On local isometries between algebras of C(Y)-valued differentiable maps

Rev. Real Acad. Cienc. Exactas. Fis. Nat. Sea. A-Mat. (2022) 116:108

M. Hosseini & A. Jiménez-Vargas & M.I. Ramírez

Banach Algebras and Applications 2022 University of Granada (Spain) 18-23, July 2022

Research supported by project UAL-FEDER Grant UAL2020-FQM-B1858, and by Junta de Andalucía Grants P20_00255 and FQM194.

Maliheh Hosseini (University of Tehran)

With María Isabel Ramírez (University of Almería)

-∢ ≣ ▶

< □ > <

Notations

Let E and F be Banach spaces. Denote:

$$F^{E} = \{T \text{ is a mapping from } E \text{ to } F\},\$$
$$\mathcal{B}(E,F) = \{T \text{ is a continuous linear operator from } E \text{ to } F\},\$$
$$Iso(E,F) = \{T \text{ is a surjective linear isometry from } E \text{ to } F\}.$$

K denotes either

$$[0,1] = \{t \in \mathbb{R} \colon 0 \le t \le 1\}$$

or

$$\mathbb{T} = \left\{ z \in \mathbb{C} \colon |z| = 1 \right\}.$$

э

イロト イボト イヨト イヨト

Algebraic and topological reflexivity (Molnár '02)

Let *E* and *F* be Banach spaces and $\emptyset \neq S \subseteq \mathcal{B}(E, F)$.

Define the algebraic reflexive closure of ${\mathcal S}$ by

$$\operatorname{ref}_{\operatorname{alg}}(\mathcal{S}) = \{ T \in \mathcal{B}(E,F) \colon \forall e \in E, \ \exists S_e \in \mathcal{S} \mid S_e(e) = T(e) \},$$

and the topological reflexive closure of ${\mathcal S}$ by

$$\operatorname{ref_{top}}(\mathcal{S}) = \left\{ T \in \mathcal{B}(E,F) \colon \forall e \in E, \ \exists \{S_{e,n}\}_{n \in \mathbb{N}} \subset \mathcal{S} \mid \lim_{n \to \infty} S_{e,n}(e) = T(e)
ight\}$$

Clearly, $\mathcal{S} \subseteq \operatorname{ref_{alg}}(\mathcal{S}) \subseteq \operatorname{ref_{top}}(\mathcal{S}).$

The set S is said to be algebraically reflexive if $\operatorname{ref}_{\operatorname{alg}}(S) \subseteq S$.

The set S is said to be topologically reflexive if $ref_{top}(S) \subseteq S$.

5 / 22

2-Algebraic and 2-topological reflexivity (Šemrl '97)

Let *E* and *F* be Banach spaces and $\emptyset \neq S \subseteq \mathcal{B}(E, F)$.

Define the 2-algebraic reflexive closure of S, 2-ref_{alg}(S), by

$$\left\{\Delta\in \mathcal{F}^{\mathcal{E}}\colon orall e, u\in \mathcal{E}, \ \exists S_{e,u}\in \mathcal{S}\mid S_{e,u}(e)=\Delta(e), \ S_{e,u}(u)=\Delta(u)
ight\}$$

and the 2-topological reflexive closure of \mathcal{S} , 2-ref_{top}(\mathcal{S}), by

$$\{\Delta \in F^{E} : \forall e, u \in E, \exists \{S_{e,u,n}\}_{n \in \mathbb{N}} \subset S \\ | \lim_{n \to \infty} S_{e,u,n}(e) = \Delta(e), \lim_{n \to \infty} S_{e,u,n}(u) = \Delta(u) \}.$$

Clearly, $\mathcal{S} \subseteq 2\text{-}\mathrm{ref}_{\mathrm{alg}}(\mathcal{S}) \subseteq 2\text{-}\mathrm{ref}_{\mathrm{top}}(\mathcal{S}).$

The set S is called 2-algebraically reflexive if $2\operatorname{-ref}_{\operatorname{alg}}(S) \subseteq S$. The set S is called 2-topologically reflexive if $2\operatorname{-ref}_{\operatorname{top}}(S) \subseteq S$.

<ロト <部ト < 国ト < 国ト - 国

More suggestive terminologies

Let E and F be Banach spaces.

 $\operatorname{ref}_{\operatorname{alg}}(\operatorname{Iso}(E, F)) = \{ \text{local isometries from E to F} \},\\ \operatorname{ref}_{\operatorname{top}}(\operatorname{Iso}(E, F)) = \{ \text{approximate local isometries from E to F} \}.$

 $\begin{aligned} &2\text{-ref}_{\mathrm{alg}}(\mathrm{Iso}(E,F)) = \{2\text{-local isometries from E to F}\}, \\ &2\text{-ref}_{\mathrm{top}}(\mathrm{Iso}(E,F)) = \{\text{approximate 2-local isometries from E to F}\}. \end{aligned}$

7 / 22

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Banach algebras of C(Y)-valued differentiable maps

Definition

Let K be either [0, 1] or T, and let Y be a Hausdorff compact space. A mapping $F \in C(K, C(Y))$ is said to be continuously differentiable if there exists a map $G \in C(K, C(Y))$ such that

$$\lim_{x \to x_0} \left\| \frac{F(x) - F(x_0)}{x - x_0} - G(x_0) \right\|_{\infty} = 0$$

for every $x_0 \in K$. We denote F' = G. The linear space

 $C^{1}(K, C(Y)) = \{F \in C(K, C(Y)) : F \text{ is continuously differentiable}\},\$

equipped with the Σ -norm:

$$\left\|F\right\|_{\Sigma} = \left\|F\right\|_{\infty} + \left\|F'\right\|_{\infty} \qquad \left(F \in C^{1}(K, C(Y))\right),$$

is a unital semisimple commutative complex Banach algebra.

The unity is the mapping $1_K \otimes 1_Y : K \to C(Y)$ given by

$$(1_K \otimes 1_Y)(x) = 1_K(x)1_Y = 1_Y \quad (x \in K).$$

Given $f \in C^1(K)$ and $g \in C(Y)$, the map $f \otimes g \colon K \to C(Y)$, given by

$$(f \otimes g)(x) = f(x)g \qquad (x \in K),$$

belongs to $C^1(K, C(Y))$ with

$$\begin{split} \|f \otimes g\|_{\infty} &= \|f\|_{\infty} \|g\|_{\infty}, \\ \|(f \otimes g)'\|_{\infty} &= \|f'\|_{\infty} \|g\|_{\infty}, \\ \|f \otimes g\|_{\Sigma} &= \|f\|_{\Sigma} \|g\|_{\infty}. \end{split}$$

If #(Y) = 1, then $C(Y) \cong \mathbb{C}$, and we write $C^1(X) = C^1(X, C(Y))$.

Background

The reflexivity of the isometry group of spaces of differentiable mappings has been studied for:

- C¹([0,1]), the Banach algebra of all continuously differentiable complex-valued functions on [0,1] ⊆ ℝ
 (Hatori & Oi, '19).
- C⁽ⁿ⁾(X), the Banach algebra of all n-times continuously differentiable complex-valued functions on an open subset X ⊆ ℝ.
 (Hosseini & JV, '21).
- C⁽ⁿ⁾(X, E), the Banach space of all n-times continuously differentiable Banach-valued functions on an open subset X ⊆ ℝⁿ (Miao & X. Wang & Li & L. Wang, '20).

Objective

Our main goal is to prove:

 $Iso(C^1(K, C(Y)))$ is topologically reflexive and 2-topologically reflexive whenever Iso(C(Y)) is topologically reflexive.

Is our result applicable? Yes, there are Hausdorff compact spaces Y for which Iso(C(Y)) is topologically reflexive.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

FIRST PART THE TOOLS

A. Jiménez-Vargas (UAL)

2022 12 / 22

.

Spherical variants of Gleason–Kahane-Żelazko and Kowalski–Słodkowski theorems

Theorem (Li, Peralta, L. Wang & Y.-S. Wang, '19)

Let \mathcal{A} be a unital complex Banach algebra, and let $F : \mathcal{A} \to \mathbb{C}$ be a continuous linear functional such that $F(x) \in \mathbb{T}\sigma(x)$ for every $x \in \mathcal{A}$. Then $\overline{F(1)}F$ is multiplicative.

Theorem (Li, Peralta, L. Wang & Y.-S. Wang, '19)

Let $\mathcal A$ be a unital complex Banach algebra, and let $\Delta\colon \mathcal A\to\mathbb C$ be a function such that

- **1** Δ is homogeneous: $\Delta(\lambda x) = \lambda \Delta(x)$ for every $\lambda \in \mathbb{C}$ and $x \in \mathcal{A}$.
- A satisfies the spectral condition: Δ(x) − Δ(y) ∈ Tσ(x − y) for every x, y ∈ A.

Then Δ is linear, and there exists $\lambda_0 \in \mathbb{T}$ such that $\lambda_0 \Delta$ is multiplicative.

イロト イボト イヨト イヨト

Onto linear isometries of $C^1(K, C(Y))$ -spaces

Theorem (Hatori & Oi, '18)

Let K be either [0,1] or \mathbb{T} and let Y_1, Y_2 be Hausdorff compact spaces. A map $T: C^1(K, C(Y_1)) \to C^1(K, C(Y_2))$ is a surjective linear isometry with respect to the Σ -norms if and only if it has a representation of BJ type, that is, there exist:

- a function $h \in C(Y_2, \mathbb{T})$,
- a function $\phi \in C(K \times Y_2, K)$ with $\phi^y \in \text{Iso}(K)$ for each $y \in Y_2$,
- a mapping $\tau \in \operatorname{Homeo}(Y_2, Y_1)$,

such that

$$T(F)(x,y) = h(y)F(\phi(x,y),\tau(y)) \qquad ((x,y) \in K \times Y_2),$$

for all $F \in C^1(K, C(Y_1))$.

-For each $y \in Y$, $\varphi^y : K \to K$ is defined by $\varphi^y(x) = \varphi(x, y)$ for all $x \in K$. - τ depends only on the second variable.

14 / 22

Unital algebra homom. of $C^1(K, C(Y))$ -algebras

Theorem (Hosseini & JV & Ramírez, '22)

Let K be either [0,1] or \mathbb{T} and let Y_1, Y_2 be Hausdorff compact spaces. If T is a unital algebra homomorphism of $C^1(K, C(Y_1))$ to $C^1(K, C(Y_2))$, then there exist:

- a function $\phi \in C(K \times Y_2, K)$ so that $\phi^y \in C^1(K)$ for each $y \in Y_2$,
- a map $au \in \mathcal{C}(\mathcal{K} imes Y_2, Y_1)$,

such that

 $T(F)(x,y) = F(\phi(x,y),\tau(x,y)) \qquad ((x,y) \in K \times Y_2)$

for all $F \in C^1(K, C(Y_1))$.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SECOND PART THE RESULTS

A. Jiménez-Vargas (UAL)

 ≥ ▶ < ≥ ▶ < ≥ </td>
 > < </td>

 2022
 16 / 22

<ロト <回ト < 回ト < 回ト < 回ト -

Topological reflexivity in $C^1(K)$ -algebras

Using the descriptions of onto linear isometries and unital algebra homomorphisms of $C^1(K)$, the spherical variant of Gleason–Kahane–Żelazko theorem and the Arzelá–Ascoli theorem:

Theorem (Hosseini & JV & Ramírez, '22)

For K = [0,1] or \mathbb{T} , $\operatorname{Iso}(C^1(K))$ is topologically reflexive.

Topological reflexivity in $C^1(K, C(Y))$ -algebras

Theorem (Hosseini & JV & Ramírez, '22)

Let K be either [0,1] or T and let Y_1, Y_2 be Hausdorff compact spaces. Suppose that $Iso(C(Y_1), C(Y_2))$ is topologically reflexive. Then

$$\operatorname{Iso}(C^1(K,C(Y_1)),C^1(K,C(Y_2)))$$

is topologically reflexive.

< 同 > < 三 > < 三 >

A sketch of the proof (steps 1–3)

Let $T \in ref_{top}(Iso(C^1(K, C(Y_1)), C^1(K, C(Y_2)))))$. We prove that T has a representation of BJ type:

$$T(F)(x,y) = h(y)F(\phi(x,y),\tau(y))$$
 $((x,y) \in K \times Y_2),$

for all $F \in C^1(K, C(Y_1))$, and so

$$T \in \operatorname{Iso}(C^1(K, C(Y_1)), C^1(K, C(Y_2))).$$

Steps:

 Using (Hat-Oi'18), for every F ∈ C¹(K, C(Y₁)), we have ||T(F)||_∞ = ||F||_∞, ||T(F)'||_∞ = ||F'||_∞ and ||T(F)||_Σ = ||F||_Σ.
 Using (Hat-Oi'18), for every F ∈ C¹(K, C(Y₁)), there exist three sequences: {h_{F,n}}_{n∈ℕ} in C(Y₂, T), {φ_{F,n}}_{n∈ℕ} in C(K × Y₂, K) such that, for each y ∈ Y₂, φ^y_{F,n} ∈ Iso(K) for all n ∈ ℕ, and {τ_{F,n}}_{n∈ℕ} in Homeo(Y₂, Y₁) satisfying that

$$\lim_{n\to\infty} \|h_{F,n}F(\phi_{F,n},\tau_{F,n})-T(F)\|_{\Sigma}=0.$$

(3) There exists a $h \in C(Y_2, \mathbb{T})$ such that $T(1_K \otimes 1_{Y_1}) = 1_K \otimes h$.

A sketch of the proof (steps 4–7)

(4) Using (Li-Per-Wan-Wan'19), for each $(x, y) \in K \times Y_2$, the functional $S_{(x,y)} \colon C^1(K, C(Y_1)) \to \mathbb{C}$ defined by

$$S_{(x,y)}(F) = \overline{h(y)}T(F)(x,y) \qquad (F \in C^1(K, C(Y_1))),$$

is linear, unital and multiplicative.

(5) Using (Hos-JV-Ram'22), there exist two maps $\phi \in C(K \times Y_2, K)$ with $\phi^y \in C^1(K)$ for each $y \in Y_2$, and $\tau \in C(K \times Y_2, Y_1)$ such that

$$T(F)(x,y) = h(y)F(\phi(x,y),\tau(x,y)) \qquad ((x,y) \in K \times Y_2),$$

for all $F \in C^1(K, C(Y_1))$.

- (6) Using (Hat-Oi'18 & Hos-JV-Ram'22), for each $y \in Y_2$, $\phi^y \in \text{Iso}(K)$.
- (7) Using Banach–Stone theorem, there exists a map $\beta \in \text{Homeo}(Y_2, Y_1)$ such that

$$\beta(y) = \tau(x, y) \qquad (y \in Y_2),$$

where x is any point of K.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2-Topological reflexivity in $C^1(K, C(Y))$ -algebras

Applying also the spherical variant of Kowalski–Słodkowski theorem:

Corollary (Hosseini & JV & Ramírez, '22)

Let K be either [0,1] or T and let Y_1, Y_2 be Hausdorff compact spaces. Suppose that $Iso(C(Y_1), C(Y_2))$ is topologically reflexive. Then

 $\operatorname{Iso}(C^1(K,C(Y_1)),C^1(K,C(Y_2)))$

is 2-topologically reflexive.

・ 同 ト ・ ヨ ト ・ ヨ ト …

MANY THANKS FOR YOUR TIME!

A. Jiménez-Vargas (UAL)

2022 22 / 22

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >