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ABSTRACT
Subjective perception of randomness has been rdsedr by psychologists and
mathematics educators, using a variety of tasksulteag in a number of different
descriptions for the biases that characterize pesplperformances. Analyzing
prospective teachergiossible biases concerning randomness is highbveglt as new
mathematics curricula for compulsory teaching lsvelre being proposed that
incorporate increased study of random phenomenthifnchapter we present results of
assessing perception of randomness in a sampled®fpPospective primary school
teachers in Spain. We first compare three pairsanidom variables deduced from a
classical task in perception of randomness and dedhe mathematical properties
these prospective teachers assign to sequencesnofom experiments. Then, the
written reports, where prospective teachers analygesame variables and explicitly
conclude about their own intuitions are also stadiResults show a good perception of
the expected value and poor conception of bothpeddence and variation as well as
some views of randomness that parallel some naireeptions on randomness held at
different historic periods.
Keywords. Randomness, subjective perception, conceptions rafidomness,
prospective primary school teachers, assessment.
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1. INTRODUCTION
Different reasons to teach probability have beglighted over the past years (e.g., by
Gal, 2005; Franklin et al., 2005, Jones, 2005; &uwdovnick, 2011): the role of
probability reasoning in decision making, the instental need of probability in other
disciplines, and the relevance of stochastic kedgé in many professions. Moreover,
students meet randomness not only in the mathesnal@ssroom, but also in social
activities (such as games or sports), and in melegical, biological, economic, and
political settings. Consequently, some of them nbayld incorrect conceptions of
randomness in absence of adequate instruction yBoick, 2012).
Consequently of this pervasive presence of chanegeryday life, probability has been
included in schools since primary education in méceurricula that place more
emphasis on the study of randomness and probalityery young children. For
example, in the Spanish curriculum for compulsargnpry education (MEC, 2006), we
find the following contents in the first cycle (6yeéar-olds) “Random nature of some
experiences. Difference between possible, impasaitdl that what is possible but not
certain”. Reference is made to using the chance languageeiryday settings, in order
to describe and quantify random situations. In skeond cycle (8-9 year olds) the
document suggests that children should evaluateethdts of random experiences, and
understand that there are more and less probaklessvand that it is impossible to
predict a specific result. In the last cycle (10yEhr olds) children are encouraged to
recognize random phenomena in everyday life anichatt the probability for events in
simple experiments.
This curriculum is not an exception, since the enrttendency even for primary school
levels is towards a data-orientated teaching obaiodity, where students are expected
to perform experiments or simulations, formulategjions or predictions, collect and
analyze data from these experiments, propose astdlyjeonclusions and predictions
that are based on data (e.g., Ministério da Educd@&@®7; NCTM, 2000).
Changing the teaching of probability in schoolsl Wépend on the extent to which we
can prepare adequately the teachers. Although eéemadao not need high levels of
mathematical knowledge, they do require a profowmdlerstanding of the basic
mathematics they teach at school level, includirdgep grasp of the interconnections
and relationships among different aspects of thiswkedge (Ma, 1999); for example,
teachers need a sound understanding of the differeanings associated to randomness

and probability. Unfortunately, several authorsg(eFranklin & Mewborn, 2006;
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Chadjipadelis, Meletiou, & Paparistodemou, 2010taBaro & Diaz, 2012) suggest that
many of the current programmes do not yet traichees adequately for their task to
teach statistics and probability. The situationp&sticularly challenging for primary
teachers, few of whom have had suitable trainingtatistics, or in the related didactical
knowledge (Jacobbe, 2010) and, consequently, thgitmnshare with their students a
variety of probabilistic misconceptions (Stohl, 8D0Therefore it is important to assess
teachers’ probabilistic knowledge and find actesti where teachers work with
meaningful problems and are confronted to their awisconceptions in the topic
(Batanero, Godino & Roa, 2004).

Understanding randomness is the base of underastapdobability and conceptions of
randomness are at the heart of people’s probabiisid statistical reasoning (Lecoutre
et al., 2006); however, epistemological analysisaofilomness, as well as psychological
research have shown that there is no adequateppiercef randomness in children or
even in adults. There is an apparent contradighgreople’s understanding of random
processes and sequences, which is related to ylobglegical problems associated with
the concept, namely that randomness implies thatthéng possible might occur”, but
that, subjectively, however, many people beliewa tnly the outcomes without visible
patterns are “permissible” examples of randomnéssnkins, Jolliffe, & Glickman
1991).

Despite the relevance of the topic in probabilityl sstatistics, little attention has been
paid to prospective teachers’ conceptions on ramgssy To address this omission, in
this chapter we analyse a research that was aimadsassing prospective primary
school teachers’ perception of randomness usingdifi@rent tools: (a) we first analyse
some statistical variables deduced from a classixpériment related to perception of
randomness that was carried out by the teachersydbsecondly analyze the written
reports produced by the teachers, which were gaanaactivity, directed to confront
them with their own misconceptions of randomness.

In the next sections we first analyse some differbistorical interpretation of
randomness that can be parallel to some concepdlomsn by prospective teachers in
our research. We secondly analyze previous reseamclsubjective perceptions of
randomness in children and adults, and the scasmarch dealing with teachers. Then
we present the method, results and conclusionsio$toidy. Finally some implications

for teachers’ education are provided.



2. RANDOMNESS: EMERGENCE AND PROGRESSIVE FORMALIZATION
In spite of being a basic idea in probability, ramhess is not an easy concept. The
term resists easy or precise definition, its emergewas slow and it has received
various interpretations at different periods irtdng (Zabell, 1992; Bennet, 1998; Liu &
Thompson, 2002, Batanero, Henry & Parzysz, 200&8neof these interpretations are
relevant to this research and may help understgrghospective teachers’ difficulties in

the theme.

2.1. Randomness and causality

Chance mechanisms such as cubic dice, or astia@at been used since antiquity to
make decisions or predict the future. However, iangific idea of randomness was
absent in the first exploratory historical phasdiol extended according to Bennet
(1998), from antiquity until the beginning of theiddle Ages when randomness was
related to causality and conceived as the oppos$isomething that had some known
causes. According to Liu and Thompson (2002), cptimes of randomness and
determinism ranged along an epistemological spectrwhere, on one extremun,
random phenomena would not have an objective exstéut would reflect human
ignorance. This was the view, for example of Atistowho considered that chance
results from the unexpected coincidence of two oramseries of events, independent of
each other and due to so many different factorsttieeventual result is pure chance
(Batanero, Henry, & Parzysz, 2005). It was also mam in European Enlightenment
where there was a common belief in universal detesm, as expressed for example
by Laplace: "We ought then to regard the presexté sif the universe as the effect of its
anterior state and as the cause of the one whith figllow” (Laplace, 1814/1995, p.
vi). From this viewpoint, chance is seen as oné/dgRpression of our ignorance.

The other end of the spectrum consists in accepteg existence of “irreducible
chance” and therefore that randomness is an inhdeature of nature (Liu &
Thompson, 2002). As stated by Poincaré (1936)therlaws of Brownian motion, the
regularity of macroscopic phenomena can be tradléd deterministic laws, even
when these phenomena are primarily random at therosuopic level. Moreover,
ignorance of the laws governing certain naturahpineena does not necessarily involve
a chance interpretation, because certain phenomignainknown laws (such as death)
are considered to be deterministic. Finally, amtregy phenomena for which the laws

are unknown, Poincaré discriminated between randomenomena, for which
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probability calculus would give us some informatioand those non-random
phenomena, for which there is no possibility ofdicgon until we discover their laws.
As Ayer (1974) stated, a phenomenon is only consdleto be random if it behaves in
accordance with probability calculus, and this mi&bn will still hold even when we

have found the rules for the phenomenon.

2.2. Randomness and probability

With the pioneer developments of probability theagndomness was related to equi-
probability (for example in the Liber of Ludo Aledsy Cardano), because this
development was closely linked to games of chawbere the number of possibilities
is finite and the principle of equal probabilities the elementary events of the sample
space in a simple experiment is reasonable.

Nowadays, we sometimes find randomness explainéerms of probability, although
such an explanation would depend on the underlyimderstanding of probability. If we
adopt a Laplacian’s view of probability, we wowdnsider that an object is chosen at
random out of a given class (sample space), i€timelitions in this selection allow us to
give the same probability for any other memberhas tlass (Lahanier- Reuter, 1999).
This definition of randomness may be valid for ramdgames based on dice, coins, etc.,
but Kyburg (1974) suggested that it imposes exeessgstriction to randomness and it
would be difficult to find applications of the santeor example, it only can be applied
to finite sample spaces; if the sample space isiiaf then the probability associated to
each event is always null, and therefore still tdeh even when the selection method
is biased. Furthermore, this interpretation preetudny consideration of randomness
applied to elementary events that are not equifreba

When we transfer the applications of probabilitythhe physical or natural world, for
example studying the blood type of a new-born baryany other hereditary
characteristic, we cannot rely on the equiprobbgrinciple. In this new situation, we
may consider an object as a random member of a ifla® can select it using a method
providing a given ‘a priori’ relative frequency &ach member of this class in the long
run. Thus, we use the frequentist view of probghilivhich is most appropriate when
we have data from enough cases. However, we dreikf the theoretical problem of
deciding how many experiments it is necessary twsicer in order to being sure that
we have sufficiently proven the random nature o thbject (Batanero, Henry, &
Parzysz, 2005).



Within either of these two frameworks, randomnesan ‘objective’ property assigned

to the event or element of a class. Kyburg (197%#icizes this view and proposes a

subjevtive interpretation of randomness composedtefollowing four terms:

0 The object that is supposed to be a random menidlzeclass;

0 The set of which the object is a random member({aion or collective);

O The property with respect to which the object isaadom member of the given
class;

0 The knowledge of the person giving the judgmentatiomness.

Whether an object is considered to be a random reemba class or not, depends,

under this interpretation, on our knowledge. Consény, this view is coherent with

the subjective conception of probability, and adgéguwhen we have some information

affecting our judgment about the randomness ofventgFine, 1973).

2.3. Formalization of randomness

By the end of the XIX century, theoretical developments of statisticéérience and
publication of tables of pseudo-random numbersjyced concern about how to ensure
the ‘quality’ of those numbers. According to Zab@l992), an important development
was the distinction between a random process arahdom sequence of outcomes:
Although randomness is a property of a processerahan of the outcomes of that
process, it is only by observing outcomes that w&e dge whether the process is
random or not (Johston-Wilder & Pratt, 2007). Thesgbility of obtaining
pseudorandom digits with deterministic algorithmsd arelate debates led to the
formalization of the concept of randomness (Firg,3).

Von Mises (1928/1952) based his study of this dopn the intuitive idea that a
sequence is considered to be random if we are goediof the impossibility of finding

a method that lets us win in a game of chance wivamaing depends on forecasting
that sequence. This definition of randomness ib#ses for statistical tests that are used
for checking random number tables before preseitiam to the scientific community.
However, since in all statistical tests there s possibility of error, we can never be
totally certain that a given sequence, in spitdhafing passed all the tests, does not
have some unnoticed pattern within it. Thus, wenoarbe absolutely sure about the
randomness of a particular finite sequence. We dake a decision about its
randomness with reference to the outcomes of &e$intques and instruments. This



explains why a computer-generated random sequemhe&h( is not random in an
absolute sense) can still be random in a relatwse (Harten & Steinbring, 1983).
Another attempt to define the randomness of a semueas based on itemputational
complexity Kolmogorov’s interpretation of randomness regekctthe difficulty of
describing it (or storing it in a computer) using@de that allows us to reconstruct it
afterwards (Zabell, 1992). In this approach, a eaga would be random if it cannot be
codified in a more parsimonious way, and the alesenifc patterns is its essential
characteristic. The minimum number of signs neggssacode a particular sequence
provides a scale for measuring its complexity,hee definition allows for a hierarchy in
the degrees of randomness for different sequeitaesmportant to remark that in both
Von Mises’ and Kolmogorov’'s approaches perfect camdess would only apply to
sequences of infinite outcomes and therefore, naméss would only be a theoretical
concept (Fine, 1973).

3. PERCEPTION OF RANDOMNESS

3.1. Adult’s perception of randomness

There has been a considerable amount of reseacladalts’ subjective perception of
randomness (e.g., Wagenaar, 1972; Falk, 1981; Bli-l Wagenaar, 1991; Engel &
Sedimeier, 2005). Psychologists have used a vadétgtimulus tasks, which were
classified in a review by Falk and Konold (1997pitwo main types: (a) Igeneration
tasks subjects generate random sequences under stamdangctions to simulate a
series of outcomes from a typical random processh |as tossing a coin; (b) In
recognition tasks which were termed asomparative likelihood tasky Chernoff
(2009a), people are asked to select the most ramd@@veral sequences of results that
might have been produced by a random device oretmdd whether some given
sequences were produced by a random mechanisnaSiypes of research have also
been performed using two-dimensional random distidims, which essentially consist
of random distributions of points on a squared.gril

One main conclusion of all these studies is thatdms are not good at either producing
or perceiving randomness (Falk, 1981; Falk & Kondl897; Nickerson, 2002) and
numerous examples demonstrate that adults haveeseliiticulties when dealing
appropriately with aspects of randomness, so ty&tesatic biases have consistently

been found. One such bias is known as gaenbler's fallacy or belief that the
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probability of an event is decreased when the elkiaatoccurred recently, even though
the probability is objectively known to be indepentd across trials (Tversky &
Kahneman, 1982). Related to this is the tenden@gople in sequence generation tasks
to include too many alternations of different résulsuch as heads and tails in the
flipping of a coin) in comparison to what would thetically be expected in a random
process. Similarly, in perception tasks people tenekject sequences with long runs of
the same result (such as a long sequence of haadsyonsider sequences with an
excess of alternation of different results to bedman (Falk, 1981; Falk & Konold,
1997). Comparable results are found in people’sopmance with two-dimensional
tasks, in which clusters of points seem to preweedistribution from being perceived as
random. These results support the findings by kyeend Kahneman (1982) that
suggest people do not follow the principles of admbty theory in judging the
likelihood of uncertain events and apply severaluristics, such as local
representativeness, where subjects evaluate tihalplity of an event by the degree of
likeness to the properties of its parent populatithe degree it reflects the features of
the process by which it is generated. Other autf@gs Falk, 1981; and Falk & Konold,
1997) believe that individual consistency in petspleerformance with diverse tasks
suggests underlying misconceptions about randomness

3.2. Children's perception of randomness

From a didactic point of view, a crucial questio® whether these biases and
misconceptions are spontaneously acquired or whétleg are a consequence of poor
instruction in probability. Below, we outline a nber of key research studies looking at
children’s and adolescents’ conceptions of rand@snand their performance when
faced with tasks requiring the generation or redagnof sequences of random results.
According to Piaget and Inhelder (1951), chana#uis to the interference of a series of
independent causes, and the ‘non presence’ dielbossible outcomes when there are
only a few repetitions of an experiment. Each immlacase is indeterminate or
unpredictable, but the set of possibilities mayfdaend using combinatorial reasoning,
thereby making the outcome predictable. The autmmtson of probability is based on
the ratio between the number of possible ways fparicular case to occur and the
number of all possible outcomes. This theory wauldgest that chance and probability

cannot be totally understood until combinatoriald aproportional reasoning are



developed what, for Piaget and Inhelder, does mppén until a child reaches the
formal operations stage (12-14 years).

Piaget and Inhelder (1951) investigated childramislerstanding of patterns in two-
dimensional random distributions. They designedeaepof apparatus to simulate rain
drops falling on paving stones. The desire for l&gy appeared to dominate the young
children’s predictions. When they were asked whieeefollowing rain drop would fall,
children at stage 1 (6 to 9 years) allocated the drops in approximately equal
numbers on each pavement square, thereby prodaaingorm distribution. With older
children, proportional reasoning begins to develapgd Piaget and Inhelder reported
that such children tolerate more irregularity ie thstribution. The authors believed that
children understood the law of the large numbetscivexplains the global regularity
and the particular variability of each experiméantidtaneously.

Fischbein and Gazit (1984) and Fischbein et aB1).%have also documented children's
difficulties in differentiating random and deternsitic aspects, and their beliefs in the
possibility of controlling random experiments. lantrast to the Piagetian view, these
authors have suggested that even very young childisplay important intuitions and
precursor concepts of randomness and consequagihe dhat it is not didactically
sound to delay exploiting and building on thesejexttive intuitions until the formal
operations stage is reached.

Moreover, Green’s (1983) findings, also contradicaget and Inhelder’ theory. His
investigations with 2930 children aged 11-16, uspaper and pencil versions of
piagetian tasks, showed that the percentage odirehilrecognizing random or semi-
random distributions actually decreased with agea | second study with 1600 pupils
aged 7 to 11 and 225 pupils aged 13 to 14 (Gre289,11991), Green gave the children
generation and recognition tasks related to a mandequence of heads and tails
representing the results of flipping a fair coirheTstudy demonstrated that children
were able to describe what was meant by equi-pteb&lmwever, they did not appear
to understand the independence of the trials, @andetd to produce series in which runs
of the same result were too short compared to thwsewe would expect in a random
process. In both studies, children based theirst®ts on the following properties of the
sequences: results pattern, number of runs ofaime sesult, frequencies of results, and
unpredictability of random events. However, theggpprties were not always correctly

associated to randomness or determinism.



Toohey (1995) repeated some of Green's studies #@ithh1-15 year-old students and
concluded that some children have onlgeal perspectivef randomness, while that of
other children is entirely global. The local perspee of randomness emphasized the
spatial arrangement of the outcomes within eaclarsquvhile theglobal perspective
concentrates on the frequency distribution of omes.

Batanero and Serrano (1999) analydesl written responses of 277 secondary students
in two different age groups (14 and 17 year-olds3dame test items taken from Green
(1989, 1991) concerning the perception of randosmnes sequences and two
dimensional distributions. The authors also askedstudents to justify their answers.
Batanero and Serrano’s results suggest that stidertjective meaning of randomness
could parallel some interpretations that randomhasseceived throughout history. For
example, when a student associated the lack oérpatb randomness, Batanero and
Serrano suggested this view was consistent with ¢benplexity approachto
randomness described before. Other students shawedception compatible with, the
classical frequentist or subjective approati probability and randomness.

More recently, researchers have used computersnidage random processes in order
to discover children’s understanding of randomn@satt (2000) analysed 10-11 year-
old children’s ideas of randomness as they workea icomputer environment and
suggested these children showed the local and Iglpbapective of randomness
described by Toohey (1995). While the local perpecchildren’s attention is mainly
paid to the uncertainty of the next outcome and ¢pédemeral patterns in short
sequences, in the global view the children wererawéthe long term predictability of
either the empirical distribution of outcomes (ineqcy of observed outcomes) or the
theoretical distribution (expressing beliefs abit behaviour of the random generator,
such as equally likelihood of different outcomesgq also Johston-Wilder & Pratt,
2007).

3.3. Teachers’ perception of randomness

In this section we summarise the scarce reseamls$ed on teachers’ perception of
randomness, which suggests the need to develojfisgeaining where teachers can
increase their probabilistic knowledge for teaching

Azcérate, Cardefioso and Porland (1998) analysedettiponses of 57 primary-school

teachers to Konold et al.” (1991) questionnaireomder to analyse these teachers’
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conception of randomness. They also asked parntitsga list examples or random and
non random phenomena and to describe the featlneg assigned to random
phenomena. In general, participants showed a padraeption of randomness, which
reflected, in most cases, causal argumentations @out perception of random
processes in everyday settings (beyond games atehaviany participants considered
a phenomena to be deterministic if they could idigsbme causes that could influence
the phenomena apart pure chance (e.g. in metegjold@dther criteria to judge
randomness included multiple possibilities or udprebility of results.

The most relevant study with teachers is that begr@bff (2009a & b). After a pilot
study with 56 prospective teachers, Chernoff (200&aalysed the responses and
justifications given by 239 prospective mathemateachers (163 elementary school
teachers and 76 secondary school teachers) tosti@ueaire consisting in comparative
likelihood tasks. The questionnaire included sdveeguences of 5 trials of flipping a
fair coin, in which the author fixed the ratio a#dds to tails and varied the arrangement
of outcomes. In order to show that responses teat @ssumed as incorrect in previous
research could be derived from participants’ subjegrobabilistic thinking, Chernoff
(2009b) analysed the justifications of 19 prosmectieachers that apparently had
incorrect perception of randomness. The result isfdmalysis suggested that these
prospective teachers may be reasoning from thifésret interpretations of the sample
space: (a) taking into account the switches froadHe tail; (b) considering the longest
run; and (c) considering the switches and longast together. Consequently, their
reasoning as regards randomness and their judgeaiewhether a sequence was
random or not could be consistent with these viefshie sample space; therefore their
apparent incorrect responses were not due to lapkobabilistic reasoning, but to use
of personal subjective probabilities.

In summary, research carried out with prospectaehers is scarce and suggest a poor
perception of randomness as well as use of subgegdrobabilities. Below we
summarise our own research in which we explordggbehers’ capability to judge their
own intuitions when analysing the data collectedhgmselves in a generation task and
the possibility that part of the teachers show seormive conceptions on randomness
that parallel those held at different historic pds.

4. METHOD

Participants in our study were 208 prospective arinschool teachers in the Faculty of
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Education, University of Granada, Spain; in totalifferent groups (35-40 prospective
teachers by group) took part in this research.oAlhese prospective teachers (in their
second year of University) were following the samathematics education course,
using the same materials and doing the same pahatitvities. They all had followed a
mathematics course, which included descriptivassied and elementary probability the
previous year.

The data were collected as a part of a formativwigc which is discussed in depth in
Godino, Batanero, Roa and Wilhelmi (2008) as caedisf two sessions (90 minutes
long each). The two main goals of the formativevagtwere: (a) assessing prospective
teachers’ conceptions of randomness; (b) confrgnirospective teachers with their
possible misconceptions on this concept.

In the first session (90 minutes long), the prosigedeachers were given the statistical
project “Check your intuitions about chance” (Gadiet al, 2008) in which they were
encouraged to carry out an experiment to decidehehehe group had good intuitions
on randomness or not. The experiment consistedyoigt to write down apparent
random results of flipping a coin 20 times (withaeilly throwing the coin, just
inventing the results) in such a way that othemteavould think the coin was flipped
at random (simulated sequence). This is a clasgeaération task was similar to that
used in Engel and Sedlmeier (2005)’s research.

Participants recorded the simulated sequences @mtading sheet. Afterwards they
were asked to flip a fair coin 20 times and write tesults on the same recording sheet
(real sequence). At the end of the session, inrdodeonfront these future teachers with
their misconceptions, participants were given tla¢adcollected in their classroom.
These data contained six statistical variables: bermof heads, number of runs and
length of the longest run for each of real and e sequences from each student.
Results in the experiments are presented in Figures 3. Sample size for the data
analyzed by the prospective teachers in each graue smaller (30-40 experiments per
group), although the shape of the distribution anthmaries for each variable were
very close to those presented in Figures 1 to 3.

Teachers were asked to compare the variables tadldoom the real and simulated
sequences, finish the analysis at home and wrigpart with a complete discussion of
the project, including all the statistical graphsdaprocedures they used and their
conclusions regarding the group’s intuitions abm@mdomness. Participants were given

freedom to build other graphs or summaries in otdecomplete their reports. In a
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second session the reports were collected andffieesdt solutions to the project given
by the prospective teachers were collectively dised in the classroom. In addition, a
didactical analysis was carried out in order téefon the statistical knowledge needed
to solve the project and the pedagogical conteriwledge involved in teaching

statistics in primary school through project work.

5. RESULTS AND DISCUSSION
In order to assess prospective teachers’ conceptibrandomness we first analysed the
number of heads, number of runs and longest rueach of the simulated and real
sequences in the data collected by the prospetaahers in their experiments. In the
following, the data collected by the six groupsingkpart in the study (n=208) will be

analysed together, although similar results weoadan each of the six subsamples.

5.1. Perception of the Binomial distribution

The theoretical distribution for the number of head 20 trials can be modelled by the
Binomial distributionB (n, p),wheren=20 andp= 0.5. The expectation and variance for
this distribution igt1=np=10; Var=npg=5. The empirical distributions for the number of
heads in the real and simulated sequences in tperiments carried out by the
participants in the study are presented in Figused.the summary statistics in Table 1.
We can observe that participants produced “headd™tils” in about equal numbers,
and the majority of the students were close tahberetically correct expected value of
10. There was no significant preference for “headsér “tails” or vice versa, in
agreement with previous research (e.g. Wagenad®@, XSreen, 1991; Falk & Konold,
1997; Engel & SedIimeier, 2005).

100
30 @n. heads (real)
60 On. heads (simulated)
40
20 -
kil
6 7 8 9 10 11 12 13 14 15 16

Figure 1: Distribution for Number of heads.
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Table 1: Summary statistics for Number of headsgést run and number of runs

Number of heads Longest run Number of runs

Real Simulated Real Simulated Real Simulated

Mean 10.45 10.29 4.35 3.32 10.10 10.78
Mode 10; 11 10 4 3 10; 11 12
Median 10 10 4 3 10 12
Std. Deviation  2.05 1.22 1.6 1.12 2.9 2.8
Range 11 8 10 11 14 13

Results show a good perception of the expected aymhedian and mode of the
binomial distribution (number of heads in 20 flipgiof a coin) as it is shown in the
mode, median and average number of heads in thdated sequences, which are close
to the theoretical valuep=10 and in the non significant difference in thetdst of
difference on averages between real and simulagdescest(= -1.00;p=0.31). The
standard deviation in the simulated sequences heagever, almost half the theoretical

value and the differences were statistically sigaiit in theF- test £=2.83,p=0.001).

5.2. Perception of independence

Even if the concept of independence is very easydfine mathematically by the
property that a joint probability of two eventstiee product of the two single event
probabilities, its application is difficult for mgnpeople. Perception of independence
was poor in our sample, as prospective teachedupea in average shorter runs and
higher number of runs than expected in a randonecgs® (according to Engel and
Sedlmeier, 2005, the expected number of runs ioirafipping sequence of length 20
is 10.5, and the expected longest run 4.33). Eheonsistent with previous research, in
which, a majority of participants of different agexamined under various methods-
identify randomness with an excess of alternatioesveen different outcomes (e.qg.,
Wagenaar, 1972; Green, 1991, Engel & Sedimeier5@@d whereas the expected
probability of alternation in a random binary seggeis .5, people’s average subjective
preference is a probability of .6 or .7 in genemattasks (Falk & Konold, 1997).
Moreover, according Tversky and Kahneman’s (198resentativeness heuristic,
people judge that a sequence is random if it isesgmtative of its parent population;
therefore the sequence comprise about equal nurnbéeads and tails and display an
irregular order, not only globally, but also logalThis result is visible in Figures 2 and
3 and in the t- tests of differences in averages Was statistically significant for both
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variables { = -7.76;p = 0.001 for the longest ruts2.48 p= 0.01 for the number of
runs).

Some teachers recognized this difference in theponts and consequently they
correctly considered this was an indication of momplete perception of randomness:
“In the simulated sequence we tend to produce rshoyt runs” (AB). On the contrary,
misconceptions of independence, was also observestme written reports by other
participants, who rejected the sequence as randmawise some runs were longer than
what they believed should be expected in a randegnence: “Some students cheated
and invented their sequences, since they produzecthainy successive heads or tails to
be random” (EA).

160
140 —
120 Bl.ongest mn
(real)
100
OLongestun
80 (sumulated)
60
40
20 -
O ~ E— T T -
2 3 4 5 o 7 8 9 10 11 12 13

Figure 2: Distribution and summary statistics foe tongest run.

5.3. Perception of variation

Variability is omnipresent throughout the statigtienquiry cycle and is fundamental to
statistical thinking (Wild & Pfannkuch, 1999). Howes, the prospective teachers in our
study produced sequences with little variationha tength of runs (a wide majority
produced a longest run with only 3 similar outconé&siis is visible in Figure 2 and in
the F test, that was statistically significant (F=2.@60.0001). However, perception of
variation was good as regards the number of rer4.07; p=0.6; no significant). This
result is reasonable, since, participants wereootmitted, as a group, to reproduce the
sampling distribution of the proportions of hea@ansequently, their deviation from
the expected variability in the distribution of tle random sequences is a result of in

each individual’s matching with the expected prdiporin his/her sequence produced
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(Falk, Falk, & Ayton, 2009). However, in the nexctions we can show how the
perception of variation in these prospective teeh@s poor, since only a few of them
made reference to variation in their reports asrgortant feature of random processes.
Anyway, part of the teachers perceived variatiorthi@ data, and even more, justified
randomness basing on this variation “There is mwangety in the random sequence.
This is pretty logical, since these results wereioled by a random experiment that
involved chance” (NC); “ In the number of headsréhis a difference, ... since when
we made up the data (in the simulated sequencellgegere more even, but in the real

sequence these results are more uneven, sincargeye to chance” (IE).

50

EN. of 1uns
(real) _

ON. of 1uns
(simulated)

2 3 4 5 o6 7 8 9 10 11 12 13

Figure 3: Distribution and summary statisticsXwmber of runs

5.4. Teachers’ analyses of their own intuitions

All the above results reproduced those obtainedsbgen (1991) and Batanero and
Serrano (1999) with secondary school students, twic reasonable, because the
statistics training that Spanish prospective pryrtaachers receive is reduced to their
study of statistics along secondary education.

As we have previously explained, after performihg &xperiment, participants in the
study were given a data sheet with the data redardéhe classroom and were asked to
analyse these data and conclude on their own imnsitin a written report. While the
experiment proposed to the prospective teachersawgaseration taskthe production

of the report includes ecognition tasksince the subjects were asked to recognise the
features of randomness in the data. According tagéNaar (1972) and Fallnd
Konold (1997)theserecognition tasks are more appropriate for assgssiijective
perception of randomness since a person could dageed perception of randomness in

spite of being unable to reproduce it.
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Most participants represented the data using @ifftegraphs that varied in complexity
and that have been analyzed in a previous papdar{Ba, Arteaga & Ruiz, 2010).
Many of them also computed averages (mean, medramades) and variation
parameters (range or standard deviation). Althdhglgraphs and summaries produced
were generally correct and many of them used Eixceloduce a variety of statistical
analysis, few of them got a complete correct caiolu about the group intuitions
(Table 2).

Table 2: Frequency (percent) of prospective teatlenclusions.

Conclusion about the intuitions (n=200) Correct olimect No conclusion

Perceiving the expected Number of heads 32 (16.0) 114 (57.0) 54 (27.0)

value

Perceiving independence Expected longest run 6 (3.0 87(43.5) 107(53.5)
Expected number of runs 9 (4.5) 100 (50.0) 915u5.

Perceiving variation Number of heads 25 (12.5) (B115) 54 (27.0)
Longest run 8 (4.0) 85 (42.5) 107 (53.5)
Number of runs 11 (5.5) 98 (49.0) 91 (45.5)

Only a small number of prospective teachers expliavere able to get a correct
conclusion for the class’ perception of expectetliem and variation in the different
variables. Those who succeeded completed an infonfeaence process and were able
to relate the empirical data to the problem posethe project (the intuitions in the
group), completing a modelling cycle (posing a pealy collecting data; using
mathematical models, building with the model arnténpreting the results as regards the
problem posed). They concluded that the group haamb gntuitions as regards the
average number of heads and, at the same timahthaerception of variability in this
random variable was poor. An example is given bdgwmilar responses were obtained

for the other variables):
As regards the number of heads, the intuitiondédlassroom were very close to what happen
in reality; but not complete. The means in the ra@adl simulate sequences are very close; the
medians and modes are identical; however the stahdaviations suggest the spread in both
distributions is different (CG).

Other participants reached a partial conclusiomgyable only to conclude about the
central tendency or about the spread in the datae¥ample, the following teacher was
able to perceive the similarity of means, but did realize that the variation in the two

sequences was quite different:
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Observing the table, | think that my colleaguesehgood intuition; since the most frequent
values for the number of heads in the simulateduesecp coincide with those in the real
sequence; 10 and 11 are the most frequent valuéstim cases. The means are close to 10 in

both sequences; therefore the intuitions are gdds)(

In the next example, the student concluded aboaitdifference in spread, but was
unable to relate this result to the students’ tidos. He argued that the different
students had similar intuitions but did not reldtese intuitions to the results from the

generation task experiment and did not analyseehg&al tendency:
Intuitions are very similar in the different studgnthere is no much irregularity. But when we
compare to the real sequences, we realise the gispfore irregular. In the real sequence the
maximum number of heads is 16 and the minimum Weber in the simulate graph the
maximum is 13 and the minimum 8; the range is gnétlan that of real flipping of the coin
(MM).
The remaining students either were unable to caoleclor reached an incorrect
conclusion. Part of them could not connect theltesi their statistical analyses to the
students’ intuitions; that is, they did not see ithelications of the results provided by
the mathematical model to the solution of the poblposed (assessing the students’

intuitions). An example is given below:

When | compare the data | realise that many stugleaincided in their results. In spite of this, |

still think there is mere chance; since in the dated sequences we invented the results (EL).
Other students connected the mathematical workhéoprroblem situation, but they
failed in their conclusions because they made eoriact interpretation of the question
posed by the lecturer. They assumed a good intuitiould mean getting exactly the
same results in the simulated and real sequerntekelnext example, the prospective
teacher shows a correct conception of randomnemsddmness means lack of
prediction in the short term) mixed with an incatreonception: Instead of comparing
the two distributions, he compared the students lmnene and tried to assess the
number of coincidences between the number of héaddhe real and simulated

sequences for each student:
Studying the graphs the prediction of the group wa$ too bad. A game of chance is
unpredictable; but when we add the number of sttedefo guessed the result, the number of
guesses is higher than the number of failures &ttslwho were very far from the real result)
(LG).

Although the binomial distribution (number of hepdsas more intuitive for the

prospective teachers, still the number of correaictusions as regards the perception of

the binomial distribution was very scarce. Thesllts suggest that these prospective
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teachers did not only hold some misconceptionsaafilomness, but they also were
unconscious of their misconceptions and were uriablecognise these misconceptions

when confronted with the statistical data colledtethe experiments.

5.5. Further analysis of pre-service teachers’ conceio

Another interesting point is that some of theseltess justified their wrong conclusions
as regards some of the variables in the projeanbking explicit their own views of
randomness that reproduced some of the conceptiessribed by Batanero and
Serrano (1999) in secondary school students. Bel@wpresent examples of these
conceptions, many of which are partly correct, &g incomplete and parallel some
view of randomness that were described in Section 2

Randomness and causalifjhe principle of cause and effect is deeply roateduman
experience and there is a tendency to relate randssnto causality. A possible way to
relate randomness and cause is to think that wifsaas as randomness to a person’s
limited mind could well be explained by a extremelymplex causal system that is
unknown to the person, who is incapable of percéiive causes for the phenomena.
Another view is considering that causality is dasion and that all events are actually
random. Some participants assumed “Chance” asahge of random phenomena, as

was apparent in some participants’ responses:

“We define random experiments as a consequendeanice” (SG).
“Some people think that the number of possibilibégetting a tail is 50%; but, although in this
experiment results were very close to what we eggdethis result was due to chance or good

luck, because we cannot deduce this result, strbepiends on chancgéNG).
Randomness as unpredictabilitA common feature in different conceptions of
randomness is unpredictability: the fact that wenod predict a future event based on a
past outcome (Bennet, 1998). Some participantsesgpd this idea in their responses,
since they assumed they could not reach a condualmut the differences in
distribution for the number of runs, number of head longest run because anything
might happen in a random process. In these respdhséoutcome approach” (Konold,
1989) that is the interpretation of probability gtiens in a non probabilistic way may

also operate:

“l want note that it is impossible to make a praitin of results since in this type of experiment
any result is unpredictable” (AA).

“Results of random experiments cannot be prediatgd they happen” (SG).
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“My final conclusion is that in experiences relatéal chance, there are more or less likely

events, but it is impossible to predict the exasuit (MN).
Randomness as equiprobabilityA few subjects connected randomness as
equiprobability (in the classical approach to ttiscept) and stated that any result was
possible, since the experiment was random and qoesdy there was equal
probability for each result. This view was paraltel the classical conception of
probability where an event as random only in chgeetis the same probability for this
event and for any other possible event in the emxysat.
“The probability for head and tails is the same datherefore, in 20 throwing there is the same
probability to obtain 20 heads, 20 tails or any gibde combination of heads and tails” (EB).
“You know that there is 50% possibility to get hemutd another 50% possibility to get tail
because there are only two different results. Cqueatly each student got a different result”
(CG).
Lack of pattern or lack of ordeiSome participants associated randomness to lack of
model or lack of pattern, a view close to Von Misefl952/1928) modelling of
randomness, where a sequence of outcomes is rawtemever it is impossible to get
an algorithm that serves to produce the sequencpatticular some students rejected
the idea that a random sequence could appear esedrdn spite that this view is partly
correct, in fact in the analysis of the projectadatvariety of models appeared, such as
the Binomial distribution, the distribution of ryn® the geometrical distribution. These
models arise in any random sequence and conseguerttdomness should also been
interpreted as multiplicity of models.
“You cannot find a pattern, as it is random” (BS).
“We do not think it is possible to get a sequenzevsll ordered as [C,C,C,C,C,+,+,+,+,4],
since our intuition led us to alternate between cheand tails and to produce unordered
sequences, such as, for example, [C,C,+,C,+,+,C,+,C,+]” (RE).
“It is not random, it is too ordered{SG).
Randomess and contr@\.few prospective teachers described randomnessmasthing
that cannot be controlled, a vision common unt Middle Ages according Bennett
(1998):
“Despite our inability to control randomness, wet@aual number of heads and tails” (AG).
“These predictions are really accurate. Althougle timulation and reality are very close we
should take into account that randomness can niegarontrolled 100%, even if you have much
knowledge of the situation” (EC).
On the contrary, it was also observed the illusibeontrol (Langer, 1975), defined as

an expectancy of a personal success probabilitppiogriately higher than the
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objective probability would warrant. Consequentlfy this belief some participants
believed they could predict or control the resilthe experiment. For example, one

participant classified all his classmates accordsy capacity to predict the results:
“Only 21.7% students guessed the number of headharexperiment; 13% were very close

because they had an error of (x 1); the remainitgdents failed in their prediction(LG).

6. DISCUSSION AND IMPLICATIONS FOR TRAINING TEACHERS
As stated by Bar-Hillel and Wagenaar (1991), randless is a concept which somehow
eludes satisfactory definition; although theordljcaandomness is a property of a
generating (random) process, in practice we caw iofér indirectly randomness from
properties of the generator's outcomes. In additialthough expressions such as
‘random experiments', 'random number’, 'randonmakbei, ‘random event’, randomness'
frequently appear in daily language as well asadhosl textbooks, the meaning of
randomness in not clarified in school textbooksjsthncreasing the likelihood of
students having difficulties at this point (Batame®errano, & Green, 1998). It is not
then surprising that, given such complexity, thespective teachers in our sample
showed different misconceptions of randomness,oih the sequences they produced
and in their reports when analysing their data.
However, understanding randomness is an essemgjalis learning probability and
therefore it is essential that prospective teachequire a sound understanding of this
concept along their initial education if we wanenh succeed in their future teaching of
probability. As stated by Ball Lubienski, & Mewboi(2001, p. 453), some of the
activities in which teachers regularly engage, sasHtfiguring out what students know;
choosing and managing representations of mathemhadieas; selecting and modifying
textbooks; deciding among alternative courses diodt involve mathematical
reasoning and thinking. Consequently, teachergtunBonal decisions as regards the
teaching of probability are dependent on the tedgipeobabilistic knowledge.
Prospective teachers in our sample showed a mixtuemrrect and incorrect beliefs
concerning randomness. On a hand, their percemifomaverages in the binomial
distribution was good, since as stated by Falkk,F& Ayton (2009) one major
characteristics of a sequence of coin tosses iedn@robability of the two outcomes
and equal proportions of the two symbol typesnaoee likely to be obtained by chance

than any other result.
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However, at the same time, misconceptions relatecatiation, and independence, as
well associating randomness with ignorance, omgyio control randomness, also
appear in the sample. This is cause for concernnwbered with evidence that
prospective mathematics teachers in our sample maag a weak understanding of
randomness and present different biases that cbeldransmitted to their future
students.

These prospective teachers in our research weesldsksolve a problem and complete
a modelling cycle. According to Chaput, Girard &riie (2011), modelling consists of
describing an extra- mathematical problem in udaafjuage and building up an
experimental protocol in order to carry out an expent (in this research the problem
consisted in checking the intuitions on randomreasd a particular experiment was
chosen to get data on the teachers’ intuitions)s @escription leads to setting some
hypotheses which are intended to simplify the sibma(in the example, the length of
the sequences to be produced was fixed and there@ability of heads and tails in the
coin was assumed).

Next, the second step of the modelling procesgasstating the problem and the
working hypotheses into a mathematical model irhsaovay that working with the
model produces some possible solution to the iniablem. The teachers translated
the question (what conceptions they had on randeg)ramd the working hypotheses to
statistical terms (they compared three pairs ofribigtions: the number of heads,
number of runs and length of the longest run iThbetquences and for the whole
classroom). Consequently participants in our sarbpid and worked with different
statistical models (each student chose and prodyaaticular graphs, tables or
statistical summaries to compare these pairs tifilolisions).

The third and final step consists of interpreting mathematical results and relate these
results to reality, in such a way that they prodseme answers to the original problem.
Although the majority of participants in our resgarcorrectly completed steps 1 and 2
in the modelling cycle, few of them were capabldramslate the statistical results they
got to a response about what the intuitions ofdlaesroom on randomness were like.
That is, few of them could understand what theistteal results indicated about the
intuitions in the group and therefore, these prospe teachers failed to complete the
last part of the modelling process.

Dantal (1997) suggests that in our classroom, weceatrate in step 2 (“the real

mathematics) in the modelling cycle), since thisthe easiest part to teach to our
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students. However all the steps are equally rete¥@n modelling and in learning
mathematics, if we want our students understand aputeciate the usefulness of
mathematics. It is therefore very important thaacteers’ educators develop the
prospective teachers’ ability to model in probapiind the capacity to learn from data
if we want succeed in implementing statistics etlonaat school level.

Considering the importance and difficulty of th@itg the question remains about how
to make randomness understandable by prospectieehdes. Possibly this
understanding should develop gradually, by expertsmand simulations, starting with
concrete materials and moving later to computerukittons and observation of
randomness in demographic or social phenomenatafsdsby Batanero, Serrano, and
Green (1998), it is important that prospective bess understand that, in randomness
apparent disorder, a multitude of global regulesitican be discovered. These
regularities allow us to study random phenomenagugie theory of probability.

Finally we suggest the usefulness of working withvaties similar to the one described
in this report to help prospective teachers makectinceptions about randomness and
probability explicit. In order to overcome possillesconceptions, after working with
these activities, it is important to continue tbenfative cycle with a didactical analysis
of the situation. In our experience, in the secaedsion the correct and incorrect
solutions to the project “checking your intuitioms randomness” were debated and the

different conceptions of randomness explicit intéechers’ responses were discussed.
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