Program SG_ASO.EXE and EQUIV_ASO.EXE

Considerer $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}\right) \sim \mathrm{M}\left(\mathrm{n} ; \mathrm{p}_{11}, \mathrm{p}_{12}, \mathrm{p}_{21}, \mathrm{p}_{22}\right)$ for data in Table below. The probability of an experimental result like the one in the Table 1 is:

$$
\begin{equation*}
\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}\right)=\mathrm{n}!\left(\mathrm{x}_{1}!\mathrm{y}_{1}!\mathrm{x}_{2}!\mathrm{y}_{2}!\right)^{-1} \mathrm{p}_{11}^{\mathrm{x}_{1}} \mathrm{p}_{12}^{y_{1}} \mathrm{p}_{21}^{\mathrm{x}_{2}} \mathrm{p}_{22}^{y_{2}} . \tag{1}
\end{equation*}
$$

Table 1
CROSS-SECTIONAL STUDY
Presentation of results (probabilities) in a problem of comparison between two proportions (illness vs. risk factor) when only a sample of \mathbf{n} observations exists (multinomial case)

		Illness		
		YES	NO	
Exposed to the	NO	$\mathrm{x}_{1}\left(\mathrm{p}_{11}\right)$	$\mathrm{y}_{1}\left(\mathrm{p}_{12}\right)$	$\mathrm{n}_{1}(\mathrm{q})$
risk factor	YES	$\mathrm{x}_{2}\left(\mathrm{p}_{21}\right)$	$\mathrm{y}_{2}\left(\mathrm{p}_{22}\right)$	$\mathrm{n}_{2}(1-\mathrm{q})$
		a_{1}	a_{2}	n (1)

Considerer $\mathrm{p}_{1}=\mathrm{p}_{11} /\left(\mathrm{p}_{11}+\mathrm{p}_{12}\right)$ and $\mathrm{p}_{2}=\mathrm{p}_{21} /\left(\mathrm{p}_{21}+\mathrm{p}_{22}\right)$, where $\mathrm{p}_{2}\left(\mathrm{p}_{1}\right)$ is the prevalence of an illness in the group of YES exposed (NOT exposed) to a risk factor. The aim is to perform inferences about $d=p_{2}-p_{1}$. So, a reparametrization of the model (1) can be performed on p_{1}, p_{2} and $q=p_{11}+p_{12}$:

$$
\begin{equation*}
\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}\right)=\left[\binom{\mathrm{n}}{\mathrm{n}_{1}} \mathrm{q}^{\mathrm{n}_{1}}(1-\mathrm{q})^{\mathrm{n}_{2}}\right] \times\left[\binom{\mathrm{n}_{1}}{\mathrm{x}_{1}}\binom{\mathrm{n}_{2}}{\mathrm{x}_{2}} \mathrm{p}_{1}^{\mathrm{x}_{1}}\left(1-\mathrm{p}_{1}\right)^{\mathrm{y}_{1}} \mathrm{p}_{2}^{\mathrm{x}_{2}}\left(1-\mathrm{p}_{2}\right)^{\mathrm{y}_{2}}\right], \tag{2}
\end{equation*}
$$

Under $\mathrm{H}_{\delta}: \mathrm{d}=\delta$ (where $-1<\delta<+1$), if $\mathrm{p}_{1}=\mathrm{p}$ then $\mathrm{p}_{2}=\mathrm{p}+\delta$ and so (2) is:

$$
P\left(x_{1}, y_{1}, x_{2}, y_{2} \mid \delta\right)=\left[\binom{n}{n_{1}} q^{n_{1}}(1-q)^{n_{2}}\right] \times\left[\binom{n_{1}}{x_{1}}\binom{n_{2}}{x_{2}} p^{x_{1}}(1-p)^{y_{1}}(p+\delta)^{x_{2}}(1-p-\delta)^{y_{2}}\right],
$$

where p and q are two nuisance parameters taking the values:

$$
0 \leq \mathrm{q} \leq 1, \max \{0 ;-\delta\} \leq \mathrm{p} \leq \min \{1 ; 1-\delta\} .
$$

For a critical region CR formed by a set of values ($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}$), the error α of the test will be $\alpha(\mathrm{p}, \mathrm{q} \mid \delta)=\Sigma_{\mathrm{CR}} \mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2} \mid \delta\right)$, and the size of the test will be $\alpha^{*}(\delta)=\operatorname{Max}_{\mathrm{p}, \mathrm{q}} \alpha(\mathrm{p}$, $\mathrm{q} \mid \delta)$. There are several ways for obtaining the CR, but the one that provides the generally most powerful test is that based on the order given by the Z-pooled statistic with the Yates' continuity correction $\left(Z_{Y}\right)$. The exact p-value $\alpha^{*}=\operatorname{Max}_{\delta \in H} \alpha^{*}(\delta)$ of the observed data $\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$ depends
on the null hypothesis H and alternative hypothesis K to be demonstrated.
The asymptotic p-values (see expressions bellow) are based on the Z-pooled statistics with the Pirie and Hamdan's continuity correction $\left(\mathrm{Z}_{\mathrm{PH}}\right)$ or without continuity correction $\left(\mathrm{Z}_{0}\right)$.

In both cases: if $\hat{\mathrm{d}}=\hat{\mathrm{p}}_{2}-\hat{\mathrm{p}}_{1} \in \mathrm{H}$, where $\hat{\mathrm{p}}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} / \mathrm{n}_{\mathrm{i}}$, then p -value $=1$.
There are two programs:

Program SG_ASO.EXE

- Case SG: H: $\mathrm{d} \leq \delta$ vs. K: $\mathrm{d}>\delta$ (Superiority Generalized). In particular:
* When $\delta=0$: is the classic case \mathbf{S} of Superiority.
* When $\delta<0$: is the case NI of Non-Inferiority.
* When $\delta>0$: is the case SS of Substantial-Superiority.
- Case IG: $\mathrm{H}: \mathrm{d} \geq \delta$ vs. $\mathrm{K}: \mathrm{d}<\delta$ (Inferiority Generalized).

Program EQUIV_ASO.EXE

- Case SG2: H: d $=\delta$ vs. K: d $\neq \delta$ (two-tailed SG).
- Case PE: H: $|\mathrm{d}| \geq \Delta$ vs. K: $|\mathrm{d}|<\Delta$ (Practice Equality or Equivalence) $(\Delta>0)$.
- Case SD: H: $|\mathrm{d}| \leq \Delta$ vs. K: $|\mathrm{d}|>\Delta$ (Substantially Difference) $(\Delta>0)$.

The Z-pooled two-tailed statistic for $\mathrm{H}: \mathrm{d}=\delta$ is:

$$
Z_{c}=\left\{\begin{array}{ll}
\left\lvert\, \frac{\mathrm{d}-\delta \mid-\mathrm{c}}{\mathrm{c}} \times \mathrm{f}(\delta)\right. & \text { if }|\hat{\mathrm{d}}-\delta|>\mathrm{c} \\
0 & \text { if }|\hat{\mathrm{d}}-\delta| \leq \mathrm{c}
\end{array} \text { where } \mathrm{s}(\delta)=\sqrt{\frac{\hat{\mathrm{p}}(1-\hat{\mathrm{p}})}{\mathrm{n}_{1}}+\frac{(\hat{\mathrm{p}}+\delta)(1-\hat{\mathrm{p}}-\delta)}{\mathrm{n}_{2}}} \text { and } \mathrm{f}=\sqrt{\frac{\mathrm{n}-1}{\mathrm{n}}},\right.
$$

where $\hat{\mathrm{p}}$ is the maximum likelihood estimator for p under $\mathrm{H}: \mathrm{d}=\delta$, and c is a continuity correction: $\mathrm{c}=\mathrm{n} / 2 \mathrm{n}_{1} \mathrm{n}_{2}, \mathrm{c}=1 / 2 \mathrm{n}_{1} \mathrm{n}_{2}$ and $\mathrm{c}=0$ for $\mathrm{Z}_{\mathrm{Y}}, \mathrm{Z}_{\mathrm{PH}}$ and Z_{0} respectively. The asymptotic p values are:

$$
\begin{gathered}
P_{\mathrm{SG}}=\mathrm{F}\left\{\frac{-\hat{\mathrm{d}}+\delta+\mathrm{c}}{\mathrm{~s}(\delta)} \times \mathrm{f}\right\}, \mathrm{P}_{\mathrm{IG}}=\mathrm{F}\left\{\frac{\hat{\mathrm{~d}}-\delta+\mathrm{c}}{\mathrm{~s}(\delta)} \times \mathrm{f}\right\} \\
\mathrm{P}_{\mathrm{PE}}(\Delta)=\max _{\delta=-\Delta,+\Delta}\left[\mathrm{F}\left\{\frac{\hat{\mathrm{~d}} \mid+\Delta+\mathrm{c}}{\mathrm{~s}(\delta)} \times \mathrm{f}\right\}-\mathrm{F}\left\{\frac{-|\hat{\mathrm{d}}|+\Delta-\mathrm{c}}{\mathrm{~s}(\delta)} \times \mathrm{f}\right\}\right]
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{SD}}(\Delta)=\mathrm{F}\left\{\frac{-|\hat{\mathrm{d}}+\Delta|+\mathrm{c}}{\max _{\delta=-\Delta,+\Delta} \mathrm{s}(\delta)} \times \mathrm{f}\right\}+\mathrm{F}\left\{\frac{-|\hat{\mathrm{d}}-\Delta|+\mathrm{c}}{\max _{\delta=-\Delta,+\Delta} \mathrm{s}(\delta)} \times \mathrm{f}\right\} \\
& \mathrm{P}_{\mathrm{SG} 2}(\delta)= \begin{cases}2 \times \mathrm{F}\left\{\frac{-|\hat{\mathrm{d}}-\delta|+\mathrm{c}}{\mathrm{~s}(\delta)} \times \mathrm{f}\right\} & \text { if } 2 \delta-1 \leq \hat{\mathrm{d}} \leq 2 \delta+1 \\
\mathrm{~F}\left\{\frac{-|\hat{\mathrm{d}}-\delta|+\mathrm{c}}{\mathrm{~s}(\delta)} \times \mathrm{f}\right\} & \text { other wise, }\end{cases}
\end{aligned}
$$

where $\mathrm{F}(\cdot)$ refers to the distribution function of a standard normal random variable z .
In the program:

- $\hat{\mathrm{d}}=\operatorname{Delta}(\mathrm{ML}) ;$
- $\hat{\mathrm{p}}=\mathrm{p}(\mathrm{ML})$;
- $\hat{\mathrm{q}}=\mathrm{n}_{1} / \mathrm{n}=\mathrm{q}(M L) ;$
where ML \equiv maximum likelihood.

For more details see:
Martín Andrés, A.; Tapia Garcia, J. M. and del Moral Ávila, M.J. (2005). Unconditional inferences on the difference of two proportions in cross-sectional studies. Biometrical Journal 47 (2), 177-187.
Martín Andrés, A.; Tapia Garcia, J. M. and Del Moral Ávila, M.J. (2008). Two-tailed unconditional inferences on the difference of two proportions in cross-sectional studies. Communications in Statistic - Simulation and Computation 37 (3), 455-465.

