Program SG_ASO.EXE and EQUIV_ASO.EXE

Considerer $(x_1, y_1, x_2, y_2) \sim M(n; p_{11}, p_{12}, p_{21}, p_{22})$ for data in Table below. The probability of an experimental result like the one in the Table 1 is:

$$P(x_1, y_1, x_2, y_2) = n! (x_1! y_1! x_2! y_2!)^{-1} p_{11}^{x_1} p_{12}^{y_2} p_{21}^{x_2} p_{22}^{y_2}.$$
(1)

Table 1 CROSS-SECTIONAL STUDY Presentation of results (probabilities) in a problem of comparison between two proportions (illness vs. risk factor) when only a sample of n observations exists (multinomial case)

		Illness		
		YES	NO	
Exposed to the	NO	$x_1(p_{11})$	y ₁ (p ₁₂)	n ₁ (q)
risk factor	YES	$x_{2}(p_{21})$	$y_{2}(p_{22})$	n ₂ (1–q)
		a ₁	a ₂	n (1)

Considerer $p_1 = p_{11} / (p_{11}+p_{12})$ and $p_2 = p_{21} / (p_{21}+p_{22})$, where $p_2 (p_1)$ is the prevalence of an illness in the group of YES exposed (NOT exposed) to a risk factor. The aim is to perform inferences about $d = p_2-p_1$. So, a reparametrization of the model (1) can be performed on p_1 , p_2 and $q=p_{11}+p_{12}$:

$$P(x_1, y_1, x_2, y_2) = \left[\binom{n}{n_1} q^{n_1} (1-q)^{n_2} \right] \times \left[\binom{n_1}{x_1} \binom{n_2}{x_2} p_1^{x_1} (1-p_1)^{y_1} p_2^{x_2} (1-p_2)^{y_2} \right], \quad (2)$$

Under H_{δ} : d= δ (where -1< δ <+1), if p_1 =p then p_2 =p+ δ and so (2) is:

$$P(x_{1}, y_{1}, x_{2}, y_{2} | \delta) = \left[\binom{n}{n_{1}} q^{n_{1}} (1-q)^{n_{2}} \right] \times \left[\binom{n_{1}}{x_{1}} \binom{n_{2}}{x_{2}} p^{x_{1}} (1-p)^{y_{1}} (p+\delta)^{x_{2}} (1-p-\delta)^{y_{2}} \right],$$

where p and q are two nuisance parameters taking the values:

 $0 \le q \le 1$, max $\{0; -\delta\} \le p \le \min\{1; 1-\delta\}$.

For a critical region CR formed by a set of values (x_1, y_1, x_2, y_2) , the error α of the test will be $\alpha(p, q|\delta) = \sum_{CR} P(x_1, y_1, x_2, y_2 | \delta)$, and the size of the test will be $\alpha^*(\delta) = Max_{p,q} \alpha(p, q|\delta)$. There are several ways for obtaining the CR, but the one that provides the generally most powerful test is that based on the order given by the Z-pooled statistic with the Yates' continuity correction (Z_Y). The exact p-value $\alpha^* = Max_{\delta \in H} \alpha^*(\delta)$ of the observed data (x_1, y_1, x_2, y_2) depends

on the null hypothesis H and alternative hypothesis K to be demonstrated.

The asymptotic p-values (see expressions bellow) are based on the Z-pooled statistics with the Pirie and Hamdan's continuity correction (Z_{PH}) or without continuity correction (Z_0).

In both cases: if $\hat{d} = \hat{p}_2 - \hat{p}_1 \in H$, where $\hat{p}_i = x_i / n_i$, then p-value = 1.

There are two programs:

Program SG_ASO.EXE

- Case SG: H: $d \le \delta$ vs. K: $d > \delta$ (Superiority Generalized). In particular:
 - * When $\delta = 0$: is the classic case **S** of Superiority.
 - * When $\delta < 0$: is the case **NI** of Non-Inferiority.
 - * When $\delta > 0$: is the case **SS** of Substantial-Superiority.
- Case IG: H: $d \ge \delta$ vs. K: $d < \delta$ (Inferiority Generalized).

Program EQUIV_ASO.EXE

- Case SG2: H: d = δ vs. K: d $\neq \delta$ (two-tailed SG).
- Case **PE**: H: $|\mathbf{d}| \ge \Delta \text{ vs. K}$: $|\mathbf{d}| < \Delta$ (Practice Equality or Equivalence) ($\Delta > 0$).
- Case **SD**: H: $|d| \le \Delta vs. K$: $|d| > \Delta$ (Substantially Difference) ($\Delta > 0$).

The Z-pooled two-tailed statistic for H: $d=\delta$ is:

$$Z_{c} = \begin{cases} \frac{|\hat{d} - \delta| - c}{s(\delta)} \times f & \text{if } |\hat{d} - \delta| > c\\ 0 & \text{if } |\hat{d} - \delta| \le c \end{cases} \quad \text{where } s(\delta) = \sqrt{\frac{\hat{p}(1 - \hat{p})}{n_{1}} + \frac{(\hat{p} + \delta)(1 - \hat{p} - \delta)}{n_{2}}} \text{ and } f = \sqrt{\frac{n - 1}{n}},$$

where \hat{p} is the maximum likelihood estimator for p under H: d= δ , and c is a continuity correction: $c = n/2n_1n_2$, $c = 1/2n_1n_2$ and c = 0 for Z_Y , Z_{PH} and Z_0 respectively. The asymptotic p-values are:

$$P_{SG} = F\left\{\frac{-\hat{d}+\delta+c}{s(\delta)} \times f\right\}, \quad P_{IG} = F\left\{\frac{\hat{d}-\delta+c}{s(\delta)} \times f\right\}$$
$$P_{PE}(\Delta) = \max_{\delta=-\Delta, +\Delta} \left[F\left\{\frac{|\hat{d}|+\Delta+c}{s(\delta)} \times f\right\} - F\left\{\frac{-|\hat{d}|+\Delta-c}{s(\delta)} \times f\right\}\right]$$

$$P_{SD}(\Delta) = F\left\{\frac{-\left|\hat{d}+\Delta\right| + c}{\max_{\delta = -\Delta, +\Delta} s(\delta)} \times f\right\} + F\left\{\frac{-\left|\hat{d}-\Delta\right| + c}{\max_{\delta = -\Delta, +\Delta} s(\delta)} \times f\right\}$$
$$P_{SG2}(\delta) = \begin{cases} 2 \times F\left\{\frac{-\left|\hat{d}-\delta\right| + c}{s(\delta)} \times f\right\} & \text{if } 2\delta - 1 \le \hat{d} \le 2\delta + 1\\ F\left\{\frac{-\left|\hat{d}-\delta\right| + c}{s(\delta)} \times f\right\} & \text{other wise,} \end{cases}$$

where $F(\cdot)$ refers to the distribution function of a standard normal random variable z.

In the program:

- $\hat{d} = Delta (ML);$
- $\hat{p} = p(ML);$
- $\hat{q} = n_1/n = q(ML);$

where $ML \equiv maximum$ likelihood.

For more details see:

- Martín Andrés, A.; Tapia Garcia, J. M. and del Moral Ávila, M.J. (2005). Unconditional inferences on the difference of two proportions in cross-sectional studies. *Biometrical Journal* 47 (2), 177-187.
- Martín Andrés, A.; Tapia Garcia, J. M. and Del Moral Ávila, M.J. (2008). Two-tailed unconditional inferences on the difference of two proportions in cross-sectional studies. *Communications in Statistic Simulation and Computation 37 (3)*, 455-465.