(0,135335)
2 ln(0,367879)
3 ln(2)
4 ln(2,71828)
5 ln(7,38906)

con la ventaja de que el sistema de ecuaciones normales en este caso es lineal y por tanto
fácil de resolver.

Con estos dos planteamientos parecidos pero no iguales encontramos dos funciones ex-
ponencial distintas. Una aproximación de la función que mejor aproxima, en el sentido de
mı́ninos cuadrados, es decir, resolviendo el sistema no lineal es

f1(t) = 1,3422553054287 e0,847592335314272∗(t−3)

La función que mejor se aproxima mediante el cambio de variables es

f2(t) = 0,057190323534290356 et.

Ambas funciones las vemos representadas en la figura 4, junto con la nube de puntos (f1 está
pintada en verde y f2 en roja).

1 2 3 4 5

2

4

6

8

Tiempo

Valores observados f1(t)
f2(t)

Figura 4: Representación de dos aproximaciones exponenciales a una nube de puntos.

Si calculamos el error cuadrático de cada aproximación encontramos:

Error cuadrático Error normalizado
f1 0,665679 14,4672
f2 2,09872 25,6879

Vemos de este modo que la función exponencial encontrada aproximando mediante una
recta la nube de puntos dada por el logaritmo de los valores observados, f2, es una peor
aproximación que la función f1, es decir, el error cuadrático de la curva verde (f1) es más
pequeño que el error cuadrático de la exponencial roja (f2).
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5.3. Aplicaciones a las matemáticas de secundaria y bachillerato

En esta sección hemos visto qué significa encontrar la función, de una determinada familia,
que mejor aproxima una nube de puntos, en el sentido de ser la función de la familia con
menor error cuadrático. Y también hemos mostrado que para algunos problemas no lineales,
el cambio a un problema lineal no ofrece la mejor aproximación del problema lineal.

Concretamente, se podŕıan realizar actividades del siguiente tipo, y con la ayuda de hojas
de cálculo:

Analizar datos de prensa en los que se usen aproximaciones empleando mı́nimos cua-
drados, y decidir si se pueden ajustar mejor mediante otras familias de funciones.

Analizar si los programas que hacen ajustes exponenciales lo hacen empleando una
linealización del problema.

6. Problemas de optimización lineal

Los problemas de optimización pretenden encontrar el máximo o mı́nimo de una deter-
minada función sujeta a una serie de restricciones. Estas notas solo pretenden recordar un
problema que se supone conocido para alguien que haya finalizado el grado en matemáticas.
Y mostrar que estos problemas, cuando tienen solución, pueden resolverse con una hoja de
cálculo. Para estudiar con más profundida este tema se puede consultar, por ejemplo, [11].

Dadas f : IRn → IR, gi : IR
n → IR, bi ∈ IR, con i = 1, . . . ,m, los problemas de optimización

se plantean como siguen:

máx f(x1, x2, . . . , xn)
Sujeto a (s.a.) las restricciones gi(x1, x2, . . . , xn) ≤ bi,

también podŕıa ser

mı́n f(x1, x2, . . . , xn)
Sujeto a (s.a.) las restricciones gi(x1, x2, . . . , xn) ≤ bi.

Estos problema se dicen que son lineales, y hablamos de programación lineal si las funciones
f y gi, con i = 1, . . . ,m, son funciones lineales. La función f se llama función objetivo y el
conjunto

D = {(x1, x2, . . . , xn) ∈ IRn : gi(x1, x2, . . . , xn) ≤ bi, i = 1, . . . ,m}

región factible. Son problemas en los que se busca el máximo, o el mı́nimo, de la función
objetivo en la región factible.

Estos problemas no siempre tienen solución. Por ejemplo, el problema

máx f(x, y) = x2 + y2

s.a. las restricciones
0 ≤ x,
0 ≤ y.

no tiene solución. Ya que la región factible, D, es el primer cuadrante del plano cartesiano,
y la función f no tiene un valor máximo en D.
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¿Tiene el problema

máx f(x, y) = x2 + y2

s.a. las restricciones
0 ≤ x,
0 ≤ y,
x+ y − 1 ≤ 0,

solución21?
En la figura 5 representamos la región factible (en gris) y curvas de nivel de la función

objetivo f . Para cada k ∈ IR la curva de nivel k viene dada por

ck = {(x, y) ∈ IR2 : f(x, y) = k}.

Vemos que si k < 0, entonces la curva de nivel k, ck, es vaćıa, y si k > 0, la curva ck es
una circunferencia de centro en el origen y radio

√
k. Si k = 0 entonces c0 = {(0, 0)}. Las

curvas de nivel son una forma de representar gráficamente funciones de dos variables en el
plano, nos sirven para hacernos una idea de cómo es la gráfica de la función (que, para una
función de dos variables, es un objeto de IR3). En este ejemplo, vemos que las curvas de
nivel son ćırculos concéntricos que van aumentando de radio, a medida que aumenta el nivel
k. Gráficamente, vemos claramente que encontramos el máximo de la función en la región
factible22 en los puntos (1, 0) y (0, 1) y vale 1.

Para encontrar el valor máximo podŕıamos razonar también buscando el punto de la
arista determinada por la recta y = −x+1 en el que la función objetivo alcanza el máximo.
Es decir, se trata de buscar el máximo de la función real

g(x) = f(x, 1− x) = x2 + (1− x)2, x ∈ [0, 1]

que sabemos que se alcanza en los puntos x = 0 y x = 1, y vale g(0) = g(1) = 1.

En el siguiente ejemplo

mı́n f(x, y) = (x− 1)2 + (y − 1)2

s.a. las restricciones
0 ≤ x,
0 ≤ y,
x+ y − 1 ≤ 0,

el mı́nimo no se alcanza en un vértice de la región factible. En la figura 6 representamos la
región factible (en gris) y curvas de nivel de la función objetivo f . Para cada k ∈ IR la curva
de nivel k viene dada por

ck = {(x, y) ∈ IR2 : f(x, y) = k}.
21La región factible viene determinada por funciones gi y bi ∈ IR tales que gi(x, y) ≤ bi. Podemos tomar:

g1(x, y) = −x y b1 = 0, g2(x, y) = −y y b2 = 0, y g3(x, y) = x+ y − 1 y b3 = 0.
22Sabemos que la función tiene un máximo en la región factible, porque es una función continua y la región

factible es un compacto de IR2, por lo que sabemos que tiene tanto un valor máximo, como mı́nimo.
¿Podŕıas dar un ejemplo de un problema de optimización en el que la región factible no esté acotada y la

función objetivo tenga máximo en dicha región?
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Figura 5: Región factible (en gris) y curvas de nivel de la función objetivo, f , del problema
de maximizar f(x, y) = x2 + y2 sujeta a las restricciones 0 ≤ x, 0 ≤ y, y x+ y − 1 ≤ 0.

Vemos que si k < 0, entonces la curva de nivel k, ck, es vaćıa, y si k > 0, la curva ck es
una circunferencia de centro en el punto (1, 1) y radio

√
k. Si k = 0 entonces c0 = {(1, 1)}.

Entonces vemos que el mı́nimo se alcanza en la curva de nivel que toca la arista determinada
por la recta y = −x + 1. Para conocer el punto en el que se alcanza, basta determinar el
mı́nimo de la función

g(x) = f(x, 1− x) = (x− 1)2 + (1− x− 1)2 = (x− 1)2 + x2, x ∈ [0, 1],

que se alcanza en x = 1
2
y vale 0,5. Es decir, se alcanza en la curva de nivel 0,5.

Los problemas de optimización lineal son un caso particular de este tipo de problemas,
en el que la función objetivo y las funciones que determinan la región factible son lineales.
Un ejemplo de este tipo de problemas es el siguiente:

mı́n f(x, y) = 10x+ 8y
s.a. las restricciones

0 ≤ x,
0 ≤ y,
3x+ 2y ≤ 35,
2x+ 3y ≤ 35.

En la figura 7 se representan la región factible (en gris), que viene determinada por rectas,
y algunas curvas de nivel de la función objetivo, que son también rectas. Vemos que el valor
máximo se alcanza en el vértice (7, 7), cuando la curva de nivel más alto (nivel 126) toca la
región factible, los niveles superiores a 126 ya no tienen intersección con la región factible.

Los problemas de optimización lineal son muy útiles en economı́a. Situaciones t́ıpicas
vienen dadas, por ejemplo, por una empresa que quiere maximizar su beneficio (función
objetivo), cumpliendo unas reglas laborales y limitando los costes de producción. Por ejemplo,
supongamos una empresa artesanal de juguetes de madera, que construye y vende dos tipos
de juguetes de madera: trenes y juego de piezas de construcción. Cada tren se vende a 18
euros y el juego de piezas de construcción a 15 euros. Los gastos de producción de cada
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Figura 6: Región factible (en gris) y curvas de nivel de la función objetivo, f , del problema de
minimizar f(x, y) = (x−1)2+(y−1)2 sujeta a las restricciones 0 ≤ x, 0 ≤ y, y x+y−1 ≤ 0.

tren es de 3 euros y los de las piezas de construcción 2 euros. Para la producción de ambos
juguetes se necesita el trabajo de una persona encargada del proceso de carpinteŕıa y de
otra para el acabado. Cada persona no puede trabajar más de 35 horas a la semana. Para
la construcción de cada tren se necesitan 8 horas de carpintereŕıa y 2 de acabado, para las
piezas de construcción se necesitan 5 horas de carpinteŕıa y 3 de acabado. ¿Cuántos trenes
y juego de piezas de construcción se deben construir para tener el máximo beneficio cada
semana?

Si llamamos x al número de trenes construidos cada semana e y al número de juegos de
construcción, tenemos que el problema que se plantea es

máx f(x, y) = 18x+ 15y − 3x− 2y = 15x+ 13y
Sujeta a (s.a) las restricciones

0 ≤ x,
0 ≤ y,
8x+ 5y ≤ 35,
2x+ 3y ≤ 35.

¿Podŕıas resolver el problema?
Las hojas de cálculo permiten resolver estos problemas, cuando tienen solución, con la

orden Solver 23.

6.1. Aplicaciones a las matemáticas de secundaria y bachillerato

Los problemas de optimización tienen muchas aplicaciones, como hemos visto. Son ideales
para trabajar cuestiones como:

Las curvas de nivel como herramienta para representar funciones de dos variables. Se
pueden entender los niveles, por ejemplo, explicando los mapas de relieve.

23En algunas hojas esta extensión viene por defecto y en otras se debe instalar.
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Figura 7: Región factible (en gris) y curvas de nivel de la función objetivo, f , del problema
de maximizar f(x, y) = 10x + 8y sujeta a las restricciones 0 ≤ x, 0 ≤ y, 3x + 2y ≤ 35 y
2x+ 3y ≤ 35.

Partiendo de problemas de optimización en una variable proponer hacerlos más rea-
listas incluyendo más variables. Por ejemplo, considerando la función beneficio de una
empresa como algo que depende de una sola variable o de más de una, para tener en
cuenta más factores que influyen en el beneficio de la empresa.

Aplicaciones de las funciones reales de variable real y sus representaciones en el plano,
como herramienta para la representación gráfica de regiones factibles.

7. Las hojas de cálculo como herramienta para analizar

distintos modelos matemáticos

Emplearemos las hojas de cálculo como herramienta sencilla para estudiar numéricamente
los problemas analizados en las secciones anteriores. Las hojas de cálculo son programas
de fácil manejo que nos permiten visualizar de forma intuitiva el comportamiento de las
soluciones de los modelos descritos en estas notas. Daremos aqúı unas nociones básicas para
comenzar a trabajar con una hoja de cálculo en blanco. Los detalles de cada modelo se
dejarán para los ficheros que se elaborarán durante las clases.

Señalamos entonces los ingredientes principales necesarios para nuestros propósitos24:

Formato de la hoja en la que se está trabajando. En una hoja de cálculo es
frecuente realizar las operaciones empleando bastante espacio hacia la derecha, por
tanto puede ser recomendable definir la página de forma apaisada. Para ello se va a
Formato→Estilo de página→Página→Orientación→Horizontal.

Formato de los números. Suele ser conveniente trabajar con más decimales de los
que considera por defecto el programa. Para ello se puede seleccionar toda la hoja y

24Los pasos que aqúı seguimos son para una hoja de LibreOffice se pueden seguir los pasos análogos para
otros programas de hojas de cálculo
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cambiar el formato de celdas en: Editar → Seleccionar todo → Formato de celdas →
Números.

Operaciones llamando a celdas. Se incluyen operaciones en las celdas empezando
la sentencia con un “=”. Aśı, por ejemplo, si en la celda que ocupa la posición C1
escribimos =A1+B1 y pulsamos la tecla Intro nos devolverá la suma de las cantidades
incluidas en las celdas que ocupan las posiciones A1 y B125.

Arrastrar operaciones de celdas. Quizá sea nuestro ingrediente más importante. Se
emplea cuando una operación se repite en las distintas celdas. Por ejemplo, supongamos
que queremos construir dos columnas, una con los 10 primeros números naturales y
otra con el cuadrado de estos números, como en la figura 8. Para ello en la celda de
posición B2 se incluye la fórmula = A2̂ 2 que se arrastra en la siguientes (B3, B4 , ...,
B11). El proceso de arrastrar se hace con la ayuda del ratón, pinchando sobre la celda
en la que hemos incluido la fórmula, es decir, la que ocupa la posición B2 y colocando,
posteriormente, el cursor en la esquina inferior derecha de la celda hasta que la flecha se
transforme en una cruz. Cuando veamos la cruz arrastramos hacia abajo manteniendo
pulsado el botón derecho del ratón. Observamos que la fórmula = A2̂ 2 va cambiando
a = A3̂ 2, = A4̂ 2,. . .

Figura 8: Celdas en una hoja de cálculo para calcular el cuadrado de los 10 primeros números
naturales.

Fijar celdas. Completa el proceso anterior. En muchas ocasiones guardaremos en
algunas celdas los parámetros de las ecuaciones y emplearemos dichas celdas en nuestras
fórmulas. Sin embargo, al arrastrar, como se ha explicado en el apartado anterior, no
querremos que esos valores cambien, es por ello que debemos fijarlos previamente. Para
fijar una celda, tras pinchar en ella con el ratón, se pulsan a la vez la tecla flecha de
mayúsculas y la tecla F4.

25Si en esas celdas no se incluye nada, el programa los considera cero. Si incluyen letras da un mensaje
error.
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Gráficos. Para visualizar mejor los resultados se emplearán gráficos (Insertar→ Gráfi-
cos). De entre los muchos tipos de gráficos que se pueden hacer usaremos con más
frecuencia los tipos Columna y XY (dispersión).

Operaciones con matrices. Sumaremos y multiplicaremos matrices y calcularemos
determinantes y matrices inversas. Conocidas estas operaciones básicas, usando ho-
jas de cálculo, podremos resolver sistemas de ecuaciones lineales. Veamos pues, cómo
operar con matrices con hojas de cálculo. Para ello, abrimos una hoja de cálculo e
introducimos las siguientes matrices:

A =

 1 2 4
32 55 8
−1 4 −4

 y B =

 11 21 42
3 5 1
24 4 −2

 .

Una forma ordenada de hacerlo podŕıa ser:

• Suma de matrices. Para sumar estas dos matrices podemos seguir los siguientes
pasos:

1. Seleccionamos la región en la que queremos que aparezca la suma, con exac-
tamente el número de filas y columnas que determina la matriz.

2. Pulsamos ”=” para introducir una fórmula.

3. Marcamos las celdillas que definen la matriz A.

4. Pulsamos el signo ” + ”.

5. Marcamos las celdillas que definen la matriz B.

6. Pulsamos ”Ctrl+ ⇑ +←↩ ”.
• Producto de matrices. Para el producto de matrices se procede de forma similar
llamando, en esta ocasión, a la función MMULT después de pulsar ”=”.26

26

◦ Averigua cómo hacer el determinante de A, empleando la función MDETERM.

◦ Averigua cómo hacer la inversa de B, empleando la función MINVERSA.

◦ Resolución de un sistema lineal. Sabemos que los sistemas de ecuaciones lineales se pueden escribir
de la forma matricial AX = b, donde A es la matriz de coeficientes del sistema, X el vector formado por
sus incógnitas y b el vector formado por sus términos independientes. De este modo, si la matriz A tiene
inversa la solución del sistema se obtiene fácilmente, despejando mediante la inversa de A: X = A−1b.
Si se puede, aplica esta idea al siguiente ejercicio: Resuelve los siguientes sistemas:

(a)

 2x+ 3y − 8z = 8
x+ 2y − 3z = 1
−x+ 2y − z = 2

,

(b)

 2x+ 3y − 8z = 86
x+ 2y − 3z = 12
5x+ 8y − 19z = 23

.

◦ Método de Gauss. ¿Sabŕıas emplear una hoja de cálculo para encontrar la forma semirreducida de
una matriz?
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A. Ecuaciones en diferencias

En estas notas nos hemos centrado en estudiar dos modelos de ecuaciones en diferencias:
el modelo de Malthus y el modelo loǵıstico. Ambos modelos son ejemplos de ecuaciones en
diferencias de la forma

xn+1 = f(xn), donde f : I ⊂ IR→ I. (15)

Recordamos algunos aspectos de las ecuaciones en diferencias de la forma (15), que permiten
entender mejor dichos modelos.

Definición: Solución de la ecuación (15).
Decimos que una sucesión de números {xn}n≥0 es una solución de la ecuación (15) si cumple
dicha ecuación, es decir, si cada término xn+1 se obtiene del anterior, xn, haciendo f(xn).

Para la mayoŕıa de las ecuaciones de la forma (15) no se podrá encontrar de forma
expĺıcita su solución. En esas ocasiones es útil tener una idea de cómo son sus soluciones
empleando el método gráfico que se ilustra en la figura 9.

x

y

f(x)
y = x

f(x0)

x0

f(x1)

x1

f(x2)

x2

f(x3)

x3

Figura 9: Esquema de la representación gráfica de las soluciones de una ecuación en diferen-
cias de la forma (15), mediante el uso de las gráficas de f y de la recta y = x.

Un caso concreto de soluciones son las constantes. Una solución constante es una sucesión
de números xc := {xn}n≥0, cuyo término general es siempre el mismo, es constante, xn = c,
siendo esa constante un punto fijo de la función f , es decir, f(c) = c. Por tanto, para
determinar las soluciones constantes de la ecuación (15) basta con conocer los puntos fijos
de la función f .

Otras soluciones particulares son los ciclos, que se determinan encontrando los puntos
fijos de las funciones composición de f con ella misma. Es decir, x0 genera un 2-ciclo si
es un punto fijo de f 2, y los términos de la sucesión toman los valores x0 y x1 = f(x0):
x2n = f 2n(x0) = x0 y x2n+1 = f 2n+1(x0) = x1. En general, x0 genera un m-ciclo si es un
punto fijo de fm.
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Las soluciones constantes son soluciones destacadas del sistema que nos pueden permir
sospechar el comportamiento del resto de soluciones. Para ello, recordamos la definición de
dos tipos de soluciones constantes:

Definición: Solución estable.
Dada xc una solución constante de la ecuación (15), decimos que xc es estable si para cada
intervalo abierto I que contengan a c (c ∈ I) podemos encontrar otro intervalo abierto más
pequeño J , que contenga a c y contenido en I (c ∈ J ⊆ I), de forma que si consideramos
un dato inicial en el intervalo pequeño J (x0 ∈ J) entonces toda la solución permanece en
el intervalo grande I (xn ∈ I, n = 1, 2, . . .).

Definición: Solución asintóticamente estable.
Dada xc una solución constante de la ecuación (15), decimos que xc es asintóticamen-
te estable si es estable y además toda solución que empiece lo suficientemente cerca de c,
tiende a largo plaza al valor constante c. Es decir, xc es asintóticamente estable si además
de ser estable podemos encontrar un intervalo abierto K que contiene a c y de modo que si
tomamos un dato inicial x0 en K (x0 ∈ K) la solución {xn}n≥0 que empieza con ese dato
inicial, a largo plazo, tiende al valor c (ĺımn→∞ xn = c).

Aclarados estos conceptos, mencionamos también el siguiente criterio para determinar si
una solución constante es o no estable.

Criterio de la derivada primera:
Dada xc una solución constante de la ecuación (15) y f es C1(J), siendo J un intervalo que
contiene a c:

Si |f ′(c)| < 1 entonces la solución xc es asintóticamente estable.

Si |f ′(c)| > 1 entonces la solución xc es inestable.

Si |f ′(c)| = 1 no se puede saber si la solución xc es o no estable. Es decir, hay situa-
ciones en las que lo será y otras en las que no 27.

Para finalizar este recopilación de definiciones y resultados, recordamos también que una
solución de un problema de valores iniciales (PVI), en este ambiente, es una solución de la
ecuación (15) que cumple la condición inicial marcada por el citado problema. Es decir, la
sucesión {xn}n≥0 es solución del problema de valores iniciales:

(PVI)

{
xn+1 = f(xn)
x0 = a, a ∈ IR

si es solución de la ecuación (15) y su primer término, x0, es a.

27Encuentra y analiza la estabilidad de las soluciones constantes de las siguientes ecuaciones en diferencias:

• xn+1 = r xn con r ∈ IR.

• xn+1 = xne
r(1−xn) con r ∈ IR.
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B. Para profundizar sobre el modelo de Leslie

Resumimos aqúı resultados útiles sobre la matriz de Leslie, referentes a su polinomio
caracteŕıstico y a sus valores propios. Estos resultados nos servirán para determinar el com-
portamiento asintótico de una población estructurada por edades. Para más detalles se puede
consultar [13].

Polinomio caracteŕıstico

Las ráıces del polinomio caracteŕıstico de una matriz cuadrada A son los valores propios de
dicha matriz28, y el polinomio caracteŕıstico es el determinante de la matriz A− λI, siendo
I la matriz identidad del mismo orden. Se puede demostrar que el polinomio caracteŕıstico
de la matriz de Leslie A (ver (11))es

p(λ) = (−1)m
[
λm − f1λ

m−1 − f2 p1λ
m−2 − f3 p2 p1λ

m−3 − . . . fm pm−1 . . . p2 p1
]

(16)

Se puede comprobar que este polinomio tiene una única ráız positiva con multiplicidad 1
(esto quiere decir que esta solución no es también solución de la derivada del poliniomio
p)29.

Valores propios

Analizando las soluciones del polinomio caracteŕıstico (16) se obtienen los siguientes resul-
tados sobre valores propios de la matriz de Leslie:

Un matriz de Leslie tiene un único valor propio positivo, λ1. Este valor propio tiene
multiplicidad 1 y vector propio asociado V1 con todas sus componentes positivas.

Para cualquier otro valor propio λk (real o complejo) de la matriz de Leslie (con k > 1),
se verifica

|λk| ≤ λ1 (|λk| representa el módulo del número λk).

Esto lo que nos está indicando es que, caso de que la matriz tenga un valor propio
dominate, será λ1, pero no dice que la matriz lo tenga30.

Si hay dos tasas de fertilidad consecutivas no cero, entonces λ1 es valor propio domi-
nate31.

28λ es un valor propio de A si existe un vector no nulo, tal que Av = λv.
29Demuestra, como ejercicio, que el polinomio caracteŕıstico de la matriz de Leslie A (ver (11)) es

p(λ) = (−1)m
[
λm − f1λ

m−1 − f2 p1λ
m−2 − f3 p2 p1λ

m−3 − . . . fm pm−1 . . . p2 p1
]

y que tiene una única ráız positiva con multiplicidad 1.
Aplica este resultado a las siguientes matrices de Leslie:

1. Un modelo estructurado en dos grupos con: f1 = 0, f2 = 1, y p1 = 1.

2. Un modelo estructurado en dos grupos con: f1 = 0, f2 = 1, y p1 =0.5.

3. Un modelo estructurado en dos grupos con: f1 = 0, f2 = 3, y p1 =0.5.

4. Un modelo estructurado en tres grupos con: f1 = 0, f2 = 0, f3 = 6, p1 = 1/2 y p2 = 1/3.

30Las matrices de Leslie de la nota anterior, ¿tienen valor propio dominante?
31¿Es una hipótesis muy restrictiva, para un modelo de este tipo, suponer que hay dos tasas de fertilidad

consecutivas no cero?
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Comportamiento asintótico del sistema

Bajo las condiciones que garantizan la presencia de un valor propio dominante, la dinámica
de la población la determina justo ese valor propio dominante. Por tanto, en esta sección,
supondremos que la población estructurada por edades que estamos considerando tiene, al
menos, dos grupos consecutivos con tasa de fertilidad no cero. Bajo estas circunstancias se
verifica que32

Existe un número α > 0, tal que la población se comporta como αλn
1 V1, cuando n tiende

a infinito, siendo λ1 el valor propio dominante y V1 un vector propio asociado. Es decir, se
verifica

ĺım
n→∞

Pn

λn
1

= αV1.

Por tanto:

Si λ1 < 1 la población se extingue.

Si λ1 > 1 la población crece exponencialmente, con razón geométrica λ1.

Si λ1 = 1 la población tiende al equilibrio αV1.

Por otro lado, si denotamos por ∥Pn∥ = P 1
n + P 2

n + . . .+ Pm
n observamos que:

ĺım
n→∞

Pn

∥Pn∥
=

λn
1 (αV1)

λn
1∥αV1∥

=
V1

∥V1∥
.

B.1. Método de las potencias

A la vista de las dos familias de problemas analizados anteriormente: modelo de Leslie
y modelos de estados, vemos la importancia que tiene saber, primero si la matriz asociada
al problema tiene valor propio dominante y segundo, si lo tiene, saber su valor33. Si una
matriz A tiene valor propio dominante, una herramienta muy útil para determinarlo de

32No vamos a entrar en la demostración de este resultado, puede consultarse por ejemplo en [13], pero śı
damos una idea intuitiva, en un caso muy particular: una matriz diagonalizable de orden tres, con todos sus
valores propios reales y positivos, y con valor propio dominante. Supongamos que los valores propios son
λ1, λ2 y λ3 y que λ1 es el dominante, es decir, λi < λ1, i = 2, 3. Supongamos que Vi, con i = 1, 2, 3, son los
vectores propios asociados. Entonces, cualquier vector P0 ∈ IR3 se escribe de la forma

P0 = aV1 + bV2 + cV3.

Por tanto,
Pn = AnP0 = An(aV1 + bV2 + cV3) = aλn

1V1 + bλn
2V2 + cλn

3V3.

y entonces,
Pn

λn
1

=
aλn

1V1 + bλn
2V2 + cλn

3V3

λn
1

= aV1 + b
λn
2

λn
1

V2 + c
λn
3

λn
1

V3.

Y como λ1 es valor propio dominante, λ2

λ1
y λ3

λ1
son menores que 1, y por tanto,

ĺım
n→∞

Pn

λn
1

= aV1.

33Obviamente en el caso de modelos de estado es sabido que si tiene valor propio dominante éste ha de ser
1.
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forma aproximada es el método de las potencias. Presentaremos en estas notas una versión
sencilla del método de las potencias, que se aplica a los modelos que hemos considerado,
para que pueda ser fácilmente programable con una hoja de cálculo:

1. Partimos de un vector inicial ω0 con todas sus componentes estrictamente positivas,
que no sea un vector propio de la matriz.

2. Calculamos ω1 = Aω0, ω2 = Aω1, . . . , ωn = Aωn−1, para n grande según la precisión
que deseemos obtener.

3. Hacemos una tabla con los cocientes entre las primeras componentes de dos vectores
consecutivos, no nulas. El primer valor lo calculamos haciendo el cociente de la primera
componente del vector ω1 entre la primera componente del vector ω0, el siguiente lo
construimos empleando dividiendo la primera componente del vector ω2 y entre la
primera componente del vector ω1 y aśı sucesivamente.

4. Si la matriz tiene valor propio dominante, en la tabla anterior observaremos que tras
ciertos pasos los últimos números registrados se irán pareciendo cada vez más, de mane-
ra que si se incrementa el número de pasos se obtiene más precisión en la aproximación
del valor propio dominante. El último vector considerado ωn es una aproximación de
un vector propio asociado al valor propio dominante.

5. Dado que en los problemas con los que estamos trabajando las matrices y vectores
son positivos, se puede considerar en cada paso ∥ωi∥ (la suma de las componentes del
vector ωi), dando de este modo como aproximación del valor propio dominante los

cocientes ∥ωi+1∥
∥ωi∥ .
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