Dominios Euclideos

Eugenio Miranda Palacios

4. Dominios Euclideos

4.1. Definiciones y resultados basicos

Definiciéon 4.1. Sea A un dominio de integridad. Una funcion euclidea es una
funcién ¢ : A — {0} — Z* que verifica

1. Para cualesquiera a,b € A con ab # 0 se tiene ¢(ab) > ¢(a).

2. Para cualesquiera a,b € A con b # O existen g,r € A talesque a = bg +ry
o bien ¢(r) < ¢(b) o bien r = 0.

Un dominio de integridad que tenga una funcién euclidea se llama dominio
euclideo.

Ejemplo 4.2. El anillo Z de los enteros es un dominio euclideo tomando la funcién
$(n) = |nl.

Generalmente para verificar que un anillo es euclideo es mas conveniente re-
emplazar la segunda condicién por otra:

Lema 4.3. La segunda condicion de la definicion de funcion euclidea es equiva-
lente a la siguiente: Para cualesquiera a,b € A si ¢(a) > ¢(b) existe un c € A tal
que ¢p(a — bc) < ¢(a) o a = be.

Ejemplo 4.4. Sea K un cuerpo arbitrario. El anillo de polinomios K[X] es un anillo
euclideo para la funcién ¢(f) = gr(f).

La siguiente propiedad es la que hace muy fécil trabajar con los anillos eucli-
deos:

Teorema 4.5. Todo anillo euclideo es un dominio de ideales principales.

Demostracion. Sea A un dominio euclideo y sea I un ideal de A. Si I # 0 existe
una € I, a # 0, con ¢(a) minimo. Entonces (a) C 1.

Supongamos que (a) € I. Sea b € I, b ¢ (a). Dividimos b = ga + r. Ahora
r=b-qacl, r+0y¢(r) < ¢(a)en contradiccion con la eleccion de a. Luego
(a)=1. O



Corolario 4.6 (Teorema de Bezout). En un anillo euclideo A dos elementos cua-
lesquiera a,b € A tienen un mdximo comun divisor d y existen u,v € A tales
que

d=au+ by

Demostracion alternativa (Algoritmo extendido de Euclides): Sea ¢(a) > ¢(b) y
aplicamos repetidamente la propiedad 4.3. Tras un ndmero finito de pasos tenemos
un resto cero:

a=bqy +r ¢(r1) < ¢(b)
b=rigy+n @(r2) < P(r1)

=Tn-1q9n-1 + 1 ¢(rn) < ¢(rn71)

Tn—1 = I'ngn rn+1:0

a
(3]
|

porque ¢(b) > ¢(r;) > ... es una sucesion estrictamente decreciente de nimeros
no negativos que debe pararse y esto s6lo puede ocurrir cuando un resto es cero.

De la primera ecuacion vemos que r; es de la forma ax + by con x,y € A. Por
induccién lo mismo se verifica para todo r;: Sean

riio = ax' + by

ri.y = ax+ by
Entonces r; = —r;i_1q; + ri_y = a(x’ — xq;) + b(y’ — yg;). En particular
r, =au+ by 4.1)
Ademads r, divide a r, y a r,,_1, luego divide a r,_,. Por induccién obtenemos que
r, divide a y b. Pero de la expresion 4.1 cualquier divisor de a y b también divide

ar, Luegod =r, =m.c.d.(a,b) O

Corolario 4.7. En un anillo euclideo dos elementos cualesquiera tienen un mini-
mo comiin miltiplo.

Corolario 4.8. En un dominio euclideo todo irreducible es primo.
Corolario 4.9. Todo dominio euclideo es un dominio de factorizacion tinica.

Corolario 4.10. Para cualquier cuerpo K el anillo de polinomios K[X] es un
dominio de factorizacion tinica.



4.2. Ejemplos: Anillos cuadraticos
4.2.1. Cuerpos cuadraticos de nimeros

Sea D un niimero racional que no es un cuadrado perfecto en Q. Definimos el
subconjunto de C

Q[VD]={a+bVD|a,be Q)

Esta claro que este subconjunto es cerrado para la resta y la identidad
(a + bVD)(c + d VD) = (ac + bdD) + (ad + bc) VD)

muestra que también es cerrado para la multiplicacién. Por tanto Q[ VD] es un
subanillo de C (e incluso de R cuando D > 0), asi que en particular es un anillo
conmutativo. Es féacil comprobar que la hipétesis de que D no es un cuadrado
implica que todo elemento de Q[ VD] se escribe de manera tinica como a + b VD.
También implica que si a, b no son ambos cero, entonces a* — b>*D # 0 y como
(a + bVD)(a - b VD) = a® — b*D tenemos que

b
(a+b VD) = s - ——-= VD € Q(\D)

Esto demuestra que todo elemento no nulo de Q[ \/5] tiene un inverso en Q[ \/5]
y por tanto Q[ VD] es un cuerpo, que se llama cuerpo cuadrdtico.

El niimero racional D puede expresarse como D = f?D’ para algin f € Q y
un tnico D’ € Z que no sea divisible por el cuadrado de ningtin entero mayor que
1, es decir que o bien D’ = —1 o bien D’ = +p, ... p, donde los p; son primos
distintos de Z. (Por ejemplo, 8/5 = (2/5)? - 10). Al entero D’ le llamamos parte
libre de cuadrados de D. Entonces VD = f D' y por tanto Q[ VD] = Q[VD'].
Luego no se pierde generalidad si se supone que D es un entero libre de cuadrados
en la definicion del cuerpo cuadrdtico Q[ VD).

La aplicacién N : Q[ VD] — Q definida por N(a + b VD) = (a + b VD)o (a +
bVD) = a* — b*D se llama norma del cuerpo Q[ VD] (Por ejemplo, si D < 0 la
norma N(z) es sencillamente el cuadrado del médulo del nimero complejo z). La
aplicacion norma verifica las siguientes propiedades:

1. N(uv) = N(u)N(v) para cualesquiera u, v € Q[ \D].
2. N(u) =0siysolosiu=0.

4.2.2. Anillos cuadraticos de enteros

Sea D un entero libre de cuadrados. Es inmediato que el conjunto

Z2IVD] = {a+bVD | a,b e Z)
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es cerrado para la resta y el producto y contiene al nimero 1, luego es un subanillo
del cuerpo cuadratico Q[ \/l_)].
Enelcasoenque D =1 (méd 4), el conjunto ligeramente mayor

z[“ @]:{c+b1+2@|c,b62}

2
:{a+b\/l_)

> la,beZ, a=b (médZ)}

también es un subanillo: Es inmediato que es cerrado para la resta y el 1 y el
célculo

1+ VD 1+ vD D-1 1+ vD
\/_)(Cl +b1 \/_) = (CC] +bb1 )+ (Cb] + C1b+bb1) \/_

b
(c+b— 2 4

muestra que es cerrado para la multiplicacién, ya que (D — 1)/4 € Z.
Para unificar los dos casos, llamamos

L ip=1 (mod 4)

{\/5 siD=2,3 (méd 4)
w =

y definimos
O =0gyp =Zlwl ={a+bwl|abeZ)

El anillo OQ[@] se llama anillo de enteros del cuerpo cuadrdtico Q[ \/5].
La terminologia proviene de que los elementos de O tienen muchas propiedades
respecto a Q[ VD] que son andlogas a las de los enteros de Z respecto al cuerpo
Q (En cursos posteriores se verd que O es la clausura entera de Z en Q[ \VD]). La
mas sencilla de estas propiedades es la siguiente:

Lema 4.11. El cuerpo Q[ VD] es el cuerpo de fracciones del dominio de integri-
dad Oy yp)-

En el caso particular D = —1 obtenemos el anillo J = Z[i] de los enteros de
Gauss, que son los numeros complejos a+bi € C con a y b enteros. Estos nlimeros
fueron estudiados primero por Gauss alrededor del afio 1800 para demostrar la
ley de reciprocidad bicuadrdtica, que trata de las relaciones que existen entre las
cuartas potencias modulo primos.

En los anillos O se utiliza la norma para caracterizar las unidades:

Lema 4.12. Un elemento x = a+bw € O es invertible en O si y sélo si N(x) = +1.
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Ejemplo 4.13. Cuando D = —1, las unidades del anillo de enteros de Gauss son
cuatro: +1, +i (que son las raices cuartas de la unidad).

Cuando D = -3, las unidades del anillo O = Z[%ﬁ] son los a + bw tales que
a* +ab + b* = 1, es decir los seis elementos +1, (+1 = V=3)/2, que son las raices
sextas de la unidad.

Para cualquier otro D < 0, D # —1, -3, las unidades del anillo O son 1, —1.

Cuando D > 0, se puede demostrar que el grupo de las unidades O es siempre
infinito. Por ejemplo, cuando D = 2 el grupo de las unidades es 0% = {+(1+ V2) |
k € Z}.

También utilizamos la norma para buscar irreducibles y primos en O:

Lema 4.14 (Condicién suficiente de irreducibilidad). Sea u = a + b VD tal que
N(u) = £p, con p primo en Z. Entonces u es irreducible

Demostracion. Sea u = vw. Entonces N(v)N(w) = N(u) = +p, asi que o bien
N(v) = £1 (en cuyo caso v es invertible) o bien N(w) = +1 (en cuyo caso w es
invertible). O

Lema 4.15 (Condicién necesaria de primalidad). Sea u = a + b VD primo en 0.
Entonces N(u) = +p o +p* con p primo en Z.
Si u es primo en O, u es asociado con p si y sélo si N(u) = +p>.

Demostracion. Sabemos que N(u) = uo(u), asi que u divide al entero racional
N(u). Descomponemos en primos en Z: N(u) = p;...p,. Por ser u primo debe
dividir a uno de los factores p = p;. Luego el entero racional N(u) divide a N(p) =
p?. Como N(u) # +1, sélo quedan las posibilidades del enunciado.

Sea p = uv. Se verifica que p* = N(p) = N(u)N(v), asi que v es invertible si y
sélo si N(u) = +p>. O

Corolario 4.16. Sea D < 0, D # —1,-3. Siu = a + bw es primo con b # (),
necesariamente N(u) = p es un primo en Z.

Teorema 4.17. Sea D un entero libre de cuadrados tal que O es un dominio de
factorizacion unica. Un elemento u € O es primo si 'y solo si es de uno de los
siguientes tipos:

= u = €p con € invertible y p € Z irreducible en O.
» u=a+bwcon Nu)==xpy pprimo enZ.
Podemos enunciar explicitamente los primos de un anillo cuadratico euclideo:

Teorema 4.18. Sea D un entero libre de cuadrados tal que O es un dominio de
factorizacion unica.



1. Todo primo u de O divide a un vinico primo p de Z.
2. Sea p un primo de Z tal que p 1 2D.

a) p = uv es el producto de dos primos no asociados de O si y solo si
existe un a € Z tal que a*> = D (méd p).

b) p es primo en O si y sdlo si para todo a € 7 se verifica a> = D
(méd p).

3. a) SeaD =1 (mdd 8). Entonces 2 = uv es el producto de dos primos no
asociados de O.

b) Sea D =5 (mdd 8). Entonces 2 es primo en O

c) Sea D = 2,3 (méd 4). Entonces 2 = eu’ es asociado al cuadrado de
un primo de Q.

4. Sea p | D. Entonces p = eu?® es asociado al cuadrado de un primo de O.

Corolario 4.19. Sea ] = Z[i] el anillo de los enteros de Gauss y sea p € Z un
primo.

1. p = (a+ bi)(a - bi) es el producto de dos primos de J no asociados si'y sélo
sip=1 (mdd 4).

2. pesprimoenl]siysolosi p=3 (mdd 4).
3. Elelemento 1 +iesprimoen]y?2=—i(l+1i)>.

4. Todo primo de J es de uno de los tipos anteriores.

4.2.3. Anillos cuadraticos euclideos

Los anillos O no son todos euclideos, ni siquiera son dominios de factorizacion
Unica. Pero vamos a ver que algunos de ellos son euclideos respecto a la funcién
¢ : O — Z definida por ¢(u) = |[N(u)| (valor absoluto de la norma).

En primer lugar, para cualquier par de elementos u,v € O siempre se verifica
que ¢p(uv) = d(w)p(v) > ¢(u) que es la primera condicién de la definiciéon de
dominio euclideo.

La segunda condicién de dicha definicion dice:

Para u,v € O conv # 0 existen q,r € O tales que u = vqg + r y o bien
o(r) < ¢p(v) o bienr = 0.

Dividiendo por v y teniendo en cuenta que Q[ VD] es el cuerpo de fracciones
de O, esta condicidn se traduce en:

Para todo x € Q[ \/5] existe q € O tal que o bien |N(x — q)| < 1 0 bien x = q.

Con esta condicion podemos demostrar:
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Proposicion 4.20. Sea D = -2,-1 0 2. Entonces O es euclideo respecto a la
funcion ¢.

Demostracion. Noétese que los tres valores del enunciado son exactamente los D
libres de cuadrados con |D| < 3.

Sea x = a + b VD € Q[ VD]. Elegimos ¢, ¢, € Z tales que |a — q| < 1/2y
Ib — g»| < 1/2 y llamamos ¢ = ¢; + g, VD. Entonces

Pp(x—q) = IN(x—q)l = (a—q1)* = (b — g2)*D|
<(@a-q)+b-q@)IDI<1/4+(1/4)-3=1

y por tanto Q[ VD] es euclideo.
Obsérvese que una vez conocido el cociente de dos elementos u,v € O, el
resto se obtiene como r = u — vq. O

Proposicion 4.21. Sea D = —11,-7,-3 0 5. Entonces O es euclideo respecto a
la funcion ¢.

Demostracion. Los valores del enunciado son exactamente los D libres de cua-
dradoscon D =1 (méd 4)y |D| < 12.

Sea x = a + b\D € Q[VD]. Elegimos 2q;,2q, € Z tales que |b — ¢»| < 1/4,
2g1 = 2¢, (méd 2)y |a—qy| < 1/2 y llamamos g = ¢, + g» VD. Entonces

Pp(x—q) = IN(x—q)l = l(a—q1)* = (b— q2)*D|
<@a-q)’+b-g)?Dl<1/4+(1/16)-12 =1

y por tanto Q[ VD] es euclideo.
Como antes, una vez conocido el cociente de dos elementos u,v € O, el resto
se obtiene como r = u — vq. O

OBSERVACION:EL RESTO DE ESTA SUBSECCION ES PURAMENTE INFORMATIVO Y NO
ENTRA EN EXAMEN.

Existen mas anillos cuadraticos euclideos. En concreto la lista completa es la
siguiente:

Teorema 4.22. El anillo O es euclideo respecto a la funcion ¢ anterior si 'y solo
si D es uno de los valores

-11,-7,-3,-2,-1,2,3,5,6,7,11,13,17,19, 21, 29,33,37,41, 57,73

Esta lista no agota todos los anillos cuadraticos euclideos, porque la funcién
respecto a la que O es euclideo no tiene porqué ser el valor absoluto de la nor-
ma. Se demuestra que para D < 0 el anillo O es euclideo respecto a alguna
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funcién ¢ si y sélo si D = —11,-7,-3,-2,—1, pero es una conjetura que el
conjunto de valores D > 0 para los que O es euclideo es infinito. Por ejemplo
para D < 100 el anillo O, ademds de para los valores citados en el teorema
anterior, también es euclideo respecto a alguna funcién ¢ para los valores D =
14,22,23,31,35,38,43,46,47,53,59,61,62,67,69,71,77, 83, 86, 89,93,94, 97.

Naturalmente para estos valores la funcién ¢ no es el valor absoluto de la
norma.

4.3. Aritmética en dominios euclideos

Los métodos y resultados que hemos estudiado para Z que se basan en el algo-
ritmo de la divisién con resto se trasladan mutatis mutande a los anillos cuadrati-
cos. En esta seccién vamos a ver ejemplos de estos métodos en anillos cuadréticos
euclideos.

4.3.1. Factorizacion en primos

Ejemplo 4.23. Vamos a obtener la descomposicién en primos de u = 11+7i € Z[i]:
En primer lugar calculamos y factorizamos en Z la norma de u:

Nu)=112+7*=121+49=170=2-5-17

Por el corolario 4.19, el elemento u descompone como producto de un primo
de norma 2, otro de norma 5 y un tercero de norma 17. Para cada uno de los valores
5 y 17 existen exactamente dos primos con dicha norma, y sélo hay un primo
con norma 2. En total hay que probar como méximo cinco divisores. Empezamos
sobre seguro, calculando el cociente de u por el inico primo (salvo asociados) de
norma 2:

+7i  (1+7)(1—i)  11—=11i+7i+7

= = =9-2i
1+ (+)d—-1i) 2 9 -2

asi que u = (1 + i)(9 — 2i). Probamos a dividir el cociente 9 — 2i por uno de los
primos de norma 5:

9-2i O9O-202-i) 18-9i—-4i-2 16-11Ii

2+i  Q2+H2-i) 5 -5

que no pertenece a Z[i]. Luego (2 + i) 1 (9 — 2i).
Probamos ahora con el otro primo de norma 5:
9-2i O-20Q2+i) 18+9i—-4i+2 20+5i

= = = =4
2= 2-)2+d 5 5 t




Este cociente pertenece a Z[i] y ademds es un primo de norma 17. Tenemos que
9 —-2i =2 -1i)4+i), luego la descomposicion en primos del elemento dado es

11+7i=0+D2 -4 +i)

Ejemplo 4.24. Sea ahorau = 4 +7 V2 € Z[ V2]. Su norma vale N(u) = 4> - 722 =
16—-98 = =2-41, luego el elemento u descompone como producto de un elemento
de norma 2 y otro de norma 41, u = \/5(7 +2 \/5).

Ejemplo 4.25. Seau = 4 - 5V-3 € Z[%z]. Calculamos la norma: N(u) =
42+53=16+75=91=17-13.
En Z[%ﬁ] existen dos primos de norma 7 (que se obtienen resolviendo la

ecuacién a®> + 3b> = 7), a saber 2 + V-3y 2 — V=3. Probamos a dividir por el
primero:

4-5V-3 _(4-5V-3)2-V-3) 8-4V-3-10V-3-15

2+ V-3 2+ V-3)©2- V-3) 7
_-7-14V-3
=

=-1-2V-3
asi que la factorizacién en primos es

4-5V=3=02+ V-3)(-1-2V-3)

4.3.2. Calculo del maximo comun divisor

Igual que en Z, en cualquier anillo euclideo tenemos dos métodos para calcular
el maximo comin divisor: Uno es factorizar en primos cada elemento dado y
formar “el producto de los factores comunes elevados al menor exponente™:

Ejemplo 4.26. Sean a = 1 + 3i, b = 3 + 4i dos elementos de Z[i]. Buscamos sus
respectivas factorizaciones en primos:

1+3i  (1+3)(1-i)
1+i  (A+dd-i)
3+4i B+4)2-0)
240 Q+D2-i0)

N@=1"+3*=10=2-5, 2+

N(b) = 3% +4> =25 =5, 2+

asiquea = (1 +0)2+i),b=Q2+i* mec.d(ab)=2+iymecmab) =
A+D2+i)}=-1+7i

El otro método es aplicar el algoritmo de Euclides (simple o extendido). El
maximo comun divisor seré el ultimo resto no nulo.



Ejemplo 4.277. Sean a = 11 + 7i, b = 3 + 7i dos elementos de Z[i]. Calculamos

11+7c (11+7)3-7i)) 82 56,

3+7i  QB+7)3B-7i 58 58"

asi que tomamos el cociente g; = 1 —iy el resto r; = a —bg; = 1 + 3i. Dividimos
ahora b por ry:
347 3B+7Hp(1-3)) 24 2.

1+3 (1+3)1-3) 10 10'

El nuevo cociente serd g, = 2 y el resto r, = b — riq, = 1 + i. El siguiente paso es
dividir ry por r;:
L+3i  (1+3)( -0

- = . — =2+
1+ 1+ -9

conloque g3 =2+iyr; =0. Luego m.c.d.(a,b) = 1+i (el dltimo resto no nulo).

Para obtener los coeficientes de Bezout utilizamos el algoritmo extendido de
Euclides:
q u v

11+71 1 0

3+7t O 1
1-¢i 1+3i 1 -1+
2 1+i -2 3-2i
2+1 0

astque (11 +7)(-2)+ B3 +HB-2i)) =1+1.

Ejemplo 4.28. Vamos a calcular ahora el mdximo comiin divisor de a = (5 +
V-11)/2y b = 2+ V=1l enel anillo A = Z[(1 + V-11)/2]. Como N(a) =
(5% +11)/4 =9y N(b) = 2% + 11 = 15, empezamos dividiendo b entre a:

2+ V=11 22+ V=1DG - V-11) 221 +3V-11) 7+ V-11
G+ V=112 G+ V-1D)(5 - V-11) 36 6

asi que el cocientees g = 1l yelrestor = b —aqg = (-1 + V—11)/2. Dividimos
ahora a entre r:
S+ V=-1D)/2 S+ V-1)(-1-v-11) 6-6V-11 1- V-1l
(-1 + V=11)/2 (=1 + V=11)(=1 = V-11) 12 2

que pertenece a Z[(1 + V-11)/2], asi que ¢; = (1 — V=11)/2y r; = 0. Vamos a
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calcular los coeficientes de Bezout:

q u v
2+ V=11 1 0
5+V-11
el g

I

1-vV=11 0

[ ]

luego m.c.d.(a,b) = _“;m =b-1+a-(-1)

4.3.3. Resolucion de ecuaciones lineales

En nuestra exposicion de Z vimos como utilizar el algoritmo extendido de
Euclides para resolver ecuaciones diofanticas lineales en dos incognitas. Exac-
tamente el mismo método se aplica para resolver ecuaciones lineales en anillos
euclideos. En concreto tenemos el siguiente teorema:

Sea A un anillo euclideo y sean a, b, c € A. Consideramos la ecuacién

ax+by=c 4.2)
Teorema 4.29.  I. La ecuacion 4.2 tiene solucion si'y sélo si m.c.d.(a,b) | c.

2. Una solucion particular de 4.2 se obtiene por el algoritmo extendido de
Euclides.

3. Sead = m.c.d.(a,b) y sea (xy,yo) una solucion particular de 4.2. La solu-
cion general (x,y) viene dada por

a

b
X =xo+ k-, y=yo—kd

d
con k € A arbitrario.

Demostracion. La demostracion es idéntica a la realizada en el caso A = Z, que
se basaba sélo en la existencia del algoritmo de divisién con resto. O

Ejemplo 4.30. Consideramos la ecuacién siguiente en Z[i]:
4x+ B +3))y=-1+5i

11



Para discutirla y en su caso resolverla, calculamos el médximo comun divisor de
los coeficientes:

q u v
3437 1 0
4 0 1
1+i -1-i 1 -1-i
-2+ 2 0

luego el maximo comun divisor es —1 —i = (3 + 3i) — 4 - (1 + i). Calculamos el
cociente (—1 + 5i)/(—1 —i) = =2 — 3i que pertenece a Z[i], luego la ecuacion dada
tiene solucion. Una solucidn particular serd

xo=—(1 +i)(-2-3i)=-1+5i, Yo=-2-3i
y la solucién general es

x=-1+5+k-3
y=-2-3i—k-(2-2i)

con k € Z[i] arbitrario.

4.3.4. Resolucion de ecuaciones en congruencias

También podemos establecer en cualquier anillo euclideo el concepto de con-
gruencia médulo un elemento:

Definicion 4.31. Sea A un anillo euclideo y sea m € A. Los elementos a, b € A se
llaman congruentes modulo m si tienen el mismo resto al dividirlos por m. Esto se
denotapora=5b (méd m)oa=b mod m

Proposicion 4.32. Sean a,b,m € A. Entonces a = b (mdd m) si y sélo si m |
(a—Db).

Esta proposicion nos dice que a = b (mod m) siy s6lo si a—b = mgq para algin
q € A, lo que podemos escribir como a = b + mgq. Esta observacién proporciona
un método muy util de reemplazar una congruencia por una ecuacién diofantica.

Proposicion 4.33. La relacion a = b (méd m) es una relacion de equivalencia.

Proposicion 4.34. Sea m € A. Cualesquiera a, b, c,d € A verifican las siguientes
propiedades:

1. Sia =c (médm)yb = d (méd m), entonces a + b = ¢ + d (méd m),
a—b=c—d (méd m)yab = cd (méd m).
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2. Sia+c=a+d (méd m) entonces c = d (méd m). Si ac = ad (méd m) y
(a,m) = 1 entonces ¢ = d (mod m).

Proposicion 4.35. Sean a,m € A con m # 0y no invertible en A. Existe un
elemento b tal que ab = 1 (mdéd m) si y sélo si m.c.d.(a,m) = 1.

La proposicion 4.35 muestra que la congruencia
ax=1 (méd m)

tiene solucion si y sélo si (a, m) = 1. De hecho la demostracion (omitida) de dicha
proposicién muestra que se obtiene una solucidn utilizando el algoritmo extendido
de Euclides para expresar 1 = ab + mg con b,q € A.

Definicion 4.36. Dos soluciones r y s a la congruencia ax = b (méd m) son
distintas médulo m si r y s no son congruentes médulo m.

Teorema 4.37. La congruencia ax = b (m6d m) tiene solucion si y solo si b es
divisible por d = m.c.d.(a,m). Si d | b, todas las soluciones son congruentes
modulo m/d.

Ejemplo 4.38. Consideramos A = Z[ V2]. Vamos a resolver la congruencia
2+ V2)x=3- V2 (méd 3)
Para ello calculamos el mdximo comun divisor de 2 + V2 y 3:

q u v

3 1 0
2+V2 0 1
3-V2 -1-V2 1 -3+1\2
-V2 0

asi que un maximo comun divisor es —1 — V2=3-1+2+ V2)-(=3+ V2).
Ahora (3 — \/i)/ (-1- \/E) =5-4+/2, luego la solucion de la congruencia dada
esx=(-3+ V2)(5-4V2) = -23+17V2 =1- V2 (méd 3). Obsérvese que
—1 — V2 es invertible en Z[ V2] (su inverso es 1 — \/5), asi que 2 + V2 y 3 son
primos relativos y la solucién es inica médulo 3.

Teorema 4.39. Sea A un dominio euclideo y sean a,b, m,n € A. Dos congruencias

simultdneas
x=a (méd m) x=b (mdd n) 4.3)

tienen solucion si 'y solo si a = b (méd (m, n)). En este caso la solucion es tinica
modulo [m, n).
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Ejemplo 4.40. Vamos a resolver en A = Z[ V—-2] el sistema de congruencias

x=2 (méd (1+ V=2))
x= V=2 (méd 3+ V=-2)

La solucién general de la primera congruenciaes x =2 + ¢, - (1 + V-2). Lo
sustituimos en la segunda:

2410 -(1+V=2)= V=2 (méd (3 + V-2))
Trasponiendo términos nos queda
f-(1+ V=2)= -2+ V=2 (méd 3 + V-2)) (4.4)

Aplicamos ahora el algoritmo de Euclides extendido:

q u 1%
3+ V-2 1 0
1+ V-2 0 1

2-vV=2 -1 1 2++=2
asi que 3+ V=2)- 1 + (1 + V=2)(-2 + V=2) = —1. Luego la solucién de 4.4
esti = (2+ V=2)2 - V2 +u-G+ V=2) = 2 +4vV=2+1t- 3+ V=2).

Sustituyendo en la primera solucién obtenemos la solucién general del sistema:

x=2+(1+ V=2)(=2+4V=2+1-3+ V=2)
= —8+2V=2+1-(1+4V-2)

Ejemplo 4.41. Vamos ahora a resolver el sistema

x=1+2V=2 @méd (2 -3V-2)
x=3 (méd (1+ V=2))

Desarrollamos el algoritmo extendido de Euclides:

q u v
2-3v=-2 1 0
1+v-2 0 1

-1-2v-=-2 -1 I 1+2vV=-2
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asique 2 -3V-2)-1+(1+ Vv-2)(1 +2V-2) = —1 y los médulos de las
congruencias son primos relativos. Luego el sistema de ecuaciones tiene solucion.
La solucion general de la primera ecuacion es

x=(+V=2)+@2-3V-2),
Sustituyendo en la segunda y trasponiendo términos nos queda la ecuacion
2-3V=2)t, =3-(1+2V=-2)=2-2V=2 (méd (1 + V-2))
Por el algoritmo de Euclides calculado tenemos que
th=-1-2-2V-2)=-2+2V=2 (méd (1 + V-2))

Sustituyendo en la solucién de la primera obtenemos la solucién general del sis-
tema:

=+ V=2)+ 2 =3V=2)((=2+2V=2) + (1 + V=2)p)
=9+ 11V=-2)+ @8- V-2

Teorema 4.42. Sea A un dominio euclideo y sean a;,m; € Aparai=1,...,r. Un
sistema de r congruencias simultdneas

x=a; (médm;) i=1,2,...,r 4.5)
tiene solucion si y solo si para todo par de indices i, j se verifica
a; =a; (mod (m;, m;)) (4.6)
y en este caso la solucion es vinica modulo M, = [my, ..., m,].

Ejemplo 4.43. Vamos a tomarA = Z[i], el anillo de los enteros de Gauss y consi-
deramos el sistema de congruencias:

x=1 (mdd 3)

x=2 (méd (2 +1iQ))
x=1+i (méd (3 + 2i))
x=3+2i (méd (4 +1))

El méximo comun divisor de los dos primeros médulos es 3-(—i)+(2+i)(1+i) = 1.
La solucién general de la primera ecuacion es

x=1i+3n
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Sustituyendo en la segunda ecuacion nos queda 3¢, = 2 —i (mdd (2 + i)). Luego
th=—-i-2-i)=-1-2i (mdéd (2 + 1)) y la solucién general de las dos primeras
ecuaciones es

x=i+3-1-2i+Q2+ i)t
=-3-5i+(6+3)n

Sustituimos en la tercera ecuacion y despejamos: (6+3i)f, = 4+6i (mod (3 +2i)).
El algoritmo extendido de Euclides muestra que (6 + 3i)i + (3 + 2i)(-2i) = 1 por
lo que ©, = i(4 + 6i) (md6d (3 + 2i)). La solucién general de las tres primeras
ecuaciones es ahora

x=-3-5+(6+3){4 +6i)+ (3 +2)t3)
=51 +i+ (12 + 21t

Finalmente sustituimos este valor en la cuarta ecuacion y despejamos:
(12 + 21t =54 +i (mdd (4 + 1))

La aplicacion correspondiente del algoritmo de Euclides nos da (—i)(12 + 21i) +
(-4 +4i)4+i)=1.Luegot; = (—i)(54 +1i) = 1 —54i (mdd (4 +i)) y la solucién
general del sistema dado es

x==51+i+(12+21i)((1 = 54i) + (4 + i)P)
= 1095 — 626i + (27 + 96i)t
= 24 — 14i + (27 + 96i)t

donde la dltima reduccidn se obtiene por el cambio t — ¢+ (3 + 12i). (El algoritmo
de division nos da 1095 — 626i = (27 + 96i)(—3 — 12i) + (24 — 14i)).

Ejemplo 4.44. Cuando los médulos de un sistema de congruencias son primos
relativos dos a dos, podemos emplear el algoritmo chino del resto. Volvamos a
resolver el sistema del ejemplo anterior:

x=i (mdd 3)

x=2 (mdd (2 +1i))
x=14+i (méd (3 +2i))
x=3+2i (méd (4 +1i))

Formamos el producto de todos los médulos M = 3(2 +i)(3 +2i)(4 + 1) = 27+ 96i
y cada uno de los cocientes My = M/3 =9 + 32i, M, = M/(2 + i) = 30 + 33,
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M; = M/(3+2i) =21+18iy My = M/(4+i) = 12+21i. El algoritmo de Euclides
para cada uno de los cuatro casos nos da

i(9+32)+(11-3)3 =1
=D@BO+33)+(19+7)H)2+i) =1
221+ 18) + (-15-20(3+2i) =1
(=D)(12+21) + (-4 +4D)@E+i) =1

El teorema chino del resto nos dice que la solucion del sistema dado es

x=i-i(9+32i) +2 - (=1)(30 + 33i)
+(1+i)- 221 + 18i) + (3 + 2i) - (=i)(12 + 21i)
=24 —14i (méd (27 + 96i))
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