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Power sums

François Viète (1593) and Albert Girard (1629) gave for-

mulae for the sums of powers of the zeros of a polynomial

in terms of the coefficients of the polynomial. The formulae

are often attributed to Newton (Algebra Universalis, 1707).

For any integer n and commuting variables x, y let

pn(x, y) = xn + yn

α = x+ y

β = xy.

x, y are the zeros of the polynomial λ2 − αλ+ β.





Albert Girard



The first few Girard-Viète formulae

p1 = x+ y = α

p2 = x2 + y2 = α2 − 2β
p3 = x3 + y3 = α3 − 3αβ
p4 = x4 + y4 = α4 − 4α2β + 2β2

where

α = x+ y, β = xy.



Symmetric polynomials

A polynomial p is symmetric if it is unchanged by a permu-
tation of the variables.

The Waring-Lagrange theorem

Every symmetric polynomial is expressible as a polynomial
in the elementary symmetric polynomials.

Thus any symmetric polynomial in x and y can be written
as a polynomial in x+ y and xy.

1762: Meditationes Algebraicae, by Edward Waring, Lu-
casian Professor at Cambridge.
1798: Traité de la Résolution des Équations Numériques de
tous les Degrés, by Joseph Louis Lagrange.





What if x and y do not commute?

The symmetric free polynomial

xyx+ yxy

cannot be written as a free polynomial in x+y and xy+yx.

Show this by substituting 2 × 2 matrices for x, y in such a

way that xy + yx = 0.



Theorem (Margarete Wolf, 1936)

There is no finite basis for the algebra of symmetric free

polynomials in d indeterminates over C when d > 1.

Thus there is no reason to expect that the free polynomials

pn = xn + yn, for integer n, can be written as free poly-

nomials in some finite collection of ‘elementary symmetric

nc-functions’ of x and y.

Nevertheless, we do find three symmetric free polynomials

α, β, γ in x and y such that every pn can be written as a free

polynomial in α, β, γ and β−1.



A free Newton-Girard-Vieta formula

Let

u = 1
2(x+ y), v = 1

2(x− y)

and let

α = u, β = v2, γ = vuv.

Then α, β, γ are symmetric free polynomials in x, y, and, for

every positive integer n, there exists a free rational function

Pn in three variables such that

pn(x, y) = Pn(α, β, γ).

Moreover Pn can be written as a free polynomial in α, β, γ

and β−1.



Proof

Show by induction that pn is the sum of all monomials in

u, v of total degree n and of even degree in v.

Any monomial in u and v, in which v occurs with even de-

gree, can be written as a monomial in α, β, γ and β−1.

For example

u2vu2v = u2(vuv)(v2)−1(vuv)

= α2γβ−1γ.

Hence pn is a sum of monomials in α, β, γ and β−1.



The first few Pn

xn + yn = Pn(α, β, γ)

where α = 1
2(x+y), β = 1

4(x−y)2, γ = 1
8(x−y)(x+y)(x−y).

P1 = 2α

P2 = 2(α2 + β)

P3 = 2(α3 + αβ + γ + βα)

P4 = 2(α4 + α2β + αγ + γβ−1γ + αβα+ γα+ βα2 + β2)

P−1 = 2(α− βγ−1β)−1

P−2 = 2
(
α2 + β − (αβ + γ)(γβ−1γ + β2)−1(βα+ γ)

)−1

P−3 = 2
(
α3 + αβ + βα+ γ − (α2β + αγ + γβ−1γ + β2)×

(γβ−1γβ−1γ + γβ + βγ + βαβ)−1(βα2 + γα+ γβ−1γ + β2)
)−1

.



A free Waring-Lagrange theorem

Let

u = 1
2(x+ y), v = 1

2(x− y)

and let

α = u, β = v2, γ = vuv.

Every symmetric free polynomial in x and y can be written

as a free polynomial in α, β, γ and β−1.

Proof is by dimension-counting.



Corollary: symmetric nc-functions

Let

Md def
=

∞⋃
n=1

(Mn)d.

Let π :M2 →M3 be given by

π(x, y) = (α, β, γ) =
(

1
2(x+ y), 1

4(x− y)2, 1
8(x− y)(x+ y)(x− y)

)
.

For every symmetric free polynomial map f :M2 →M there
exists a rational nc-map F :M3 →M such that f = F ◦ π.

We could try to prove: for every symmetric freely holomor-
phic map f :M2 →M there exists a freely holomorphic map
F :M3 →M such that f = F ◦ π. Unfortunately it’s false.



A holomorphic free Waring-Lagrange

theorem 1

There exists a two-dimensional topological nc-manifold G
and a holomorphic map π : M2 → G which induces a canon-
ical isomorphism between

• the algebra of symmetric freely holomorphic functions
on M2 and

• the algebra of holomorphic functions on G that have a
certain local boundedness property.

G is embedded inM3 and π is the map (u, v2, vuv) as before.



The free topology on Md

For any I × J matrix δ = [δij] of free polynomials in d non-

commuting variables define

Bδ = {x ∈Md : ‖δ(x)‖ < 1}.

The free topology on Md is the topology for which a base

consists of the sets Bδ.



Conditionally nc-functions

Let D be a subset of Md and f be a mapping from D to M.

We say that f is conditionally nc if f is a graded function

and

(i) if x, s−1xs ∈ D, then f(s−1xs) = s−1f(x)s;

(ii) there exists a graded function f̂ defined on the set

D̂
def
= {y ∈ Md : there exists x ∈ D such that x⊕ y ∈ D}

such that, for all x ∈ D such that x⊕ y ∈ D,

f

([
x 0
0 y

])
=

[
f(x) 0

0 f̂(y)

]
.



A holomorphic free Waring-Lagrange

theorem 2

There exists a two-dimensional Zariski-free manifold G and

a holomorphic map π : M2 → G with the following property.

There is a canonical bijection between the classes of

(i) freely holomorphic symmetric nc functions f on M2, and

(ii) holomorphic functions F defined on the nc-manifold G
that are conditionally nc and are locally bounded, meaning

that, for every w ∈ M2, there is a free neighbourhood U of

w such that F is bounded on π(U) ∩ G.
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A free Newton-Girard-Vieta formula for

three noncommuting variables x, y, z

Let ω be a primitive cube root of 1 and let

u = x+ y + z,

v = x+ ωy + ω2z,

w = x+ ω2y + ωz.

Let also

pn = xn + yn + zn,

qn = xn + ωyn + ω2zn,

rn = x+ ω2yn + ωzn.



A recursion

It is easy to show that, for n ≥ 1,pnqn
rn

 =
1

3

u w v
v u w
w v u


pn−1
qn−1
rn−1

 .
Let

T =
1

3

u w v
v u w
w v u

 =
1

3

uI + w

0 1 0
0 0 1
1 0 0

+ v

0 1 0
0 0 1
1 0 0


2
 .

Then pnqn
rn

 = T

pn−1
qn−1
rn−1

 = Tn

p0
q0
r0

 = Tn

3
0
0

 .



A formula for xn + yn + zn in terms of u, v, w

Thus

xn + yn + zn = pn

= 3× the (1,1) entry of Tn

=
1

3n−1

∑
0≤j,k,`≤n,j+k+`=n,3|2k+`

mjk`(u, v, w)

where mjk`(u, v, w) is the sum of all monomials in u, v, w of

degree j, k, ` in u, v, w respectively.


