NS-NS gauge invariance of non-Abelian

D-brane actions

Bert Janssen
Universidad de Granada \& CAFPE

In collaboration with: J. Adam (KUL) and I.A. Illán (UGR)
References: JHEP 10 (2005) 022, hep-th/0507198 and hep-th/0511191.

Motivation

A lot has been learned about the dynamics of multiple D-branes in the last past years:

- $U(1)^{N} \rightarrow U(N)$ symmetry enhancement
- effective actions describing the non-Abelian dynamics
- many applications of non-Abelian effects in modern string theory

Motivation

A lot has been learned about the dynamics of multiple D-branes in the last past years:

- $U(1)^{N} \rightarrow U(N)$ symmetry enhancement
- effective actions describing the non-Abelian dynamics
- many applications of non-Abelian effects in modern string theory

Question: Is the action (dynamics) gauge invariant?

Motivation

A lot has been learned about the dynamics of multiple D-branes in the last past years:

- $U(1)^{N} \rightarrow U(N)$ symmetry enhancement
- effective actions describing the non-Abelian dynamics
- many applications of non-Abelian effects in modern string theory

Question: Is the action (dynamics) gauge invariant?
$\longrightarrow U(N)$ invariance is straight forward.
\longrightarrow Background gauge invariance is less obvious.

Motivation

A lot has been learned about the dynamics of multiple D-branes in the last past years:

- $U(1)^{N} \rightarrow U(N)$ symmetry enhancement
- effective actions describing the non-Abelian dynamics
- many applications of non-Abelian effects in modern string theory

Question: Is the action (dynamics) gauge invariant?
$\longrightarrow U(N)$ invariance is straight forward.
\longrightarrow Background gauge invariance is less obvious.

Answer: Yes!

Motivation

A lot has been learned about the dynamics of multiple D-branes in the last past years:

- $U(1)^{N} \rightarrow U(N)$ symmetry enhancement
- effective actions describing the non-Abelian dynamics
- many applications of non-Abelian effects in modern string theory

Question: Is the action (dynamics) gauge invariant?
$\longrightarrow U(N)$ invariance is straight forward.
\longrightarrow Background gauge invariance is less obvious.

Answer: Yes!

Price/Reward: New symmetry $\delta X \sim[X, X]$

Outlook

1.Introduction:
\rightarrow Non-Abelian physics of multiple D-branes
2. Problems with background gauge invariance
\rightarrow solution for R-R gauge transformations
3. Problems with NS-NS gauge invariance
\rightarrow derivation of NS-NS transformations of fields
\rightarrow invariance of action

1. Non-Abelian physics of multiple parallel branes

The physics of N separated parallel $\mathrm{D} p$-branes is very different from physics of N coinciding $\mathrm{D} p$-branes.

- separated: \rightarrow Abelian theory
- coinciding: \rightarrow non-Abelian theory

1. Non-Abelian physics of multiple parallel branes

The physics of N separated parallel $\mathrm{D} p$-branes is very different from physics of N coinciding $\mathrm{D} p$-branes.

- separated: \rightarrow Abelian theory
- coinciding: \rightarrow non-Abelian theory

This non-Abelian character has numerous manifestations in modern string theory:

- Dielectric effect
- Gravity duals of (confining) gauge theories
[Polchinsky, Strassler]
- Enhançons
- Matrix models in non-trivial backgrounds
- Microscopic description of giant gravitons
[B.J., Lozano, Rodríguez]

Difference in degrees of freedom

- separated: $N U(1)$ vector fields $V_{a}^{I},(9-p) N$ scalars $X^{i I}$
\rightarrow Abelian worldvolume action
- coinciding: $1 U(N)$ Yang-Mills vector $V_{a}^{I}, \quad N$ adjoint scalars $X^{i I}$
\rightarrow non-Abelian worldvolume action

Difference in degrees of freedom

- separated: $N U(1)$ vector fields $V_{a}^{I},(9-p) N$ scalars $X^{i I}$
\rightarrow Abelian worldvolume action
- coinciding: $1 U(N)$ Yang-Mills vector $V_{a}^{I}, \quad N$ adjoint scalars $X^{i I}$
\rightarrow non-Abelian worldvolume action
Extra degrees of freedom come from massless strings stretched between coinciding strings:
strings between same brane: $m \sim 0$ strings between different branes: $m \sim L$ As $L \rightarrow 0$:
$\Longrightarrow N+N(N-1)=N^{2}$ degrees of freedom
$\Longrightarrow U(1)^{N} \rightarrow U(N)$ gauge enhancement

Difference in degrees of freedom

- separated: $N U(1)$ vector fields $V_{a}^{I},(9-p) N$ scalars $X^{i I}$
\rightarrow Abelian worldvolume action
- coinciding: $1 U(N)$ Yang-Mills vector $V_{a}^{I}, \quad N$ adjoint scalars $X^{i I}$
\rightarrow non-Abelian worldvolume action
Extra degrees of freedom come from massless strings stretched between coinciding strings:
strings between same brane: $m \sim 0$
strings between different branes: $m \sim L$
As $L \rightarrow 0$:
$\Longrightarrow N+N(N-1)=N^{2}$ degrees of freedom
$\Longrightarrow U(1)^{N} \rightarrow U(N)$ gauge enhancement

Different degrees of freedom and different symmetries
\Longrightarrow different dynamics
\Longrightarrow different worldvolume action

Difference in worldvolume actions

- X^{μ} : Abelian scalars \longrightarrow Scalars in adjoint of $U(N)$

$$
\Rightarrow\left[X^{\mu}, X^{\nu}\right] \neq 0
$$

Difference in worldvolume actions

- X^{μ} : Abelian scalars \longrightarrow Scalars in adjoint of $U(N)$

$$
\Rightarrow\left[X^{\mu}, X^{\nu}\right] \neq 0
$$

- $V_{a}: N$ Born-Infeld vectors $\longrightarrow 1$ Yang-Mills vector

$$
F_{a b}=2 \partial_{[a} V_{b]} \longrightarrow F_{a b}=2 \partial_{[a} V_{b]}+i\left[V_{a}, V_{b}\right]
$$

Difference in worldvolume actions

- X^{μ} : Abelian scalars \longrightarrow Scalars in adjoint of $U(N)$

$$
\Rightarrow\left[X^{\mu}, X^{\nu}\right] \neq 0
$$

- $V_{a}: N$ Born-Infeld vectors $\longrightarrow 1$ Yang-Mills vector

$$
F_{a b}=2 \partial_{[a} V_{b]} \longrightarrow F_{a b}=2 \partial_{[a} V_{b]}+i\left[V_{a}, V_{b}\right]
$$

- Background fields: $\Phi=\Phi(x) \longrightarrow \Phi=\Phi(X)$
$\longrightarrow \Phi\left(X^{\lambda}\right)=\left.\sum_{n} \frac{1}{n!} \partial_{\mu_{1}} \ldots \partial_{\mu_{n}} \Phi\left(x^{\lambda}\right)\right|_{x^{\lambda}=0} X^{\mu_{1}} \ldots X^{\mu_{n}}$
\longrightarrow Symmetrized trace prescription

Difference in worldvolume actions

- X^{μ} : Abelian scalars \longrightarrow Scalars in adjoint of $U(N)$

$$
\Rightarrow\left[X^{\mu}, X^{\nu}\right] \neq 0
$$

- $V_{a}: N$ Born-Infeld vectors $\longrightarrow 1$ Yang-Mills vector

$$
F_{a b}=2 \partial_{[a} V_{b]} \longrightarrow F_{a b}=2 \partial_{[a} V_{b]}+i\left[V_{a}, V_{b}\right]
$$

- Background fields: $\Phi=\Phi(x) \longrightarrow \Phi=\Phi(X)$
$\longrightarrow \Phi\left(X^{\lambda}\right)=\left.\sum_{n} \frac{1}{n!} \partial_{\mu_{1}} \ldots \partial_{\mu_{n}} \Phi\left(x^{\lambda}\right)\right|_{x^{\lambda}=0} X^{\mu_{1}} \ldots X^{\mu_{n}}$
\longrightarrow Symmetrized trace prescription
- $U(N)$ covariant pullbacks: $\partial_{a} X^{\mu} \longrightarrow D_{a} X^{\mu}=\partial_{a} X^{\mu}+i\left[V_{a}, X^{\mu}\right]$
$\longrightarrow \delta V_{a}=D_{a} \chi, \quad \delta X^{i}=i\left[\chi, X^{i}\right], \quad \delta D_{a} X^{i}=i\left[\chi, D_{a} X^{i}\right]$
[Dorn][Hull]

Difference in worldvolume actions

- X^{μ} : Abelian scalars \longrightarrow Scalars in adjoint of $U(N)$

$$
\Rightarrow\left[X^{\mu}, X^{\nu}\right] \neq 0
$$

- $V_{a}: N$ Born-Infeld vectors $\longrightarrow 1$ Yang-Mills vector

$$
F_{a b}=2 \partial_{[a} V_{b]} \longrightarrow F_{a b}=2 \partial_{[a} V_{b]}+i\left[V_{a}, V_{b}\right]
$$

- Background fields: $\Phi=\Phi(x) \longrightarrow \Phi=\Phi(X)$
$\longrightarrow \Phi\left(X^{\lambda}\right)=\left.\sum_{n} \frac{1}{n!} \partial_{\mu_{1}} \ldots \partial_{\mu_{n}} \Phi\left(x^{\lambda}\right)\right|_{x^{\lambda}=0} X^{\mu_{1}} \ldots X^{\mu_{n}}$
\longrightarrow Symmetrized trace prescription
- $U(N)$ covariant pullbacks: $\partial_{a} X^{\mu} \longrightarrow D_{a} X^{\mu}=\partial_{a} X^{\mu}+i\left[V_{a}, X^{\mu}\right]$
$\longrightarrow \delta V_{a}=D_{a} \chi, \quad \delta X^{i}=i\left[\chi, X^{i}\right], \quad \delta D_{a} X^{i}=i\left[\chi, D_{a} X^{i}\right]$
[Dorn][Hull]
- Non-Abelian couplings, proportional to $\left[X^{\mu}, X^{\nu}\right]$:

$$
\begin{aligned}
\longrightarrow \mathcal{L}_{D 1} & \sim \operatorname{STr}\left\{C_{\mu \nu} D_{a} X^{\mu} D_{b} X^{\nu}+i\left[X^{\mu}, X^{\nu}\right] C_{\mu \nu \rho \lambda} D_{a} X^{\rho} D_{b} X^{\lambda}\right\} \\
& =\operatorname{STr}\left\{P\left[C_{2}\right]+\frac{1}{2} i P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right) C_{4}\right]\right\} \quad \text { [Taylor, van Raamsdonk][Myers] }
\end{aligned}
$$

T-duality origin of non-Abelian couplings

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
\text { Dp-brane } & \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
\left(\hat{V}_{\hat{a}}, Y^{i}\right) & \longrightarrow\left(V_{a}, X^{\hat{\imath}}\right)
\end{aligned}
$$

T-duality origin of non-Abelian couplings

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
& \text { Dp-brane } \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
&\left(\hat{V}_{\hat{a}}, Y^{i}\right) \longrightarrow \\
&\left(V_{a}, X^{\hat{\imath}}\right)
\end{aligned}
$$

Matching of degrees of freedom:

$$
\begin{array}{ll}
\hat{V}_{a} \longrightarrow V_{a}, & Y^{i} \longrightarrow X^{i}, \\
\hat{V}_{x} \longrightarrow X^{\underline{x}}, & Y^{\underline{x}}=\sigma^{x} .
\end{array}
$$

T-duality origin of non-Abelian couplings

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
\text { Dp-brane } & \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
\left(\hat{V}_{\hat{a}}, Y^{i}\right) & \longrightarrow\left(V_{a}, X^{\hat{i}}\right)
\end{aligned}
$$

Matching of degrees of freedom:

$$
\begin{array}{ll}
\hat{V}_{a} \longrightarrow V_{a}, & Y^{i} \longrightarrow X^{i}, \\
\hat{V}_{x} \longrightarrow X^{\underline{x}}, & Y^{\underline{x}}=\sigma^{x} .
\end{array}
$$

Field strengths, Abelian case:

$$
\begin{gathered}
\partial_{a} Y^{i} \longrightarrow \partial_{a} X^{i}, \quad \partial_{x} Y^{i}=0, \quad \partial_{\hat{a}} Y^{\underline{x}}=\delta_{\hat{a}}^{\underline{x}}, \\
\hat{F}_{a x} \longrightarrow \partial_{a} X^{\underline{x}}, \quad \hat{F}_{a b} \longrightarrow F_{a b} .
\end{gathered}
$$

T-duality origin of non-Abelian couplings

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
\text { Dp-brane } & \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
\left(\hat{V}_{\hat{a}}, Y^{i}\right) & \longrightarrow\left(V_{a}, X^{\hat{\imath}}\right)
\end{aligned}
$$

Matching of degrees of freedom:

$$
\begin{array}{ll}
\hat{V}_{a} \longrightarrow V_{a}, & Y^{i} \longrightarrow X^{i}, \\
\hat{V}_{x} \longrightarrow X^{\underline{x}}, & Y^{\underline{x}}=\sigma^{x} .
\end{array}
$$

Field strengths, Abelian case:

$$
\begin{gathered}
\partial_{a} Y^{i} \longrightarrow \partial_{a} X^{i}, \quad \partial_{x} Y^{i}=0, \quad \partial_{\hat{a}} Y^{\underline{x}}=\delta_{\hat{a}}^{\underline{x}}, \\
\hat{F}_{a x} \longrightarrow \partial_{a} X^{\underline{x}}, \quad \hat{F}_{a b} \longrightarrow F_{a b} .
\end{gathered}
$$

Field strengths, non-Abelian case:

$$
\begin{gathered}
\hat{D}_{a} Y^{i} \longrightarrow D_{a} X^{i}, \quad \hat{D}_{x} Y^{i}=i\left[V_{x}, Y^{i}\right] \longrightarrow i\left[X^{\underline{x}}, X^{i}\right], \quad \partial_{\hat{a}} Y^{\underline{x}}=\delta \delta_{\hat{a}}^{x} \\
\hat{F}_{a x} \longrightarrow D_{a} X^{\underline{x}},
\end{gathered} \quad \hat{F}_{a b} \longrightarrow F_{a b} . \quad .
$$

Dielectric terms:

$$
\begin{aligned}
C_{\hat{\mu} \hat{\nu}} \hat{D}_{a} Y^{\hat{\mu}} \hat{D}_{x} Y^{\hat{\nu}} & =C_{\mu \underline{x}} \hat{D}_{a} Y^{\mu} \hat{D}_{x} Y^{\underline{x}}+C_{\mu \nu} \hat{D}_{a} Y^{\mu} \hat{D}_{x} Y^{\nu} \\
& \rightarrow C_{\hat{\mu}} D_{a} X^{\hat{\mu}}+i\left[X^{\underline{x}}, X^{\nu}\right] C_{\mu \nu \underline{x}} D_{a} X^{\hat{\mu}}
\end{aligned}
$$

Dielectric terms:

$$
\begin{aligned}
C_{\hat{\mu} \hat{\nu}} \hat{D}_{a} Y^{\hat{\mu}} \hat{D}_{x} Y^{\hat{\nu}} & =C_{\mu \underline{x}} \hat{D}_{a} Y^{\mu} \hat{D}_{x} Y^{\underline{x}}+C_{\mu \nu} \hat{D}_{a} Y^{\mu} \hat{D}_{x} Y^{\nu} \\
& \rightarrow C_{\hat{\mu}} D_{a} X^{\hat{\mu}}+i\left[X^{\underline{x}}, X^{\nu}\right] C_{\mu \nu \underline{x}} D_{a} X^{\hat{\mu}}
\end{aligned}
$$

Non-Abelian action:

- Born-Infeld part : highly non-trivial problem
- Chern-Simons part: Concentrate here

$$
\begin{aligned}
S_{\mathrm{D} p}= & T_{p} \int \operatorname{STr}\left\{P\left[e^{\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)}\left(C e^{B}\right)\right] e^{F}\right\} \\
=T_{p} \int \operatorname{STr}\{ & P\left[C_{p}+C_{p-2}(F+B)+\ldots\right] \\
& +P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)\left(C_{p+2}+C_{p} B+\ldots\right)\right] \\
& +P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)\left(C_{p}+C_{p-2} B+\ldots\right)\right] F \\
& \left.+P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)^{2}\left(C_{p+4}+C_{p+2} B+\ldots\right)\right]+\ldots\right\}
\end{aligned}
$$

2. Problems with background gauge invariance

R-R gauge transformation: $\delta C_{\mu \nu}=\partial_{[\mu} \Lambda_{\nu]}$

$$
\begin{gathered}
\delta C_{\mu \nu \rho \lambda}=\partial_{[\mu} \Lambda_{\nu \rho \lambda]} \\
\delta\left\{C_{\mu \nu} D_{a} X^{\mu} D_{b} X^{\nu}\right\}=\left\{\partial_{[\mu} \Lambda_{\nu]} D_{a} X^{\mu} D_{b} X^{\nu}\right\} \\
\neq \partial_{[a}\left\{\Lambda_{\nu]} D_{b} X^{\nu}\right\} \\
\delta\left\{\left[X^{\nu}, X^{\mu}\right] C_{\mu \nu \rho \lambda} D_{a} X^{\rho} D_{b} X^{\lambda}\right\}=\left\{\left[X^{\nu}, X^{\mu}\right] \partial_{[\mu} \Lambda_{\nu \rho \lambda]} D_{a} X^{\mu} D_{b} X^{\nu}\right\} \\
\\
\neq \partial_{[a}\left\{\left[X^{\nu}, X^{\mu}\right] \Lambda_{\nu \rho \lambda]} D_{b} X^{\nu}\right\}
\end{gathered}
$$

2. Problems with background gauge invariance

R-R gauge transformation: $\delta C_{\mu \nu}=\partial_{[\mu} \Lambda_{\nu]}$

$$
\delta C_{\mu \nu \rho \lambda}=\partial_{[\mu} \Lambda_{\nu \rho \lambda]}
$$

$$
\begin{aligned}
\delta\left\{C_{\mu \nu} D_{a} X^{\mu} D_{b} X^{\nu}\right\} & =\left\{\partial_{[\mu} \Lambda_{\nu]} D_{a} X^{\mu} D_{b} X^{\nu}\right\} \\
& \neq \partial_{[a}\left\{\Lambda_{\nu]} D_{b} X^{\nu}\right\} \\
\delta\left\{\left[X^{\nu}, X^{\mu}\right] C_{\mu \nu \rho \lambda} D_{a} X^{\rho} D_{b} X^{\lambda}\right\} & =\left\{\left[X^{\nu}, X^{\mu}\right] \partial_{[\mu} \Lambda_{\nu \rho \lambda]} D_{a} X^{\mu} D_{b} X^{\nu}\right\} \\
& \neq \partial_{[a}\left\{\left[X^{\nu}, X^{\mu}\right] \Lambda_{\nu \rho \lambda]} D_{b} X^{\nu}\right\}
\end{aligned}
$$

NS-NS gauge transformations: $\delta B_{\mu \nu}=\partial_{[\mu} \Sigma_{\nu]}$

$$
\begin{gathered}
\delta V_{a}=-\Sigma_{\mu} D_{a} X^{\mu} \\
\delta \mathcal{F}_{a b}=\delta\left(F_{a b}+P[B]_{a b}\right)=0, \quad \delta\left(\left[X^{\mu}, X^{\nu}\right] B_{\mu \nu}\right)=\left[X^{\mu}, X^{\nu}\right] \partial_{[\mu} \Sigma_{\nu]}
\end{gathered}
$$

2. Problems with background gauge invariance

R-R gauge transformation: $\delta C_{\mu \nu}=\partial_{[\mu} \Lambda_{\nu]}$

$$
\delta C_{\mu \nu \rho \lambda}=\partial_{[\mu} \Lambda_{\nu \rho \lambda]}
$$

$$
\begin{aligned}
\delta\left\{C_{\mu \nu} D_{a} X^{\mu} D_{b} X^{\nu}\right\} & =\left\{\partial_{[\mu} \Lambda_{\nu]} D_{a} X^{\mu} D_{b} X^{\nu}\right\} \\
& \neq \partial_{[a}\left\{\Lambda_{\nu]} D_{b} X^{\nu}\right\} \\
\delta\left\{\left[X^{\nu}, X^{\mu}\right] C_{\mu \nu \rho \lambda} D_{a} X^{\rho} D_{b} X^{\lambda}\right\} & =\left\{\left[X^{\nu}, X^{\mu}\right] \partial_{[\mu} \Lambda_{\nu \rho \lambda]} D_{a} X^{\mu} D_{b} X^{\nu}\right\} \\
& \neq \partial_{[a}\left\{\left[X^{\nu}, X^{\mu}\right] \Lambda_{\nu \rho \lambda]} D_{b} X^{\nu}\right\}
\end{aligned}
$$

NS-NS gauge transformations: $\delta B_{\mu \nu}=\partial_{[\mu} \Sigma_{\nu]}$

$$
\delta V_{a}=-\Sigma_{\mu} D_{a} X^{\mu}
$$

$$
\delta \mathcal{F}_{a b}=\delta\left(F_{a b}+P[B]_{a b}\right)=0, \quad \delta\left(\left[X^{\mu}, X^{\nu}\right] B_{\mu \nu}\right)=\left[X^{\mu}, X^{\nu}\right] \partial_{[\mu} \Sigma_{\nu]}
$$

\Longrightarrow Naive substitution does not give a total derivative!

R-R gauge transformations

First addressed by [Ciocarlie] in 2001.
\longrightarrow Very complex, incomplete

Systematic appraoch by [Adam, Gheerardyn, BJ., Lozano]:

R-R gauge transformations

First addressed by [Ciocarlie] in 2001.
\longrightarrow Very complex, incomplete

Systematic appraoch by [Adam, Gheerardyn, B.J, Lozano]:
$P\left[C_{p}\right]$ is gauge invariant under $\delta C_{p}=\partial \Lambda_{p-1}$ iff

- total derivative: $\delta\left\{P\left[C_{p}\right]\right\}=\partial_{a}\{\ldots\}$
- $\delta\left\{P\left[C_{p}\right]\right\}$ is a scalar under $U(N)$
- for $[X, X]=0: \delta\left\{P\left[C_{p}\right]\right\}=\left\{P\left[\partial \Lambda_{p-1}\right]\right\}$

R-R gauge transformations

First addressed by [Ciocarlie] in 2001.
\longrightarrow Very complex, incomplete

Systematic appraoch by [Adam, Gheerardyn, B.J., Lozano]:
$P\left[C_{p}\right]$ is gauge invariant under $\delta C_{p}=\partial \Lambda_{p-1}$ iff

- total derivative: $\delta\left\{P\left[C_{p}\right]\right\}=\partial_{a}\{\ldots\}$
- $\delta\left\{P\left[C_{p}\right]\right\}$ is a scalar under $U(N)$
- for $[X, X]=0: \delta\left\{P\left[C_{p}\right]\right\}=\left\{P\left[\partial \Lambda_{p-1}\right]\right\}$
\longrightarrow Modify way to implement gauge transformations in non-Abelian action

Definition:

- $\delta\left\{P\left[C_{p}\right]\right\} \equiv \partial\left\{P\left[\Lambda_{p-1}\right]\right\}=\left\{D P\left[\Lambda_{p-1}\right]\right\}$

$$
=\left\{P\left[\partial \Lambda_{p-1}\right]+P\left[\Lambda_{p-1}\right] \frac{i}{2}[F, X]\right\}
$$

Definition:

- $\delta\left\{P\left[C_{p}\right]\right\} \equiv \partial\left\{P\left[\Lambda_{p-1}\right]\right\}=\left\{D P\left[\Lambda_{p-1}\right]\right\}$

$$
=\left\{P\left[\partial \Lambda_{p-1}\right]+P\left[\Lambda_{p-1}\right] \frac{i}{2}[F, X]\right\}
$$

- $\left\{\delta P\left[\left(\mathbf{i}_{X} \dot{\mathbf{i}}_{X}\right)^{r} C_{p}\right]\right\}=\left\{D P\left[\left(\mathbf{i}_{X} \dot{\mathbf{i}}_{X}\right)^{r} \Lambda_{p-1}\right]\right\}$

Definition:

- $\delta\left\{P\left[C_{p}\right]\right\} \equiv \partial\left\{P\left[\Lambda_{p-1}\right]\right\}=\left\{D P\left[\Lambda_{p-1}\right]\right\}$

$$
=\left\{P\left[\partial \Lambda_{p-1}\right]+P\left[\Lambda_{p-1}\right] \frac{i}{2}[F, X]\right\}
$$

- $\left\{\delta P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)^{r} C_{p}\right]\right\}=\left\{D P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)^{r} \Lambda_{p-1}\right]\right\}$
- general case $\delta C_{p}=\partial \Lambda e^{B}$:

$$
\begin{gathered}
\delta\left\{P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right) C\right]\right\}=\left\{D P\left[\mathrm{i}_{X} \mathrm{i}_{X} \Lambda\right] P\left[e^{B}\right]+D P\left[\mathrm{i}_{X} \Lambda\right] P\left[\mathrm{i}_{X} e^{B}\right]\right. \\
\left.+D P[\Lambda] P\left[\mathrm{i}_{X} \mathrm{i}_{X} e^{B}\right]\right\}
\end{gathered}
$$

$\longrightarrow C e^{B}$ is invariant under $\delta C_{p}=\partial \Lambda e^{B}$ (Abelian case)

Definition:

- $\delta\left\{P\left[C_{p}\right]\right\} \equiv \partial\left\{P\left[\Lambda_{p-1}\right]\right\}=\left\{D P\left[\Lambda_{p-1}\right]\right\}$

$$
=\left\{P\left[\partial \Lambda_{p-1}\right]+P\left[\Lambda_{p-1}\right] \frac{i}{2}[F, X]\right\}
$$

- $\left\{\delta P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)^{r} C_{p}\right]\right\}=\left\{D P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)^{r} \Lambda_{p-1}\right]\right\}$
- general case $\delta C_{p}=\partial \Lambda e^{B}$:

$$
\begin{gathered}
\delta\left\{P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right) C\right]\right\}=\left\{D P\left[\mathrm{i}_{X} \mathrm{i}_{X} \Lambda\right] P\left[e^{B}\right]+D P\left[\mathrm{i}_{X} \Lambda\right] P\left[\mathrm{i}_{X} e^{B}\right]\right. \\
\left.+D P[\Lambda] P\left[\mathrm{i}_{X} \mathrm{i}_{X} e^{B}\right]\right\}
\end{gathered}
$$

$\longrightarrow C e^{B}$ is invariant under $\delta C_{p}=\partial \Lambda e^{B}$ (Abelian case)
$\longrightarrow P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)^{r}\left(C e^{B}\right)\right]$ is invariant under $\delta\left\{P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)^{t} C\right]\right\}$

Definition:

- $\delta\left\{P\left[C_{p}\right]\right\} \equiv \partial\left\{P\left[\Lambda_{p-1}\right]\right\}=\left\{D P\left[\Lambda_{p-1}\right]\right\}$

$$
=\left\{P\left[\partial \Lambda_{p-1}\right]+P\left[\Lambda_{p-1}\right] \frac{i}{2}[F, X]\right\}
$$

- $\left\{\delta P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)^{r} C_{p}\right]\right\}=\left\{D P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)^{r} \Lambda_{p-1}\right]\right\}$
- general case $\delta C_{p}=\partial \Lambda e^{B}$:

$$
\begin{gathered}
\delta\left\{P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right) C\right]\right\}=\left\{D P\left[\mathrm{i}_{X} \mathrm{i}_{X} \Lambda\right] P\left[e^{B}\right]+D P\left[\mathrm{i}_{X} \Lambda\right] P\left[\mathrm{i}_{X} e^{B}\right]\right. \\
\left.+D P[\Lambda] P\left[\mathrm{i}_{X} \mathrm{i}_{X} e^{B}\right]\right\}
\end{gathered}
$$

$\longrightarrow C e^{B}$ is invariant under $\delta C_{p}=\partial \Lambda e^{B}$ (Abelian case)
$\longrightarrow P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)^{r}\left(C e^{B}\right)\right]$ is invariant under $\delta\left\{P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)^{t} C\right]\right\}$
$\longrightarrow S=T_{p} \int\left\{P\left[e^{\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)}\left(C e^{B}\right)\right] e^{F}\right\}$ is invariant under $\delta\left\{P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)^{s} C\right]\right\}$

3. Problems with NS-NS gauge transformations

$$
\begin{array}{lc}
\delta B_{\mu \nu}=2 \partial_{[\mu} \Sigma_{\nu]}, & \delta V_{a}=-\Sigma_{\mu} D_{a} X^{\mu} \\
\Longrightarrow \delta P[B]=2 D P[\Sigma], & \delta F_{a b}=-2 D P[\Sigma] \\
\Longrightarrow \delta \mathcal{F}=\delta(F+P[B])=0 . &
\end{array}
$$

3. Problems with NS-NS gauge transformations

$$
\begin{array}{lc}
\delta B_{\mu \nu}=2 \partial_{[\mu} \Sigma_{\nu]}, & \delta V_{a}=-\Sigma_{\mu} D_{a} X^{\mu} \\
\Longrightarrow \delta P[B]=2 D P[\Sigma], & \delta F_{a b}=-2 D P[\Sigma] \\
\Longrightarrow \delta \mathcal{F}=\delta(F+P[B])=0 . &
\end{array}
$$

Rewrite $\mathrm{D} p$-brane action:

$$
\begin{aligned}
\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)\left(C e^{B}\right)= & \left(\mathrm{i}_{X} \mathrm{i}_{X} C\right) e^{B}+\left(\mathrm{i}_{X} C\right)\left(\mathrm{i}_{X} B\right) e^{B} \\
& +C\left(\mathrm{i}_{X} B\right)\left(\mathrm{i}_{X} B\right) e^{B}+C\left(\mathrm{i}_{X} \mathrm{i}_{X} B\right) e^{B}
\end{aligned}
$$

3. Problems with NS-NS gauge transformations

$$
\begin{array}{lr}
\delta B_{\mu \nu}=2 \partial_{[\mu} \Sigma_{\nu]}, & \delta V_{a}=-\Sigma_{\mu} D_{a} X^{\mu} \\
\Longrightarrow \delta P[B]=2 D P[\Sigma], & \delta F_{a b}=-2 D P[\Sigma] \\
\Longrightarrow \delta \mathcal{F}=\delta(F+P[B])=0 . &
\end{array}
$$

Rewrite $\mathrm{D} p$-brane action:

$$
\begin{aligned}
\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)\left(C e^{B}\right)= & \left(\mathrm{i}_{X} \mathrm{i}_{X} C\right) e^{B}+\left(\mathrm{i}_{X} C\right)\left(\mathrm{i}_{X} B\right) e^{B} \\
& +C\left(\mathrm{i}_{X} B\right)\left(\mathrm{i}_{X} B\right) e^{B}+C\left(\mathrm{i}_{X} \mathrm{i}_{X} B\right) e^{B} \\
\Longrightarrow S= & T_{P} \int\left\{P \left[\left(\mathrm{i}_{X} \mathrm{i}_{X} C\right) e^{\mathcal{F}}+\left(\mathrm{i}_{X} C\right)\left(\mathrm{i}_{X} B\right) e^{\mathcal{F}}\right.\right. \\
& \left.\left.+C\left(\mathrm{i}_{X} B\right)\left(\mathrm{i}_{X} B\right) e^{\mathcal{F}}+C\left(\mathrm{i}_{X} \mathrm{i}_{X} B\right) e^{\mathcal{F}}\right]\right\}
\end{aligned}
$$

What happens to terms of the type $\left(\mathrm{i}_{X} B\right)$ and $\left(\mathrm{i}_{X} \mathrm{i}_{X} B\right)$?
\longrightarrow Extra non-Abelian variations which have not been taken in account?

T-duality on gauge transformations

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
& \text { Dp-brane } \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
&\left(\hat{V}_{\hat{a}}, Y^{i}\right) \longrightarrow \\
&\left(V_{a}, X^{\hat{\imath}}\right)
\end{aligned}
$$

- Matching of degrees of freedom:

$$
\begin{array}{ll}
\hat{V}_{a} \longrightarrow V_{a}, & Y^{i} \longrightarrow X^{i}, \\
\hat{V}_{x} \longrightarrow X^{\underline{x}}, & Y^{\underline{x}}=\sigma^{x} .
\end{array}
$$

T-duality on gauge transformations

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
& \text { Dp-brane } \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
&\left(\hat{V}_{\hat{a}}, Y^{i}\right) \longrightarrow \\
&\left(V_{a}, X^{\hat{\imath}}\right)
\end{aligned}
$$

- Matching of degrees of freedom:

$$
\begin{array}{ll}
\hat{V}_{a} \longrightarrow V_{a}, & Y^{i} \longrightarrow X^{i}, \\
\hat{V}_{x} \longrightarrow X^{\underline{x}}, & Y^{\underline{x}}=\sigma^{x} .
\end{array}
$$

- Role played by fields in $\mathrm{D} p$-brane action is the same as role of fields in $\mathrm{D}(p-1)$-brane action.
Fields in both actions transform in the same way under:
- Worldvolume general coordinate transformations ζ^{a}
- $U(1)$ or $U(N)$ transformations χ
- NS-NS transformations Σ
- Target space general coordinate transformations

T-duality on gauge transformations: Abelian case

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
\text { Dp-brane } & \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
\left(\hat{V}_{\hat{a}}, Y^{i}\right) & \longrightarrow\left(V_{a}, X^{\hat{\imath}}\right)
\end{aligned}
$$

T-dual variation of BI vector:

$$
\begin{aligned}
& \delta \hat{V}_{\hat{a}}=\hat{\zeta}_{\hat{b}} \partial_{\hat{b}} \hat{V}_{\hat{a}}+\partial_{\hat{a}} \hat{\zeta} \hat{\zeta} \hat{V}_{\hat{b}}+\partial_{\hat{a}} \hat{\chi}-\Sigma_{\hat{\mu}} \partial_{\hat{a}} Y^{\hat{\mu}} \\
& \hat{V}_{a} \longrightarrow V_{a}
\end{aligned}
$$

T-duality on gauge transformations: Abelian case

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
\text { Dp-brane } & \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
\left(\hat{V}_{\hat{a}}, Y^{i}\right) & \longrightarrow\left(V_{a}, X^{\hat{\imath}}\right)
\end{aligned}
$$

T-dual variation of BI vector:

$$
\begin{aligned}
& \delta \hat{V}_{\hat{a}}=\hat{\zeta}^{\hat{b}} \partial_{\hat{h}} \hat{V}_{\hat{a}}+\partial_{\hat{a}} \hat{\zeta}^{\hat{b}} \hat{V}_{\hat{b}}+\partial_{\hat{a}} \hat{\chi}-\Sigma_{\hat{\mu}} \partial_{\hat{a}} Y^{\hat{\mu}} \\
& \hat{V}_{a} \longrightarrow V_{a} \\
& \Longrightarrow \delta \hat{V}_{a}=\hat{\zeta}^{b} \partial_{b} \hat{V}_{a}+\partial_{a} \hat{\zeta}^{b} \hat{V}_{b}+\partial_{a} \hat{\zeta}^{x} \hat{V}_{x}+\partial_{a} \hat{\chi}-\Sigma_{\hat{\mu}} \partial_{a} Y^{\hat{\mu}}
\end{aligned}
$$

T-duality on gauge transformations: Abelian case

T-duality in worlvolume direction \underline{x} :

$$
\begin{array}{cl}
\text { Dp-brane } & \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
\left(\hat{V}_{\hat{a}}, Y^{i}\right) & \longrightarrow \\
\left(V_{a}, X^{\hat{\imath}}\right)
\end{array}
$$

T-dual variation of BI vector:

$$
\begin{aligned}
& \delta \hat{V}_{\hat{a}}=\hat{\zeta}^{\hat{b}} \partial_{\hat{b}} \hat{V}_{\hat{a}}+\partial_{\hat{a}} \hat{\zeta} \hat{b} \hat{V}_{\hat{b}}+\partial_{\hat{a}} \hat{\chi}-\Sigma_{\hat{\mu}} \partial_{\hat{a}} Y^{\hat{\mu}} \\
& \hat{V}_{a} \longrightarrow V_{a} \\
& \Longrightarrow \delta \hat{V}_{a}=\hat{\zeta}^{b} \partial_{b} \hat{V}_{a}+\partial_{a} \hat{\zeta}^{b} \hat{V}_{b}+\partial_{a} \hat{\zeta}^{x} \hat{V}_{x}+\partial_{a} \hat{\chi}-\Sigma_{\hat{\mu}} \partial_{a} Y^{\hat{\mu}} \\
& \quad \longrightarrow \zeta^{b} \partial_{b} V_{a}+\partial_{a} \zeta^{b} V_{b}+\partial_{a} \Sigma_{\underline{x}} X_{\underline{x}}+\partial_{a} \tilde{\chi}-\Sigma_{\mu} \partial_{a} X^{\mu}
\end{aligned}
$$

T-duality on gauge transformations: Abelian case

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
\text { Dp-brane } & \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
\left(\hat{V}_{\hat{a}}, Y^{i}\right) & \longrightarrow\left(V_{a}, X^{\hat{\imath}}\right)
\end{aligned}
$$

T-dual variation of BI vector:

$$
\begin{aligned}
& \delta \hat{V}_{\hat{a}}=\hat{\zeta}^{\hat{b}} \partial_{\hat{b}} \hat{V}_{\hat{a}}+\partial_{\hat{a}} \hat{\zeta} \hat{b} \hat{V}_{\hat{b}}+\partial_{\hat{a} \hat{\chi}}-\Sigma_{\hat{\mu}} \partial_{\hat{a}} Y^{\hat{\mu}} \\
& \hat{V}_{a} \longrightarrow V_{a} \\
& \Longrightarrow \delta \hat{V}_{a}=\hat{\zeta}^{b} \partial_{b} \hat{V}_{a}+\partial_{a} \hat{\zeta}^{b} \hat{V}_{b}+\partial_{a} \hat{\zeta}^{x} \hat{V}_{x}+\partial_{a} \hat{\chi}-\Sigma_{\hat{\mu}} \partial_{a} Y^{\hat{\mu}} \\
& \quad \longrightarrow \zeta^{b} \partial_{b} V_{a}+\partial_{a} \zeta^{b} V_{b}+\partial_{a} \Sigma_{\underline{x}} X_{\underline{x}}+\partial_{a} \tilde{\chi}-\Sigma_{\mu} \partial_{a} X^{\mu}
\end{aligned}
$$

Field redefinition: $\tilde{\chi}=\chi-\Sigma_{\underline{x}} X^{\underline{x}}$

$$
\begin{aligned}
& =\zeta^{b} \partial_{b} V_{a}+\partial_{a} \zeta^{b} V_{b}+\partial_{a} \chi-\Sigma_{\hat{\mu}} \partial_{a} X^{\hat{\mu}} \\
& =\delta V_{a}
\end{aligned}
$$

T-duality on gauge transformations: Abelian case

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
\text { Dp-brane } & \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
\left(\hat{V}_{\hat{a}}, Y^{i}\right) & \longrightarrow\left(V_{a}, X^{\hat{\imath}}\right)
\end{aligned}
$$

T-dual variation of BI vector:

$$
\begin{aligned}
& \delta \hat{V}_{\hat{a}}=\hat{\zeta}_{\hat{b}} \partial_{\hat{b}} \hat{V}_{\hat{a}}+\partial_{\hat{a}} \hat{h^{\hat{b}}} \hat{V}_{\hat{b}}+\partial_{\hat{a}} \hat{\chi}-\Sigma_{\hat{\mu}} \partial_{\hat{a}} Y^{\hat{\mu}} \\
& \hat{V}_{x} \rightarrow X^{\underline{x}}
\end{aligned}
$$

T-duality on gauge transformations: Abelian case

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
\text { Dp-brane } & \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
\left(\hat{V}_{\hat{a}}, Y^{i}\right) & \longrightarrow\left(V_{a}, X^{\hat{\imath}}\right)
\end{aligned}
$$

T-dual variation of BI vector:

$$
\begin{aligned}
& \delta \hat{V}_{\hat{a}}=\hat{\zeta}^{\hat{b}} \partial_{\hat{b}} \hat{V}_{\hat{a}}+\partial_{\hat{a}} \hat{\zeta} \hat{b} \hat{V}_{\hat{b}}+\partial_{\hat{a}} \hat{\chi}-\Sigma_{\hat{\mu}} \partial_{\hat{a}} Y^{\hat{\mu}} \\
& \hat{V}_{x} \rightarrow X^{\underline{x}} \\
& \Longrightarrow \delta \hat{V}_{x}=\hat{\zeta}^{b} \partial_{b} \hat{V}_{x}-\Sigma_{\underline{x}} \partial_{x} Y^{\underline{x}}
\end{aligned}
$$

T-duality on gauge transformations: Abelian case

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
& \text { Dp-brane } \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
&\left(\hat{V}_{\hat{a}}, Y^{i}\right) \longrightarrow \\
&\left(V_{a}, X^{\hat{\imath}}\right)
\end{aligned}
$$

T-dual variation of BI vector:

$$
\begin{aligned}
& \delta \hat{V}_{\hat{a}}=\hat{\zeta}_{\hat{b}} \partial_{\hat{b}} \hat{V}_{\hat{a}}+\partial_{\hat{a}} \hat{\zeta}^{\hat{b}} \hat{V}_{\hat{b}}+\partial_{\hat{a}} \hat{\chi}-\Sigma_{\hat{\mu}} \partial_{\hat{a}} Y^{\hat{\mu}} \\
& \hat{V}_{x} \rightarrow X^{\underline{x}} \\
& \Longrightarrow \delta \hat{V}_{x}=\hat{\zeta}^{b} \partial_{b} \hat{V}_{x}-\Sigma_{\underline{x}} \partial_{x} Y^{\underline{x}} \\
& \\
& \longrightarrow \zeta^{b} \partial_{b} X^{\underline{x}}-\xi^{\underline{x}} \\
& \quad=\delta X^{\underline{x}}
\end{aligned}
$$

$\longrightarrow X^{\underline{x}}$ behaves as a scalar in worldvolume and coordinate in target space.
$\longrightarrow \delta X^{\hat{\mu}}=\zeta^{b} \partial_{b} X^{\hat{\mu}}-\xi^{\hat{\mu}}$?

T-duality on gauge transformations: Abelian case

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
& \text { Dp-brane } \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
&\left(\hat{V}_{\hat{a}}, Y^{i}\right) \longrightarrow \\
&\left(V_{a}, X^{\hat{\imath}}\right)
\end{aligned}
$$

T-dual variation of embedding scalars:

$$
\begin{aligned}
& Y^{\hat{\mu}}=\hat{\zeta} \hat{\zeta} \partial_{\hat{b}} Y^{\hat{\mu}}-\xi^{\hat{\mu}} \\
& Y^{\mu} \longrightarrow X^{\mu}
\end{aligned}
$$

T-duality on gauge transformations: Abelian case

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
& \text { Dp-brane } \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
&\left(\hat{V}_{\hat{a}}, Y^{i}\right) \longrightarrow \\
&\left(V_{a}, X^{\hat{\imath}}\right)
\end{aligned}
$$

T-dual variation of embedding scalars:

$$
\begin{aligned}
& Y^{\hat{\mu}}=\hat{\zeta}_{\hat{b}}^{\partial_{\hat{b}}} Y^{\hat{\mu}}-\xi^{\hat{\mu}} \\
& Y^{\mu} \longrightarrow X^{\mu} \\
& \Longrightarrow \delta Y^{\mu}=\hat{\zeta}^{b} \partial_{b} Y^{\mu}-\xi^{\mu}
\end{aligned}
$$

T-duality on gauge transformations: Abelian case

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
& \text { Dp-brane } \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
&\left(\hat{V}_{\hat{a}}, Y^{i}\right) \longrightarrow \\
&\left(V_{a}, X^{\hat{\imath}}\right)
\end{aligned}
$$

T-dual variation of embedding scalars:

$$
\begin{aligned}
& Y^{\hat{\mu}}=\hat{\zeta}^{\hat{b}} \partial_{\hat{b}} Y^{\hat{\mu}}-\xi^{\hat{\mu}} \\
& Y^{\mu} \longrightarrow X^{\mu} \\
& \Longrightarrow \delta Y^{\mu}=\hat{\zeta}^{b} \partial_{b} Y^{\mu}-\xi^{\mu} \\
& \quad \longrightarrow \zeta^{b} \partial_{b} X^{\mu}-\xi^{\mu} \\
& \quad=\delta X^{\mu}
\end{aligned}
$$

T-duality on gauge transformations: non-Abelian case

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
& \text { Dp-brane } \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
&\left(\hat{V}_{\hat{a}}, Y^{i}\right) \longrightarrow \\
&\left(V_{a}, X^{\hat{\imath}}\right)
\end{aligned}
$$

T-dual variation of BI vector:

$$
\begin{aligned}
& \delta \hat{V}_{\hat{a}}=\hat{\zeta}^{\hat{b}} \partial_{\hat{b}} \hat{V}_{\hat{a}}+\partial_{\hat{a}} \hat{\zeta} \hat{V_{\hat{b}}}+\hat{D}_{\hat{a}} \hat{\chi}-\Sigma_{\hat{\mu}} \hat{D}_{\hat{a}} Y^{\hat{\mu}} \\
& \hat{V}_{a} \longrightarrow V_{a}
\end{aligned}
$$

T-duality on gauge transformations: non-Abelian case

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
\text { Dp-brane } & \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
\left(\hat{V}_{\hat{a}}, Y^{i}\right) & \longrightarrow\left(V_{a}, X^{\hat{i}}\right)
\end{aligned}
$$

T-dual variation of BI vector:

$$
\begin{aligned}
& \delta \hat{V}_{\hat{a}}=\hat{\zeta}^{\hat{b}} \partial_{\hat{b}} \hat{V}_{\hat{a}}+\partial_{\hat{a}} \hat{\zeta}^{\hat{b}} \hat{V}_{\hat{b}}+\hat{D}_{\hat{a}} \hat{\chi}-\Sigma_{\hat{\mu}} \hat{D}_{\hat{a}} Y^{\hat{\mu}} \\
& \hat{V}_{a} \longrightarrow V_{a} \\
& \Longrightarrow \delta \hat{V}_{a}=\hat{\zeta}^{b} \partial_{b} \hat{V}_{a}+\partial_{a} \hat{\zeta}^{b} \hat{V}_{b}+\partial_{a} \hat{\zeta}^{x} \hat{V}_{x}+\hat{D}_{a} \hat{\chi}-\Sigma_{\hat{\mu}} \hat{D}_{a} Y^{\hat{\mu}}
\end{aligned}
$$

T-duality on gauge transformations: non-Abelian case

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
\text { D } p \text {-brane } & \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
\left(\hat{V}_{\hat{a}}, Y^{i}\right) & \longrightarrow\left(V_{a}, X^{\hat{\imath}}\right)
\end{aligned}
$$

T-dual variation of BI vector:

$$
\begin{aligned}
& \delta \hat{V}_{\hat{a}}=\hat{\zeta}^{\hat{b}} \partial_{\hat{b}} \hat{V}_{\hat{a}}+\partial_{\hat{a}} \hat{\zeta}^{\hat{b}} \hat{V}_{\hat{b}}+\hat{D}_{\hat{a}} \hat{\chi}-\Sigma_{\hat{\mu}} \hat{D}_{\hat{a}} Y^{\hat{\mu}} \\
& \hat{V}_{a} \longrightarrow V_{a} \\
& \Longrightarrow \delta \hat{V}_{a}=\hat{\zeta}^{b} \partial_{b} \hat{V}_{a}+\partial_{a} \hat{\zeta}^{b} \hat{V}_{b}+\partial_{a} \hat{\zeta}^{x} \hat{V}_{x}+\hat{D}_{a} \hat{\chi}-\Sigma_{\hat{\mu}} \hat{D}_{a} Y^{\hat{\mu}} \\
& \quad \longrightarrow \zeta^{b} \partial_{b} V_{a}+\partial_{a} \zeta^{b} V_{b}+\partial_{a} \Sigma_{\underline{x}} X_{\underline{x}}+D_{a} \tilde{\chi}-\Sigma_{\mu} D_{a} X^{\mu}
\end{aligned}
$$

T-duality on gauge transformations: non-Abelian case

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
& \text { Dp-brane } \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
&\left(\hat{V}_{\hat{a}}, Y^{i}\right) \longrightarrow \\
&\left(V_{a}, X^{\hat{\imath}}\right)
\end{aligned}
$$

T-dual variation of BI vector:

$$
\begin{aligned}
& \delta \hat{V}_{\hat{a}}=\hat{\zeta}^{\hat{b}} \partial_{\hat{b}} \hat{V}_{\hat{a}}+\partial_{\hat{a}} \hat{\zeta}^{\hat{b}} \hat{V}_{\hat{b}}+\hat{D}_{\hat{a}} \hat{\chi}-\Sigma_{\hat{\mu}} \hat{D}_{\hat{a}} Y^{\hat{\mu}} \\
& \hat{V}_{a} \longrightarrow V_{a} \\
& \Longrightarrow \delta \hat{V}_{a}=\hat{\zeta}^{b} \partial_{b} \hat{V}_{a}+\partial_{a} \hat{\zeta}^{b} \hat{V}_{b}+\partial_{a} \hat{\zeta}^{x} \hat{V}_{x}+\hat{D}_{a} \hat{\chi}-\Sigma_{\hat{\mu}} \hat{D}_{a} Y^{\hat{\mu}} \\
& \quad \longrightarrow \zeta^{b} \partial_{b} V_{a}+\partial_{a} \zeta^{b} V_{b}+\partial_{a} \Sigma_{\underline{x}} X_{\underline{x}}+D_{a} \tilde{\chi}-\Sigma_{\mu} D_{a} X^{\mu}
\end{aligned}
$$

Field redefinition: $\tilde{\chi}=\chi-\Sigma_{\underline{x}} X^{\underline{x}}$

$$
\begin{aligned}
& =\zeta^{b} \partial_{b} V_{a}+\partial_{a} \zeta^{b} V_{b}+D_{a} \tilde{\chi}-\Sigma_{\hat{\mu}} D_{a} X^{\hat{\mu}} \\
& =\delta V_{a}
\end{aligned}
$$

$\longrightarrow V-a$ behaves as a vector in worldvolume, $U(N)$ Yang-Mills vector and shift under NS-NS transf.

T-duality on gauge transformations: non-Abelian case

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
& \text { Dp-brane } \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
&\left(\hat{V}_{\hat{a}}, Y^{i}\right) \longrightarrow \\
&\left(V_{a}, X^{\hat{\imath}}\right)
\end{aligned}
$$

T-dual variation of BI vector:

$$
\begin{aligned}
& \delta \hat{V}_{\hat{a}}=\hat{\zeta}^{\hat{b}} \partial_{\hat{b}} \hat{V}_{\hat{a}}+\partial_{\hat{a}} \hat{\zeta} \hat{V_{\hat{b}}}+\hat{D}_{\hat{a} \hat{\chi}}-\Sigma_{\hat{\mu}} \hat{D}_{\hat{a}} Y^{\hat{a}} \\
& \hat{V}_{x} \rightarrow X^{\underline{x}}
\end{aligned}
$$

T-duality on gauge transformations: non-Abelian case

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
\text { Dp-brane } & \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
\left(\hat{V}_{\hat{a}}, Y^{i}\right) & \longrightarrow\left(V_{a}, X^{\hat{\imath}}\right)
\end{aligned}
$$

T-dual variation of BI vector:

$$
\begin{aligned}
& \delta \hat{V}_{\hat{a}}=\hat{\zeta}^{\hat{b}} \partial_{\hat{b}} \hat{V}_{\hat{a}}+\partial_{\hat{a}} \hat{S}^{\hat{b}} \hat{V}_{\hat{b}}+\hat{D}_{\hat{a}} \hat{\chi}-\Sigma_{\hat{\mu}} \hat{D}_{\hat{a}} Y^{\hat{\mu}} \\
& \hat{V}_{x} \rightarrow X^{\underline{x}} \\
& \Longrightarrow \delta \hat{V}_{x}=\hat{\zeta}^{b} \partial_{b} \hat{V}_{x}+i\left[V_{x}, \chi\right]-\Sigma_{\mu} \hat{D}_{x} Y^{\mu}-\Sigma_{\underline{x}} D_{x} Y^{\underline{x}}
\end{aligned}
$$

T-duality on gauge transformations: non-Abelian case

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
\text { Dp-brane } & \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
\left(\hat{V}_{\hat{a}}, Y^{i}\right) & \longrightarrow\left(V_{a}, X^{\hat{i}}\right)
\end{aligned}
$$

T-dual variation of BI vector:

$$
\begin{aligned}
& \delta \hat{V}_{\hat{a}}=\hat{\zeta}^{\hat{b}} \partial_{\hat{b}} \hat{V}_{\hat{a}}+\partial_{\hat{a}} \hat{\zeta}^{\hat{b}} \hat{V}_{\hat{b}}+\hat{D_{\hat{a}} \hat{\chi}-\Sigma_{\hat{\mu}} \hat{D}_{\hat{a}} Y^{\hat{\mu}}} \begin{array}{l}
\hat{V}_{x} \rightarrow X^{\underline{x}} \\
\Longrightarrow \delta \hat{V}_{x} \\
\quad=\hat{\zeta}^{b} \partial_{b} \hat{V}_{x}+i\left[V_{x}, \chi\right]-\Sigma_{\mu} \hat{D}_{x} Y^{\mu}-\Sigma_{\underline{x}} D_{x} Y^{\underline{x}} \\
\quad \longrightarrow \zeta^{b} \partial_{b} \hat{V}_{x}+i\left[X^{\underline{x}}, \chi\right]-i \Sigma_{\mu}\left[X^{\underline{x}}, X^{\mu}\right]-\xi^{\underline{x}} \\
\quad=\delta X^{\underline{x}}
\end{array} .
\end{aligned}
$$

$\longrightarrow X^{\underline{x}}$ behaves as a scalar in worldvolume, adjoint scalar under $U(N)$, coordinate in target space and has extra Σ symmetry.
$\longrightarrow \delta X^{\hat{\mu}}=\zeta^{b} \partial_{b} X^{\hat{\mu}}+i\left[X^{\mu}, \chi\right]-\Sigma_{\rho}\left[X^{\mu}, X^{\rho}\right]-\xi^{\hat{\mu}}$?

T-duality on gauge transformations: non-Abelian case

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
\text { Dp-brane } & \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
\left(\hat{V}_{\hat{a}}, Y^{i}\right) & \longrightarrow\left(V_{a}, X^{\hat{i}}\right)
\end{aligned}
$$

T-dual variation of embedding scalars:

$$
\begin{aligned}
& \delta Y^{\hat{\mu}}=\hat{\zeta}^{b} \partial_{b} Y^{\hat{\mu}}+i\left[Y^{\hat{\mu}}, \chi\right]-i \Sigma_{\hat{\rho}}\left[Y^{\hat{\mu}}, Y^{\hat{\rho}}\right]-\xi^{\hat{\mu}} \\
& Y^{\mu} \longrightarrow X^{\mu}
\end{aligned}
$$

T-duality on gauge transformations: non-Abelian case

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
\text { Dp-brane } & \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
\left(\hat{V}_{\hat{a}}, Y^{i}\right) & \longrightarrow\left(V_{a}, X^{\hat{i}}\right)
\end{aligned}
$$

T-dual variation of embedding scalars:

$$
\begin{aligned}
& \delta Y^{\hat{\mu}}=\hat{\zeta}^{b} \partial_{b} Y^{\hat{\mu}}+i\left[Y^{\hat{\mu}}, \chi\right]-i \Sigma_{\hat{\rho}}\left[Y^{\hat{\mu}}, Y^{\hat{\rho}}\right]-\xi^{\hat{\mu}} \\
& Y^{\mu} \longrightarrow X^{\mu} \\
& \Longrightarrow \delta Y^{\mu}=\hat{\zeta}^{b} \partial_{b} Y^{\mu}+i\left[Y^{\mu}, \chi\right]-i \Sigma_{\hat{\rho}}\left[Y^{\mu}, Y^{\hat{\rho}}\right]-\xi^{\mu}
\end{aligned}
$$

T-duality on gauge transformations: non-Abelian case

T-duality in worlvolume direction \underline{x} :

$$
\begin{aligned}
\text { Dp-brane } & \longrightarrow \mathrm{D}(p-1) \text {-brane } \\
\left(\hat{V}_{\hat{a}}, Y^{i}\right) & \longrightarrow\left(V_{a}, X^{\hat{\imath}}\right)
\end{aligned}
$$

T-dual variation of embedding scalars:

$$
\begin{aligned}
& \delta Y^{\hat{\mu}}=\hat{\zeta}^{b} \partial_{b} Y^{\hat{\mu}}+i\left[Y^{\hat{\mu}}, \chi\right]-i \Sigma_{\hat{\rho}}\left[Y^{\hat{\mu}}, Y^{\hat{\rho}}\right]-\xi^{\hat{\mu}} \\
& Y^{\mu} \longrightarrow X^{\mu} \\
& \Longrightarrow \delta Y^{\mu}=\hat{\zeta}^{b} \partial_{b} Y^{\mu}+i\left[Y^{\mu}, \chi\right]-i \Sigma_{\hat{\rho}}\left[Y^{\mu}, Y^{\hat{\rho}}\right]-\xi^{\mu} \\
& \quad \longrightarrow \zeta^{b} \partial_{b} X^{\mu}+i\left[X^{\mu}, \chi\right]-i \Sigma_{\hat{\rho}}\left[X^{\mu}, X^{\hat{\rho}}\right]-\xi^{\mu} \\
& \quad=\delta X^{\mu}
\end{aligned}
$$

$\longrightarrow X^{\mu}$ has extra non-Abelian Σ variations

$$
\delta X^{\mu}=i \Sigma_{\rho}\left[X^{\rho}, X^{\mu}\right]
$$

NS-NS transformations of the fields

NS-NS gauge invariance much more complicated, as everything starts transforming:

$$
\begin{aligned}
\delta F_{a b}= & i\left[X^{\rho}, \Sigma_{\rho} F_{a b}\right]+i \partial_{[\sigma} \Sigma_{\rho]}\left[X^{\sigma}, X^{\rho}\right] F_{a b}-2 \partial_{[\sigma} \Sigma_{\rho]} D_{[a} X^{\sigma} D_{b]} X^{\rho}, \\
\delta D_{a} X^{\mu}= & i\left[X^{\rho}, \Sigma_{\rho} D_{a} X^{\mu}\right]+i \partial_{[\sigma} \Sigma_{\rho]}\left[X^{\sigma}, X^{\rho}\right] D_{a} X^{\mu} \\
& +2 i \partial_{[\sigma} \Sigma_{\rho]} D_{a} X^{\sigma}\left[X^{\rho}, X^{\mu}\right] \\
\delta\left[X^{\mu}, X^{\nu}\right]= & i\left[X^{\rho}, \Sigma_{\rho}\left[X^{\mu}, X^{\nu}\right]\right]+i \partial_{[\sigma} \Sigma_{\rho]}\left[X^{\sigma}, X^{\rho}\right]\left[X^{\mu}, X^{\nu}\right] \\
& -2 i \partial_{[\sigma} \Sigma_{\rho]}\left[X^{\sigma}, X^{\mu}\right]\left[X^{\rho}, X^{\nu}\right] \\
\delta \Phi(X)= & i\left[X^{\rho}, \Sigma_{\rho} \Phi(X)\right]+i \partial_{[\sigma} \Sigma_{\rho]}\left[X^{\sigma}, X^{\rho}\right] \Phi(X) .
\end{aligned}
$$

NS-NS transformations of the fields

NS-NS gauge invariance much more complicated, as everything starts transforming:

$$
\begin{aligned}
\delta F_{a b}= & i\left[X^{\rho}, \Sigma_{\rho} F_{a b}\right]+i \partial_{[\sigma} \Sigma_{\rho]}\left[X^{\sigma}, X^{\rho}\right] F_{a b}-2 \partial_{[\sigma} \Sigma_{\rho]} D_{[a} X^{\sigma} D_{b]} X^{\rho}, \\
\delta D_{a} X^{\mu}= & i\left[X^{\rho}, \Sigma_{\rho} D_{a} X^{\mu}\right]+i \partial_{[\sigma} \Sigma_{\rho]}\left[X^{\sigma}, X^{\rho}\right] D_{a} X^{\mu} \\
& +2 i \partial_{[\sigma} \Sigma_{\rho]} D_{a} X^{\sigma}\left[X^{\rho}, X^{\mu}\right] \\
\delta\left[X^{\mu}, X^{\nu}\right]= & i\left[X^{\rho}, \Sigma_{\rho}\left[X^{\mu}, X^{\nu}\right]\right]+i \partial_{[\sigma} \Sigma_{\rho]}\left[X^{\sigma}, X^{\rho}\right]\left[X^{\mu}, X^{\nu}\right] \\
& -2 i \partial_{[\sigma} \Sigma_{\rho]}\left[X^{\sigma}, X^{\mu}\right]\left[X^{\rho}, X^{\nu}\right] \\
\delta \Phi(X)= & i\left[X^{\rho}, \Sigma_{\rho} \Phi(X)\right]+i \partial_{[\sigma} \Sigma_{\rho]}\left[X^{\sigma}, X^{\rho}\right] \Phi(X) .
\end{aligned}
$$

General rule:
$\delta Z=i\left[X^{\rho}, \Sigma_{\rho} Z\right]+i \partial_{[\sigma} \Sigma_{\rho]}\left[X^{\sigma}, X^{\rho}\right] Z+$ possible correction terms

NS-NS transformations of the fields

NS-NS gauge invariance much more complicated, as everything starts transforming:

$$
\begin{aligned}
\delta F_{a b}= & i\left[X^{\rho}, \Sigma_{\rho} F_{a b}\right]+i \partial_{[\sigma} \Sigma_{\rho]}\left[X^{\sigma}, X^{\rho}\right] F_{a b}-2 \partial_{[\sigma} \Sigma_{\rho]} D_{[a} X^{\sigma} D_{b]} X^{\rho}, \\
\delta D_{a} X^{\mu}= & i\left[X^{\rho}, \Sigma_{\rho} D_{a} X^{\mu}\right]+i \partial_{[\sigma} \Sigma_{\rho]}\left[X^{\sigma}, X^{\rho}\right] D_{a} X^{\mu} \\
& +2 i \partial_{[\sigma} \Sigma_{\rho]} D_{a} X^{\sigma}\left[X^{\rho}, X^{\mu}\right] \\
\delta\left[X^{\mu}, X^{\nu}\right]= & i\left[X^{\rho}, \Sigma_{\rho}\left[X^{\mu}, X^{\nu}\right]\right]+i \partial_{[\sigma} \Sigma_{\rho]}\left[X^{\sigma}, X^{\rho}\right]\left[X^{\mu}, X^{\nu}\right] \\
& -2 i \partial_{[\sigma} \Sigma_{\rho]}\left[X^{\sigma}, X^{\mu}\right]\left[X^{\rho}, X^{\nu}\right] \\
\delta \Phi(X)= & i\left[X^{\rho}, \Sigma_{\rho} \Phi(X)\right]+i \partial_{[\sigma} \Sigma_{\rho]}\left[X^{\sigma}, X^{\rho}\right] \Phi(X) .
\end{aligned}
$$

General rule:

$$
\begin{aligned}
& \delta Z=i\left[X^{\rho}, \Sigma_{\rho} Z\right]+i \partial_{[\sigma} \Sigma_{\rho]}\left[X^{\sigma}, X^{\rho}\right] Z+\text { possible correction terms } \\
& \delta\left(Z_{1} Z_{2}\right)=i\left[X^{\rho}, \Sigma_{\rho}\left(Z_{1} Z_{2}\right)\right]+i \partial_{[\sigma} \Sigma_{\rho]}\left[X^{\sigma}, X^{\rho}\right]\left(Z_{1} Z_{2}\right)
\end{aligned}
$$

$$
+ \text { possible } Z_{1} \text { correction terms }+ \text { possible } Z_{2} \text { correction terms }
$$

Invariance of the action

Typical term: $\mathcal{L} \sim\left\{P\left[\left(i_{X} i_{X}\right)^{r}\left(C e^{B}\right)\right] e^{F}\right\}$

Invariance of the action

Typical term: $\mathcal{L} \sim\left\{P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)^{r}\left(C e^{B}\right)\right] e^{F}\right\}$

$$
\begin{aligned}
\Longrightarrow \delta \mathcal{L} \sim\{ & i\left[X^{\rho}, \Sigma_{\rho} \mathcal{L}\right]+P\left[\left(\mathbf{i}_{X} \mathbf{i}_{X}\right)^{r}\left(C e^{B} \partial \Sigma\right)\right] e^{F} \\
& -P\left[\left(\mathbf{i}_{X} \mathbf{i}_{X}\right)^{r}\left(C e^{B}\right) \partial \Sigma\right] e^{F}-P\left[\left(\mathbf{i}_{X} \mathbf{i}_{X}\right)^{r+1}\left(C e^{B} \partial \Sigma\right)\right] e^{F} \\
& \left.+P\left[\left(\mathbf{i}_{X} \mathbf{i}_{X}\right)^{r+1}\left(C e^{B}\right) \partial \Sigma\right] e^{F}\right\} .
\end{aligned}
$$

Invariance of the action

Typical term: $\mathcal{L} \sim\left\{P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)^{r}\left(C e^{B}\right)\right] e^{F}\right\}$

$$
\begin{aligned}
& \Longrightarrow \delta \mathcal{L} \sim\left\{i\left[X^{\rho}, \Sigma_{\rho} \mathcal{L}\right]+P\left[\left(\mathbf{i}_{X} \mathbf{i}_{X}\right)^{r}\left(C e^{B} \partial \Sigma\right)\right] e^{F}\right. \\
&-P\left[\left(\mathbf{i}_{X} \mathbf{i}_{X}\right)^{r}\left(C e^{B}\right) \partial \Sigma\right] e^{F}-P\left[\left(\mathbf{i}_{X} \mathbf{i}_{X}\right)^{r+1}\left(C e^{B} \partial \Sigma\right)\right] e^{F} \\
&\left.+P\left[\left(\mathbf{i}_{X} \mathbf{i}_{X}\right)^{r+1}\left(C e^{B}\right) \partial \Sigma\right] e^{F}\right\} .
\end{aligned}
$$

Total action: $\mathcal{L}=\left\{P\left[e^{\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)}\left(C e^{B}\right)\right] e^{F}\right\}$

In the variation, all terms cancel, except the ones with maximum value $r=R$:
$\delta \mathcal{L} \sim\left\{i\left[X^{\rho}, \Sigma_{\rho} \mathcal{L}\right]+P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)^{R+1}\left(C e^{B} \partial \Sigma\right)\right] e^{F}-P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)^{R+1}\left(C e^{B}\right) \partial \Sigma\right] e^{F}\right\}$

Invariance of the action

Typical term: $\mathcal{L} \sim\left\{P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)^{r}\left(C e^{B}\right)\right] e^{F}\right\}$

$$
\begin{aligned}
& \Longrightarrow \delta \mathcal{L} \sim\left\{i\left[X^{\rho}, \Sigma_{\rho} \mathcal{L}\right]+P\left[\left(\mathbf{i}_{X} \mathbf{i}_{X}\right)^{r}\left(C e^{B} \partial \Sigma\right)\right] e^{F}\right. \\
&-P\left[\left(\mathbf{i}_{X} \mathbf{i}_{X}\right)^{r}\left(C e^{B}\right) \partial \Sigma\right] e^{F}-P\left[\left(\mathbf{i}_{X} \mathbf{i}_{X}\right)^{r+1}\left(C e^{B} \partial \Sigma\right)\right] e^{F} \\
&\left.+P\left[\left(\mathbf{i}_{X} \mathbf{i}_{X}\right)^{r+1}\left(C e^{B}\right) \partial \Sigma\right] e^{F}\right\} .
\end{aligned}
$$

Total action: $\mathcal{L}=\left\{P\left[e^{\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)}\left(C e^{B}\right)\right] e^{F}\right\}$

In the variation, all terms cancel, except the ones with maximum value $r=R$:
$\delta \mathcal{L} \sim\left\{i\left[X^{\rho}, \Sigma_{\rho} \mathcal{L}\right]+P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)^{R+1}\left(C e^{B} \partial \Sigma\right)\right] e^{F}-P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)^{R+1}\left(C e^{B}\right) \partial \Sigma\right] e^{F}\right\}$

$$
=0
$$

as $\left\{i\left[X^{\rho}, \Sigma_{\rho} \mathcal{L}\right]\right\}$ is a trace over a single commutator
as $\left(\mathrm{i}_{X} \mathrm{i}_{X}\right)^{R+1}\left(C e^{B} \partial \Sigma\right)$ involves more X^{μ} as transverse directions to D-brane

Different prescription for R-R and NS-NS transformations?

R-R: modified gauge variations
NS-NS: substitution of different variations

$$
\begin{aligned}
& \delta P\left[C_{2}\right]=2 P\left[\partial \Lambda_{1}\right]-i \Lambda_{1}[X, F]=D P[\Lambda] \\
& \delta P\left[B_{2}\right]=2 P[\partial \Sigma]-2 i P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X} \partial \Sigma\right) B\right]-8 i P\left[\left(\mathrm{i}_{X} \partial \Sigma\right)\left(\mathrm{i}_{X} B\right)\right]
\end{aligned}
$$

\longrightarrow What about S-duality?

Different prescription for R-R and NS-NS transformations?

R-R: modified gauge variations
NS-NS: substitution of different variations

$$
\begin{aligned}
\delta P\left[C_{2}\right] & =2 P\left[\partial \Lambda_{1}\right]-i \Lambda_{1}[X, F]=D P[\Lambda] \\
\delta P\left[B_{2}\right] & =2 P[\partial \Sigma]-2 i P\left[\left(\mathrm{i}_{X} \mathbf{i}_{X} \partial \Sigma\right) B\right]-8 i P\left[\left(\mathrm{i}_{X} \partial \Sigma\right)\left(\mathrm{i}_{X} B\right)\right]
\end{aligned}
$$

\longrightarrow What about S-duality?
There exists an alternative description of $\mathrm{R}-\mathrm{R}$ variations:

- $\mathcal{L} \sim\left\{P\left[C_{2}\right]\right\}$ is consistent truncation with $C_{p}=B=V=0$
$\Longrightarrow \delta \mathcal{L}=\left\{D P\left[\Lambda_{1}\right]\right\}=\left\{P\left[\partial \Lambda_{1}\right]\right\}$ since $F=0$
- For $F \neq 0 \Longrightarrow \mathcal{L} \sim\left\{P\left[C_{2}\right]+P\left[\left(\mathrm{i}_{X} \mathbf{i}_{X}\right) C_{2}\right] F\right\}$

Different prescription for R-R and NS-NS transformations?

R-R: modified gauge variations
NS-NS: substitution of different variations

$$
\begin{aligned}
& \delta P\left[C_{2}\right]=2 P\left[\partial \Lambda_{1}\right]-i \Lambda_{1}[X, F]=D P[\Lambda] \\
& \delta P\left[B_{2}\right]=2 P[\partial \Sigma]-2 i P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X} \partial \Sigma\right) B\right]-8 i P\left[\left(\mathrm{i}_{X} \partial \Sigma\right)\left(\mathrm{i}_{X} B\right)\right]
\end{aligned}
$$

\longrightarrow What about S-duality?
There exists an alternative description of $\mathrm{R}-\mathrm{R}$ variations:

- $\mathcal{L} \sim\left\{P\left[C_{2}\right]\right\}$ is consistent truncation with $C_{p}=B=V=0$
$\Longrightarrow \delta \mathcal{L}=\left\{D P\left[\Lambda_{1}\right]\right\}=\left\{P\left[\partial \Lambda_{1}\right]\right\} \quad$ since $F=0$
- For $F \neq 0 \Longrightarrow \mathcal{L} \sim\left\{P\left[C_{2}\right]+P\left[\left(\mathbf{i}_{X} \mathbf{i}_{X}\right) C_{2}\right] F\right\}$
\Longrightarrow Naive substitution yields results similar to NS-NS case
$\Longrightarrow \mathrm{R}-\mathrm{R}$ gauge invariance also possible through naive sustitution

Conclusions

- R-R background gauge invariance $\delta C=\partial \Lambda$ can be achieved through the implementation $\delta\left\{P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right) C\right]\right\}=\left\{D P\left[\left(\mathrm{i}_{X} \mathrm{i}_{X}\right) \Lambda\right]\right\}$
- Demanding that fields play same role before and after T-duality \Longrightarrow new symmetry $\delta X^{\mu}=\Sigma_{\nu}\left[X^{\nu}, X^{\mu}\right]$
- taking in account this new symmetry: D-brane action invariant
- $\delta X^{\mu}=\Sigma_{\nu}\left[X^{\nu}, X^{\mu}\right]$ usefull in construction of non-Abelian Born-Infeld actions or in covariant formulation of non-Abelian actions?

