Newton-Girard-Vieta and Waring-Lagrange theorems for two non-commuting variables

Nicholas Young

Newcastle University

Joint work with Jim Agler, UCSD and John McCarthy,
Washington University

Granada, July 2022

Power sums

François Viète (1593) and Albert Girard (1629) gave formulae for the sums of powers of the zeros of a polynomial in terms of the coefficients of the polynomial. The formulae are often attributed to Newton (Algebra Universalis, 1707).

For any integer n and commuting variables x, y let

$$
\begin{aligned}
p_{n}(x, y) & =x^{n}+y^{n} \\
\alpha & =x+y \\
\beta & =x y .
\end{aligned}
$$

x, y are the zeros of the polynomial $\lambda^{2}-\alpha \lambda+\beta$.

François Viète

Albert Girard

The first few Girard-Viète formulae

$$
\begin{array}{llc}
p_{1}=x+y & = & \alpha \\
p_{2}=x^{2}+y^{2} & = & \alpha^{2}-2 \beta \\
p_{3}=x^{3}+y^{3} & = & \alpha^{3}-3 \alpha \beta \\
p_{4}=x^{4}+y^{4} & = & \alpha^{4}-4 \alpha^{2} \beta+2 \beta^{2}
\end{array}
$$

where

$$
\alpha=x+y, \quad \beta=x y
$$

Symmetric polynomials

A polynomial p is symmetric if it is unchanged by a permutation of the variables.

The Waring-Lagrange theorem

Every symmetric polynomial is expressible as a polynomial in the elementary symmetric polynomials.

Thus any symmetric polynomial in x and y can be written as a polynomial in $x+y$ and $x y$.

1762: Meditationes Algebraicae, by Edward Waring, Lucasian Professor at Cambridge.
1798: Traité de la Résolution des Équations Numériques de tous les Degrés, by Joseph Louis Lagrange.

Edward Waring

What if x and y do not commute?

The symmetric free polynomial

$$
x y x+y x y
$$

cannot be written as a free polynomial in $x+y$ and $x y+y x$.

Show this by substituting 2×2 matrices for x, y in such a way that $x y+y x=0$.

Theorem (Margarete Wolf, 1936)

There is no finite basis for the algebra of symmetric free polynomials in d indeterminates over \mathbb{C} when $d>1$.

Thus there is no reason to expect that the free polynomials $p_{n}=x^{n}+y^{n}$, for integer n, can be written as free polynomials in some finite collection of 'elementary symmetric nc-functions' of x and y.

Nevertheless, we do find three symmetric free polynomials α, β, γ in x and y such that every p_{n} can be written as a free polynomial in α, β, γ and β^{-1}.

A free Newton-Girard-Vieta formula

Let

$$
u=\frac{1}{2}(x+y), \quad v=\frac{1}{2}(x-y)
$$

and let

$$
\alpha=u, \quad \beta=v^{2}, \quad \gamma=v u v
$$

Then α, β, γ are symmetric free polynomials in x, y, and, for every positive integer n, there exists a free rational function P_{n} in three variables such that

$$
p_{n}(x, y)=P_{n}(\alpha, \beta, \gamma)
$$

Moreover P_{n} can be written as a free polynomial in α, β, γ and β^{-1}.

Proof

Show by induction that p_{n} is the sum of all monomials in u, v of total degree n and of even degree in v.

Any monomial in u and v, in which v occurs with even degree, can be written as a monomial in α, β, γ and β^{-1}.

For example

$$
\begin{aligned}
u^{2} v u^{2} v & =u^{2}(v u v)\left(v^{2}\right)^{-1}(v u v) \\
& =\alpha^{2} \gamma \beta^{-1} \gamma
\end{aligned}
$$

Hence p_{n} is a sum of monomials in α, β, γ and β^{-1}.

The first few P_{n}

$$
\begin{aligned}
& \qquad x^{n}+y^{n}=P_{n}(\alpha, \beta, \gamma) \\
& \text { where } \alpha=\frac{1}{2}(x+y), \beta=\frac{1}{4}(x-y)^{2}, \gamma=\frac{1}{8}(x-y)(x+y)(x-y) . \\
& P_{1}=2 \alpha \\
& P_{2}=2\left(\alpha^{2}+\beta\right) \\
& P_{3}=2\left(\alpha^{3}+\alpha \beta+\gamma+\beta \alpha\right) \\
& P_{4}=2\left(\alpha^{4}+\alpha^{2} \beta+\alpha \gamma+\gamma \beta^{-1} \gamma+\alpha \beta \alpha+\gamma \alpha+\beta \alpha^{2}+\beta^{2}\right) \\
& P_{-1}=2\left(\alpha-\beta \gamma^{-1} \beta\right)^{-1} \\
& P_{-2}=2\left(\alpha^{2}+\beta-(\alpha \beta+\gamma)\left(\gamma \beta^{-1} \gamma+\beta^{2}\right)^{-1}(\beta \alpha+\gamma)\right)^{-1} \\
& P_{-3}=2\left(\alpha^{3}+\alpha \beta+\beta \alpha+\gamma-\left(\alpha^{2} \beta+\alpha \gamma+\gamma \beta^{-1} \gamma+\beta^{2}\right) \times\right. \\
& \left.\quad\left(\gamma \beta^{-1} \gamma \beta^{-1} \gamma+\gamma \beta+\beta \gamma+\beta \alpha \beta\right)^{-1}\left(\beta \alpha^{2}+\gamma \alpha+\gamma \beta^{-1} \gamma+\beta^{2}\right)\right)^{-1} .
\end{aligned}
$$

A free Waring-Lagrange theorem

Let

$$
u=\frac{1}{2}(x+y), \quad v=\frac{1}{2}(x-y)
$$

and let

$$
\alpha=u, \quad \beta=v^{2}, \quad \gamma=v u v
$$

Every symmetric free polynomial in x and y can be written as a free polynomial in α, β, γ and β^{-1}.

Proof is by dimension-counting.

Corollary: symmetric nc-functions

Let

$$
\mathcal{M}^{d} \stackrel{\text { def }}{=} \bigcup_{n=1}^{\infty}\left(\mathcal{M}_{n}\right)^{d} .
$$

Let $\pi: \mathcal{M}^{2} \rightarrow \mathcal{M}^{3}$ be given by
$\pi(x, y)=(\alpha, \beta, \gamma)=\left(\frac{1}{2}(x+y), \frac{1}{4}(x-y)^{2}, \frac{1}{8}(x-y)(x+y)(x-y)\right)$.
For every symmetric free polynomial map $f: \mathcal{M}^{2} \rightarrow \mathcal{M}$ there exists a rational nc-map $F: \mathcal{M}^{3} \rightarrow \mathcal{M}$ such that $f=F \circ \pi$.

We could try to prove: for every symmetric freely holomorphic map $f: \mathcal{M}^{2} \rightarrow \mathcal{M}$ there exists a freely holomorphic map $F: \mathcal{M}^{3} \rightarrow \mathcal{M}$ such that $f=F \circ \pi$. Unfortunately it's false.

A holomorphic free Waring-Lagrange theorem 1

There exists a two-dimensional topological nc-manifold \mathcal{G} and a holomorphic map $\pi: \mathbb{M}^{2} \rightarrow \mathcal{G}$ which induces a canonical isomorphism between

- the algebra of symmetric freely holomorphic functions on \mathcal{M}^{2} and
- the algebra of holomorphic functions on \mathcal{G} that have a certain local boundedness property.
\mathcal{G} is embedded in \mathcal{M}^{3} and π is the map ($u, v^{2}, v u v$) as before.

The free topology on \mathcal{M}^{d}

For any $I \times J$ matrix $\delta=\left[\delta_{i j}\right]$ of free polynomials in d noncommuting variables define

$$
B_{\delta}=\left\{x \in \mathcal{M}^{d}:\|\delta(x)\|<1\right\} .
$$

The free topology on \mathcal{M}^{d} is the topology for which a base consists of the sets B_{δ}.

Conditionally nc-functions

Let D be a subset of \mathbb{M}^{d} and f be a mapping from D to \mathbb{M}. We say that f is conditionally $n c$ if f is a graded function and
(i) if $x, s^{-1} x s \in D$, then $f\left(s^{-1} x s\right)=s^{-1} f(x) s$;
(ii) there exists a graded function \hat{f} defined on the set

$$
\widehat{D} \stackrel{\text { def }}{=}\left\{y \in \mathbb{M}^{d}: \text { there exists } x \in D \text { such that } x \oplus y \in D\right\}
$$

such that, for all $x \in D$ such that $x \oplus y \in D$,

$$
f\left(\left[\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right]\right)=\left[\begin{array}{cc}
f(x) & 0 \\
0 & \widehat{f}(y)
\end{array}\right] .
$$

A holomorphic free Waring-Lagrange theorem 2

There exists a two-dimensional Zariski-free manifold \mathcal{G} and a holomorphic map $\pi: \mathbb{M}^{2} \rightarrow \mathcal{G}$ with the following property. There is a canonical bijection between the classes of
(i) freely holomorphic symmetric nc functions f on \mathbb{M}^{2}, and
(ii) holomorphic functions F defined on the nc-manifold \mathcal{G} that are conditionally nc and are locally bounded, meaning that, for every $w \in \mathbb{M}^{2}$, there is a free neighbourhood U of w such that F is bounded on $\pi(U) \cap \mathcal{G}$.

Reference

Jim Agler, John E. McCarthy and N. J. Young,

Non-commutative manifolds, the free square root and symmetric functions in two non-commuting variables,

Trans. London Math. Soc. (2018) 5(1) 132 - 183

A free Newton-Girard-Vieta formula for three noncommuting variables x, y, z

Let ω be a primitive cube root of 1 and let

$$
\begin{aligned}
u & =x+y+z \\
v & =x+\omega y+\omega^{2} z \\
w & =x+\omega^{2} y+\omega z
\end{aligned}
$$

Let also

$$
\begin{aligned}
p_{n} & =x^{n}+y^{n}+z^{n} \\
q_{n} & =x^{n}+\omega y^{n}+\omega^{2} z^{n} \\
r_{n} & =x+\omega^{2} y^{n}+\omega z^{n}
\end{aligned}
$$

A recursion

It is easy to show that, for $n \geq 1$,

$$
\left[\begin{array}{l}
p_{n} \\
q_{n} \\
r_{n}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}
u & w & v \\
v & u & w \\
w & v & u
\end{array}\right]\left[\begin{array}{l}
p_{n-1} \\
q_{n-1} \\
r_{n-1}
\end{array}\right]
$$

Let

$$
T=\frac{1}{3}\left[\begin{array}{ccc}
u & w & v \\
v & u & w \\
w & v & u
\end{array}\right]=\frac{1}{3}\left(u I+w\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]+v\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]^{2}\right)
$$

Then

$$
\left[\begin{array}{l}
p_{n} \\
q_{n} \\
r_{n}
\end{array}\right]=T\left[\begin{array}{l}
p_{n-1} \\
q_{n-1} \\
r_{n-1}
\end{array}\right]=T^{n}\left[\begin{array}{l}
p_{0} \\
q_{0} \\
r_{0}
\end{array}\right]=T^{n}\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right]
$$

A formula for $x^{n}+y^{n}+z^{n}$ in terms of u, v, w

Thus

$$
\begin{aligned}
x^{n}+y^{n}+z^{n} & =p_{n} \\
& =3 \times \text { the }(1,1) \text { entry of } T^{n} \\
& =\frac{1}{3^{n-1}} \sum_{0 \leq j, k, \ell \leq n, j+k+\ell=n, 3 \mid 2 k+\ell} m_{j k \ell}(u, v, w)
\end{aligned}
$$

where $m_{j k \ell}(u, v, w)$ is the sum of all monomials in u, v, w of degree j, k, ℓ in u, v, w respectively.

