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1. Preguntas iniciales

Antes de comenzar con los contenidos propios de estas notas, nos planteamos una se-
rie de cuestiones que nos ayudaran a situar lo aprendido en este bloque de la asignatura
Complementos para la formacion en matemdticas dentro de la practica docente:

1. jPara qué se ensena matematicas?

2. ;Coémo se ensena en general, y en particular matematicas?

3. (Qué impresion se tiene sobre las matematicas?

4. ;Cuales son las principales dificultades de ensenar matematicas? ;Y de aprenderlas?

5. A propdsito de la LOMLOE, ;Cuéles son los principales cambios frente al sistema
anterior? ; Cémo se entiende conceptos como objetivos, competencias clave y especificas,
productos finales y situaciones de aprendizajes?

No pretendemos dar respuesta a estas preguntas en estas notas. Algunas de ellas estan
recogidas en la normativa vigente y otras implicarian analizar investigaciones sobre el tema.
El propédsito con ellas es llamarnos la atencion sobre cuestiones basicas para plantear una
propuesta docente. En estas notas vamos a ver herramientas matematicas que nos serviran
para proponer situaciones de aprendizaje al alumnado de secundaria y/o bachillerato.

Acabamos esta seccién recordando las competencias especificas de matematicas para la
Educacién Secundaria Obligatoria! para tenerlas presentes en las actividades que pudieran
derivarse de lo aprendido en esta parte de la asignatura.

1. Interpretar, modelizar y resolver problemas de la vida cotidiana y propios de las ma-
temadticas, aplicando diferentes estrategias y formas de razonamiento, para explorar
distintas maneras de proceder y obtener posibles soluciones.

2. Analizar las soluciones de un problema usando diferentes técnicas y herramientas, eva-
luando las respuestas obtenidas, para verificar su validez e idoneidad desde un punto
de vista matemdtico y su repercusion global.

nstruccién conjunta 1/2022, de 23 de junio, de la Direccién General de Ordenacién Y Eva-
luacién Educativa y de la Direccién General de Formacién Profesional, por la que se estable-
cen aspectos de organizaciéon y funcionamiento para los centros que impartan Educaciéon Secundaria
Obligatoria para el curso 2022/2023. https://anpeandalucia.es/openFile.php?link=notices/att/1/
instruccionl-2022organizacioneso_t1657715309_1_3.pdf
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3. Formular y comprobar conjeturas sencillas o plantear problemas de forma autonoma,
reconociendo el valor del razonamiento y la argumentacion, para generar nuevo cono-
cimiento.

4. Utilizar los principios del pensamiento computacional organizando datos, descompo-
niendo en partes, reconociendo patrones, interpretando, modificando y creando algorit-
mos para modelizar situaciones y resolver problemas de forma eficaz.

5. Reconocer y utilizar conexiones entre los diferentes elementos matemdticos interconec-
tando conceptos y procedimientos para desarrollar una vision de las matemdticas como
un todo integrado.

6. Identificar las matemdticas implicadas en otras materias, en situaciones reales y en
el entorno, susceptibles de ser abordadas en términos matemdticos, interrelacionando
conceptos y procedimientos, para aplicarlos en situaciones diversas.

7. Representar, de forma individual y colectiva, conceptos, procedimientos, informacion y
resultados matemdticos, usando diferentes tecnologias, para visualizar ideas y estruc-
turar procesos matemdticos.

8. Comunicar de forma individual y colectiva conceptos, procedimientos y argumentos
matemdticos, usando lenguaje oral, escrito o grafico, utilizando la terminologia ma-
temdtica apropiada, para dar significado y coherencia a las ideas matemdticas.

9. Desarrollar destrezas personales, identificando y gestionando emociones, poniendo en
practica estrategias de aceptacion del error como parte del proceso de aprendizaje y
adaptandose ante situaciones de incertidumbre, para mejorar la perseverancia en la
consecucion de objetivos y el disfrute en el aprendizaje de las matemdticas.

10. Desarrollar destrezas sociales, reconociendo y respetando las emociones y exrperien-
cias de los demas, participando activa y reflexivamente en proyectos en equipos hete-
rogéneos con roles asignados, para construir una identidad positiva como estudiante
de matemdticas, para fomentar el bienestar personal y grupal y para crear relaciones
saludables.

Antes de empezar con el contenido propio de estas notas, planteamos dos situaciones, en
principio, ajenas las matematicas, para pensar y discutir, en clase, en qué medida se trabajan
las competencias especificas que acabamos de enumerar.

1. Supongamos que en un banco nos dan el 0.1 % de interés mensual compuesto si durante
12 meses no retiramos el capital depositado.

a) ;Cuénto serd nuestro capital pasados 12 meses si inicialmente hacemos un depdsito
de 1000 euros?
b) ;Cudnto hemos ganado con el depésito?

c¢) ;Cuédntos meses deben pasar para duplicar nuestro capital?

d) ;Podrias dar una férmula matemédtica para saber cudnto capital tenemos cada
mes?



Solucion: Que el interés sea compuesto significa que los intereses generados se suman
al capital inicial, y sobre esa nueva suma se calculan los nuevos intereses. Entonces,
nuestro capital pasados 12 meses si inicialmente hacemos un depdésito de 1000 euros es:
Primer mes: 1000 4 0,001 %« 1000 = 1001.

Segundo mes: 1001 4 0,001 = 1001 = 1002,001.

Y asi podriamos seguir, vemos que cada mes se tiene un capital C,,, que depende del
capital en el mes anterior C),_;

0.1
— B 1 It )
Co 0"1(+100)

Entonces C,, = () (1+ %)n. Luego C15 = ) (1 + %)12 = 1012,06622 euros. Es

decir, hemos ganado 12,06622 euros.

Para saber cuantos meses deben pasar para duplicar nuestro capital inicial, vemos que
debemos encontrar n para que

Cn = 2007
es decir,
0,1\"
14+ == =2
Co < + 100) Co,
y por tanto
log(2)

n=-——"1-—o0,
log (1 + %)
es decir, deben pasar 693,4936964 meses, 57,79114137 anos.
. Supongamos que estamos analizando una poblacién de bacterias aislada en un laborato-
rio. Cada dia contamos las bacterias que tenemos. A la vista de nuestras observaciones

pensamos que con respecto al dia anterior nacen a razéon de 0,25 y mueren un tercio
de las que teniamos el dia anterior.

a) Si inicialmente hay 100 bacterias, jcudntas deberfamos observar pasado un dia,
si nuestras hipdtesis son ciertas?

b) Y en general jcémo cambia el niumero de bacterias con respecto al dia anterior?

¢) {Qué ocurrird con el nimero de bacterias cuando vayan pasando los dias?

d) (Podrias dar una férmula matemética para saber cuantas bacterias habra, si nues-
tras hipétesis son ciertas?

Solucion: Si inicialmente tenemos 100 bacterias, el dia siguiente tendremos

1
100 + nace — mueren = 100 + 100 * 0,25 — % = 91,66666667.

Vemos que pasado un dia se ha reducido el nimero de bacterias, como las tasas de nacimientos
y muertes son constantes es razonable pensar que la poblacion de bacterias a largo plazo se
va a ir reduciendo. Lo comprobamos encontrando una expresion para el niimero de bacterias
como funcién de los dias. Si denotamos por p,, el nimero de bacterias en el dia n, vemos que
podemos determinarlo en funcién del ntimero de bacterias en el dia anterior, p,,_1:

1
Pn = Pn—1 (1 +0,25 - g) :



Y por tanto

1 n
Pn = Do (1+0,25—§) -

Como 1+ 0,25 — % < 1 vemos que la poblacién decrece, concretamente se reduce aproxi-
madamente un 0.0833 por ciento cada dia. Por lo que la poblacién de bacterias tiende a la
extincion.

A la vista de estas situaciones nos preguntamos:

1. Pensando en el alumnado de secundaria o bachillerato, ;se entienden los enunciados?
. Hay dificultad para encontrar las “férmulas”?

2. ;Qué herramientas matematicas se han empleado?
3. iSe pueden unificar ambas situaciones en un mismo “ambito matemaéatico”?

4. ;Qué competencias especificas se trabajan?

2. Introduccion

Una de las principales dificultades que presenta la ensenianza de las matemaéticas en ESO,
Bachillerato y FP es la aparente desconexiéon que percibe el alumnado, entre la realidad y
las mateméticas. Este parece considerar las matematicas como una serie de algoritmos y
abstracciones complejas, que solo valen para aprobar la asignatura de matematicas. Por otro
lado, cuando se plantean situaciones cotidianas, que acerquen la realidad y las matematicas,
aparece la dificultad de pasar el lenguaje verbal, en el que se plantea la situacién sujeta a
analisis, al lenguaje matematico.

Con este bloque de la asignatura Complementos para la formacion en matemdticas que-
remos mostrar una serie de aplicaciones sencillas originadas en otras ciencias, como por
ejemplo la biologia y la economia. Estos ejemplos nos servirdan para resaltar la importancia
de las sucesiones, las funciones, las derivadas de funciones y las matrices. Asi como, destacar
la importancia del modelado como clave imprescindible en el uso de la matematicas para
resolver problemas en otras disciplinas: fisica, biologia, geologia, economia,. . .

Comenzaremos analizando en la seccion 3 el uso de las sucesiones de niimeros y de las fun-
ciones en el estudio de la dinamica de poblaciones. Concretamente, derivaremos el modelo de
Malthus, partiendo de premisas muy elementales, para entender bajo qué condiciones el mo-
delo puede ser valido, y bajo cuales otras tiene carencias. En este tltimo caso, propondremos
un modelo que supla algunas de dichas carencias (modelo logistico).

En la seccién 4 veremos las matrices como una herramienta sencilla para estudiar la
dindmica de una poblacién estructura en grupos de edad (modelo de Leslie).

La segunda parte de este bloque la dedicaremos a dos aspectos distintos. En la seccion
5 veremos como debemos tener cuidado con los usos informéticos que empleemos. Para ello
analizaremos cémo se emplean las hojas de calculo para encontrar la mejor funcién exponen-
cial que ajusta a una nube de puntos bajo el criterio de tener el menor error cuadratico. En



la seccién 6 veremos algunos ejemplos de optimizacién y cémo se pueden resolver con hojas
de calculo.

Finalmente, en la seccion 7 presentamos las hojas de cédlculo como una herramienta
sencilla y muy 1til para ilustrar todo lo aprendido en las secciones anteriores. Completamos
estas notas de clase con dos apéndices en los que se profundiza un poco mas sobre ciertos
aspectos matematicos relacionados con las secciones anteriores.

3. Sucesiones y funciones en dinamica de poblaciones

Imaginemos que estamos estudiando el tamano (nimero de miembros) de una poblacién
determinada, mediante recuentos, por ejemplo podrian ser anuales. Cada recuento tendra
asociado un nimero (el de miembros de la poblacién en ese recuento). Asi, podemos denotar
por p, el nimero de miembros de la poblaciéon en el recuento n, entendiendo que n =
0 denota el recuento inicial. Observamos de este modo que {p,},>0 es una sucesiéon de
numeros. Una pregunta natural seria ;podemos conocer el tamano de la poblacion a largo
plazo? Evidentemente la respuesta a esta pregunta esta supeditada a tener mas informacién
sobre la poblacion. Y constituye mas un problema bioldgico que matemaético. En la siguiente
subseccion veremos como partiendo de distintas premisas bioldgicas llegamos a plantear
diferentes modelos matematicos que pueden dar respuesta a la pregunta anterior.

3.1. Modelo de Malthus

Supongamos que queremos plantear un modelo matematico que describa el tamano de
una poblacién aislada (ni llegan, ni se marchan miembros). Para ello, representamos por
pn €l nimero de miembros en el recuento n. Conocido este nimero podemos pensar que el
tamano de la poblacién en el recuento siguiente n + 1 serd

Pn+1 = Pp + Nacen — mueren.
,Cémo determinar el nimero de nacimientos y defunciones?
nacen = fpn R mueren = m pPn,

donde f y m son los indices de natalidad y mortalidad, respectivamente?. Por tanto, encon-
tramos que

Pryr = (L4 (f —m))pn. (1)
Esta ecuacion es la que se conoce como modelo de Malthus discreto y lo propuso Malthus,
cuando estudié la poblacién de Estados Unidos entre los anos 1790 y 1860.

La ecuacion (1) nos permite hacer las siguientes observaciones:

1. Conocido pg, tamano de la poblacién inicialmente, se conoce el tamano de la poblacién
en todos los recuentos posteriores, puesto que:

=0+ —m)po, p2=1+(f—m)pi=1+(f—m))po, ...

2La ecuacién p,+1 = (1+(f —m))p, ;tiene sentido biolégico para cualesquiera f y m constantes positivas?
(en el sentido de que para cada n, p, sea una cantidad no negativa).
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en general, se llega a:

Pn = (1+(f —m))"po.
Por tanto las soluciones de (1) son sucesiones, cuyos términos siguen una progresién
geométrica de razén (1 + (f —m)).

2. Puesto que p, = (14 (f — m))"po observamos que, considerando py # 0:

= Si f > m, la poblacién crece con el tiempo.
= Si f < m, la poblaciéon decrece.

= Si f =m la poblacién se mantiene constante.

Biologicamente es obvio, ya que si el indice de natalidad es superior al de mortalidad
la poblacion debe crecer y en caso contrario decrecer. Si ambos indices son iguales la
poblacion tendria siempre el mismo tamano.

3. (Es razonable este modelo para aproximar poblaciones con miembros grandes?

Este modelo condena a las poblaciones a la extincién o al crecimiento ilimitado. El cre-
cimiento ilimitado en un espacio finito parece poco razonable. Sin embargo, el modelo
puede ser valido, por ejemplo, para bacterias, ya que en funcién de su tamano el espa-
cio limitado, pero suficientemente grande, supongamos la Tierra, no es un problema.
También puede ser valido para predicciones en periodos cortos de tiempo, incluso para
poblaciones con miembros grandes.

4. ;Qué ha fallado en el modelo? El modelo no tiene en cuenta que la Tierra es finita,
ni los fenémenos migratorios, ni que las tasa de natalidad y mortalidad no pueden ser
constantes.

5. ;Cémo planteariamos un modelo mas realista?

Antes de pasar a proponer un modelo mas realista, hacemos unos comentarios sobre el modelo
de Malthus en su versién continua, es decir, considerando que se quiere conocer el tamano
de la poblacién en todo instante de tiempo:

P'(t) = (f —m) P(1). (2)

En ese caso, la solucién no es una sucesion de numeros, sino una funcién real que toma
valores positivos®. Observamos que en la versién continua también se describe una poblacién
que crece ilimitadamente si f > m y decrece tendiendo a la extincién si f < m jpor qué?

3La justificacién del modelo continuo es como sigue: representamos por P(t) el nimero de miembros en el
instante t. Como razonabamos antes, conocido este nimero podemos pensar que el tamano de la poblacion,
pasado un tiempo At serd
P(t+ At) = P(t) + nacen — mueren.

pero en este caso representamos las tasa de natalidad y mortalidad teniendo en cuenta el tiempo transcurrido,
es decir, At: }
nacen = f At P(t), mueren = m At P(t),

donde f y m son los indices de natalidad y mortalidad, respectivamente. Por tanto, encontramos que
P(t+ At) = P(t) + f At P(t) — i At P(t)
0, escrito de otro modo,

P(t+At)—P(t) -
= (F ) PO, 3)




A la vista de los dos modelos de Malthus presentados, modelo discreto (1) y modelo
continuo (2) podemos senalar los siguientes comentarios:

1. Ambos modelos pretenden describir la evolucion del tamano de una determinada po-
blacion.

2. Desde un punto de vista bioldgico la diferencia entre ambos modelos esta en la depen-
dencia temporal de su tamano. En el modelo discreto, el tiempo se mide en ciertos
instantes, dependiendo de la periodicidad de los recuentos (dias, semanas, meses, anos
... ), mientras que en el modelo continuo se podria conocer el tamanio de la poblacién
en todo instante de tiempo.

3. La concepcion diferente del tiempo, discreta o continua, provoca que la solucién de
la ecuacién matematica planteada tenga una naturaleza distinta: sucesion o funcién,
respectivamente.

4. En el caso de la aproximacion de Malthus, ambos modelos tienen un comportamiento
parecido, sin embargo, hay otros modelos que tienen un comportamiento muy distinto
en sus versiones discreta y continua. Por tanto, es importante saber cual es la naturaleza
del problema estudiado, es decir, si el tiempo es una variable continua o discreta. Por
ejemplo, si se piensa en aves migratorias en un determinado humedal ;jcémo se debe
modelar el tiempo, continuo o discreto?

3.2. Ecuacién logistica

Buscamos una ecuacion en diferencias (ecuacién del tipo p,+1 = f(p,) con f una funcién
real, véase el apéndice A para més detalles) que corrija las deficiencias de la ecuacién discreta
de Malthus p,, 1 = r p,, donde hemos agrupado todas las constantes, tomando r = 1+(f—m).
Esas deficiencias vienen de suponer que las tasas de fertilidad y natalidad son constantes, o
dicho de otro modo que la tasa de crecimiento

Pn+1
Pn

es constante. Para evitar el crecimiento ilimitado o la extincién, nos planteamos una tasa
de crecimiento que no sea constante, y una primera aproximacién es considerar una tasa de
crecimiento lineal, que se haga mas pequena cuando aumente el tamano de la poblacién.
Es decir, la tasa de crecimiento no es una constante, sino una recta como funciéon de p,
decreciente?:

pn+1:a—bpn, a,b> 0. (5)
Pn

Si el paso del tiempo At se hace muy pequeno (es decir, At — 0) la velocidad media se convierte en velocidad
instantdnea, que no es otra cosa que la derivada de P. De este modo, de la ecuacién discreta obtenemos la
ecuacién continua de Malthus (ecuacién diferencial)

P'(t) = (f —m) P(t).

4La motivacién biolégica de la ecuacién (5) es la siguiente: los indices de natalidad y mortalidad no son
constantes (como pasaba en el modelo de Malthus), son de la forma o — 8 p para la natalidad y A+~ p para
la mortalidad, siendo «a, 8, A y -y ciertas constantes positivas. Esto significa que:

= El niimero de nacimientos en funcién de p,, es (a — 5 pp) pn. De este modo si hay muchos miembros
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Pasando p, al término de la derecha en la ecuacién (5) obtenemos la ecuacion logistica:

Pnt1 = (CL — bpn)pn.- (6)

Para garantizar la positividad de p,41 debe verificarse que a —bp, > 0, es decir, p, < ¢, por
tanto la poblacién no puede crecer ilimitadamente. FEn la seccién 3.2.1 se demuestra que si
0<a<4y0<py<,entonces 0 < p, < ¢y por tanto se garantiza la positividad de p,
en todos los recuentos.

Nuevamente, una solucién de la ecuacién (6) es una sucesién de niimeros, donde cada
término se relaciona con el anterior mediante la formula que indica dicha ecuacién. Sin em-
bargo, para esta sucesion, en general®, si partimos de py no podemos encontrar una expresién
para su término general, p,, dependiente de las constantes a, b y po°.

Una pregunta mas sencilla serfa ;existe un tamano N tal que la poblacién siempre tenga
ese nimero de miembros en todos los recuentos? Esta pregunta traducida a nuestro ambiente
matematico seria jexiste un dato inicial po = N tal que para todo n, p, = po = N7 O dicho
de otro modo, la pregunta es jtiene la ecuacion logistica alguna solucién constante?, es decir,
Jexiste una sucesion de numeros, con todo sus términos iguales a /N tal que sea solucién de
la ecuacion (6)7 Para responder a estas preguntas basta resolver la ecuacién

N = ppy1 = (a — bpp)pn = (@ — ON)N

es decir, N = (a — bN)N, que tiene como soluciones N = 0y N = % Vemos que para
que ‘%1 tengan sentido bioldgico, es decir, nos ofrezca un tamano de la poblacion, debe ser
un valor positivo, por lo que a debe ser mayor que 1. Como ya hemos dicho, si tomamos pg
igual a esos valores tendremos que durante todos los recuentos el nimero de miembros es el

mismo.

Pero jqué pasa si tomamos valores proximos a esas cantidades constantes? La respuesta
a esta pregunta requiere de los conceptos de estabilidad y estabilidad asintotica de soluciones
constantes. Los detalles se pueden encontrar en el apéndice A, aqui solo mencionaremos la
idea intuitiva, que ademas se puede entender bien con una hoja de célculo. El concepto de
estabilidad da una idea de cémo se comportan las soluciones con datos iniciales proximos a

en el instante n el nimero de nacimientos es menor, puesto que a — 8 p es una funcién decreciente en
p.

= El niimero de defunciones en funcién de p,, es (A + vpn) Py, lo que significa que la probabilidad de
muerte aumenta a medida que aumenta el tamano de la poblacion.

= El niimero de miembros en el instante n + 1 es el niimero de miembros que habia en el instante ante-
rior n, mas los nacimientos, menos las muertes, es decir:

Pn4+1 = Pn + (a_ﬁpn) Pn - (A+'7pn) Pn . (4)
~~~ SN—— S————

la/e/os que habia la/e/os que nacen la/e/os que mueren

Podemos ordenar los términos de la ecuacién (4) y obtenemos:

o1 =1+a=A) pn—(B+7) ps =((L+a—A) = (B+7) Pn) P

que tiene la forma de la ecuacién (6) escogiendoa =14+ a—-Ayb=+1~.
5Hay casos particulares en los que si se puede encontrar el término general, ; podrias encontrar alguno?
6Escribe los 3 primeros términos de la solucién de la ecuacién logistica en funcién del recuento inicial pq.
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la solucién constante. Asi, en el caso de la ecuacién logistica se sabe que cuando 0 < a <1 la
solucién constantemente 0 es asintéticamente estable, es decir, si se empieza cerca del valor
0 la solucién tiene a 0 a largo plazo. O dicho de otro modo, si inicialmente el tamano de la
poblacién es pequeno, a largo plazo la poblacion se extinguird. Sin embargo, si 1 < a < 3, la
solucion constantemente 0 se vuelve inestable. Es decir, en general, si inicialmente el tamano
de la poblacién es pequeno, a largo plazo aumenta porque se aleja del valor 0. En ese rango
de valores de a (1 < a < 3) la solucién constantemente “—gl es asintdoticamente estable, es
decir, si inicialmente el nimero de miembros ronda el valor “le, a largo plazo, el tamano de
la poblacién se aproximara exactamente al valor “—gl

Pero la “simple” ecuacion logistica, esconde soluciones con un comportamiento mucho
méas complejo que el descrito hasta ahora (se pueden consultar los detalles en la seccién
3.2.1). Concretamente, para 3 < a < 4 existen soluciones periédicas y aparece el fenémeno
de caos, que tiene como consecuencia el efecto mariposa. Todos estos comportamientos se
pueden observar con una simple hoja de calculo. Y con los siguiente programas disponibles

en la red.
Programas para simular la ecuacién logistica en diferencias

Algunos programas disponibles en la red para estudiar la ecuacion logistica discreta:

» Programa del Prof. Juan Campos (UGR):
http://www.ugr.es/~arobles/FBAI/logdsc03.exe

s WolframAlpha analiza todos los aspectos de la ecuacion:
http://www.wolframalpha.com/input/?i=logistic+map+

= Programa para ver la evolucién de la poblacién:
http://www.geom.uiuc.edu/~math5337/ds/applets/iteration/Iteration.html

» Pograma para ver el diagrama de bifurcacién y los valores de los distintos recuentos:
http://math.bu.edu/DYSYS/applets/bif-dgm/Logistic.html

» Puedes descubrir més entre los enlaces de arriba y por supuesto navegando en la red
... pero no olvides que jtu puedes hacer tu propio programa con una simple hoja de
calculo!

Para acabar este breve repaso sobre la ecuacién logistica (invitamos a la persona interesada
en mas detalles a leer la seccién 3.2.1) senalamos que la versién continua de este modelo, es
decir, la ecuacion diferencial

P'(t) = (A= BP(t)) P(t), (7)

describe un comportamiento mucho mas sencillo, ya que esta ecuacién tiene también dos
soluciones constantes, que son estables o inestables en funcién del signo de los coeficientes
A y B, pero no tienen soluciones ciclicas, ni presenta el fenémeno de caos. Hacemos este
comentario porque nos lleva a reflexionar sobre el concepto de derivada

v P+ At) — P(t)
PO=dmT A

(8)

Fijando el incremento de tiempo At y aproximando P’(t) por su cociente incremental
P(t+A1)—P(t)

~ , podemos llegar, como se hizo en la seccién anterior con el modelo de Malthus, a
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la ecuacion logistica diferencial (7). Cuando ese incremento de tiempo es grande pueden apa-
recer valores del correspodiente a (en la ecuacion en diferencias (6)) grandes de forma que la
ecuacion en diferencias puede tener ciclos o caos. Por tanto, solo se tiene un comportamiento
parecido entre ambos modelos, discreto y continuo (en diferencias y diferencial), cuando el
paso de tiempo es muy pequeno, es decir, cuando realmente el cociente incremental es una
buena aproximacion de la derivada.

3.2.1. Algunos detalles sobre la ecuacién logistica

Incluimos en esta seccion algunos detalles un poco més complejos sobre la ecuacion
logistica discreta, ecuacién (6), pero que podrian servir como ideas para proponer actividades
de profundizacién para un alumnado més motivado en las matematicas, tanto en ESO como
Bachillerato.

Sacando factor comin a en (6) nos queda

Pny1 = a 1—— Dn,
a

que puede escribirse de forma mas sencilla haciendo el cambio z,, = b%. De este modo

Xn+1: bp;-i-l :éa (1_%)[)71:& (1_%) bﬁ:a(l_xn)xn,

a a a

llegando asi a la ecuacion
T = a (1l —x,) x,. (9)
Observamos que x,, es una cantidad sin unidades’, que toma valores entre cero y uno. Si

toma el valor cero significa que no hay miembros en la poblacién y si toma el valor 1, la
poblacién tiene el tamano maximo permitido: a/b.

Consideraciones previas sobre la ecuacién

Antes de pasar a estudiar en detalle la ecuacion logistica discreta (9), analizamos las condi-
ciones que debe cumplir para que tenga sentido biologico.

= Para que el término derecho de la ecuacion sea positivo debe ocurrir que 0 < x, <1y
a > 0. Pero ... jes esto suficiente?

» Para que en todo instante z,, esté entre cero y uno, la parabola f(z) = a (1 —x) x debe
tomar valores entre cero y uno, si la variable « toma valores entre cero y uno. f es una
parabola que corta al eje de abscisas en los puntos 0 y 1 y tiene el vértice en el punto
(3,%) (es decir, z = 5 ey = f(3) = %). Esto quiere decir que la funcién es creciente
desde 0 hasta % y decreciente desde % hasta 1. Por tanto, el valor maximo de la funcién
es el alcanzado en el vértice, que sabemos es ¢. Puesto que la funcién f(x) debe tomar
valores entre 0 y 1 (si # € [0,1]), el valor del méximo debe ser a lo sumo 1, es decir
7 < 1, lo que significa que a < 4. En la figura 1 podemos ver la gréafica de la pardbola

para distintos valores de a.

Concluimos, de este modo, que las condiciones que debemos imponer son: 0 < a <4y

7;Por qué?
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Figura 1: Funcién f(z) = ax(l — x) para distintos valores de a. Se observa que para a = 5
la gréafica de f sobrepasa el valor 1.

Soluciones constantes. Estabilidad

Recordamos que las soluciones constantes de una ecuacién en diferencias =, 11 = f(z,)
se encuentran localizando los puntos fijos de la funcion f. Asi pues, nuestro objetivo es
determinar los puntos fijos de la funcién f(z) = a (1 — x) x o, dicho de otro modo, resolver
la ecuacion

r=a(l—x)x.
Esta ecuacién es sencilla y vemos que sus soluciones son 0y 1 — % Por tanto, las soluciones
constantes de la ecuacion logistica en diferencias son:

= 1, = (0 para cualquier valor de n.

m oz, = 1— % para cualquier valor de n. Esta solucion tiene sentido bioldgico solo si
1—%>0,esdecir,sia>1.

Resumimos la situacion:

0 < a <1 | Una tnica solucién constante: 0

1 < a <4 | Dos soluciones constantes: 0y 1 — %

Una vez conocidas las soluciones constantes del modelo, la siguiente cuestion natural es
preguntarse sobre la estabilidad: ;jseran estables o inestables estas soluciones?

Para ello, utilizando el criterio de la primera derivada (se puede consultar en el apéndice
A), debemos calcular la derivada de f y evaluarla en los puntos fijos. La derivada de f es

f/(ZE) - a(l - 2{L‘) )
que evaluada en cero queda

0)=a

, 1 1
flil—-)=a—-2a(l—-)=a—2a+2=2—a.
a a
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= ( es asintoticamente estable si 0 < a < 1 e inestable si a > 1, es decir, 0 es estable solo
si es la unica solucion constante, con sentido bioldgico.

1 — % es asintéticamente estable si 1 < a < 3 e inestable si a > 3 (no contemplamos
aqui la posibilidad de que a < 1 ya que en ese caso el punto 1 — % no es positivo y no
tiene sentido bioldgico®).

Resumimos la situacion®:

0 <a<1]0 es asintéticamente estable
1<a<3|0esinestable y 1 — é asintoticamente estable
3<a<4|0y1-— % son inestables

Ciclos

Una ecuacién de apariencia tan simple no hace sospechar que puede presentar una dindmica
tan compleja. Dependiendo del valor de a pueden aparecer n-ciclos. Estudiar esta cuestion con
detalle no es nada sencillo y por supuesto se escapa del nivel de estas notas. Aqui indicaremos,
simplemente, los rangos de a para los que se sabe qué tipo de n-ciclos aparecen. Con la ayuda
de programas disponibles en la red, o con una simple hoja de célculo, se pueden descubrir
estos n-ciclos. Pero antes de hacer este esbozo de resultados, observamos un calculo sencillo
que nos muestra qué condicion debe cumplir a para que aparezcan 2-ciclos. x,, es un 2-ciclo
si verifica:

Lo, 1 = f(l'()), Tog = f(I1> =T, +.. .

Por tanto
zo = f(z1) = f(f(z0)) (xo es un punto fijo para la funcién f?),
que es una ecuacion para xgy que podemos escribir de la siguiente forma:
zo = f(z1) =a(l —z)x1 =a (1 —a(l —xo)z) a(l — o) 2o

o, llevando todo al término de la izquierda,

xo—a (l—a(l—x9)xo) a(l—z9)xg=0
y sacando factor comun de z:

2o [1—a® (1 —a(l—mzp)xo) (1—a0)] =0

Esta ecuacién es de cuarto orden que después de hacer algunas cuentas '° se puede escribir
de la siguiente forma:

zo [azg — (a—1)] [a*2f —a(a+ 1)z + (a+1)] =0,

de donde se deduce que
29=0 o azg—(a—1)=0 o

8; Qué ocurre si a < 1?7
9En la tabla se incluyen los casos @ = 1 y a = 3, que no se pueden demostrar utilizando el criterio de la
primera derivada. ;Cémo podriamos justificarlos?
10Sabemos que las soluciones constantes de la ecuacién, en particular, son 2-ciclos. Por tanto, la expresién
1

se obtiene dividiendo el polinomio 1 — a* (1 — z) (1 — ax (1 — z)) por el monomio = — (1 — 1).
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a?zt —a(a+1)zg+ (a+1)=0.

Esto quiere decir que las soluciones, es decir, datos iniciales para los que la solucién es un
2-ciclo, son

QZ’(]:O, o —

. _alat )t @a P @@t _ (at )+ /{at (a3
Fo = 2a? N 2a '

Las dos primeras soluciones no deben sorprendernos porque corresponden a las soluciones
constantes, y es claro que una solucién constante en particular cumple que es un 2-ciclo. Por
tanto las soluciones novedosas son las producidas por la tercera expresién. Aqui vemos que
puede haber dos posibilidades. La primera observacion que hacemos es que esta expresion
tiene sentido (real) si el discriminante es no negativo, es decir, si a > 3. Por tanto, si a > 3
hay 2-ciclos (que no son soluciones constantes), basta tomar como dato inicial el encontrado.
Se puede comprobar que si tomamos zg = x, ¥ = f(1) = x5

El estudio de n-ciclos se complica si incrementamos el valor de n. Los resultados que se
conocen al respecto son los siguientes (que podremos observar con ayuda de una hoja de

célculo):

= Existe un valor critico para a, que vamos a llamar a. tal que si a > a. aparecen 3-ciclos.
Se puede demostrar (Liy Yorke (1975)) que la presencia de 3-ciclos implica que existen
n-ciclos para cualquier n. a. es aproximadamente 3.828.

= Si 3 < a < a. aparecen 2"-ciclos: en un rango de a aparecen 2-ciclos, en un rango
que incluye al anterior aparecen 2-ciclos y 4-ciclos y asi sucesivamente. Cuando solo
existen 2-ciclos estos son estables, pero cuando aparecen 4-ciclos los 2-ciclos dejan de
ser estables mientras que los 4-ciclos si lo son. Pasa lo mismo para el resto de 2"-ciclos.

e Si 3 < a <3.45 aparecen 2-ciclos y son estables.
e Si 3.45< a <3.54 aparecen 4-ciclos estables y los 2-ciclos son inestables.

= En el diagrama de bifurcacién se observan estos resultados. Este diagrama fue descrito
por primera vez por May y Oster (1976).

Caos

Sabemos que la palabra caos (sin ninguna connotacién matematica) significa confusion,
desorden. Cuando observamos el comportamiento de la ecuacion logistica en diferencias para
a > a. en la que aparecen n-ciclos para cualquier n puede que la palabra que evoque nuestra
mente para representar este modelo sea justamente caos. El concepto de caos matemadtico es
mucho mas complejo que simplemente hablar de confusion o desorden. No vamos a entrar

1 Actividades que se pueden hacer con hojas de cdlculo:

= Comenzar con estos datos iniciales y ver que se obtienen los 2-ciclos.
= Observar que si se empieza con la eleccién de wa' se obtiene también x .

» Empezar cerca de estos datos iniciales para estudiar la estabilidad de los ciclos (dependiendo del rango
de a serdn estables o inestables).
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aqui a exponer la teoria del caos matemaético, porque es demasiado complicada para las
intenciones de estas notas, y porque incluso la comunidad matematica no se pone de acuerdo
en una definiciéon. Pero si vamos a tratar de explicar, de palabra, una serie de propiedades
que cumple el modelo que estamos estudiando (para ese rango critico de a) y que, a veces,
se dan como definicién de caos. Estas propiedades son:

» Existen n-ciclos para cualquier nimero natural n.
= Podemos encontrar una solucién que esta tan cerca como se quiera de todos los n-ciclos.

s Efecto mariposa: Sipartimos de dos condiciones iniciales que no son iguales pero que son
tan parecidas como queramos, las soluciones que producen estos datos iniales pasado
un tiempo (quizd grande) no se pareceran en nada, es mds, no se volveran a parecer
nunca'?

3.3. Aplicaciones a las matematicas de secundaria y bachillerato

En esta seccién hemos visto que las sucesiones y las funciones son herramientas empleadas
en el estudio de dindamica de poblaciones. Concretamente, se podrian realizar actividades del
siguiente tipo, y con la ayuda de hojas de calculo:

= Analizar las progresiones geométricas en funcion de su razon, en ejemplos concretos,
como soluciones de la ecuacién de Malthus discreta (ver ecuacion (1)).

» Presentar las soluciones de la ecuacién logistica discreta (6) como ejemplos de sucesio-
nes, aplicados a la ecologia, para los que no se puede dar un término general.

= Entender los diferentes aspectos del modelado entre la ecuaciéon de Malthus discreta
(1) y la ecuacion logistica discreta (6).

= Analizar, mediante una hoja de calculo, el cociente incremental en la definicién de la
derivada (ver (8)), en funcién de At para ver que el modelo logistico discreto
P(t+ At) — P(t)
At

= (A= BP(1))P(t)

se parece al continuo si At tiende a 0.

= Explicar el efecto mariposa, con sus posibles aplicaciones, por ejemplo, en criptografia

[8].

= Determinar sucesiones constantes que sean soluciéon de modelos que describen dinami-
cas de una poblacion.

= Andlisis similares se pueden hacer para modelos aplicados a las economia, por ejemplo,
para calculo de intereses o de hipotecas.

12Ge puede observar tomando a = 4 y partiendo de dos datos iniciales tan préximos como zg = 0,1 y
xo = 0,1001.
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4. Matrices en dinamica de poblaciones

En los modelos estudiados hasta el momento, hemos visto como utilizar las sucesiones de
nimeros para describir, por ejemplo, la evolucién en el tiempo del tamano de una poblacién.
En la segunda parte de estas notas vamos a estudiar otros modelos discretos que se usan para
investigar la dinamica de poblaciones, que estan estructuradas en grupos. En estos modelos
la herramienta principal seran las matrices. Concretamente, nos centraremos en poblaciones

estructuradas por edad (modelo de Leslie) y poblaciones estructuradas por estados (procesos
de Markov)'3.

4.1. Poblaciones estructuradas por edad: modelo de Leslie

Supongamos que estamos estudiando una poblaciéon que se puede dividir en grupos de
edades disjuntos:

BEstos modelos son casos particulares de sistemas de ecuaciones en diferencias lineales. Representaremos
estos sistemas de forma matricial:

Xnt1 = AX, (10)
Xl
X3

donde X, = | . es el término n-ésimo de la sucesién de vectores solucién del sistema (10) y A es la
X5

matriz del sistema (matriz cuadrada con m filas y m columnas). Entendido el marco general en el que se
engloban nuestros modelos, podemos hacer las siguientes observaciones:

= Si nos reducimos al caso de una unica ecuacién en diferencias el sistema (10) es una ecuacién en
diferencias del mismo tipo que la ecuaciéon de Malthus discreta.

= En este caso los problemas de valores iniciales se escriben de la siguiente forma:

Xn+1 = AXn
v e

La solucién de este problema se conoce facilmente y es X,, = A" X, para todo n, es decir, X,, = A"a.
En este caso la solucién es una sucesién de vectores, cuyo término general es el vector X,, € R™.

= Puesto que las soluciones del sistema (10) son de la forma X,, = A" X, todo recae en saber calcular
la potencia n-ésima de la matriz A.

s Saber si la matriz A es diagonalizable es muy util en el calculo de sus potencias, para lo que es
necesario analizar sus valores y vectores propios.

= Si la matriz A tiene valor propio dominante el comportamiento de la solucién a largo plazo se estudia
facilmente.

= El método de las potencias es una potente herramienta que ayuda a encontrar de forma aproximada
el valor propio dominante de una matriz, si ésta lo tiene.

= Para los dos modelos biolégicos que estudiamos a continuacion, daremos criterios para saber si la
matriz asociada al problema tiene valor propio dominate, sin necesidad de tener que hacer un estudio
de la diagonalizacién o, en general, de la descomposicién de Jordan de dicha matriz.
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’ Grupos \ Rango de edades ‘
Grupo 1 | [0, L)

Grupo 2 | [L,2L)
Grupo 3 | [2L,3L)
Grupo 4 | [3L,4L)

Grupo m | [(m —1)L,mL)

donde cada grupo (o clase) constituye un rango de L unidades de tiempo (anos, meses,
semanas, dias ...) y se supone que la vida media de esta poblacién es de mL unidades
de tiempo (sus miembros tienen esa vida media). Por ejemplo, imaginemos que queremos
estudiar una poblacién, cuya vida media son 10 anos, podriamos estructurar la poblacién en
grupos de 2 anos cada uno, es decir, L seria 2 anos y por tanto, la tabla anterior quedaria:

’ Grupos \ Rango de edades ‘

Grupo 1 | [0,2)
Grupo 2 | [2,4)
Grupo 3 | [4,6)
Grupo 4 | [6,8)
Grupo 5 | [8,10)

Normalmente cuando se habla de modelos de Leslie para poblaciones estructuradas por
edades, realmente se hace referencia al nimero de hembras en cada uno de las clases o
grupos de edades, entendiendo que se conoce la dindmica de la poblacion en funcion del
nimero de hembras de la misma. En estos modelos se asume que los recuentos del nimero
de hembras se hacen cada L unidades de tiempo. Para determinar el nimero de hembras en
un instante de observacién posterior se tienen en cuenta dos tipos de parametros para cada
grupo de edad: las tasas de fertilidad de las hembras y las probabilidades de supervivencia de
las hembras. Denotaremos por:

» f;>0,coni=1,...,m, al nimero medio de crias hembras que tiene una hembra del
grupo i-ésimo en ese periodo de L unidades de tiempo,

m 0 <p;, <1, coni=1,....,m—1, a la probabilidad de que una hembra del grupo
1-ésimo esté viva en el siguiente recuento, es decir, formara parte del grupo ¢ + 1,

» P! coni=1,...,m, al nimero de hembras en el grupo i.

Con esta notacion jpodrias saber el nimero de hembras en cada grupo de edad, sabiendo su
nimero en el recuento anterior?

La informacién que conocemos son las tasas de fertilidad y las probabilidades de super-
vivencia, por tanto, el nimero de hembras en el recuento n + 1 en el primer grupo de edad
vendra determinado por el nimero de nacimientos que tengan las hembras del recuento n:

Pli=fAP 4+ b PP+ 4 [ PP,

el primer sumando corresponde a los nacimientos de las hembras del grupo 1, el segundo a
los nacimientos del segundo y asi sucesivemente, hasta el tltimo sumando que nos indica los
nacimientos de las hembras del ultimo grupo.
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Para el resto de sectores de edad, la ecuacién es bastante mas sencilla:

Pi

_ i—1 s
n+1—pi_1Pn , 1=2,...,m,

tras L unidades de tiempo, en el grupo ¢ estaran las que sobrevivan del grupo i —1, y tendran
L unidades de tiempo maés.

Tenemos, entonces, un sistema de ecuaciones en diferencias lineales. En este ambiente las
matrices son una herramienta muy til, porque simplifica mucho la escritura y la resolucion
del problema. Los sistemas de ecuaciones en diferencias lineales se pueden escribir'* como
sigue:

Pn+1 =A Pna
donde
Pl
o
P, = " y A una matriz cuadrada de orden m.
B

En nuestro caso la matriz A se llama matriz de Leslie, y la poblacion en el recuento n+ 1 se
obtiene de la poblacion en el recuento n mediante esa matriz:

~~~ ~—~

Pn—l—l — A Pn
: : .’ .
Poblacién en el instante n+1 Matriz de Leslie Poblacién en el instante n

..Como es la matriz de Leslie? La matriz de Leslie, también llamada matriz de proyeccion
poblacional tiene esta forma:

o fa fs o e
P1 0 0 0

A—|l 0 po ... 0 | (11)
0 0 oo Pm—1 0

Por tanto el modelo de Leslie viene dado por un sistema de ecuaciones en diferencias lineales,
donde la matriz que lo determina es la matriz de Leslie (11)

PTL+1 :Apn, (12)
donde
Pl
p2
Po=1." y A la matriz de Leslie (11).
b

Sabemos que si la poblacion inicial esta representada por un vector Fy, entonces la poblacién
esta perfectamente determinada en cada instante de la observacién y su valor es:

P, =A"P,.

4 Hemos usado la notacién que estamos empleando para la descripcién del ntimero de hembras de esta
poblacién.
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De este modo, toda la informacién del modelo esta concentrada en las potencias n-ésimas
de la matriz A'. Hay herramientas matematicas para determinar el comportamiento a largo
plazo de los distintos grupos, en los que esté estructurada la poblacién, que se basan en el
estudio de la matriz de Leslie. De una forma intuitiva estas propiedades se pueden “descubrir”
partiendo de distribuciones iniciales particulares. Por ejemplo, supongamos una poblacion
dividida en dos grupos de edad, de forma que en el grupo de menor edad la tasa de fertilidad
es 1 y en el segundo es 2 y todas las hembras pasan al grupo de edad mayor:

=, Qué ocurre con una poblacién que inicialmente tiene 20 hembras en el grupo de edad
mas pequena y 10 en el de edad mayor?

= ; Qué ocurre con una poblacién que inicialmente tiene 10 hembras en el grupo de edad
mas pequena y 20 en el de edad mayor?

A la vista de estos resultados podemos concluir que hay condiciones iniciales de nuestro
problema que provocan un comportamiento més facil de estudiar que otros'®.

Para entender mejor qué ocurre con una poblacion que sigue el modelo de Leslie a largo
plazo, vamos a definir algunos indices bioldgicos del modelo.

Indices biolégicos

Representamos por || P,|| al ntimero total de hembras de la poblacién'’, es decir, es la
suma

|P.| =Py +...+ P™

Llamamos pirdmide de edad de la poblacion, de una poblacion no nula, en el recuento

n-ésimo al cociente
P,

1Pl
Puesto que, para cada instante de la observacién, || P,|| es el nimero total de hembras en

la poblacion, Hllz—”” es un vector en el que cada componente es el nimero de hembras en la
franja de edad correspondiente, dividido por el niimero total de hembras de la poblacién. Es

por tanto, un vector que nos indica la proporcién de hembras en cada franja de edad.

En ciertos casos, por ejemplo, si existen dos tasas de fertilidad consecutivas no nulas, se
sabe que para n suficientemente grande (pasado un tiempo largo) las pirdmides de edades
de la poblacién tienden a ser todas iguales, ver el apéndice B para mas detalles.

Llamamos tasa de crecimiento de la poblacion tras n periodos al cociente:

[Pl = ([ Pra|
HPn—lH 7

5Por ello, si la matriz es diagonalizable estas potencias serdn caculadas ficilmente y si la matriz tiene
valor propio dominante podremos conocer la dindmica de la poblacién a largo plazo.

160 que subyace es el concepto de valor y vector propio asociado a la matriz A. Podrias buscar los valores
propios y comprobar que la matriz es diagolalizable, para ver cémo son las potencias n-ésimas de la matriz.

1"Vemos que || P, es la norma-1 del vector P,, ya que cada una de sus componentes son mayores o iguales
a 0.
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es decir, la variacién del ntimero total de hembras (en los periodos n y n— 1) entre el niimero
total de hembras en el periodo anterior.

Para acabar nos hacemos la siguiente pregunta: ;Podemos conocer el comportamiento de
la poblacion solo conociendo las tasas de fertilidad y las probabilidades de pasar de un grupo
a otro?

La respuesta es si'y la ofrece un parametro que se puede calcular con una simple férmula,
a partir de las tasas de fertilidad y las probabilidades de supervivencia. Ese parametro es la
tasa neta de reproduccion

R=fi+fopr+...+ fuuDi.. Dma

que representa el nimero medio de crias que tiene cada hembra a lo largo de toda su vida.
Concretamente, se verifica:

= Si R <1 la poblacion se extingue.
= Si R > 1 la poblacion crece ilimitadamente.
= Si R =1 la poblacién tiende al equilibrio.

Si R > 1 se dice que hay reemplazamiento generacional.

4.2. Poblaciones estructuradas por estados

La dinamica de poblaciones estructuradas por estados también se puede analizar em-
pleando sistemas de ecuaciones en diferencias lineales. Los ejemplos de esta situacién pueden
ser muy variados, desde el andlisis de la evolucion de los genotipos en un problema de genéti-
ca, hasta un estudio sobre el peso de una poblacién... El denominador comtn de todos estos
problemas es el uso de sistemas de ecuaciones en diferencias lineales, cuya matriz asociada
es una matriz de probabilidad (matriz positiva cuyas columnas suman 1)*.

En este caso, al estar la poblacion estructurada por estados es claro que el tamano de la
poblacién es siempre el mismo, ya que lo que se estudia es como se distribuyen sus miembros
en los distintos estados. Veamos un ejemplo para entender mejor estos modelos:

En un parque natural, en el que hay cabras montesas en semilibertad, existen tres abre-
vaderos, A, B y C. El personal del parque han observado que la distribucion de las cabras
cada manana en los diferentes abrevaderos viene determinada por la expresion

A 0,2 0,6 0,3 A,
B?’L+1 = 074 0 072 Bn 3
CVn—i—l 074 074 075 Cn

18Estos problemas se engloban dentro del marco general de cadenas de Markov. Para estos modelos los
resultados principales que debemos recordar son los siguientes:

= El valor 1 es siempre valor propio de una matriz de probabilidad, aunque no necesariamente dominante.

= Si la matriz de probabilidad es ergddica entonces el valor 1 es el valor propio dominante y ademas es
el inico que admite un vector propio asociado con todas sus componentes positivas.

Recordamos que una matriz cuadrada con todas sus entradas no negativas es ergédica si existe una potencia
de ella de forma que tenga todas sus entradas estrictamente positivas.

El resultado que hemos enunciado para las matrices de probabilidad ergédicas es un caso particular del
Teorema de Perron-Frobenius.
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donde A,,, B, y C,, denotan, respectivamente, las cabras que han bebido en A, By C en un
determinado dia.

1. ;Qué proporcion de cabras que un dia beben en B y al siguiente se van a A?
2. (Qué proporcién de cabras que un dia beben en B y al siguiente se van a C?
3. i Qué proporcion de cabras que un dia beben en C y al siguiente vuelven a C?

4. Si dispones de 9 toneladas de comida para ayudar a la alimentacién de las cabras en
una época de sequia, jcomo debes distribuir la comida entre los abrevaderos para que
el reparto sea equitativo?

4.3. Sistemas de ecuaciones en diferencias lineales con el ordena-
dor

Simular con un ordenador un sistema de ecuaciones en diferencias lineales, no demasiado
grande, es una tarea sencilla que puede ser hecha facilmente con una simple hoja de céalculo.
Destacamos en estas notas el programa Populus'®, muy usado en investigaciones en biologfa,
que tiene programado resolutores para una amplia gama de problemas de dinamica de po-
blaciones, no solo basados en ecuaciones en diferencias lineales. Ademds, este programa sirve
como herramienta pedagdgica, ya que es un programa que es de facil uso, pero con la apa-
riencia de hacer complicados algoritmos, de este modo cuando las personas que se piensan
poco hdbiles con las matemdticas se dan cuenta de que son capaces de hacer con una hoja de
calculo lo mismo que un programa como el Populus, adquieren confianza en ellas mismas y
motivacién para seguir estudiando matemaéticas.

Con la ayuda de una hoja de calculo se puede:

Obtener la evolucién de los recuentos a lo largo del tiempo.

Determinar, empleando el método de las potencias, el valor propio dominante, si la
matriz lo tiene, y con ello saber el comportamiento a largo plazo de la poblacién.

Dibujar la evolucion de las piramides de edad o estados a lo largo de los distintos
recuentos.

4.4. Aplicaciones a las matematicas de bachillerato

En esta seccion hemos visto que las matrices y los vectores son herramientas empleadas
en el estudio de dindmica de poblaciones. Concretamente, se podrian realizar actividades del
siguiente tipo, y con la ayuda de hojas de calculo:

» Importancia de las matrices como herramienta para simplificar mucho la escritura ma-
tematica. Para ello se puede mostrar el modelo de Lesie como una “serie de sucesiones
de nimeros relacionadas” (sistemas de ecuaciones en diferencias) y mediante su escri-
tura matricial.

19Se puede descargar en el siguiente enlace: http://www.cbs.umn.edu/populus/.
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= Producto de matrices. En particular, una matriz por un vector y la potencia n-ésima
de una matriz.

= Descubrir de modo intuitivo la importancia de los vectores propios de una matriz,
observando que se determina de forma muy sencilla la dindmica de una poblacion
descrita por el modelo de Leslie.

= Descubrir de modo intuitivo la importancia de las matrices diagonales, observando que
se determina de forma muy sencilla la dinamica de una poblacion que se rige por el
modelo de Leslie.

= Presentar las matrices de probabilidad mediante dindmicas de poblaciones segin sus
estados.

= Emplear la inversa de una matriz para descubrir la distribucion que tenia una poblacién
en un recuento anterior, sabiendo la distribucion que tiene en el recuento actual.

= Andlisis similares se pueden hacer para otros modelos, por ejemplo, los aplicados a la
genética.

5. Ajuste por minimos cuadrados

Uno de los problemas mas frecuentes en la investigacion cientifica es tratar de determinar
la funcién (matemadtica) que mejor se aproxima a los datos derivados de los experimentos.
Supongamos por ejemplo, que estamos estudiando una poblacién de una determinada especie
y hemos registrado en una tabla los valores recontados en las distintas observaciones.

Tiempos de observacién, t; | Valores observados, y;
(en anos) (en miles)

4,5

4.1

5,3

6,2

6,4

Y | W I N~

Nos gustaria conocer una funcién que se ajuste a esos datos lo mejor posible, para de ese
modo poder predecir los valores en los anos en los que no se hicieron observaciones, o poder
predecir lo que ocurrird en el futuro. Decir la mejor posible implica demasiada ambigiliedad,
es por ello que hay una extensa teoria matematica que trata de precisar esa expresion tan
general. En nuestro caso, buscaremos la funcién que mejor se aproxime a nuestros datos,
de entre una familia de funciones fija, en el sentido de minimizar el error cuadréitico (que
definiremos mas adelante).

La tabla de datos podemos representarla graficamente y dibujar lo que se conoce como
nube de puntos, ver figura 2.

La pregunta que nos planteamos es: de entre la familia de funciones reales de variable
real, F, ;podemos determinar la funcion f que mejor se aprorima a esta nube de puntos, en
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(Valores observados
6|  °
[ ]
[ ]
4 1 [ ]
2 1
Tiempo

Figura 2: Nube de puntos.

el sentido de minimos cuadrados (discretos)? O dicho de otro modo, ;quién es la funcion f
de la familia F que hace minimo el error cuadrdtico,

Ep =3, (f(t:) — v)? (13)

(en nuestro cason =5)?

En dindmica de poblaciones los modelos continuos mas basicos son Malthus, logistica y
Gompertz. Vamos a considerar aqui las familias dadas por las soluciones de esos modelos. An-
tes de pasar a analizar la solucién en cada una de estas familias, senalamos tres observaciones
que pueden surgir en relacién al problema planteado:

= Podriamos plantearnos buscar funciones que hagan este error exactamente cero, es
decir, que tomen exactamente los mismos valores observados. Esto es justo lo que
hace la teoria de interpolacion. Sin embargo la motivacion es diferente en el caso que
abordamos aqui, ya que la funcion asi encontrada casi con seguridad no pertenece a la
familia que buscamos. Y ademas el hecho de usar como criterio el que tome exactamente
el mismo valor observado no necesariamente produce una funcién que aproxime bien
a la nube de puntos. Puesto que siempre la toma de datos implica un error, bien de
quien observa, bien del instrumental utilizado para ello.

» Otra cuestién que nos podemos hacer es por qué elegimos la expresion del error (13) y
no otra. Podriamos considerar, por ejemplo

Ep =32, (f(t) — 4i)-

Pero esta es una mala elecciéon, porque queremos que Ey nos de una idea de si la
funcién elegida es buena, o no, como aproximacion, es decir, queremos que si £y = 0
eso indique que la aproximacion f es la mejor obtenida, la funciéon toma exactamente
los valores observados. Sin embargo, este error no nos ofrece esa informacion, porque
los sumandos podrian ser positivos y negativos, y por tanto, la suma ser cero, y sin
embargo, que la funcién diese una aproximacién malisima.
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= La segunda observacion nos lleva a pensar que si queremos cambiar la expresion del
error, el error debe ser medido sin depender del signo, es decir, sin diferenciar si el
error se comete por exceso o por defecto. Siguiendo esta idea, podriamos plantear la
siguiente expresion para el error:

Ep =21 () = il

Esta podria ser una buena eleccién, sin embargo, no se suele trabajar con ella porque
el problema matemaético, asociado a la busqueda de la mejor aproximacion sujeto a
que este error sea minimo, es bastante mas complicado que el que surge al usar el error
cuadratico. Ya que la funcion valor absoluto tiene menos regularidad, que la funcion
elevar al cuadrado®.

5.1. Cbémo se encuentra la mejor aproximacién por minimos cua-
drados

Supongamos que tenemos una nube de puntos (por ejemplo, como la mostrada anterior-
mente) y una familia de funciones en la que pensamos que existe una funcién que se ajusta
a nuestros datos. Entonces, la estrategia para encontra la funcién es la siguiente:

= Determinamos el nimero de parametros que describe nuestra familia de funciones
reales de variable real. Y denotamos por f(x,a,as, ..., a,) una funcién cualquiera de
la familia considerada en la que estamos indicando que depende de m parametros y de
la variable z. Por ejemplo, la familia de rectas viene determinada por dos parametros, a;
v as, ya que toda recta se puede escribir de la forma y = ayx+ao. Entonces una funcién
cualquiera de esta familia serfa f(z,a;,a2) = a1z + ag. (Por simplificar la escritura,
cuando la familia considerada dependa de pocos parametros usaremos diversas letras,
por ejemplo, a, b, c. .., para evitar los subindices).

» Construimos la funcién error cuadratico que queremos minimizar

Eflay, ... am) = S (f(t:) — i)
En el caso de considerar la familia de rectas tendriamos:

Efla,b] = X7 (at; + b — yi)z.

= Si el problema planteado tiene solucién, los m pardametros que hacen que Ef[ay, . . ., ap]
tome el valor minimo son la solucién del siguiente sistema

n of(t;
i () — yi)g%) =0
(9)9 :
n oft) __
S (f () —vi) afa(m) =0,
donde ag_((;) representa la derivada parcial de f con respecto al pardmetro a; evaluada
en t;. Observamos que el sistema tiene tantas ecuaciones como pardametros tenga la
familia de funciones considerada.

20; Verdad?
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A este sistema se le suele llamar, en el ambiente estadistico, ecuaciones normales. En general,
resolver el sistema anterior no serd sencillo, puesto que sera un sistema no lineal. Sin embargo,
hay herramientas numéricas que aproximan los valores de estos parametros, con la precision
que se quiera.

Llamaremos F5 al error cuadratico minimo, es decir, al error cuadratico cometido por la
funcion determinada, al resolver el sistema de ecuaciones normales del modelo. Este niimero
no nos ofrece un indicador preciso del error cometido, ya que no sabremos si es pequeno o
grande, si no lo comparamos con algin referente. Es por ello que definimos el siguiente error

medio en %:
100 4/ £2

E?:oyi ’
n

es decir, el error medio (en el numerador), dividido entre el valor medio de valores observados
(en el denominador), y todo multiplicado por 100, para obtener el tanto por ciento. Operando
un poco en el cociente podemos encontrar la siguiente expresion simplificada:

100 vn Es

14
X oYi ( )

Este indicativo de error esta bien definido, ya que en nuestros modelos los valores y; seran
cantidades positivas.

5.1.1. Familia lineal

Si consideramos la familia de funciones lineales:
F=A{f(t,a,b) =at+b, a,be R},
el sistema (5) se escribe, como sigue:

5.1.2. Familia exponencial
Consideramos la familia de funciones solucién de la ecuacién de Malthus X'(¢t) = ¢ X (¢):
F={f(t,a,c,ty) =ae™ . atyceR},
donde:
= a representa el valor de f en ¢y (f(to) = a),
= {4 el punto medio de los datos,

» ¢ la tasa de crecimiento del modelo (X'/X) y

» ac la pendiente de X en tq (X'(t)).
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El valor ¢, lo fijaremos, y por tanto no lo entendemos como parametro.

En este caso el sistema (.5) se escribe, como sigue:

Z:‘L:1(a ec(tﬁto) _ yi)ec(trto) -0
2" (a eclti—to) _ yi)a (t; — to)ec(tifto) —0

equivalentemente,
E?:1<a ec(ti—to) _ yi)eC(ti—to) =0
S (a et o) — ga tieethto) = 0

5.1.3. Familia sigmoidal

Consideramos la familia de funciones solucién de la ecuacion de logistica X'(t) = ¢ X (¢)(1—
X)),
¢ a

]::{f(t,%b,to):mi

a,tg,c € R},
donde:
= @ es el valor limite cuando ¢t — oo,

= ¢y es el punto de inflexién (ya que es el instante en el que la solucién alcanza la mitad
de la capacidad de carga),

= $ es la tasa de crecimiento en ¢y (X'(to)/X (o)) v

= % es la pendiente en Zy (X'(Zo)).

Estas funciones se llaman funciones sigmoides, por lo que cuando se aproxima una nube de
puntos en esta familia, se habla de aproximacion sigmoidal.

5.1.4. Familia de Gompertz

Consideramos la familia de funciones solucién de la ecuacién de Gompertz X'(t) =
cX(t)In

F={ft.abty)=ae "™ atgceR},
donde:

= q es el valor limite cuando t — oo si ¢ > 0,

= tj es el punto de inflexidn,

» ces la tasa de crecimiento en ¢y (X'(t9)/X (t0)) v
= 2 es la pendiente en Zy (X'(Zo)).

Se propone como ejercicio encontrar los correspondientes sistemas (S) para las familias
sigmoidal y de Gompertz.
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5.2. Aproximacion por minimos cuadrados mediante cambios de
variables

En las aproximaciones exponenciales y sigmoidales el sistema de ecuaciones normales
es no lineal, por lo que no es facil encontrar su soluciéon. Sin embargo hay herramientes
matematicas que pueden encontrar aproximaciones tan buenas como se desee. Esta dificultad
hace que muchos de los programas que dicen hacer aproximaciones por minimos cuadrados
en estas familias, realmente no encuentra la funcién que mejor se aproxima a la nube de
puntos, con el criterio del error cuadratico minimo, sino que determinan otra funcién bajo
un criterio parecido, pero no igual. Veamoslo con un ejemplo concreto. Supongamos que
queremos aproximar la siguiente tabla de puntos:

Tiempos de observacién, ¢; | Valores observados, y;
(en anos) (en miles)

0,135335

0,367879

2

2,71828

7,38906

Y | W I N~

cuya nube de puntos esta representada en la figura 3.

8 %
Valores observados °
6 1
4 1
[ ]
2+ °
. ° Tiem}po

Figura 3: Nube de puntos.

Queremos aproximar esta nube de puntos por una funcién exponencial del tipo

f(t) — eat—o—b'

(Observamos que esta es otra posible escritura de la familia exponencial, considerada ante-
riormente).

Para evitar resolver el sistema no lineal que aparece al plantear las ecuaciones normales del
problema, se hace un cambio en los datos y se considera, en lugar de los valores observados,
el logaritmo neperiano de esos valores. De este modo ahora se busca la mejor aproximacién
en la familia de rectas h(t) = at + b. Por tanto nuestro problema original se transforma en
un nuevo problema con datos:
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Tiempos de observacién, t; | In(Valores observados), In(y;)
(en anos)

1 In(0,135335)

2 n(0,367879)

3 In(2)

4 In(2,71828)

5 In(7,38906)

con la ventaja de que el sistema de ecuaciones normales en este caso es lineal y por tanto
facil de resolver.

Con estos dos planteamientos parecidos pero no iguales encontramos dos funciones ex-
ponencial distintas. Una aproximacion de la funcién que mejor aproxima, en el sentido de
mininos cuadrados, es decir, resolviendo el sistema no lineal es

fl (t) — 1,3422553054287 60,847592335314272*(1‘,73)
La funcién que mejor se aproxima mediante el cambio de variables es
f2(t) = 0,057190323534290356 €’

Ambas funciones las vemos representadas en la figura 4, junto con la nube de puntos (f; esté
pintada en verde y f; en roja).

8 _

[ Valores observados . fi(t)

Figura 4: Representacién de dos aproximaciones exponenciales a una nube de puntos.

Si calculamos el error cuadratico de cada aproximacién encontramos:

Error cuadratico | Error normalizado
f110,665679 14,4672
fa | 2,09872 25,6879

Vemos de este modo que la funcion exponencial encontrada aproximando mediante una
recta la nube de puntos dada por el logaritmo de los valores observados, fs, es una peor
aproximacién que la funcién fi, es decir, el error cuadratico de la curva verde (f) es més
pequeno que el error cuadrético de la exponencial roja (fs).
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5.3. Aplicaciones a las matematicas de secundaria y bachillerato

En esta seccién hemos visto qué significa encontrar la funcion, de una determinada familia,
que mejor aproxima una nube de puntos, en el sentido de ser la funcion de la familia con
menor error cuadratico. Y también hemos mostrado que para algunos problemas no lineales,
el cambio a un problema lineal no ofrece la mejor aproximacion del problema lineal.

Concretamente, se podrian realizar actividades del siguiente tipo, y con la ayuda de hojas
de célculo:

» Analizar datos de prensa en los que se usen aproximaciones empleando minimos cua-
drados, y decidir si se pueden ajustar mejor mediante otras familias de funciones.

= Analizar si los programas que hacen ajustes exponenciales lo hacen empleando una
linealizacion del problema.

6. Problemas de optimizacion lineal

Los problemas de optimizacién pretenden encontrar el maximo o minimo de una deter-
minada funcién sujeta a una serie de restricciones. Estas notas solo pretenden recordar un
problema que se supone conocido para alguien que haya finalizado el grado en matematicas.
Y mostrar que estos problemas, cuando tienen solucién, pueden resolverse con una hoja de
célculo. Para estudiar con mas profundida este tema se puede consultar, por ejemplo, [11].

Dadas f : R" - IR, ¢, : R" - R, b; € R,coni = 1,...,m, los problemas de optimizacién
se plantean como siguen:

max f(xy,xe,...,x,)

Sujeto a (s.a.) las restricciones ¢;(x1, za, ..., x,) < b,
también podria ser

min f(zq,x9,...,2,)

Sujeto a (s.a.) las restricciones g;(x1, T2, ..., x,) < b;.

Estos problema se dicen que son lineales, y hablamos de programacion lineal si las funciones
fvg,coni=1,...,m, son funciones lineales. La funcién f se llama funcion objetivo y el
conjunto

D = {(ZEl,l’Q,...,ZEn) e R": gi(ZEhJ/’Q,...,ZEn) < bZ,Z = 1,...,m}

region factible. Son problemas en los que se busca el méaximo, o el minimo, de la funciéon
objetivo en la regién factible.
Estos problemas no siempre tienen solucién. Por ejemplo, el problema

max f(z,y) = z* +y°
s.a. las restricciones

no tiene solucién. Ya que la region factible, D, es el primer cuadrante del plano cartesiano,
y la funcién f no tiene un valor méaximo en D.
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. Tiene el problema

max f(z,y) = 2% + y?

s.a. las restricciones
0<uz,
0<y,

solucién?!?
En la figura 5 representamos la regién factible (en gris) y curvas de nivel de la funcién
objetivo f. Para cada k € IR la curva de nivel k£ viene dada por

c, = {(z,y) € R*: f(z,y) = k}.

Vemos que si k& < 0, entonces la curva de nivel k, ¢, es vacia, y si k > 0, la curva c¢; es
una circunferencia de centro en el origen y radio vk. Si k = 0 entonces ¢y = {(0,0)}. Las
curvas de nivel son una forma de representar graficamente funciones de dos variables en el
plano, nos sirven para hacernos una idea de como es la gréfica de la funcién (que, para una
funcion de dos variables, es un objeto de ]F{3). En este ejemplo, vemos que las curvas de
nivel son circulos concéntricos que van aumentando de radio, a medida que aumenta el nivel
k. Graficamente, vemos claramente que encontramos el maximo de la funcién en la regién
factible* en los puntos (1,0) y (0,1) y vale 1.

Para encontrar el valor maximo podriamos razonar también buscando el punto de la
arista determinada por la recta y = —x 4+ 1 en el que la funcién objetivo alcanza el maximo.
Es decir, se trata de buscar el maximo de la funcion real

g(z) = f(z,1-2)=2"+(1-2)*, 2€]0,1]
que sabemos que se alcanza en los puntos z =0y z = 1, y vale ¢(0) = g(1) = 1.

En el siguiente ejemplo

min f(r,y) = (r - 1>+ (y — 1)?
s.a. las restricciones
0<x,
0<wy,
r+y—1<0,

el minimo no se alcanza en un vértice de la region factible. En la figura 6 representamos la
regién factible (en gris) y curvas de nivel de la funcién objetivo f. Para cada k € R la curva
de nivel £ viene dada por

a = {(z,y) € R*: f(z,y) = k}.

21La regién factible viene determinada por funciones g; y b; € R tales que g;(x,y) < b;. Podemos tomar:
gi(x,y)=-2y b =0,0(z,y)=-yyb=0,ygs(v,y) =z +y—1y b3 =0.

223abemos que la funcién tiene un maximo en la regién factible, porque es una funcién continua y la regién
factible es un compacto de IR?, por lo que sabemos que tiene tanto un valor méximo, como minimo.

;Podrias dar un ejemplo de un problema de optimizacién en el que la regién factible no esté acotada y la
funcién objetivo tenga méaximo en dicha region?
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0,4
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02 04 06 08 1 12

Figura 5: Region factible (en gris) y curvas de nivel de la funcién objetivo, f, del problema
de maximizar f(z,y) = 2 + y* sujeta a las restricciones 0 <z, 0 <y, yx +y — 1 <0.

Vemos que si k& < 0, entonces la curva de nivel k, ¢, es vacia, y si k > 0, la curva ¢, es
una circunferencia de centro en el punto (1,1) y radio v/k. Si k = 0 entonces ¢y = {(1,1)}.
Entonces vemos que el minimo se alcanza en la curva de nivel que toca la arista determinada
por la recta y = —x + 1. Para conocer el punto en el que se alcanza, basta determinar el
minimo de la funcién

g(w) = flz1—2) = (@ =12+ (-2 — 12 = (@ —1)?+2%, z€[0,1],
que se alcanza en x = % y vale 0,5. Es decir, se alcanza en la curva de nivel 0,5.

Los problemas de optimizacién lineal son un caso particular de este tipo de problemas,
en el que la funcion objetivo y las funciones que determinan la region factible son lineales.
Un ejemplo de este tipo de problemas es el siguiente:

min f(z,y) = 10z + 8y
s.a. las restricciones
0<uz,
0 S Y,
3r + 2y < 35,
2x + 3y < 35.

En la figura 7 se representan la region factible (en gris), que viene determinada por rectas,
y algunas curvas de nivel de la funcién objetivo, que son también rectas. Vemos que el valor
méaximo se alcanza en el vértice (7,7), cuando la curva de nivel més alto (nivel 126) toca la
regiéon factible, los niveles superiores a 126 ya no tienen interseccién con la region factible.
Los problemas de optimizacién lineal son muy tutiles en economia. Situaciones tipicas
vienen dadas, por ejemplo, por una empresa que quiere maximizar su beneficio (funcién
objetivo), cumpliendo unas reglas laborales y limitando los costes de produccién. Por ejemplo,
supongamos una empresa artesanal de juguetes de madera, que construye y vende dos tipos
de juguetes de madera: trenes y juego de piezas de construccién. Cada tren se vende a 18
euros y el juego de piezas de construccion a 15 euros. Los gastos de produccion de cada
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Figura 6: Regién factible (en gris) y curvas de nivel de la funcién objetivo, f, del problema de
minimizar f(x,y) = (x—1)*+ (y —1)? sujeta a las restricciones 0 < 2,0 < y, y r+y—1 < 0.

tren es de 3 euros y los de las piezas de construccién 2 euros. Para la produccion de ambos
juguetes se necesita el trabajo de una persona encargada del proceso de carpinteria y de
otra para el acabado. Cada persona no puede trabajar mas de 35 horas a la semana. Para
la construccién de cada tren se necesitan 8 horas de carpintereria y 2 de acabado, para las
piezas de construccion se necesitan 5 horas de carpinteria y 3 de acabado. ;Cuédntos trenes
y juego de piezas de construccion se deben construir para tener el maximo beneficio cada
semana’?

Si llamamos x al nimero de trenes construidos cada semana e y al nimero de juegos de
construccién, tenemos que el problema que se plantea es

méx f(z,y) = 18z + 15y — 3x — 2y = 15z + 13y
Sujeta a (s.a) las restricciones
0Lz,
0<wy,
8z 4 5y < 35,
2z + 3y < 35.

. Podrias resolver el problema?
Las hojas de calculo permiten resolver estos problemas, cuando tienen solucion, con la
orden Solver?.

6.1. Aplicaciones a las matematicas de secundaria y bachillerato

Los problemas de optimizacion tienen muchas aplicaciones, como hemos visto. Son ideales
para trabajar cuestiones como:

= Las curvas de nivel como herramienta para representar funciones de dos variables. Se
pueden entender los niveles, por ejemplo, explicando los mapas de relieve.

23En algunas hojas esta extensién viene por defecto y en otras se debe instalar.
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Y — 3 +2y=35
35) — 22+ 3y =35

15 1 --- 10x 4+ 8y = 35
; - 10z + 8y = 100
e 10x + 8y = 126

(7, 7)

Figura 7: Region factible (en gris) y curvas de nivel de la funcién objetivo, f, del problema
de maximizar f(z,y) = 10z + 8y sujeta a las restricciones 0 < z, 0 < y, 3z +2y < 35y
2z + 3y < 35.

» Partiendo de problemas de optimizacién en una variable proponer hacerlos mas rea-
listas incluyendo mas variables. Por ejemplo, considerando la funcién beneficio de una
empresa como algo que depende de una sola variable o de més de una, para tener en
cuenta mas factores que influyen en el beneficio de la empresa.

= Aplicaciones de las funciones reales de variable real y sus representaciones en el plano,
como herramienta para la representacién grafica de regiones factibles.

7. Las hojas de calculo como herramienta para analizar
distintos modelos matematicos

Emplearemos las hojas de calculo como herramienta sencilla para estudiar numéricamente
los problemas analizados en las secciones anteriores. Las hojas de calculo son programas
de facil manejo que nos permiten visualizar de forma intuitiva el comportamiento de las
soluciones de los modelos descritos en estas notas. Daremos aqui unas nociones basicas para
comenzar a trabajar con una hoja de cdlculo en blanco. Los detalles de cada modelo se
dejaran para los ficheros que se elaborardn durante las clases.

Sefialamos entonces los ingredientes principales necesarios para nuestros propésitos?:

= Formato de la hoja en la que se esta trabajando. En una hoja de célculo es
frecuente realizar las operaciones empleando bastante espacio hacia la derecha, por
tanto puede ser recomendable definir la pagina de forma apaisada. Para ello se va a
Formato— Estilo de pagina— Pdgina— Orientacion— Horizontal.

» Formato de los nimeros. Suele ser conveniente trabajar con méas decimales de los
que considera por defecto el programa. Para ello se puede seleccionar toda la hoja y

24L0s pasos que aqui seguimos son para una hoja de LibreOffice se pueden seguir los pasos andlogos para
otros programas de hojas de calculo

33



cambiar el formato de celdas en: Editar — Seleccionar todo — Formato de celdas —
Numeros.

Operaciones llamando a celdas. Se incluyen operaciones en las celdas empezando
la sentencia con un “=". Asi, por ejemplo, si en la celda que ocupa la posicion C1
escribimos =A1+B1 y pulsamos la tecla Intro nos devolvera la suma de las cantidades

incluidas en las celdas que ocupan las posiciones A1y B1?°.

Arrastrar operaciones de celdas. Quiza sea nuestro ingrediente mas importante. Se
emplea cuando una operacién se repite en las distintas celdas. Por ejemplo, supongamos
que queremos construir dos columnas, una con los 10 primeros ntimeros naturales y
otra con el cuadrado de estos ntimeros, como en la figura 8. Para ello en la celda de
posicién B2 se incluye la férmula = A2°2 que se arrastra en la siguientes (B3, B4 | ...,
B11). El proceso de arrastrar se hace con la ayuda del ratén, pinchando sobre la celda
en la que hemos incluido la formula, es decir, la que ocupa la posicién B2 y colocando,
posteriormente, el cursor en la esquina inferior derecha de la celda hasta que la flecha se
transforme en una cruz. Cuando veamos la cruz arrastramos hacia abajo manteniendo

pulsado el botén derecho del ratén. Observamos que la formula = A2°2 va cambiando
a=A32 = A42,. ..

Archivo Editar Ver Insertar Formato Estilos Hoja Datos Herr:

B-B-8- D8 & L DB A

Liberation Sans ~ || 10pt ~+ N K S - A -

EXP ~ | f. @ @ =A2"2

1 |NUumeros naturales Cuadrado
1=A2"2

3 2

- 3

5 4

6 5

7 6

8 7

9 8

10 9

11 10

Figura 8: Celdas en una hoja de calculo para calcular el cuadrado de los 10 primeros niimeros
naturales.

Fijar celdas. Completa el proceso anterior. En muchas ocasiones guardaremos en
algunas celdas los pardmetros de las ecuaciones y emplearemos dichas celdas en nuestras
formulas. Sin embargo, al arrastrar, como se ha explicado en el apartado anterior, no
querremos que esos valores cambien, es por ello que debemos fijarlos previamente. Para
fijar una celda, tras pinchar en ella con el ratén, se pulsan a la vez la tecla flecha de
maytsculas y la tecla F4.

258i en esas celdas no se incluye nada, el programa los considera cero. Si incluyen letras da un mensaje

error.
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» Graficos. Para visualizar mejor los resultados se emplearan graficos (Insertar — Grdfi-
cos). De entre los muchos tipos de graficos que se pueden hacer usaremos con més
frecuencia los tipos Columna 'y XY (dispersion).

= Operaciones con matrices. Sumaremos y multiplicaremos matrices y calcularemos
determinantes y matrices inversas. Conocidas estas operaciones basicas, usando ho-
jas de calculo, podremos resolver sistemas de ecuaciones lineales. Veamos pues, como
operar con matrices con hojas de céalculo. Para ello, abrimos una hoja de calculo e
introducimos las siguientes matrices:

1 2 4 11 21 42
A= 32 55 8 y B = 3 5 1
-1 4 -4 24 4 =2

Una forma ordenada de hacerlo podria ser:

A, B
1 2 4 1 21 42
32 55 g ] a 1
-1 4 -4 24 4

e Suma de matrices. Para sumar estas dos matrices podemos seguir los siguientes
pasos:
1. Seleccionamos la region en la que queremos que aparezca la suma, con exac-
tamente el nimero de filas y columnas que determina la matriz.
Pulsamos ”=" para introducir una férmula.
Marcamos las celdillas que definen la matriz A.

7

Pulsamos el signo 7 +

AR

Marcamos las celdillas que definen la matriz B.
6. Pulsamos "Ctri+ {} + < 7.

e Producto de matrices. Para el producto de matrices se procede de forma similar
llamando, en esta ocasién, a la funciéon MMULT después de pulsar ”=".26

26

o

Averigua cémo hacer el determinante de A, empleando la funcién MDETERM.
Averigua como hacer la inversa de B, empleando la funcién MINVERSA.

Resolucion de un sistema lineal. Sabemos que los sistemas de ecuaciones lineales se pueden escribir
de la forma matricial AX = b, donde A es la matriz de coeficientes del sistema, X el vector formado por
sus incégnitas y b el vector formado por sus términos independientes. De este modo, si la matriz A tiene
inversa la solucién del sistema se obtiene ficilmente, despejando mediante la inversa de A: X = A~1b.
Si se puede, aplica esta idea al siguiente ejercicio: Resuelve los siguientes sistemas:

20+ 3y — 82 =38
(a)y z4+2y—3z=1
—r+2y—z=2

20 + 3y — 82 =86
(b) x+2y—3z=12
5 + 8y — 19z = 23
Método de Gauss. ;Sabrias emplear una hoja de cdlculo para encontrar la forma semirreducida de
una matriz?
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A. Ecuaciones en diferencias

En estas notas nos hemos centrado en estudiar dos modelos de ecuaciones en diferencias:
el modelo de Malthus y el modelo logistico. Ambos modelos son ejemplos de ecuaciones en
diferencias de la forma

Tpt1 = f(z,), dondef:ICR — 1. (15)

Recordamos algunos aspectos de las ecuaciones en diferencias de la forma (15), que permiten
entender mejor dichos modelos.

Definicién: Solucién de la ecuacién (15).
Decimos que una sucesion de nimeros {x,},, es una solucion de la ecuacion (15) si cumple
dicha ecuacion, es decir, si cada término x,.1 se obtiene del anterior, x,, haciendo f(x,).

Para la mayoria de las ecuaciones de la forma (15) no se podra encontrar de forma
explicita su solucion. En esas ocasiones es 1util tener una idea de céomo son sus soluciones
empleando el método grafico que se ilustra en la figura 9.

y J—
/(@)
f(moi
1)
(s f ”27) |
1'33 ) 1 Tg T

Figura 9: Esquema de la representaciéon grafica de las soluciones de una ecuacién en diferen-
cias de la forma (15), mediante el uso de las graficas de f y de la recta y = x.

Un caso concreto de soluciones son las constantes. Una solucion constante es una sucesion
de nimeros x. := {2, }n>0, cuyo término general es siempre el mismo, es constante, z,, = ¢,
siendo esa constante un punto fijo de la funcién f, es decir, f(c) = c¢. Por tanto, para
determinar las soluciones constantes de la ecuacién (15) basta con conocer los puntos fijos
de la funcién f.

Otras soluciones particulares son los ciclos, que se determinan encontrando los puntos
fijos de las funciones composicién de f con ella misma. Es decir, xy genera un 2-ciclo si
es un punto fijo de f2, y los términos de la sucesién toman los valores x¢ y 1 = f(z0):
Ton = [f*™(x0) = o ¥ Tony1 = f2"H(wg) = z1. En general, xy genera un m-ciclo si es un
punto fijo de ™.
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Las soluciones constantes son soluciones destacadas del sistema que nos pueden permir
sospechar el comportamiento del resto de soluciones. Para ello, recordamos la definicién de
dos tipos de soluciones constantes:

Definicién: Solucién estable.

Dada x. una solucion constante de la ecuacion (15), decimos que x. es estable si para cada
intervalo abierto I que contengan a ¢ (c € 1) podemos encontrar otro intervalo abierto mds
pequeno J, que contenga a c y contenido en I (c € J C I), de forma que si consideramos
un dato inicial en el intervalo pequeno J (xg € J) entonces toda la solucion permanece en
el intervalo grande I (v, € I, n=1,2,...).

Definicién: Solucion asintéticamente estable.

Dada . una solucion constante de la ecuacion (15), decimos que . es asintéticamen-
te estable si es estable y ademas toda solucion que empiece lo suficientemente cerca de c,
tiende a largo plaza al valor constante c. Es decir, x. es asintoticamente estable si ademds
de ser estable podemos encontrar un intervalo abierto K que contiene a ¢ y de modo que si
tomamos un dato inicial xy en K (o € K) la solucion {x,}n,>0 que empieza con ese dato
inicial, a largo plazo, tiende al valor ¢ (limy, o x, = C).

Aclarados estos conceptos, mencionamos también el siguiente criterio para determinar si
una solucién constante es o no estable.

Criterio de la derivada primera:
Dada x, una solucidén constante de la ecuacion (15) y f es C*(J), siendo J un intervalo que
contiene a c:

= Si|f'(c)
= Si[f(c)

» Si|f'(c)] =1 no se puede saber si la solucion x. es o no estable. Es decir, hay situa-
ciones en las que lo serd y otras en las que no 2*.

< 1 entonces la solucion x. es asintoticamente estable.

> 1 entonces la solucion . es inestable.

Para finalizar este recopilacién de definiciones y resultados, recordamos también que una
solucién de un problema de valores iniciales (PVI), en este ambiente, es una solucién de la
ecuacién (15) que cumple la condicién inicial marcada por el citado problema. Es decir, la
sucesion {z, },>0 es solucién del problema de valores iniciales:

(PVI) { Tp1 = f(Tn)

ro=a, a€R

si es solucién de la ecuacién (15) y su primer término, xg, es a.

ZTEncuentra y analiza la estabilidad de las soluciones constantes de las siguientes ecuaciones en diferencias:

ez, =rx, conr € R.

r(l—x,)

® Xpi1 = ZIpe conr € IR.
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B. Para profundizar sobre el modelo de Leslie

Resumimos aqui resultados tutiles sobre la matriz de Leslie, referentes a su polinomio
caracteristico y a sus valores propios. Estos resultados nos serviran para determinar el com-
portamiento asintético de una poblacion estructurada por edades. Para mas detalles se puede
consultar [13].

Polinomio caracteristico

Las raices del polinomio caracteristico de una matriz cuadrada A son los valores propios de
dicha matriz?®, y el polinomio caracteristico es el determinante de la matriz A — M\, siendo
I la matriz identidad del mismo orden. Se puede demostrar que el polinomio caracteristico
de la matriz de Leslie A (ver (11))es

pA) = (=)™ X" = X" = fo NP = fapapi AT = Dot -opepr]  (16)

Se puede comprobar que este polinomio tiene una tunica raiz positiva con multiplicidad 1
(esto quiere decir que esta solucién no es también solucién de la derivada del poliniomio

p)*.
Valores propios

Analizando las soluciones del polinomio caracteristico (16) se obtienen los siguientes resul-
tados sobre valores propios de la matriz de Leslie:

= Un matriz de Leslie tiene un tnico valor propio positivo, A;. Este valor propio tiene
multiplicidad 1 y vector propio asociado V) con todas sus componentes positivas.

» Para cualquier otro valor propio Ay (real o complejo) de la matriz de Leslie (con k > 1),
se verifica
Akl < A1 (JAk| representa el médulo del nimero Ay).

Esto lo que nos esta indicando es que, caso de que la matriz tenga un valor propio
dominate, serd \;, pero no dice que la matriz lo tenga®.

= Si hay dos tasas de fertilidad consecutivas no cero, entonces A; es valor propio domi-
31
nate’".

28\ es un valor propio de A si existe un vector no nulo, tal que Av = \w.
Demuestra, como ejercicio, que el polinomio caracteristico de la matriz de Leslie A (ver (11)) es

P = (=)™ [N = AN = fapi A2 = fapa i AT — o o P D2

y que tiene una tnica raiz positiva con multiplicidad 1.
Aplica este resultado a las siguientes matrices de Leslie:

1. Un modelo estructurado en dos grupos con: f; =0, fo=1,y p1 = 1.

2. Un modelo estructurado en dos grupos con: f; =0, fo =1,y p; =0.5.

3. Un modelo estructurado en dos grupos con: f; =0, fo =3, y p; =0.5.

4. Un modelo estructurado en tres grupos con: fi =0, fo =0, f3=6,p; =1/2y ps =1/3.
30Las matrices de Leslie de la nota anterior, ;tienen valor propio dominante?

31; Es una hipétesis muy restrictiva, para un modelo de este tipo, suponer que hay dos tasas de fertilidad
consecutivas no cero?
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Comportamiento asintdtico del sistema

Bajo las condiciones que garantizan la presencia de un valor propio dominante, la dindmica
de la poblaciéon la determina justo ese valor propio dominante. Por tanto, en esta seccion,
supondremos que la poblacion estructurada por edades que estamos considerando tiene, al
menos, dos grupos consecutivos con tasa de fertilidad no cero. Bajo estas circunstancias se
verifica que??

Existe un numero o > 0, tal que la poblacion se comporta como a A} Vi, cuando n tiende
a infinito, siendo Ay el valor propio dominante y Vi un vector propio asociado. Es decir, se
verifica

’ n
lim — =a V.
n—00 )\’f

Por tanto:

Si A\; < 1 la poblacion se extingue.

Si A1 > 1 la poblacién crece exponencialmente, con razén geométrica A;.

Si A; = 1 la poblacién tiende al equilibrio o V.
Por otro lado, si denotamos por ||P, || = P} + P} + ...+ P} observamos que:

Po _AM(@V) W

lim

oo [Pl Aplle Vil VAl

B.1. Meétodo de las potencias

A la vista de las dos familias de problemas analizados anteriormente: modelo de Leslie
y modelos de estados, vemos la importancia que tiene saber, primero si la matriz asociada
al problema tiene valor propio dominante y segundo, si lo tiene, saber su valor®®. Si una
matriz A tiene valor propio dominante, una herramienta muy 1util para determinarlo de

32No vamos a entrar en la demostracién de este resultado, puede consultarse por ejemplo en [13], pero sf
damos una idea intuitiva, en un caso muy particular: una matriz diagonalizable de orden tres, con todos sus
valores propios reales y positivos, y con valor propio dominante. Supongamos que los valores propios son
A1, A2 ¥ A3 ¥y que A; es el dominante, es decir, A; < A1, ¢ = 2, 3. Supongamos que V;, con ¢ = 1,2, 3, son los
vectores propios asociados. Entonces, cualquier vector Py € IR® se escribe de la forma

Py =aVy +bVy + cVs.

Por tanto,
P,=A"Py = A"(aV1 + bVa + CV3) = a/\’fVl + b)\g‘/g + C)\?Vg

y entonces,
P, AT bAY AL AY AL
Do _aNiVi+DAsVa+ A3V _ pr A5y, L AS
AT AT AT AT

A2 o As

Y como A es valor propio dominante, 52 ¥ 32 son menores que 1, y por tanto,

lim = aVl.
n— 00 711

330bviamente en el caso de modelos de estado es sabido que si tiene valor propio dominante éste ha de ser
1.
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forma aproximada es el método de las potencias. Presentaremos en estas notas una version
sencilla del método de las potencias, que se aplica a los modelos que hemos considerado,
para que pueda ser facilmente programable con una hoja de calculo:

1.

Partimos de un vector inicial wy con todas sus componentes estrictamente positivas,
que no sea un vector propio de la matriz.

Calculamos w; = Awy, we = Awy, ..., w, = Aw,_1, para n grande segun la precision
que deseemos obtener.

. Hacemos una tabla con los cocientes entre las primeras componentes de dos vectores

consecutivos, no nulas. El primer valor lo calculamos haciendo el cociente de la primera
componente del vector wy entre la primera componente del vector wy, el siguiente lo
construimos empleando dividiendo la primera componente del vector wy y entre la
primera componente del vector w; y asi sucesivamente.

Si la matriz tiene valor propio dominante, en la tabla anterior observaremos que tras
ciertos pasos los tltimos niimeros registrados se irdn pareciendo cada vez mas, de mane-
ra que si se incrementa el niimero de pasos se obtiene mas precision en la aproximacion
del valor propio dominante. El tltimo vector considerado w, es una aproximaciéon de
un vector propio asociado al valor propio dominante.

. Dado que en los problemas con los que estamos trabajando las matrices y vectores

son positivos, se puede considerar en cada paso ||w;|| (la suma de las componentes del

vector w;), dando de este modo como aproximacién del valor propio dominante los
lleviga

cocientes .
[lews ]|
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