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ABSTRACT 

Subjective perception of randomness has been researched by psychologists and 

mathematics educators, using a variety of tasks, resulting in a number of different 

descriptions for the biases that characterize people's performances. Analyzing 

prospective teachers’ possible biases concerning randomness is highly relevant as new 

mathematics curricula for compulsory teaching levels are being proposed that 

incorporate increased study of random phenomena. In this chapter we present results of 

assessing perception of randomness in a sample of 208 prospective primary school 

teachers in Spain. We first compare three pairs of random variables deduced from a 

classical task in perception of randomness and deduce the mathematical properties 

these prospective teachers assign to sequences of random experiments. Then, the 

written reports, where prospective teachers analyse the same variables and explicitly 

conclude about their own intuitions are also studied. Results show a good perception of 

the expected value and poor conception of both independence and variation as well as 

some views of randomness that parallel some naïve conceptions on randomness held at 

different historic periods. 

Keywords: Randomness, subjective perception, conceptions of randomness, 

prospective primary school teachers, assessment. 
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1. INTRODUCTION 

Different reasons to teach probability have been highlighted over the past years (e.g., by 

Gal, 2005; Franklin et al., 2005, Jones, 2005; and Borovnick, 2011): the role of 

probability reasoning in decision making, the instrumental need of probability in other 

disciplines,  and the relevance of stochastic knowledge in many professions. Moreover, 

students meet randomness not only in the mathematics classroom, but also in social 

activities (such as games or sports), and in meteorological, biological, economic, and 

political settings. Consequently, some of them may build incorrect conceptions of 

randomness in absence of adequate instruction (Borovcnick, 2012).   

Consequently of this pervasive presence of chance in everyday life, probability has been 

included in schools since primary education in recent curricula that place more 

emphasis on the study of randomness and probability by very young children. For 

example, in the Spanish curriculum for compulsory primary education (MEC, 2006), we 

find the following contents in the first cycle (6-7 year-olds): “Random nature of some 

experiences. Difference between possible, impossible and that what is possible but not 

certain”. Reference is made to using the chance language in everyday settings, in order 

to describe and quantify random situations. In the second cycle (8-9 year olds) the 

document suggests that children should evaluate the results of random experiences, and 

understand that there are more and less probable events, and that it is impossible to 

predict a specific result. In the last cycle (10-11 year olds) children are encouraged to 

recognize random phenomena in everyday life and estimate the probability for events in 

simple experiments.  

This curriculum is not an exception, since the current tendency even for primary school 

levels is towards a data-orientated teaching of probability, where students are expected 

to perform experiments or simulations, formulate questions or predictions, collect and 

analyze data from these experiments, propose and justify conclusions and predictions 

that are based on data (e.g., Ministério da Educação, 1997; NCTM, 2000). 

Changing the teaching of probability in schools will depend on the extent to which we 

can prepare adequately the teachers. Although teachers do not need high levels of 

mathematical knowledge, they do require a profound understanding of the basic 

mathematics they teach at school level, including a deep grasp of the interconnections 

and relationships among different aspects of this knowledge (Ma, 1999); for example, 

teachers need a sound understanding of the different meanings associated to randomness 

and probability. Unfortunately, several authors (e.g., Franklin & Mewborn, 2006; 
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Chadjipadelis, Meletiou, & Paparistodemou, 2010; Batanero & Díaz, 2012) suggest that 

many of the current programmes do not yet train teachers adequately for their task to 

teach statistics and probability. The situation is particularly challenging for primary 

teachers, few of whom have had suitable training in statistics, or in the related didactical 

knowledge (Jacobbe, 2010) and, consequently, they might share with their students a 

variety of probabilistic misconceptions (Stohl, 2005). Therefore it is important to assess 

teachers’ probabilistic knowledge and find activities where teachers work with 

meaningful problems and are confronted to their own misconceptions in the topic 

(Batanero, Godino & Roa, 2004).  

Understanding randomness is the base of understanding probability and conceptions of 

randomness are at the heart of people’s probabilistic and statistical reasoning (Lecoutre 

et al., 2006); however, epistemological analysis of randomness, as well as psychological 

research have shown that there is no adequate perception of randomness in children or 

even in adults. There is an apparent contradiction in people’s understanding of random 

processes and sequences, which is related to the psychological problems associated with 

the concept, namely that randomness implies that “anything possible might occur”, but 

that, subjectively, however, many people believe that only the outcomes without visible 

patterns are “permissible” examples of randomness (Hawkins, Jolliffe, & Glickman 

1991).  

Despite the relevance of the topic in probability and statistics, little attention has been 

paid to prospective teachers’ conceptions on randomness. To address this omission, in 

this chapter we analyse a research that was aimed at assessing prospective primary 

school teachers’ perception of randomness using two different tools: (a) we first analyse 

some statistical variables deduced from a classical experiment related to perception of 

randomness that was carried out by the teachers; (b) we secondly analyze the written 

reports produced by the teachers, which were part of an activity, directed to confront 

them with their own misconceptions of randomness. 

In the next sections we first analyse some different historical interpretation of 

randomness that can be parallel to some conceptions shown by prospective teachers in 

our research. We secondly analyze previous research on subjective perceptions of 

randomness in children and adults, and the scarce research dealing with teachers. Then 

we present the method, results and conclusions of our study. Finally some implications 

for teachers’ education are provided. 
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2. RANDOMNESS: EMERGENCE AND PROGRESSIVE FORMALIZATION 

In spite of being a basic idea in probability, randomness is not an easy concept. The 

term resists easy or precise definition, its emergence was slow and it has received 

various interpretations at different periods in history (Zabell, 1992; Bennet, 1998; Liu & 

Thompson, 2002, Batanero, Henry & Parzysz, 2005). Some of these interpretations are 

relevant to this research and may help understanding prospective teachers’ difficulties in 

the theme. 

 

2.1. Randomness and causality 

Chance mechanisms such as cubic dice, or astragali have been used since antiquity to 

make decisions or predict the future. However, a scientific idea of randomness was 

absent in the first exploratory historical phase, which extended according to Bennet 

(1998), from antiquity until the beginning of the Middle Ages when randomness was 

related to causality and conceived as the opposite of something that had some known 

causes. According to Liu and Thompson (2002), conceptions of randomness and 

determinism ranged along an epistemological spectrum, where, on one extremun, 

random phenomena would not have an objective existence but would reflect human 

ignorance. This was the view, for example of Aristotle, who considered that chance 

results from the unexpected coincidence of two or more series of events, independent of 

each other and due to so many different factors that the eventual result is pure chance 

(Batanero, Henry, & Parzysz, 2005). It was also common in European Enlightenment 

where there was a common belief in universal determinism, as expressed for example 

by Laplace: "We ought then to regard the present state of the universe as the effect of its 

anterior state and as the cause of the one which is to follow” (Laplace, 1814/1995, p. 

vi). From this viewpoint, chance is seen as only the expression of our ignorance. 

The other end of the spectrum consists in accepting the existence of “irreducible 

chance” and therefore that randomness is an inherent feature of nature (Liu & 

Thompson, 2002). As stated by Poincaré (1936), for the laws of Brownian motion, the 

regularity of macroscopic phenomena can be translated to deterministic laws, even 

when these phenomena are primarily random at the microscopic level. Moreover, 

ignorance of the laws governing certain natural phenomena does not necessarily involve 

a chance interpretation, because certain phenomena with unknown laws (such as death) 

are considered to be deterministic. Finally, among the phenomena for which the laws 

are unknown, Poincaré discriminated between random phenomena, for which 
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probability calculus would give us some information, and those non-random 

phenomena, for which there is no possibility of prediction until we discover their laws. 

As Ayer (1974) stated, a phenomenon is only considered  to be random if it behaves in 

accordance with probability calculus, and this definition will still hold even when we 

have found the rules for the phenomenon. 

 

2.2. Randomness and probability 

With the pioneer developments of probability theory, randomness was related to equi-

probability (for example in the Liber of Ludo Aleae by Cardano), because this 

development was closely linked to games of chance, where the number of possibilities 

is finite and the principle of equal probabilities for the elementary events of the sample 

space in a simple experiment is reasonable. 

Nowadays, we sometimes find randomness explained in terms of probability, although 

such an explanation would depend on the underlying understanding of probability. If we 

adopt a Laplacian’s view of  probability, we would consider that an object is chosen at 

random out of a given class (sample space), if the conditions in this selection allow us to 

give the same probability for any other member of this class (Lahanier- Reuter, 1999). 

This definition of randomness may be valid for random games based on dice, coins, etc., 

but Kyburg (1974) suggested that it imposes excessive restriction to randomness and it 

would be difficult to find applications of the same. For example, it only can be applied 

to finite sample spaces; if the sample space is infinite, then the probability associated to 

each event is always null, and therefore still identical, even when the selection method 

is biased. Furthermore, this interpretation precludes any consideration of randomness 

applied to elementary events that are not equiprobable. 

When we transfer the applications of probability to the physical or natural world, for 

example studying the blood type of a new-born baby or any other hereditary 

characteristic, we cannot rely on the equiprobability principle. In this new situation, we 

may consider an object as a random member of a class if we can select it using a method 

providing a given ‘a priori’ relative frequency to each member of this class in the long 

run. Thus, we use the frequentist view of probability, which is most appropriate when 

we have data from enough cases. However, we are left with the theoretical problem of 

deciding how many experiments it is necessary to consider in order to being sure that 

we have sufficiently proven the random nature of the object (Batanero, Henry, & 

Parzysz, 2005).  
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Within either of these two frameworks, randomness is an ‘objective’ property assigned 

to the event or element of a class. Kyburg (1974) criticizes this view and proposes a 

subjevtive interpretation of randomness composed of the following four terms: 

 The object that is supposed to be a random member of a class; 

 The set of which the object is a random member (population or collective); 

 The property with respect to which the object is a random member of the given 

class; 

 The knowledge of the person giving the judgment of randomness. 

Whether an object is considered to be a random member of a class or not, depends, 

under this interpretation, on our knowledge. Consequetnly, this view is coherent with 

the subjective conception of probability, and adequate when we have some information 

affecting our judgment about the randomness of an event (Fine, 1973). 

 

2.3. Formalization of randomness 

By the end of the XIXth century, theoretical developments of statistical inference and 

publication of tables of pseudo-random numbers, produced concern about how to ensure 

the ‘quality’ of those numbers. According to Zabell (1992), an important development 

was the distinction between a random process and a random sequence of outcomes: 

Although randomness is a property of a process, rather than of the outcomes of that 

process, it is only by observing outcomes that we can judge whether the process is 

random or not (Johston-Wilder & Pratt, 2007). The possibility of obtaining 

pseudorandom digits with deterministic algorithms and relate debates led to the 

formalization of the concept of randomness (Fine, 1973). 

Von Mises (1928/1952)  based his study of this topic on the intuitive idea that a 

sequence is considered to be random if we are convinced of the impossibility of finding 

a method that lets us win in a game of chance where winning depends on forecasting 

that sequence. This definition of randomness is the basis for statistical tests that are used 

for checking random number tables before presenting them to the scientific community. 

However, since in all statistical tests there is the possibility of error, we can never be 

totally certain that a given sequence, in spite of having passed all the tests, does not 

have some unnoticed pattern within it. Thus, we cannot be absolutely sure about the 

randomness of a particular finite sequence. We only take a decision about its 

randomness with reference to the outcomes of test techniques and instruments. This 
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explains why a computer-generated random sequence (which is not random in an 

absolute sense) can still be random in a relative sense (Harten & Steinbring, 1983). 

Another attempt to define the randomness of a sequence was based on its computational 

complexity. Kolmogorov’s interpretation of randomness reflected the difficulty of 

describing it (or storing it in a computer) using a code that allows us to reconstruct it 

afterwards (Zabell, 1992). In this approach, a sequence would be random if it cannot be 

codified in a more parsimonious way, and the absence of patterns is its essential 

characteristic. The minimum number of signs necessary to code a particular sequence 

provides a scale for measuring its complexity, so this definition allows for a hierarchy in 

the degrees of randomness for different sequences. It is important to remark that in both 

Von Mises’ and Kolmogorov’s approaches perfect randomness would only apply to 

sequences of infinite outcomes and therefore, randomness would only be a theoretical 

concept (Fine, 1973). 

 

3. PERCEPTION OF RANDOMNESS 

 

3.1. Adult’s perception of randomness 

There has been a considerable amount of research into adults’ subjective perception of 

randomness (e.g., Wagenaar, 1972; Falk, 1981; Bar-Hillel & Wagenaar, 1991; Engel & 

Sedlmeier, 2005). Psychologists have used a variety of stimulus tasks, which were 

classified in a review by Falk and Konold (1997) into two main types: (a) In generation 

tasks subjects generate random sequences under standard instructions to simulate a 

series of outcomes from a typical random process, such as tossing a coin; (b) In 

recognition tasks, which were termed as comparative likelihood task by Chernoff 

(2009a), people are asked to select the most random of several sequences of results that 

might have been produced by a random device or to decide whether some given 

sequences were produced by a random mechanism. Similar types of research have also 

been performed using two-dimensional random distributions, which essentially consist 

of random distributions of points on a squared grill. 

One main conclusion of all these studies is that humans are not good at either producing 

or perceiving randomness (Falk, 1981; Falk & Konold, 1997; Nickerson, 2002) and 

numerous examples demonstrate that adults have severe difficulties when dealing 

appropriately with aspects of randomness, so that systematic biases have consistently 

been found. One such bias is known as the gambler's fallacy, or belief that the 
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probability of an event is decreased when the event has occurred recently, even though 

the probability is objectively known to be independent across trials (Tversky & 

Kahneman, 1982). Related to this is the tendency of people in sequence generation tasks 

to include too many alternations of different results (such as heads and tails in the 

flipping of a coin) in comparison to what would theoretically be expected in a random 

process. Similarly, in perception tasks people tend to reject sequences with long runs of 

the same result (such as a long sequence of heads) and consider sequences with an 

excess of alternation of different results to be random (Falk, 1981; Falk & Konold, 

1997). Comparable results are found in people’s performance with two-dimensional 

tasks, in which clusters of points seem to prevent a distribution from being perceived as 

random. These results support the findings by Tversky and Kahneman (1982) that  

suggest people do not follow the principles of probability theory in judging the 

likelihood of uncertain events and apply several heuristics, such as local 

representativeness, where subjects evaluate the probability of an event by the degree of 

likeness to the properties of its parent population or the degree it reflects the features of 

the process by which it is generated. Other authors (e.g. Falk, 1981; and Falk & Konold, 

1997) believe that individual consistency in people's performance with diverse tasks 

suggests underlying misconceptions about randomness. 

 

3.2. Children's perception of randomness 

From a didactic point of view, a crucial question is whether these biases and 

misconceptions are spontaneously acquired or whether they are a consequence of poor 

instruction in probability. Below, we outline a number of key research studies looking at 

children’s and adolescents’ conceptions of randomness, and their performance when 

faced with tasks requiring the generation or recognition of sequences of random results. 

According to Piaget and Inhelder (1951), chance is due to the interference of a series of 

independent causes, and the ‘non presence’ of all the possible outcomes when there are 

only a few repetitions of an experiment. Each isolated case is indeterminate or 

unpredictable, but the set of possibilities may be found using combinatorial reasoning, 

thereby making the outcome predictable. The authors’ notion of probability is based on 

the ratio between the number of possible ways for a particular case to occur and the 

number of all possible outcomes. This theory would suggest that chance and probability 

cannot be totally understood until combinatorial and proportional reasoning are 
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developed what, for Piaget and Inhelder, does not happen until a child reaches the 

formal operations stage (12-14 years). 

Piaget and Inhelder (1951) investigated children’s understanding of patterns in two-

dimensional random distributions. They designed a piece of apparatus to simulate rain 

drops falling on paving stones. The desire for regularity appeared to dominate the young 

children’s predictions. When they were asked where the following rain drop would fall, 

children at stage 1 (6 to 9 years) allocated the rain drops in approximately equal 

numbers on each pavement square, thereby producing a uniform distribution. With older 

children, proportional reasoning begins to develop, and Piaget and Inhelder reported 

that such children tolerate more irregularity in the distribution. The authors believed that 

children understood the law of the large numbers, which explains the global regularity 

and the particular variability of each experiment simultaneously. 

Fischbein and Gazit (1984) and Fischbein et al. (1991), have also documented children's 

difficulties in differentiating random and deterministic aspects, and their beliefs in the 

possibility of controlling random experiments. In contrast to the Piagetian view, these 

authors have suggested that even very young children display important intuitions and 

precursor concepts of randomness and consequently argue that it is not didactically 

sound to delay exploiting and building on these subjective intuitions until the formal 

operations stage is reached. 

Moreover, Green’s (1983) findings, also contradicted Piaget and Inhelder’ theory. His 

investigations with 2930 children aged 11-16, using paper and pencil versions of 

piagetian tasks, showed that the percentage of children recognizing random or semi-

random distributions actually decreased with age. In a  second study with 1600 pupils 

aged 7 to 11 and 225 pupils aged 13 to 14 (Green, 1989, 1991), Green gave the children 

generation and recognition tasks related to a random sequence of heads and tails 

representing the results of flipping a fair coin. The study demonstrated that children 

were able to describe what was meant by equi-probable. However, they did not appear 

to understand the independence of the trials, and tended to produce series in which runs 

of the same result were too short compared to those that we would expect in a random 

process. In both studies, children based their decisions on the following properties of the 

sequences: results pattern, number of runs of the same result, frequencies of results, and 

unpredictability of random events. However, these properties were not always correctly 

associated to randomness or determinism. 
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Toohey (1995) repeated some of Green's studies with 75 11-15 year-old students and 

concluded that some children have only a local perspective of randomness, while that of 

other children is entirely global. The local perspective of randomness emphasized the 

spatial arrangement of the outcomes within each square, while the global perspective 

concentrates on the frequency distribution of outcomes. 

Batanero and Serrano (1999) analysed the written responses of 277 secondary students 

in two different age groups (14 and 17 year-olds) to some test items taken from Green 

(1989, 1991) concerning the perception of randomness in sequences and two 

dimensional distributions. The authors also asked the students to justify their answers. 

Batanero and Serrano’s results suggest that students’ subjective meaning of randomness 

could parallel some interpretations that randomness has received throughout history. For 

example, when a student associated the lack of pattern to randomness, Batanero and 

Serrano suggested this view was consistent with the complexity approach to 

randomness described before. Other students showed a conception compatible with, the 

classical, frequentist or subjective approach to probability and randomness. 

More recently, researchers have used computers to simulate random processes in order 

to discover children’s understanding of randomness. Pratt (2000) analysed 10-11 year-

old children’s ideas of randomness as they worked in a computer environment and 

suggested these children showed the local and global perspective of randomness 

described by Toohey (1995). While the local perspective children’s attention is mainly 

paid to the uncertainty of the next outcome and the ephemeral patterns in short 

sequences, in the global view the children were aware of the long term predictability of 

either the empirical distribution of outcomes (frequency of observed outcomes) or the 

theoretical distribution (expressing beliefs about the behaviour of the random generator, 

such as equally likelihood of different outcomes) (see also Johston-Wilder & Pratt, 

2007).  

 

3.3. Teachers’ perception of randomness 

In this section we summarise the scarce research focussed on teachers’ perception of 

randomness, which suggests the need to develop specific training where teachers can 

increase their probabilistic knowledge for teaching.  

Azcárate, Cardeñoso and Porlánd (1998) analysed the responses of 57 primary-school 

teachers to Konold et al.’ (1991) questionnaire in order to analyse these teachers’ 
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conception of randomness. They also asked participants to list examples or random and 

non random phenomena and to describe the features they assigned to random 

phenomena. In general, participants showed a partial conception of randomness, which 

reflected, in most cases, causal argumentations and poor perception of random 

processes in everyday settings (beyond games of chance). Many participants considered 

a phenomena to be deterministic if they could identify some causes that could influence 

the phenomena apart pure chance (e.g. in meteorology). Other criteria to judge 

randomness included multiple possibilities or unpredictability of results.  

The most relevant study with teachers is that by Chernoff (2009a & b). After a pilot 

study with 56 prospective teachers, Chernoff (2009a) analysed the responses and 

justifications given by 239 prospective mathematics teachers (163 elementary school 

teachers and 76 secondary school teachers) to a questionnaire consisting in comparative 

likelihood tasks. The questionnaire included several sequences of 5 trials of flipping a 

fair coin, in which the author fixed the ratio of heads to tails and varied the arrangement 

of outcomes. In order to show that responses that were assumed as incorrect in previous 

research could be derived from participants’ subjective probabilistic thinking, Chernoff 

(2009b) analysed the justifications of 19 prospective teachers that apparently had 

incorrect perception of randomness. The result of his analysis suggested that these 

prospective teachers may be reasoning from three different interpretations of the sample 

space: (a) taking into account the switches from head to tail; (b) considering the longest 

run; and (c) considering the switches and longest run together. Consequently, their 

reasoning as regards randomness and their judgement of whether a sequence was 

random or not could be consistent with these views of the sample space; therefore their 

apparent incorrect responses were not due to lack of probabilistic reasoning, but to use 

of personal subjective probabilities. 

In summary, research carried out with prospective teachers is scarce and suggest a poor 

perception of randomness as well as use of subjective probabilities. Below we 

summarise our own research in which we explore the teachers’ capability to judge their 

own intuitions when analysing the data collected by themselves in a generation task and 

the possibility that part of the teachers show some naïve conceptions on randomness 

that parallel those held at different historic periods. 

 

4. METHOD 

Participants in our study were 208 prospective primary school teachers in the Faculty of 
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Education, University of Granada, Spain; in total 6 different groups (35-40 prospective 

teachers by group) took part in this research. All of these prospective teachers (in their 

second year of University) were following the same mathematics education course, 

using the same materials and doing the same practical activities. They all had followed a 

mathematics course, which included descriptive statistics and elementary probability the 

previous year.  

The data were collected as a part of a formative activity, which is discussed in depth in 

Godino, Batanero, Roa and Wilhelmi (2008) as consisted of two sessions (90 minutes 

long each). The two main goals of the formative activity were: (a) assessing prospective 

teachers’ conceptions of randomness; (b) confronting prospective teachers with their 

possible misconceptions on this concept.  

In the first session (90 minutes long), the prospective teachers were given the statistical 

project “Check your intuitions about chance” (Godino et al, 2008) in which they were 

encouraged to carry out an experiment to decide whether the group had good intuitions 

on randomness or not. The experiment consisted of trying to write down apparent 

random results of flipping a coin 20 times (without really throwing the coin, just 

inventing the results) in such a way that other people would think the coin was flipped 

at random (simulated sequence). This is a classical generation task was similar to that 

used in Engel and Sedlmeier (2005)’s research. 

Participants recorded the simulated sequences on a recording sheet. Afterwards they 

were asked to flip a fair coin 20 times and write the results on the same recording sheet 

(real sequence). At the end of the session, in order to confront these future teachers with 

their misconceptions, participants were given the data collected in their classroom. 

These data contained six statistical variables: number of heads, number of runs and 

length of the longest run for each of real and simulated sequences from each student. 

Results in the experiments are presented in Figures 1 to 3. Sample size for the data 

analyzed by the prospective teachers in each group were smaller (30-40 experiments per 

group), although the shape of the distribution and summaries for each variable were 

very close to those presented in Figures 1 to 3.  

Teachers were asked to compare the variables collected from the real and simulated 

sequences, finish the analysis at home and write a report with a complete discussion of 

the project, including all the statistical graphs and procedures they used and their 

conclusions regarding the group’s intuitions about randomness. Participants were given 

freedom to build other graphs or summaries in order to complete their reports. In a 
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second session the reports were collected and the different solutions to the project given 

by the prospective teachers were collectively discussed in the classroom. In addition, a 

didactical analysis was carried out in order to reflect on the statistical knowledge needed 

to solve the project and the pedagogical content knowledge involved in teaching 

statistics in primary school through project work. 

 

5. RESULTS AND DISCUSSION 

In order to assess prospective teachers’ conceptions of randomness we first analysed the 

number of heads, number of runs and longest run in each of the simulated and real 

sequences in the data collected by the prospective teachers in their experiments. In the 

following, the data collected by the six groups taking part in the study (n=208) will be 

analysed together, although similar results were found in each of the six subsamples. 

 

5.1. Perception of the Binomial distribution 

The theoretical distribution for the number of heads in 20 trials can be modelled by the 

Binomial distribution B (n, p), where n=20 and p= 0.5. The expectation and variance for 

this distribution is µ=np=10; Var=npq=5. The empirical distributions for the number of 

heads in the real and simulated sequences in the experiments carried out by the 

participants in the study are presented in Figure 1 and the summary statistics in Table 1.  

We can observe that participants produced “heads” and “tails” in about equal numbers, 

and the majority of the students were close to the theoretically correct expected value of 

10. There was no significant preference for “heads” over “tails” or vice versa, in 

agreement with previous research (e.g. Wagenaar, 1972, Green, 1991; Falk & Konold, 

1997; Engel & Sedlmeier, 2005).  

 

 
Figure 1: Distribution for Number of heads. 

 

 



14 

Table 1: Summary statistics for Number of heads, longest run and number of runs 

  Number of heads Longest run Number of runs 

 Real Simulated Real Simulated Real Simulated 

Mean 10.45 10.29 4.35 3.32 10.10 10.78 

Mode 10; 11 10 4 3 10; 11 12 

Median 10 10 4 3 10 12 

Std. Deviation 2.05 1.22 1.6 1.12 2.9 2.8 

Range 11 8 10 11 14 13 

 

Results show a good perception of the expected number, median and mode of the 

binomial distribution (number of heads in 20 flipping of a coin) as it is shown in the 

mode, median and average number of heads in the simulated sequences, which are close 

to the theoretical value np=10 and in the non significant difference in the t- test of 

difference on averages between real and simulated sequences (t = -1.00; p=0.31). The 

standard deviation in the simulated sequences was, however, almost half the theoretical 

value and the differences were statistically significant in the F- test (F=2.83, p=0.001). 

 

5.2. Perception of independence 

Even if the concept of independence is very easy to define mathematically by the 

property that a joint probability of two events is the product of the two single event 

probabilities, its application is difficult for many people. Perception of independence 

was poor in our sample, as prospective teachers produced in average shorter runs and 

higher number of runs than expected in a random process (according to Engel and 

Sedlmeier, 2005, the expected number of runs in a coin flipping sequence of length 20 

is 10.5, and the expected longest run 4.33). This is consistent with previous research, in 

which, a majority of participants of different ages -examined under various methods- 

identify randomness with an excess of alternations between different outcomes (e.g., 

Wagenaar, 1972; Green, 1991, Engel & Sedlmeier, 2005) and whereas the expected 

probability of alternation in a random binary sequence is .5, people’s average subjective 

preference is a probability of .6 or .7 in generation tasks (Falk & Konold, 1997). 

Moreover, according Tversky and Kahneman’s (1982) representativeness heuristic, 

people judge that a sequence is random if it is representative of its parent population; 

therefore the sequence comprise about equal numbers of heads and tails and display an 

irregular order, not only globally, but also locally. This result is visible in Figures 2 and 

3 and in the t- tests of differences in averages that was statistically significant for both 
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variables (t = -7.76; p = 0.001 for the longest run; t=2.48; p= 0.01 for the number of 

runs).  

Some teachers recognized this difference in their reports and consequently they 

correctly considered this was an indication of an incomplete perception of randomness: 

“In the simulated sequence we tend to produce many short runs” (AB). On the contrary, 

misconceptions of independence, was also observed in some written reports by other 

participants, who rejected the sequence as random because some runs were longer than 

what they believed should be expected in a random sequence:  “Some students cheated 

and invented their sequences, since they produced too many successive heads or tails to 

be random” (EA). 

 

 
Figure 2: Distribution and summary statistics for the longest run. 

 

5.3. Perception of variation 

Variability is omnipresent throughout the statistical enquiry cycle and is fundamental to 

statistical thinking (Wild & Pfannkuch, 1999). However, the prospective teachers in our 

study produced sequences with little variation in the length of runs (a wide majority 

produced a longest run with only 3 similar outcomes). This is visible in Figure 2 and in 

the F test, that was statistically significant (F=2.06; p=0.0001). However, perception of 

variation was good as regards the number of runs (F=1.07; p=0.6; no significant). This 

result is reasonable, since, participants were not committed, as a group, to reproduce the 

sampling distribution of the proportions of heads. Consequently, their deviation from 

the  expected variability in the distribution of all the random sequences is a result of in 

each individual’s matching with the expected proportion in his/her sequence produced 
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(Falk, Falk, & Ayton, 2009). However, in the next sections we can show how the 

perception of variation in these prospective teachers was poor, since only a few of them 

made reference to variation in their reports as an important feature of random processes.  

Anyway, part of the teachers perceived variation in the data, and even more, justified 

randomness basing on this variation “There is more variety in the random sequence. 

This is pretty logical, since these results were obtained by a random experiment that 

involved chance” (NC); “ In the number of heads there is a difference, … since when 

we made up the data (in the simulated sequence) results were more even, but in the real 

sequence these results are more uneven, since they are due to chance” (IE). 

 

 Figure 3: Distribution and summary statistics for Number of runs 

  

5.4. Teachers’ analyses of their own intuitions 

All the above results reproduced those obtained by Green (1991) and Batanero and 

Serrano (1999) with secondary school students, which is reasonable, because the 

statistics training that Spanish prospective primary teachers receive is reduced to their 

study of statistics along secondary education.  

As we have previously explained, after performing the experiment, participants in the 

study were given a data sheet with the data recorded in the classroom and were asked to 

analyse these data and conclude on their own intuitions in a written report. While the 

experiment proposed to the prospective teachers was a generation task, the production 

of the report includes a recognition task, since the subjects were asked to recognise the 

features of randomness in the data. According to Wagenaar (1972) and Falk and 

Konold (1997) these recognition tasks are more appropriate for assessing subjective 

perception of randomness since a person could have a good perception of randomness in 

spite of being unable to reproduce it. 
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Most participants represented the data using different graphs that varied in complexity 

and that have been analyzed in a previous paper (Batanero, Arteaga & Ruiz, 2010). 

Many of them also computed averages (mean, median or modes) and variation 

parameters (range or standard deviation).  Although the graphs and summaries produced 

were generally correct and many of them used Excel to produce a variety of statistical 

analysis, few of them got a complete correct conclusion about the group intuitions 

(Table 2). 

 

Table 2: Frequency (percent) of prospective teachers’ conclusions. 

Conclusion about the intuitions (n=200) Correct Incorrect No conclusion 

Perceiving the expected 

value 

Number of heads 32 (16.0)

  

114 (57.0) 54 (27.0) 

Perceiving independence Expected longest run 6 (3.0) 87 (43.5) 107(53.5) 

 Expected number of runs 9 (4.5) 100 (50.0) 91 (45.5) 

Perceiving variation Number of heads 25 (12.5) 121 (60.5) 54 (27.0) 

 Longest run 8 (4.0)  85 (42.5) 107 (53.5) 

 Number of runs  11 (5.5) 98 (49.0) 91 (45.5) 

 

Only a small number of prospective teachers explicitly were able to get a correct 

conclusion for the class’ perception of expected values and variation in the different 

variables. Those who succeeded completed an informal inference process and were able 

to relate the empirical data to the problem posed in the project (the intuitions in the 

group), completing a modelling cycle (posing a problem; collecting data; using 

mathematical models, building with the model and interpreting the results as regards the 

problem posed). They concluded that the group had good intuitions as regards the 

average number of heads and, at the same time, that the perception of variability in this 

random variable was poor. An example is given below (similar responses were obtained 

for the other variables): 

As regards the number of heads, the intuitions in the classroom were very close to what happen 

in reality; but not complete. The means in the real and simulate sequences are very close; the 

medians and modes are identical; however the standard deviations suggest the spread in both 

distributions is different (CG). 

Other participants reached a partial conclusion, being able only to conclude about the 

central tendency or about the spread in the data. For example, the following teacher was 

able to perceive the similarity of means, but did not realize that the variation in the two 

sequences was quite different: 
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Observing the table, I think that my colleagues have good intuition; since the most frequent 

values for the number of heads in the simulated sequence coincide with those in the real 

sequence; 10 and 11 are the most frequent values in both cases. The means are close to 10 in 

both sequences; therefore the intuitions are good (TG). 

In the next example, the student concluded about the difference in spread, but was 

unable to relate this result to the students’ intuitions. He argued that the different 

students had similar intuitions but did not relate these intuitions to the results from the 

generation task experiment and did not analyse the central tendency: 

Intuitions are very similar in the different students; there is no much irregularity. But when we 

compare to the real sequences, we realise the graph is more irregular. In the real sequence the 

maximum number of heads is 16 and the minimum 7; however in the simulate graph the 

maximum is 13 and the minimum 8; the range is smaller than that of real flipping of the coin 

(MM). 

The remaining students either were unable to conclude or reached an incorrect 

conclusion. Part of them could not connect the results of their statistical analyses to the 

students’ intuitions; that is, they did not see the implications of the results provided by 

the mathematical model to the solution of the problem posed (assessing the students’ 

intuitions). An example is given below: 

When I compare the data I realise that many students coincided in their results. In spite of this, I 

still think there is mere chance; since in the simulated sequences we invented the results (EL). 

Other students connected the mathematical work to the problem situation, but they 

failed in their conclusions because they made an incorrect interpretation of the question 

posed by the lecturer. They assumed a good intuition would mean getting exactly the 

same results in the simulated and real sequences. In the next example, the prospective 

teacher shows a correct conception of randomness (randomness means lack of 

prediction in the short term) mixed with an incorrect conception: Instead of comparing 

the two distributions, he compared the students one by one and tried to assess the 

number of coincidences between the number of heads in the real and simulated 

sequences for each student: 

Studying the graphs the prediction of the group was not too bad. A game of chance is 

unpredictable; but when we add the number of students who guessed the result, the number of 

guesses is higher than the number of failures (students who were very far from the real result)  

(LG). 

Although the binomial distribution (number of heads) was more intuitive for the 

prospective teachers, still the number of correct conclusions as regards the perception of 

the binomial distribution was very scarce. These results suggest that these prospective 
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teachers did not only hold some misconceptions of randomness, but they also were 

unconscious of their misconceptions and were unable to recognise these misconceptions 

when confronted with the statistical data collected in the experiments.  

 

5.5. Further analysis of pre-service teachers’ conceptions 

Another interesting point is that some of these teachers justified their wrong conclusions 

as regards some of the variables in the project by making explicit their own views of 

randomness that reproduced some of the conceptions described by Batanero and 

Serrano (1999) in secondary school students. Below we present examples of these 

conceptions, many of which are partly correct, but are incomplete and parallel some 

view of randomness that were described in Section 2. 

Randomness and causality: The principle of cause and effect is deeply rooted in human 

experience and there is a tendency to relate randomness to causality. A possible way to 

relate randomness and cause is to think that what appears as randomness to a person’s 

limited mind could well be explained by a extremely complex causal system that is 

unknown to the person, who is incapable of perceive the causes for the phenomena. 

Another view is considering that causality is an illusion and that all events are actually 

random.  Some participants assumed “Chance” as the cause of random phenomena, as 

was apparent in some participants’ responses: 

“We define random experiments as a consequence of chance” (SG). 

“Some people think that the number of possibilities of getting a tail is 50%; but, although in this 

experiment results were very close to what we expected, this result was due to chance or good 

luck, because we cannot deduce this result, since it depends on chance” (NG). 

Randomness as unpredictability: A common feature in different conceptions of 

randomness is unpredictability: the fact that we cannot predict a future event based on a 

past outcome (Bennet, 1998). Some participants expressed this idea  in their responses, 

since they assumed they could not reach a conclusion about the differences in 

distribution for the number of runs, number of heads or longest run because anything 

might happen in a random process. In these responses the “outcome approach” (Konold, 

1989) that is the interpretation of probability questions in a non probabilistic way may 

also operate:  

“I want note that it is impossible to make a prediction of results since in this type of experiment 

any result is unpredictable” (AA). 

“Results of random experiments cannot be predicted until they happen” (SG).  
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“My final conclusion is that in experiences related to chance, there are more or less likely 

events, but it is impossible to predict the exact result (MN). 

Randomness as equiprobability. A few subjects connected randomness as 

equiprobability (in the classical approach to this concept) and stated that any result was 

possible, since the experiment was random and consequently there was equal 

probability for each result. This view was parallel to the classical conception of 

probability where an event as random only in case there is the same probability for this 

event and for any other possible event in the experiment. 

“The probability for head and tails is the same, and therefore, in 20 throwing there is the same 

probability to obtain 20 heads, 20 tails or any possible combination of heads and tails” (EB).  

“You know that there is 50% possibility to get head and another 50% possibility to get tail 

because there are only two different results. Consequently each student got a different result” 

(CG). 

Lack of pattern or lack of order. Some participants associated randomness to lack of 

model or lack of pattern, a view close to Von Mises’s (1952/1928) modelling of 

randomness, where a sequence of outcomes is random whenever it is impossible to get 

an algorithm that serves to produce the sequence. In particular some students rejected 

the idea that a random sequence could appear as ordered. In spite that this view is partly 

correct, in fact in the analysis of the project data a variety of models appeared, such as 

the Binomial distribution, the distribution of runs, or the geometrical distribution. These 

models arise in any random sequence and consequently, randomness should also been 

interpreted as multiplicity of models.  

“You cannot find a pattern, as it is random” (BS). 

“We do not think it is possible to get a sequence so well ordered as  [C,C,C,C,C,+,+,+,+,+], 

since our intuition led us to alternate between head and tails and to produce unordered 

sequences, such as, for example, [C,C,+,C,+,+,C,+,C,+,C,+]” (RE). 

“It is not random, it is too ordered” (SG). 

Randomess and control. A few prospective teachers described randomness as something 

that cannot be controlled, a vision common until the Middle Ages according Bennett 

(1998):  

“Despite our inability to control randomness, we got equal number of heads and tails” (AG).  

“These predictions are really accurate. Although the simulation and reality are very close we 

should take into account that randomness can never be controlled 100%, even if you have much 

knowledge of the situation” (EC). 

On the contrary, it was also observed the illusion of control (Langer, 1975), defined as 

an expectancy of a personal success probability inappropriately higher than the 



21 

objective probability would warrant. Consequently of this belief some participants 

believed they could predict or control the result of the experiment. For example, one 

participant classified all his classmates according their capacity to predict the results:  

“Only 21.7% students guessed the number of heads in the experiment; 13% were very close 

because they had an error of (± 1); the remaining students failed in their prediction” (LG).  

 

6. DISCUSSION AND IMPLICATIONS FOR TRAINING TEACHERS 

As stated by Bar-Hillel and Wagenaar (1991), randomness is a concept which somehow 

eludes satisfactory definition; although theoretically randomness is a property of a 

generating (random) process, in practice we can only infer indirectly randomness from 

properties of the generator’s outcomes. In addition, although expressions such as 

'random experiments', 'random number', 'random variable', 'random event', 'randomness' 

frequently appear in daily language as well as in school textbooks, the meaning of 

randomness in not clarified in school textbooks, thus increasing the likelihood of 

students having difficulties at this point (Batanero, Serrano, & Green, 1998). It is not 

then surprising that, given such complexity, the prospective teachers in our sample 

showed different misconceptions of randomness, in both the sequences they produced 

and in their reports when analysing their data. 

However, understanding randomness is an essential step in learning probability and 

therefore it is essential that prospective teachers acquire a sound understanding of this 

concept along their initial education if we want them succeed in their future teaching of 

probability. As stated by Ball Lubienski, & Mewborn (2001, p. 453), some of the 

activities in which teachers regularly engage, such as “figuring out what students know; 

choosing and managing representations of mathematical ideas; selecting and modifying 

textbooks; deciding among alternative courses of action” involve mathematical 

reasoning and thinking. Consequently, teachers’ instructional decisions as regards the 

teaching of probability are dependent on the teacher’s probabilistic knowledge.  

Prospective teachers in our sample showed a mixture of correct and incorrect beliefs 

concerning randomness. On a hand, their perception of averages in the binomial 

distribution was good, since as stated by Falk, Falk, & Ayton (2009) one major 

characteristics of a sequence of coin tosses is the equiprobability of the two outcomes 

and  equal proportions of the two symbol types are more likely to be obtained by chance 

than any other result. 
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However, at the same time, misconceptions related to variation, and independence, as 

well associating randomness with ignorance, or trying to control randomness, also 

appear in the sample. This is cause for concern when paired with evidence that 

prospective mathematics teachers in our sample may have a weak understanding of 

randomness and present different biases that could be transmitted to their future 

students. 

These prospective teachers in our research were asked to solve a problem and complete 

a modelling cycle. According to Chaput, Girard & Henry (2011), modelling consists of 

describing an extra- mathematical problem in usual language and building up an 

experimental protocol in order to carry out an experiment (in this research the problem 

consisted in checking the intuitions on randomness and a particular experiment was 

chosen to get data on the teachers’ intuitions). This description leads to setting some 

hypotheses which are intended to simplify the situation (in the example, the length of 

the sequences to be produced was fixed and the equiprobability of heads and tails in the 

coin was assumed).  

Next, the second step of the modelling process is translating the problem and the 

working hypotheses into a mathematical model in such a way that working with the 

model produces some possible solution to the initial problem. The teachers translated 

the question (what conceptions they had on randomness) and the working hypotheses to 

statistical terms (they compared three pairs of distributions: the number of heads, 

number of runs and length of the longest run in both sequences and for the whole 

classroom). Consequently participants in our sample built and worked with different 

statistical models (each student chose and produced particular graphs, tables or 

statistical summaries to compare these pairs of distributions). 

The third and final step consists of interpreting the mathematical results and relate these 

results to reality, in such a way that they produce some answers to the original problem. 

Although the majority of participants in our research correctly completed steps 1 and 2 

in the modelling cycle, few of them were capable to translate the statistical results they 

got to a response about what the intuitions of the classroom on randomness were like. 

That is, few of them could understand what the statistical results indicated about the 

intuitions in the group and therefore, these prospective teachers failed to complete the 

last part of the modelling process.  

Dantal (1997) suggests that in our classroom, we concentrate in step 2 (“the real 

mathematics) in the modelling cycle), since this is the easiest part to teach to our 
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students. However all the steps are equally relevant for modelling and in learning 

mathematics, if we want our students understand and appreciate the usefulness of 

mathematics. It is therefore very important that teachers’ educators develop the 

prospective teachers’ ability to model in probability and the capacity to learn from data 

if we want succeed in implementing statistics education at school level.  

Considering the importance and difficulty of the topic, the question remains about how 

to make randomness understandable by prospective teachers. Possibly this 

understanding should develop gradually, by experiments and simulations, starting with 

concrete materials and moving later to computer simulations and observation of 

randomness in demographic or social phenomena. As stated by Batanero, Serrano, and 

Green (1998), it is important that prospective teachers understand that, in randomness 

apparent disorder, a multitude of global regularities can be discovered. These 

regularities allow us to study random phenomena using the theory of probability. 

Finally we suggest the usefulness of working with activities similar to the one described 

in this report to help prospective teachers make the conceptions about randomness and 

probability explicit. In order to overcome possible misconceptions, after working with 

these activities, it is important to continue the formative cycle with a didactical analysis 

of the situation. In our experience, in the second session the correct and incorrect 

solutions to the project “checking your intuitions on randomness” were debated and the 

different conceptions of randomness explicit in the teachers’ responses were discussed.  
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