
Program Z_INDEP.EXE 

 

1. Introduction and notation. 

 The program performs the one (two)-tailed asymptotic test for testing the null hypothesis of 

independence (H) in a 2×2 table like Table I; in addition, the program determines the validity 

conditions for these tests. All the details of the following may be seen in [1]. 

 
Table I 

Presentation of results in the form of a 2×2 table 

 Characteristic A 

 YES NO 
Totals 

 
Characteristic B 

YES 
NO 

 

x1 

x2 
y1 
y2 

n1 
n2 

Totals a1 a2 n 
 
 

 The results in the above table can have been obtained using 3 types of sampling, which results 

in 3 types of statistical models and 3 types of test: 

i) Model III (the row marginal totals and the column marginal totals are fixed): The values of ai and 

ni (i=1, 2) are previously fixed, the sole random variable (r.v.) in the problem is x1 (for example) −a 

generalized hypergeometric r.v.− and its distribution under H is the hypergeometric one. The exact 

test for H is performed using a conditional test (the known Fisher’s exact test) [2], which gives rise 

to a p-value of PIII(E). 

ii) Model II (only the row marginal totals are fixed): The values of ni (i=1, 2) are previously fixed, the 

r.v. for the problem are x1 and x2 (for example) −two independent binomial r.v. with parameters p1 

and p2− and its joint distribution under H (p1=p2=p) is a double-binomial based on the nuisance 

parameter p. The exact test for H is carried out using an unconditional test [3], which yields a p-

value of PII(E). 

iii) Model I (no fixed marginal): Only the value of n is previously fixed, the r.v. for the problem are x1, 

y1 and x2 (for example) −a multinomial distribution with parameters p11, p12, p21 and p22− and its 

distribution under H (pij=pi•×p•j) is a multinomial based on the two nuisance parameters p•1 and 

p1•. The exact test for H is carried out using an unconditional test [3], which yields a p-value of 

PI(E). 

 The exact p-values PIII(E), PII(E) and PI(E) are not unique (because they depend on which order 

statistic is used to obtain them), generally PIII(E)≥PII(E)≥PI(E) (although not always) and they are 
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progressively more difficult to calculate (in that order). In particular, it is not possible at present to 

determine the last two (especially PI(E)) when the marginal are moderately large. The value of PIII(E) is 

given in many statistical packages. The value of PII(E) is given by the StatXact package. Free programs 

for obtaining the values PI(E) and PII(E) may be copied at http://www.ugr.es/local/bioest/SMP.EXE and 

www.ugr.es/local/bioest/TMP.EXE respectively. If the p-value under a model for the generally most 

powerful statistic cannot be determined because of computational problems, the p-value under the 

same model, but for a different less powerful statistic may be determined. If it is still impossible, then 

the p-value under the higher model may be obtained. The details may be consulted in [4]. 

 For teaching purposes, more ease or the impossibility of calculation, it is usual to resolve the 

above problem in an approximate manner using the chi-square test with the most appropriate 

continuity correction c (c.c.) [5]. But, given that the chi-square test is an asymptotic test, it will be 

subject to certain validity conditions (v.c.). It is usual to require that the minimum expected quantity 

    ( ) ( )2 2min min×
= 1 1 n ,n  a ,a

E
n

 

be sufficiently large (E>E*), where E* is a number which, as will be seen,  does not have to be fixed 

nor have the classic value of 5. 

 For the following, one must bear in mind that: 

1) It is understood that if PE is the p-value obtained by the exact test and PA is the p-value obtained by 

the chi-square asymptotic test, then the condition E>E* must guarantee that: 
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In particular, this means that any value 3%≤PA≤7% is an acceptable estimation of PE=5%. The 

values of E* and PA are obtained as indicated below. The values of PE are obtained for the models 

I, II and III using the unconditional, unconditional and conditional exact tests, respectively, based 

on the orders of Yates’s chi-square, Barnard [3] and Yates’s chi-square respectively. The reasons 

for this may be seen in [1]. 

2) In the one-tailed test there are two possible alternatives K: 

KR (one right tail): “The association is positive”; 

KL (one left tail):  “The association is negative”. 

Although the program determines the p-value in both cases, the description which follows only 

considers those results and hypotheses which yield a p-value <0.5 (in order to facilitate the 

explanation). This means that the one-tailed tests which follow refer to the alternative that is 

compatible with the results (KR if N>0 or KL if N<0, where N = x1y2−x2y1) and are valid only when 
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the results verify −c < N < +c: in the other cases the p-value is ≥0.5. 

3) In the two-tailed test (alternative K: “There is positive or negative association) the chi-square 

quantity depends on the term ⏐N⏐−c. In every case it is understood that ⏐N⏐−c=0 when −c ≤ N ≤ 

+c. 

4) If F(•) refers to the distribution function of a typical normal r.v., then the p-value of the statistic 

χ≥0  for the one- or  two-tailed test is 1−F(χ) or 2×{1−F(χ)}, respectively.     

 

2. Calculating the asymptotic p-value under the Model III (both marginal totals are fixed). 

2.1. One-tailed test.  

 The classic statistic is the chi-square statistic with Yates’s c.c. Thus the p-value is given by PY 

= 1−F( Yχ ), where: 
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 The optimal statistic [6] is the chi-square statistic with Conover’s c.c. [7]. Thus the p-value is 

given by PIII = 1−F( IIIχ ), where: 
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 For the above tests to be valid, it is necessary that: 
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A universal (and conservative) condition is E*=19.2 (20.7) for the case PIII (PY). 

The universal condition when n≤500 is reduced to E*=8.1 for the case PIII. 
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2.2. Two-tailed test. 

 The classic statistic is the chi-square statistic with the Yates c.c. So the p-value is given by PY = 

2×{1−F( Yχ )}. But this gives rise to a very conservative test [8]. 

 The optimal statistic [9] is that of Yates but using the Mantel precaution [8].The p-value is 

given by PIII = {1−F( Yχ )}+{1−F( ′Yχ )}, where 2
Yχ ′  refers to the value of 2

Yχ  in the table  with 

1′x =[2E11–x1], where E11=n1a1/n and [x] refers to the rounding of x in the sense of moving away from 

the value of  E11 ([x]=E11 if x=E11; [x] = “the integral part of x” if x<E11; [x] = “the smallest integer not 

less than x” if x>E11). When 1′x > s=min (n1, a1) or 1′x < r=max (0, a1−n2), then 1−F( ′Yχ )=0. This test is 

always valid (since E*=0). 

 

3. Calculating the asymptotic p-value under the Model II (only the row marginal totals are 

fixed). 

 The classic statistic is the chi-square statistic with the Yates c.c. So the p-value is given by PY 

=1−F( Yχ ) for the one-tailed test and PY = 2×{1−F( Yχ )} for the two-tailed test. But this produces a 

very conservative test [10]. 

 The optimal statistic is Pearson’s chi-square statistic with the c.c. of Martín et el. [10]: 
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The p-values for the one- and two-tailed tests then are PII =1−F( IIχ ) and PII =2×{1−F( IIχ )} 

respectively. 

 For the test to be valid, it is necessary that: 
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A universal  (and conservative) condition  is E*=14.8 (14.9) for the case of one (two) tails. 

The universal condition when n≤500 is reduced to E*=7.2 (7.7) for the case of one (two) tails. 
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4. Calculating the asymptotic p-value under the Model I (no fixed marginal). 

 The classic statistic is the chi-square statistic with the Yates c.c. Hence the p-value is given by 

PY =1−F( Yχ ) for the one-tailed test and PY = 2×{1−F( Yχ )} for the two-tailed test. But this gives rise 

to a very conservative test [10]. 

 The optimal statistic [11] is the Pearson’s chi-square statistic with the c.c. of Pirie and Hamdan 

[12]: 
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The p-values for the one- and two-tailed tests then are PII =1−F( Iχ ) y PII =2×{1−F( Iχ )} respectively. 

 For the test to be valid it is necessary that: 
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A universal (and  conservative) condition  is E*=3.9 (6.2) for the case of one (two) tails. 

The universal condition when n≤500 is reduced to E*=3.0 (3.9) for the case of one (two) tails. 
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