Central sequence algebras via nilpotent elements

Joint work with Dominic Enders

July 17, 2022

Joint work with Dominic Enders Central sequence algebras via nilpotent elements

Definition A bounded sequence (x_n) in a C*-algebra \mathcal{A} is *central* if

 $[x_n, a] \to 0$, for any $a \in \mathcal{A}$.

Definition A bounded sequence (x_n) in a C*-algebra \mathcal{A} is *central* if

 $[x_n, a] \to 0$, for any $a \in \mathcal{A}$.

Separable C*-algebra setting: $\|[x_n, a]\| \to 0$

Definition A bounded sequence (x_n) in a C*-algebra \mathcal{A} is *central* if

$$[x_n, a] \to 0$$
, for any $a \in \mathcal{A}$.

Separable C*-algebra setting: $||[x_n, a]|| \rightarrow 0$

Von Neumann algebra setting: $||[x_n, a]||_2 \rightarrow 0$

Definition A bounded sequence (x_n) in a C*-algebra \mathcal{A} is *central* if

$$[x_n,a] o 0$$
, for any $a \in \mathcal{A}$.

Separable C*-algebra setting: $||[x_n, a]|| \rightarrow 0$

Von Neumann algebra setting: $||[x_n, a]||_2 \rightarrow 0$

Example Take $z_n \in Z(A)$, $b_n \to 0$. Then

 $(z_n + b_n)$

is a central sequence. Such central sequences are called trivial.

b) (4) (3) (4)

Definition A bounded sequence (x_n) in a C*-algebra \mathcal{A} is *central* if

$$[x_n, a] \rightarrow_\omega 0$$
, for any $a \in \mathcal{A}$.

$$A_{\infty} = \{(x_n) \mid x_n \in A, \text{ sup } ||x_n|| < \infty\}$$

æ

$$A_{\infty} = \{(x_n) \mid x_n \in A, \text{ sup } ||x_n|| < \infty\}$$

$$c_{\omega} = \{(x_n) \in A_{\infty} \mid x_n \to_{\omega} 0\}$$

æ

$$A_{\infty} = \{(x_n) \mid x_n \in A, \text{ sup } ||x_n|| < \infty\}$$

$$c_{\omega} = \{(x_n) \in A_{\infty} \mid x_n \rightarrow_{\omega} 0\}$$

$$A_{\omega} = A_{\infty}/c_{\omega},$$

Joint work with Dominic Enders Central sequence algebras via nilpotent elements

æ

$$A_{\infty} = \{(x_n) \mid x_n \in A, \text{ sup } ||x_n|| < \infty\}$$

$$c_{\omega} = \{(x_n) \in A_{\infty} \mid x_n \rightarrow_{\omega} 0\}$$

$$A_{\omega} = A_{\infty}/c_{\omega}, \ \pi: A_{\infty} \twoheadrightarrow A_{\omega}$$

æ

$$A_{\infty} = \{(x_n) \mid x_n \in A, \text{ sup } ||x_n|| < \infty\}$$

$$c_{\omega} = \{(x_n) \in A_{\infty} \mid x_n \rightarrow_{\omega} 0\}$$

$$A_{\omega} = A_{\infty}/c_{\omega}, \ \pi: A_{\infty} \twoheadrightarrow A_{\omega}$$

$$A \hookrightarrow A_{\omega}, \ a \mapsto \pi((a, a, a, \ldots))$$

æ

$$A_{\infty} = \{(x_n) \mid x_n \in A, \text{ sup } ||x_n|| < \infty\}$$

$$c_\omega = \{(x_n) \in A_\infty \mid x_n
ightarrow_\omega 0\}$$

$$A_{\omega} = A_{\infty}/c_{\omega}, \ \pi: A_{\infty} \twoheadrightarrow A_{\omega}$$

$$A \hookrightarrow A_{\omega}, \ a \mapsto \pi((a, a, a, \ldots))$$

Definition Central sequence algebra F(A) of a unital C*-algebra A is

$$F(A) := A' \bigcap A_{\omega}.$$

白 マイビット イレー

If A is non-unital, $A' \bigcap A_{\omega}$ is too big.

If A is non-unital, $A' \bigcap A_{\omega}$ is too big.

 $Ann(A, A_{\omega}) := \{\pi((x_n)) \mid ||x_na|| \to 0, ||ax_n|| \to 0, \text{ for any } a \in A\}$

4 B 6 4 B 6

If A is non-unital, $A' \bigcap A_{\omega}$ is too big.

 $Ann(A, A_{\omega}) := \{\pi((x_n)) \mid ||x_na|| \to 0, ||ax_n|| \to 0, \text{ for any } a \in A\}$

E.g. let $(e_n), (e'_n)$ be two approximate units. Then $\pi((e_n - e'_n)) \in Ann(A, A_\omega).$

化氯化化氯化

If A is non-unital, $A' \bigcap A_{\omega}$ is too big.

 $Ann(A, A_{\omega}) := \{\pi((x_n)) \mid ||x_na|| \to 0, ||ax_n|| \to 0, \text{ for any } a \in A\}$

E.g. let $(e_n), (e'_n)$ be two approximate units. Then

$$\pi((e_n-e'_n))\in Ann(A,A_\omega).$$

Definition For a non-unital C*-algebra A, its *central sequence* algebra F(A) is

$$F(A) := \left(A' \bigcap A_{\omega}\right) / Ann(A, A_{\omega}).$$

æ

3 🕨 🖌 3

F(A) is trivial

★ ∃ ► < ∃ ►</p>

F(A) is trivial \Leftrightarrow A has no property Γ

∃ ► < ∃ ►</p>

F(A) is trivial \Leftrightarrow A has no property Γ

F(A) is abelian

F(A) is trivial \Leftrightarrow A has no property Γ

F(A) is abelian \Leftrightarrow $A \not\cong A \otimes \mathcal{R}$ (McDuff 69)

	// ₁ -factors	separable C*-algebras
F(A) is trivial	No property Γ	
F(A) is abelian	$\mathcal{A} \ncong \mathcal{A} \otimes \mathcal{R}$	
	(McDuff 69)	

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - のへで

	// ₁ -factors	separable C*-algebras
F(A) is trivial	No property Γ	Continuous trace C*-algebras
		(Akemann and Pedersen 79)
F(A) is abelian	$\mathcal{A} \ncong \mathcal{A} \otimes \mathcal{R}$	
	(McDuff 69)	

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - のへで

	// ₁ -factors	separable C*-algebras
F(A) is trivial	No property F	Continuous trace C*-algebras
		(Akemann and Pedersen 79)
F(A) is abelian	$\mathcal{A} \ncong \mathcal{A} \otimes \mathcal{R}$	2
	(McDuff 69)	!

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - のへで

	// ₁ -factors	separable C*-algebras
F(A) is trivial	No property Γ	Continuous trace algebras
		(Akemann and Pedersen 79)
F(A) is abelian	$\mathcal{A} \ncong \mathcal{A} \otimes \mathcal{R}$	_
	(McDuff 69)	?

• • = • • = •

Properties of $A \iff$ properties of F(A)

Properties of $A \iff$ properties of F(A)

E.g. a separable nuclear A is simple purely infinite \Leftrightarrow F(A) is simple and $F(A) \not\cong \mathbb{C}$.

Properties of $A \iff$ properties of F(A)

E.g. a separable nuclear A is simple purely infinite \Leftrightarrow F(A) is simple and $F(A) \not\cong \mathbb{C}$.

E.g. a unital separable A is \mathcal{Z} -absorbing $(A \cong A \otimes \mathcal{Z}) \Leftrightarrow \mathcal{Z} \hookrightarrow F(A)$.

	// ₁ -factors	separable C*-algebras
F(A) is trivial	No property Γ	Continuous trace algebras (Akemann and Pedersen 79)
F(A) is abelian	$\mathcal{A} \ncong \mathcal{A} \otimes \mathcal{R}$	2
	(McDuff 69)	?

• • = • • = •

	// ₁ -factors	separable C*-algebras
F(A) is trivial	No property Γ	Continuous trace algebras (Akemann and Pedersen 79)
F(A) is abelian	$\mathcal{A} \ncong \mathcal{A} \otimes \mathcal{R}$	2
	(McDuff 69)	!

Theorem (Ando-Kirchberg 2014)

If A is not type I, then F(A) is not abelian.

• • = • • = •

	// ₁ -factors	separable C*-algebras
F(A) is trivial	No property Γ	Continuous trace algebras (Akemann and Pedersen 79)
F(A) is abelian	$\mathcal{A} \ncong \mathcal{A} \otimes \mathcal{R}$	2
	(McDuff 69)	!

Theorem (Ando-Kirchberg 2014)

If A is not type I, then F(A) is not abelian.

Ozawa 2014: different proof in unital case.

- 4月 - 4 三 - 4 三 - 4

Question: When is F(A) abelian?

伺下 イヨト イヨト

æ

Question: When is F(A) abelian? *n*-subhomogeneous?

• • = • • = •

	// ₁ -factors	separable C*-algebras
F(A) is trivial	No property Γ	Continuous trace algebras
		(Akemann and Pedersen 79)
F(A) is abelian	$\mathcal{A} \ncong \mathcal{A} \otimes \mathcal{R}$	2
	(McDuff ??)	!

Theorem (Ando-Kirchberg 2014)

If A is not type I, then F(A) is not abelian (not subhomogeneous).

Ozawa 2014: different proof in unital case.

Question: When is F(A) abelian? *n*-subhomogeneous?

• • = • • = •
Question: When is F(A) abelian? *n*-subhomogeneous?

Can assume A is type I.

A B M A B M

э

伺 ト イヨ ト イヨ ト

Example: Toeplitz algebra.

A 3 5 4 3 5 1

Example: Toeplitz algebra.

Definition A C*-algebra A is CCR if for any $\pi \in \hat{A}$,

 $\pi(A)=K(H).$

化氯化化氯化

Example: Toeplitz algebra.

Definition A C*-algebra A is CCR if for any $\pi \in \hat{A}$,

$$\pi(A)=K(H).$$

Example: the algebra of all continuous matrix-valued functions on some compact metric space...

Example: Toeplitz algebra.

Definition A C*-algebra A is CCR if for any $\pi \in \hat{A}$,

$$\pi(A) = K(H).$$

Example: the algebra of all continuous matrix-valued functions on some compact metric space...

Toeplitz algebra is type I but not CCR.

• • = • • = •

э

Sufficient: to prove that

 $A \supset K(H) \Rightarrow F(A)$ is not abelian/subhomogeneous.

• • = • • = •

Sufficient: to prove that

 $A \supset K(H) \Rightarrow F(A)$ is not abelian/subhomogeneous.

Phillips 88: if $A \supset K(H)$ is unital, then F(A) is not abelian

• • = • • = •

Sufficient: to prove that

 $A \supset K(H) \Rightarrow F(A)$ is not abelian/subhomogeneous.

Phillips 88: if $A \supset K(H)$ is unital, then F(A) is not abelian

One needs some other technique for the non-unital case and to show non-subhomogeneity

An element $x \in A$ is *nilpotent of order n* if $x^n = 0$.

伺 ト イヨト イヨト

э

Nilpotents

An element $x \in A$ is *nilpotent of order n* if $x^n = 0$.

Theorem (Olsen-Pedersen 1989)

Nilpotents are liftable: suppose $x \in A/I$ with $x^n = 0$, then x lifts to $a \in A$ with $a^n = 0$.

Nilpotents

An element $x \in A$ is *nilpotent of order n* if $x^n = 0$.

Theorem (Olsen-Pedersen 1989)

Nilpotents are liftable: suppose $x \in A/I$ with $x^n = 0$, then x lifts to $a \in A$ with $a^n = 0$.

Theorem (Sh. 2008)

Nilpotent contractions are liftable.

• • = • • = •

Nilpotents

An element $x \in A$ is *nilpotent of order n* if $x^n = 0$.

Theorem (Olsen-Pedersen 1989)

Nilpotents are liftable: suppose $x \in A/I$ with $x^n = 0$, then x lifts to $a \in A$ with $a^n = 0$.

Theorem (Sh. 2008)

Nilpotent contractions are liftable.

Corollary

Given $n \in \mathbb{N}$ and $\epsilon > 0$, there exists δ such that the following holds: for any C*-algebra A and any $x \in A$ satisfying $||x^n|| \leq \delta$ and $||x|| \leq 1$ there is $y \in A$ such that $y^n = 0$, $||y|| \leq 1$ and $||y - x|| \leq \epsilon$.

(4月) (4日) (4日)

Folklore:

A C*-algebra is commutative if and only if it does not contain any non-trivial nilpotent elements.

• • = • • = •

Folklore:

A C*-algebra is commutative if and only if it does not contain any non-trivial nilpotent elements.

Theorem (Hadwin 1997)

A C*-algebra A is *n*-subhomogeneous if and only if each nilpotent element in A has order not larger than n.

→ < Ξ → <</p>

Let A be a C*-algebra. The following are equivalent: (i) A is type I;

伺 ト イヨ ト イヨ ト

э

Let A be a C*-algebra. The following are equivalent:

- (i) A is type I;
- (ii) The closure of nilpotents in A consists of quasinilpotents.
- (ii) The spectral radius function $a \mapsto \rho(a)$ is continuous on A;

• • = • • = •

Let A be a C*-algebra. The following are equivalent:

- (i) A is type I;
- (ii) The closure of nilpotents in A consists of quasinilpotents.
- (ii) The spectral radius function $a \mapsto \rho(a)$ is continuous on A;

• • = • • = •

Let A be a C*-algebra. The following are equivalent:

(i) A is type I;

(ii) The closure of nilpotents in A consists of quasinilpotents.

(ii) The spectral radius function $a \mapsto \rho(a)$ is continuous on A;

Proposition (Sh. 2019)

If the closure of nilpotents in a C*-algebra A contains a normal element, then A is not residually type I.

伺 ト イヨ ト イヨト

Step 1: to prove that A is type I but not $CCR \Rightarrow F(A)$ is not subhomogeneous.

Step 1: to prove that A is type I but not $CCR \Rightarrow F(A)$ is not subhomogeneous.

Sufficient: to prove that

 $A \supset K(H) \Rightarrow F(A)$ is not abelian/subhomogeneous.

$q:B(H)\to B(H)/K(H)$

э

For $A \subset B(H)$, q(A)' is the commutant of q(A) in the Calkin algebra.

• • = • • = •

э

For $A \subset B(H)$, q(A)' is the commutant of q(A) in the Calkin algebra.

Strategy: For $A \supset K(H)$, an element of q(A)' gives rise to an element of F(A).

b) a) (E) b) a) (E) b) a)

For $A \subset B(H)$, q(A)' is the commutant of q(A) in the Calkin algebra.

Strategy: For $A \supset K(H)$, a nilpotent element of q(A)' gives rise to a nilpotent element of F(A).

- 3 b - 4 3 b

For $A \subset B(H)$, q(A)' is the commutant of q(A) in the Calkin algebra.

Strategy: Prove that for $A \supset K(H)$, a convergent sequence of nilpotent elements of q(A)' gives rise to a convergent sequence of nilpotent elements of F(A).

For $A \subset B(H)$, q(A)' is the commutant of q(A) in the Calkin algebra.

Strategy: Prove that for $A \supset K(H)$, a convergent sequence of nilpotent elements of q(A)' gives rise to a convergent sequence of nilpotent elements of F(A).

If a sequence of nilpotent elements of q(A)' converges to a normal element, then the corresponding sequence of nilpotent elements of F(A) converges to a normal element.

For $A \subset B(H)$, q(A)' is the commutant of q(A) in the Calkin algebra.

Strategy: For $A \supset K(H)$, a convergent sequence of nilpotent elements of q(A)' gives rise to a convergent sequence of nilpotent elements of F(A). If a sequence of nilpotent elements of q(A)' converges to a normal element, then the corresponding sequence of nilpotent elements of F(A) converges to a normal element.

Lemma

Let $A \subset B(H)$ be a separable C*-algebra, then q(A)' contains a copy of B(H).

・ 同 ト ・ ヨ ト ・ ヨ ト

Step 1: to prove that A is type I but not $CCR \Rightarrow F(A)$ is not subhomogeneous.

Sufficient: to prove that $A \supset K(H) \Rightarrow F(A)$ is not subhomogeneous.

Theorem

Let $A \subset B(H)$ be a separable C*-algebra such that $A \supset K(H)$. Then F(A) is not residually type I.

伺下 イヨト イヨト

Step 1: to prove that A is type I but not $CCR \Rightarrow F(A)$ is not subhomogeneous.

Sufficient: to prove that $A \supset K(H) \Rightarrow F(A)$ is not subhomogeneous.

Theorem

Let $A \subset B(H)$ be a separable C*-algebra such that $A \supset K(H)$. Then F(A) is not residually type I. In particular F(A) is not type I and not RFD.

伺下 イヨト イヨト

Sufficient: to prove that

 $A \supset K(H) \Rightarrow F(A)$ is not abelian/subhomogeneous.

Question: When is F(A) abelian? *n*-subhomogeneous?

Can assume A is type I.

Question: When is F(A) abelian? *n*-subhomogeneous?

Can assume A is type I.

Can assume A is CCR.

Fell's condition

Definition $\pi_0 \in \hat{A}$ satisfies *Fell's condition* if there exist $b \in A^+$ and an open neighbourhood U of π_0 in \hat{A} such that $\pi_0(b) \neq 0$ and

rank
$$\pi(b)=1$$

whenever $\pi \in U$.

B N A B N

Fell's condition

Definition $\pi_0 \in \hat{A}$ satisfies *Fell's condition* if there exist $b \in A^+$ and an open neighbourhood U of π_0 in \hat{A} such that $\pi_0(b) \neq 0$ and

rank $\pi(b) = 1$

whenever $\pi \in U$.

Example 1

 $A = \{ f \in C([0,1], M_2) \mid f(1) \text{ is diagonal } \}, \ \pi_0(f) = (f(1))_{11}$
Fell's condition

Definition $\pi_0 \in \hat{A}$ satisfies *Fell's condition* if there exist $b \in A^+$ and an open neighbourhood U of π_0 in \hat{A} such that $\pi_0(b) \neq 0$ and

rank $\pi(b) = 1$

whenever $\pi \in U$.

Example 1

 $A = \{ f \in C([0,1], M_2) \mid f(1) \text{ is diagonal } \}, \ \pi_0(f) = (f(1))_{11}$

Then π_0 satisfies Fell's condition.

Fell's condition

Definition $\pi_0 \in \hat{A}$ satisfies *Fell's condition* if there exist $b \in A^+$ and an open neighbourhood U of π_0 in \hat{A} such that $\pi_0(b) \neq 0$ and

rank $\pi(b) = 1$

whenever $\pi \in U$.

Example 1

 $A = \{ f \in C([0,1], M_2) \mid f(1) \text{ is diagonal } \}, \ \pi_0(f) = (f(1))_{11}$

Then π_0 satisfies Fell's condition.

Take
$$b :=$$
 any function s.t. $b(t) = \begin{pmatrix} 1 \\ & 0 \end{pmatrix}$ in a nbhd of 1.

$$A = \{ f \in C([0,1], M_2) \mid f(1) \in \mathbb{C}1 \}, \ \pi_0(f) = (f(1))_{11}$$

▲御▶ ▲理▶ ▲理▶

æ

$$A = \{ f \in C([0,1], M_2) \mid f(1) \in \mathbb{C}1 \}, \ \pi_0(f) = (f(1))_{11}$$

Then π_0 does not satisfy Fell's condition.

æ

伺 ト イヨト イヨト

 $A = \{ f \in C([0,1], M_2) \mid f(1) \in \mathbb{C}1 \}, \ \pi_0(f) = (f(1))_{11}$

Then π_0 does not satisfy Fell's condition.

Indeed if $\pi_0(b) \neq 0$, then rank b(1) = 2.

3

 $A = \{ f \in C([0,1], M_2) \mid f(1) \in \mathbb{C}1 \}, \ \pi_0(f) = (f(1))_{11}$

Then π_0 does not satisfy Fell's condition.

Indeed if $\pi_0(b) \neq 0$, then rank b(1) = 2. Since rank is lower semicontinuous, rank $\pi(b) = 2$ in a nbhd of π_0 .

ь « Эь « Эь

Definition A C*-algebra *A* is said to satisfy *Fell's condition* (also is called *Fell algebra*) if every irreducible representation of *A* satisfies Fell's condition.

4 E 6 4 E 6

Definition An irreducible representation π_0 of A satisfies *Fell's* condition of order n if there exist $b \in A^+$ and an open neighbourhood U of π_0 in \hat{A} such that $\pi_0(b) \neq 0$ and

rank $\pi(b) \leq n$

whenever $\pi \in U$.

Definition An irreducible representation π_0 of A satisfies *Fell's* condition of order n if there exist $b \in A^+$ and an open neighbourhood U of π_0 in \hat{A} such that $\pi_0(b) \neq 0$ and

rank $\pi(b) \leq n$

whenever $\pi \in U$.

Definition A C*-algebra A is said to satisfy *Fell's condition of* order n if every irreducible representation of A satisfies Fell's condition of order n.

$$A = \{ f \in C([0,1], M_3) \mid f(1) = \begin{pmatrix} \lambda \\ & \lambda \\ & \mu \end{pmatrix}, \lambda, \mu \in \mathbb{C} \}$$

▲御▶ ▲ 臣▶ ▲ 臣▶

æ

$$egin{aligned} \mathcal{A} = \{ f \in \mathcal{C}([0,1],\mathcal{M}_3) \mid f(1) = \left(egin{aligned} \lambda & & \ & \lambda & \ & & \mu \end{array}
ight), \lambda, \mu \in \mathbb{C} \ \} \end{aligned}$$

Then A satisfies Fell's condition of order 2 but not of order 1.

э

伺 ト イヨト イヨト

Example 4 Consider the UHF algebra

$$\mathbb{C} \subset M_2 \subset M_4 \subset \ldots \subset M_{2^{\infty}},$$

and its telescopic algebra

$$T(M_{2^{\infty}}) = \{ f \in C([0,\infty], M_{2^{\infty}}) \mid t \leq i \Rightarrow f(t) \in M_{2^i} \}.$$

• • = • • = •

э

Example 4 Consider the UHF algebra

$$\mathbb{C} \subset M_2 \subset M_4 \subset \ldots \subset M_{2^{\infty}},$$

and its telescopic algebra

$$T(M_{2^{\infty}}) = \{ f \in C([0,\infty], M_{2^{\infty}}) \mid t \leq i \Rightarrow f(t) \in M_{2^i} \}.$$

Let

$$A = \{ f \in T(M_{2^{\infty}}) \mid f(\infty) \in \mathbb{C}1 \}.$$

• • = • • = •

э

Example 4 Consider the UHF algebra

$$\mathbb{C}\subset M_2\subset M_4\subset\ldots\subset M_{2^\infty},$$

and its telescopic algebra

$$T(M_{2^{\infty}}) = \{ f \in C([0,\infty], M_{2^{\infty}}) \mid t \leq i \Rightarrow f(t) \in M_{2^i} \}.$$

Let

$$A = \{ f \in T(M_{2^{\infty}}) \mid f(\infty) \in \mathbb{C}1 \}.$$

Then A is CCR but does not satisfy Fell's condition of order n, for any $n \in \mathbb{N}$.

Reformulation of Fell's condition of order n

Definition An element $x \in A$ has global rank not larger than n if for each irreducible representation π of A

rank $\pi(a) \leq n$.

Definition An element $x \in A$ has global rank not larger than n if for each irreducible representation π of A

rank $\pi(a) \leq n$.

Proposition

The following are equivalent:

(i) A satisfies Fell's condition of order n;

(ii) A is generated by elements of global rank not larger than n.

Definition An element $x \in A$ has global rank not larger than n if for each irreducible representation π of A

rank $\pi(a) \leq n$.

Proposition

The following are equivalent:

(i) A satisfies Fell's condition of order n;

(ii) A is generated by elements of global rank not larger than n.

Case n = 1: an Huef, Kumjian, Sims 2011

Step 2: For CCR-algebras, F(A) is *n*-subhomogeneous \Leftrightarrow Fell's condition of order *n*

э

Step 2: For CCR-algebras, F(A) is *n*-subhomogeneous \Leftrightarrow Fell's condition of order *n*

Will show strategy for \Leftarrow .

ヨトイヨト

∃ ► < ∃ ►</p>

Observation: If in B(H) we have $x^2=0$, $e \ge 0$ is of rank 1, then

$$[x, e] = 0 \quad \Rightarrow \quad ex = 0, \ xe = 0.$$

Observation: If in B(H) we have $x^2=0$, $e \ge 0$ is of rank 1, then

$$[x, e] = 0 \quad \Rightarrow \quad ex = 0, \ xe = 0.$$

Lemma

For any $\epsilon > 0$ there is a $\delta > 0$ such that whenever $e \in (B(H))_{+,1}$ with rank e = 1 and $x \in (B(H))_1$ with $x^2 = 0$, then

$$\|[x, e]\| \le \delta \quad \Rightarrow \quad \|ex\| \le \epsilon \text{ and } \|xe\| \le \epsilon.$$

Observation: If in B(H) we have $x^2=0$, $e \ge 0$ is of rank 1, then

$$[x, e] = 0 \quad \Rightarrow \quad ex = 0, \ xe = 0.$$

Lemma

For any $\epsilon > 0$ there is a $\delta > 0$ such that whenever $e \in (B(H))_{+,1}$ with rank $e \leq N$ and $x \in (B(H))_1$ with $x^{N+1} = 0$, then

$$\|[x, e]\| \le \delta \quad \Rightarrow \quad \|ex^{N}\| \le \epsilon \text{ and } \|x^{N}e\| \le \epsilon.$$

• • = • • = •

A is generated by elements of global rank N.

A is generated by elements of global rank N. Suppose F(A) is not N-subhomogeneous.

B N A B N

A is generated by elements of global rank N. Suppose F(A) is not N-subhomogeneous.

 $x \in F(A)$ with $x^{N+1} = 0$.

• • = • • = •

A is generated by elements of global rank N. Suppose F(A) is not N-subhomogeneous.

 $x \in F(A)$ with $x^{N+1} = 0$.

Lift it to a central sequence $(x_1, x_2, ...)$ with $x_i^{N+1} = 0$.

A is generated by elements of global rank N. Suppose F(A) is not N-subhomogeneous.

 $x \in F(A)$ with $x^{N+1} = 0$.

Lift it to a central sequence $(x_1, x_2, ...)$ with $x_i^{N+1} = 0$.

Take $e \ge 0$ of global rank N.

A is generated by elements of global rank N. Suppose F(A) is not N-subhomogeneous.

 $x \in F(A)$ with $x^{N+1} = 0$.

Lift it to a central sequence $(x_1, x_2, ...)$ with $x_i^{N+1} = 0$.

Take $e \ge 0$ of global rank N.

 $[x_i, e] \rightarrow 0$

A is generated by elements of global rank N. Suppose F(A) is not N-subhomogeneous.

 $x \in F(A)$ with $x^{N+1} = 0$.

Lift it to a central sequence $(x_1, x_2, ...)$ with $x_i^{N+1} = 0$.

Take $e \ge 0$ of global rank N.

 $[x_i, e] \rightarrow 0$

 $[\rho(x_i),\rho(e)]\to 0$

A is generated by elements of global rank N. Suppose F(A) is not N-subhomogeneous.

 $x \in F(A)$ with $x^{N+1} = 0$.

Lift it to a central sequence $(x_1, x_2, ...)$ with $x_i^{N+1} = 0$.

Take $e \ge 0$ of global rank N.

$$[x_i, e] \rightarrow 0$$

 $[\rho(x_i), \rho(e)] \to 0$ $\rho(x_i)^N \rho(e) \to 0, \quad \rho(e)\rho(x_i)^N \to 0.$

A is generated by elements of global rank N. Suppose F(A) is not N-subhomogeneous.

 $x \in F(A)$ with $x^{N+1} = 0$.

Lift it to a central sequence $(x_1, x_2, ...)$ with $x_i^{N+1} = 0$.

Take $e \ge 0$ of global rank N.

$$[x_i, e] \rightarrow 0$$

 $egin{aligned} & [
ho(x_i),
ho(e)]
ightarrow 0 \ &
ho(x_i)^N
ho(e)
ightarrow 0, &
ho(e)
ho(x_i)^N
ightarrow 0. \ & x_i^Ne
ightarrow 0, & ex_i^N
ightarrow 0 \end{aligned}$

伺 ト イ ヨ ト イ ヨ ト

A is generated by elements of global rank N. Suppose F(A) is not N-subhomogeneous.

 $x \in F(A)$ with $x^{N+1} = 0$.

Lift it to a central sequence $(x_1, x_2, ...)$ with $x_i^{N+1} = 0$.

Take $e \ge 0$ of global rank N.

$$[x_i, e] \rightarrow 0$$

 $[\rho(x_i),\rho(e)]\to 0$

$$ho(x_i)^N
ho(e)
ightarrow 0, \
ho(e)
ho(x_i)^N
ightarrow 0.$$

$$x_i^N e \rightarrow 0, \ ex_i^N \rightarrow 0$$

= 0 in F(A) < 마 · (문) · (문) 문 · (문) 문 · (문) · (E) · (

Theorem

Let A be a separable CCR C*-algebra. Then F(A) is *n*-subhomogeneous if and only if A satisfies Fell's condition of order *n*.

• • = • • = •

Theorem

Let A be a separable C*-algebra. Then F(A) is *n*-subhomogeneous if and only if A satisfies Fell's condition of order *n*.
	// ₁ -factors	separable C*-algebras
F(A) is trivial	No property F	Continuous trace algebras
		(Akemann and Pedersen 79)
F(A) is abelian	$\mathcal{A} \not\cong \mathcal{A} \otimes \mathcal{R}$	•
	(McDuff 69)	?

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● ◇◇◇

	// ₁ -factors	separable C*-algebras
F(A) is trivial	No property Γ	Continuous trace algebras (Akemann and Pedersen 79)
F(A) is abelian	$\mathcal{A} \ncong \mathcal{A} \otimes \mathcal{R}$	
	(McDuff 69)	Fell's condition

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● ◇◇◇

Theorem

If a C*-algebra A satisfies Fell's condition but does not have continuous trace, then A has an outer derivation.

• • = • • = •

э

Thank you!

æ

-